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THE SHIFT OF PROMFT CRITICAL IN REIWXED REAC’IORS
AND T& LIMITA~ONS OF THE MEAN PROMH-NEUTRON LWEllME MODEL

Gregory D. Spriggs
Los Alamos National Laboratory
P. O. BOX1663, MS G783
LOSAlarms, NM 87545
(505) 667-5563

ABSTRACT

Prompt critical in a bare reactor is defined as the point
at which the reactivity p of the reactor is equal to the effec-
tive delayed neutron fkaction P. In a reflected reactor, how-
ever, it is shown that prompt critical will occur at a
reactivity of p = P(1 -j) where $is the fraction of core neu-
trons that return to the core region after having leaked into
the reflector.

Furthermore, it is also shown that the mean prompt-
newron lifetime model that has been traditionally used to
characterize the dynamic response of reflected reactors may
not always provide an adequate representation of the sys-
tem for reactivities greater than 1$.

And finally, the coupled, point-kinetic equations pro-
posed by Avery! and further developed by Colm2 for simple
reflected systems are recast into a more usable form that
can be readily used to perform superprompt critical tran-
sient analyses.

1.INTRODUCTION

Prompt critical represents the point at which a neutron
chain reaction can be sustained by prompt neutrons alone.
From a mathematical standpoint, prompt critical occurs
when the reciprocal time constant, a, associated with the
decay or growth of prompt neutron chains is just equal to
zero. In a bare reactor, this occurs when the reactivity p is
equal to the effective delayed neutron fraction ~.

Using the coupled, point-kinetic equations proposed
by Averyl and further developed by Cohnz for simple
reflected systems, it was shown by Kistner’ that there will
exist two distinct time constanf~ associated with the decay
or growth of prompt neutron chains; one of the time con-
stants is always negative while the other time constant
becomes positive at reactivities greater than

where ~ is the fraction of core neutrons that return to the
core region after having leaked into the reflector, By defirii-
tion, this reactivity must correspond to the point of prompt
critical in a reflected system,
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In this manuscript we rkvelop the above expression, as
well as discuss the limitations of the mean prompt-neutron
lifetim model derived from the same system of equations.

II. THEORY

A. Point-Kinetic Equations for a Reflected System

In 1958, Averyl presented a general point-kinetic
model to describe the time-dependent behavior of multiply-
ing systems comprised of an arbitrary number of regions,
each characterized by a multiplication factor ki and a neu-
tron lifetime Ii. For a two-region system consisting of a
simple core surrounded by a non-multiplying, source-free
reflector, Cohn2 reduced Avery’s model to the following set
of coupled differential equations:

dNc kc(l-p)-l

z=
NC+ f~Nr+~kiCi+S

‘rC
r

dNr f
~rNC - ~

Tr=Tc ,

dCi k.PiN.
— - AiCi for i=l,2,...,m

Z=7C

where
NC number of neutrons in the core region,
N, number of neutrons in the reflector region,
kc multiplication factor of the baw core,
~ effective delayed neutron thction,
T= neutron lifetime in the bare core,
T, neutron lifetime in the reflector region,

(2)

(3)

(4)

~, fraction of neutrons that leak from the core into
the reflector,

Jm fraction of neutrons that leak from the reