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STABILITY OF NUCLEAR FORCES VERSUS WEAPONS OF MASS DESTRUCTION

Gregory H. Canavan

Crisis stability analysis is extended to weapons of mass destruction
(WMD). Nuclear and WMD can be balanced against one another for undispersed
WMD forces, but dispersal degrades stability. Irrational or aggressive behavior
further degrades stability, particularly at the low dispersals thought to be stable.

The model derived for nuclear missile exchanges is used to describe the interaction

between two forces, of which one has a nuclear weapons and the other has weapons of mass

destruction (WMD). The model equations are solved analytically for exchanges, costs, and

stability indices by analytically minimizing the cost of first strikes. The analysis is restricted to

theater operations, as WMD are inferior to nuclear weapons in strategic counter force operations,

but quite adequate for theater operations against exposed forces. The analysis treats only in-

theater forces as companion papers show that ex-theater forces, which enter as survivable forces,

cancel out of the theater balances treated here.

Optimal nuclear weapon and WMD allocations are proportional to the opponent’s carriers

and inversely proportional to one’s own weapons. Thus, as WMD increase, WMD allocations to

nuclear forces fall, reflecting a shift from damage limiting to inflicting damage with surviving

forces. Nuclear weapon kill probabilities degrade rapidly against dispersed forces. As they fall,

their allocation to WMD falls sharply as they become ineffective and are reallocated to value.

Thus, damage limiting is primarily effective for undispersed forces, which produces an incentive

for the nuclear side to use his weapons while they are still effective.

First strikes are complementary to these allocations, so as kill probabilities decrease, the

nuclear side’s first strikes increase and the WMD side’s survivability and second strike increases.

Thus, the difference between the nuclear side’s second and first strikes decrease due to the

increase in his first strike, and the difference between the WMD side’s second and first strikes

increase due to the increase in his second strikes.

The stability of singlet WMD forces is negative for the small probabilities corresponding

to the expected full dispersal, where it is dominated by the WMD. For triplet WMD carriers,

stability is determined equally by nuclear and WMD at large kill probabilities; by WMD at small

kill probabilities, where they again become quite negative.

The possibility that an opponent might use a different stability calculus and arrive at a

different assessment can be modeled through the model parameters that represent relative

damage preference. A WMD opponent with a strong preference for damage would shift his

allocation from missiles to value to increase his first strikes on value by a like amount, which
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would strongly decreases stability at large kill probabilities. Thus, irrational evaluation could

decrease stability in the region where it is generally thought deterrence should be effective.

Overall, the extension of the nuclear crisis stability formalism to forces with WMD is

natural and fruitful. It is straightforward to relate WMD to missile numbers and weapons. That

makes it possible to treat the reduced effectiveness of nuclear weapons against dispersed forces,

i.e., the effectiveness of dispersal in increasing the survivability for WMD, which significantly

reduces overall stability.

Exchange Model is an aggregated, probabilistic exchange between the two forces, which

treats the WMD forces in terms of nuclear force equivalents. The two sides are labeled by the

“unprime” and “prime” as nationality-neutral labels are appropriate in discussing strikes of sizes

that could be executed by any of a half dozen countries. The unprime forces are treated as being

composed of M missiles with m weapons each, although the weapons might actually be mounted

on aircraft, have different numbers of weapons per carrier, etc. M can represent either the

number of missiles, missile sites, or the number of bases on which the missiles or aircraft are

based, as WMD could destroy or incapacitate the weapons located on any. The total number of

nuclear weapons is mM. Survivability of in-theater missiles and aircraft is an important feature,

which is studied by varying the kill probability of opposing forces in a companion paper on the

stability of conventional forces.

The opposing side, denoted by “prime,” in accord with the symbols used for its forces, is

taken to have chemical, biological, or other WMD of m’ weapons on each of M’ carriers for a

total of m’M’ nuclear weapon equivalents. M’ is the number of launchers or transporters; it also

represents the number of points that would have to be targeted to destroy one of these units. Each

WMD has a value killing potential of m’ targets. The lethality of biological weapons approaches

that of nuclear weapons, m’ ~ 1 air base or city per weapon, so nuclear and WMD are roughly

commensurate. WMD forces seek to achieve survivability through dispersal, which is studied

below by degrading the nuclear force’s kill probability to model varying levels of dispersal.

The intent here is not to develop a detailed model of WMD war, but to evaluate the extent

to which the models developed earlier for nuclear war can be applied in a logical fashion to treat

the stability of engagements involving forces that have both nuclear weapons and WMD. Thus,

the analysis below maintains the symbols used in the earlier analyses in order to simplify

analogies between the nuclear and mixed forces. Thus, exchanges between forces are modeled in

terms of the first, F, and second, S, strikes unprime could deliver to prime and the first, F’, and

second, S’, strikes prime could deliver to unprime, as derived in the Appendix.1 The discussion

below identifies the nuclear power as unprime and the WMD power as unprime, although the

results can easily be interchanged to view stability from the opposite perspectives.
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Optimum allocation of weapons results in the allocation of a fraction fo of unprime’s

first strike mM to the M’ known prime WMD sites, where from the Appendix

fo = (M’/mMlnq) ln(-Lk’/km’lnq), (1)

where p = 1 - q is his kill probability L his relative preference for inflicting damage to prime and

preventing damage to self, and other parameters are defined in the Appendix. The equation for

prime's first strike allocation is the conjugate of Eq. (1)

fo‘ = (M/m’M’lnq’) ln(-L’k/k’mlnq’). (2)

Figure 1 shows fo and fo‘ for m’ = 1 and 3 (single and triple WMD warhead missiles) as

functions of unprime’s kill probability p. In the calculations below, the nuclear forces are

maintained at mM = 12 x 5 = 60 weapons, against which prime weapons have kill probability p’

= 0.6. The variation of p models the effect of dispersal of the WMD. They should be fairly easy

to kill when undispersed, i.e., p ~ unity; but hard to find or kill when dispersed, p low.

The curve for singlet warheads (“f single”) shows that for p ~ 1, fo increases slightly as p

falls, reaching a maximum ~ 0.7 at p ~ 0.7 for these parameters. For smaller values of p, fo falls

rapidly to zero. The curve for triplet warheads (“f triple”) shows that fo again increases as p falls,

reaching a maximum ~ 0.7 at p ~ 0.3 before falling to zero for small p. For p large, unprime’s

optimal allocation fo is largely to prime missiles, to minimize damage to self. However, for p

small, the effectiveness of damage limiting falls rapidly, and fo with it. This fall in effectiveness

produces an incentive for the nuclear side to use his weapons while they are still effective, which

increases the probability of a premature response in a crisis

The two curves for fo‘ are constant because they depend on p’, not p. The curve for triplet

WMD is lower than that for singlets by a factor ~ 3 by Eq. (2). The sensitivity to p’ is studied in

the companion paper on conventional force stability.

First strikes shown in Fig. 2 are complementary to the allocations of Fig. 1. For singlets,

for p > 0.6 unprime allocates ~ 70% of his weapons to WMD so he has a first strike of only ~ 0.3

x 60 ~ 20 weapons on value. For smaller p, fo ~ 0, and F increases to ~ 60. For triplets, unprime

has a minimum at p ~ 0.4, although the first strikes are larger for both larger and smaller p.

fo‘ is independent of p, so it is constant. It scales as M/m’M’, which is held constant as

m’ is changed, so prime’s allocation and first strikes are constant and the same for both m’.

Survival probability depends on the average number of weapons delivered on each

known target, which optimizes at

r = fmM/M’ = ln(-Lk’/km’lnq)/lnq, (3)

The resulting survival probability for a prime weapon is

Q’ ≈ qr = -Lk’/km’lnq, (4)
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which is largely determined by L/m’ and p. Figure 3 shows Q and Q’ as functions of p. For

singlet weapons (Q s’), Q’ increases rapidly as p falls, reaching unity at p ~ 0.5 where nuclear

strikes become ineffective. For triplets, Q’ increases less rapidly for p large, but continues to rise

after p ~ 0.5, reaching unity by p ~ 0.1. Because

Q ≈ -L’k/k’mlnq’ (5)

is independent of p and L’/m does not change in this calculation, Q is constant ~ 0.5 / 10 x ln 0.4

~ 0.05 for both m’ = 1 and 3. In the absence of survivable forces, S = QmM, so second strikes

are just a relabeling of the values of Q in Fig. 3 by a factor of mM = 60, as shown at the right.

Stability indices are defined and derived in the Appendix. The index for unprime is

J ≈ k(S’ - F’) + Lk’(S - F); (6)

by conjugation, that for prime is

J’ ≈ k’(S - F) + L’k(S’ - F’). (7)

The common factors S’ - F’ and S - F are shown in Fig. 4. From Fig. 3, S ≈0, so S - F are ≈ -F for

both singlets and triplets Thus, S - F is largely determined by first strike allocations. The curves

for S’ - F’ track S’ of Fig. 3, because those for F’ in Fig. 2 are constant.

Figure 5 shows J, J’, and the overall stability index J + J’ for singlets. The top curve is J.

For large p it results from the addition of S - F and S’ - F’ ~ -F + (S’ - F’), each of which is

negative. For p < 0.5 S’ - F’ increases and S - F decreases sharply and then saturates, so that J

results from the cancellation between large positive and negative quantities. The middle curve is

for J’, which for p > 0.3 results from the addition of two negative numbers. that decrease in

magnitude as p decreases. For p < 0.3, S’ - F’ increases sharply and S - F decreases sharply, so

that J’ becomes the cancellation between two large numbers of opposite sign.

The middle curve for J + J’ represents their sum. For p large, it is the sum of large,

negative J and J’. For p < 0.5 it is dominated by, and approximately equal to, J’. Thus, for

singlets, the WMD side dominates the overall stability index at small p, the likely dispersed

condition, where the overall index is quite negative.

Figure 6 shows the stability indices for triplets, in which the peaks seen in the singlet

indices are pushed to smaller p. The top curve is J, which for p > 0.3 is very close to J’, so the

combined index is ~ 2J. For p < 0.3 the singlet curve rises towards zero and the triplet curve

falls, so the combined index is ~ J’. Thus, for large p, stability is determined about equally

between the nuclear and WMD forces, and for small p, the WMD side determines the stability

index, which becomes negative for the small p, dispersed condition.

Damage preference. A concern in addressing an opponent with WMD is the possibility

that he might use a different calculus than the rational process above to arrive at a different

assessment of the stability of a given configuration. That possibility can be modeled using the

above model because it contains parameters, L and L’ that explicitly represent the relative
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preference of each side for inflicting damage on the other and preventing damage to self. To the

extent that preferring inflicting damage on the other to preventing damage to self can be viewed

as self-destructive or irrational, large values of L’ can be used to model such behavior.

Below, L is held at a nominal value L = 0.5 as a baseline, and L’ is varied upward. L’ = 2

represents a WMD opponent who is twice as interested in inflicting as preventing damage or 4

times as interested as his rational opponent. This L’ reduces prime’s optimal allocation to

missiles by about a factor of 2 (~ ln4) and increases his first strikes slightly, which increases

unprime’s survival probability a factor of ~ 4. The consequence can be seen by contrasting the

indices of Fig. 5 for rational opponents with L = L’ = 0.5 to Fig. 7 for L = 0.5 and L’ = 2. The

former has structure below p = 0.5; the latter has none. The values at small p become slightly less

negative, but the values for large p become much more negative, and the stabilizing bumps at p ~

0.5 are eliminated, so the decrease in stability with p becomes monotonic and strong. By p = 1,

the combined index reaches a value twice as negative as for rational opponents.

Larger L’ produces greater stability losses, but the main point is the qualitative

observation that irrational behavior, i.e., increasing the WMD opponent’s damage preference L’

strongly decreases stability in the p > 0.5 region where deterrence is thought to be effective.

Summary and conclusions. The model derived for nuclear missile exchanges is used to

describe the interaction between two forces, of which one has a nuclear weapons and the other

has WMD. The model equations are solved analytically for exchanges, costs, and stability

indices by analytically minimizing the cost of first strikes.

Optimal nuclear weapon and WMD allocations are proportional to their number of

opponent carriers and inversely proportional to one’s own weapons. Thus, WMD allocations to

nuclear forces fall as WMD increase, reflecting a shift from damage limiting to inflicting damage

with forces that survive nuclear attack. Nuclear weapons’ kill probability degrades rapidly

against dispersed forces. As their kill probability falls, their allocation to WMD falls sharply as

weapons become ineffective against dispersed forces and are reallocated to value. Thus, damage

limiting is primarily effective for undispersed forces, which produces an incentive for the nuclear

side to use his weapons while they are still effective.

Each sides’ first strikes are complementary to these allocations, so the nuclear side’s first

strikes drop at intermediate kill probabilities and increase for large values. As kill probability

decreases, the WMD side’s survivability and second strike increases. Thus, the nuclear side’s

second minus first strikes decrease due to the increase in his first strike at low kill probability,

and the WMD side’s second minus first strikes increase due to the increase in his second strikes.

The stability of the equal forces with singlet WMD is negative for most values of nuclear

kill probabilities—and quite negative for the small probabilities corresponding to the expected

full dispersal, where stability is dominated by the WMD side. For triplets, stability is determined
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about equally by nuclear and WMD at large kill probabilities. At small kill probabilities, the side

with WMD determines the stability index, which becomes quite negative for small p

The possibility that an opponent might use a different calculus and arrive at a different

assessment of stability can be modeled through the model parameters introduced to represent

relative damage preference. A WMD opponent with a damage preference four time’s his

opponents shifts his allocation from missiles to value by a factor of 2 to increase his first strikes

on value by a like amount, which monotonically and strongly decreases stability at large kill

probabilities. Thus, irrational evaluation could decrease stability in the region where it is

generally thought deterrence should be effective.

Overall, the extension of the nuclear crisis stability formalism to forces with WMD is

natural and fruitful. It is straightforward to relate  WMD to missile numbers and weapons. The

major new element is the reduced effectiveness of nuclear weapons against dispersed forces, i.e.,

the effectiveness of dispersal as a means of gaining survivability for WMD, which significantly

reduces the stability of configurations with dispersed WMD. For the equal-capability forces

treated here, high nuclear kill probabilities can be used to offset WMD, but they do so only as

long as the WMD are undispersed.
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Appendix: Exchange Model

If unprime strikes first and a fraction f of his weapons is directed at prime’s vulnerable

missiles, his first strike on prime’s value targets is

F = (1 - f)mM. (1)

The average number of weapons on each prime vulnerable units is

r = fmM/M’. (2)

For r large, the average probability of survival of a prime target is2

Q’ ≈ qr ≈ efWlnq/M’, (3)

where p = 1 - q, is the attacking missile's single shot probability of kill. Prime’s second strike is

S’ = m’M’Q’ ≈ m’M’qr, (4)

which is used to strike or seize value, as forces remaining at the end of the exchange are taken to

have no value. The corresponding equations for prime's first strike can be derived either by

repeating the logic from his perspective or simply by conjugating the equations above, i.e.,

interchanging primed and unprime symbols in Eq. (1)

F’ = (1 - f’)m’M’. (5)

Similarly, unprime’s second strike is given by conjugation as

S = mMQ ≈ mMq’r, (6)

Costs. First and second strikes are converted into first and second strike costs through

exponential approximations to the fractions of military value targets destroyed. The cost to

unprime for striking first is approximated by

C1 = (1 - e-kS' + Le-k'F)/(1 + L), (7)

where 1/k’ ≈ 100 is the number of prime military value targets unprime holds at risk, 1/k’ ≈ 100

is the number of unprime military value targets prime holds at risk,3 and L is a parameter that

characterizes unprime’s relative preference for damage to prime and preventing damage to self. 4

While these two costs are formally incommensurate, as they represent damage to different sides,

it is conventional to approximate a total cost by taking their sum as a weighted sum with a

parameter L, which is plausible but not unique.5 For relatively small strikes,

(1 + L) C1 ≈ kS’ + L(1 - k’F), (8)

which is small. The cost to unprime for striking second is

(1 + L) C2 = 1 - Le-kF' + Le-k'S ~ kF’ + L(1 - k’S). (9)

First and second strike costs for prime can be obtained either by re-deriving these results from

prime's viewpoint or by conjugating Eqs. (7) and (9), which introduces a second constant L’,

reflecting prime’s relative attack preference6
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Indices. While there is some arbitrariness in converting C1 and C2 into stability indices,7

it is conventional to use the ratio of first and second strike costs, I = C1/C2, as a stability index

for unprime, and I' = C1'/C2', as a stability index for prime. When they are large, there is no

advantage to striking first. When they are small, there is an apparent advantage, which may be

perceived as an incentive to attack first in a crisis. For unequal forces, the product of the stability

indices of the two sides is used as a compound index

Index = I x I' = (C1/C2)(C1’/C2‘). (10)

For small F and S, the stability index is approximately8

I = C1/C2 ≈ 1 + (C1 - C2)(1 + L)/L, (11)

so an appropriate stability index for unprime for small forces is

J = (I - 1)L = (1 + L) (C1 - C2) ≈ k(S’ - kF’) + Lk’(S - F), (12)

for which J ≈ 0 represents neutral stability. It is clear from the appearance of S’ and F’ in this

equation that the stability as seen by unprime depends on factors that will influence prime’s

perception of stability as well. By conjugation,

J’ ≈ k’(S - F) + L’k(S’ - F’). (13)

Their joint difference stability index is

J + J’ = ≈ k(S’ - F’) + Lk’(S - F) + k’(S - F) + L’k(S’ - F’)

= k’(1 + L) (S - F) + k(1 + L’) (S’ - F’). (14)

For the k = k’ = 1/100 and L = L’ = 0.5 example treated here, this reduces to

J + J’ = 2k(1 + L) [(S - F) + (S’ - F’)], (15)

although even for k = k’ and L = L’, it S - F ≠ S’ - F’ unless the forces are equal, which is not the

case of interest here.

Optimal attack allocation for unprime amounts to choosing f that minimizes his first

strike cost C1,9 which can be accomplished in one of two ways. The first is by solving Eq. (7) for

the value of f that minimizes C1. While for large forces the equation is transcendental, it can be

solved simply by iteration. The second was is by differentiating Eq. (7) with respect to f, setting

the result to zero, and solving for f. For small forces (F, S << 1/k) for which Eq. (7) reduces to

Eq. (8), and it to

(1 + L) C1 ≈ km’M’efmMlnq/M’ + L[1 - k’(1 - f )mM], (16)

which is sufficiently accurate for moderate forces.10 Its derivative with respect to f has a

minimum at

fo = (M’/mMlnq) ln(-Lk’/km’lnq). (17)

The equation for prime's first strike allocation fo‘ is the conjugate of Eq. (14)
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Fig. 1. optimal f v p
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Fig. 2. First strikes on value vs kill probability

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

F s'

F' s'

F t'

F' t'



3 Q v p 

Page 1

Fig. 3. Survival probability vs p
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Fig. 4. Strike differences vs p
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Fig. 6. Triplet stability vs p
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Fig. 7. Singlet stability vs p; L' = 2
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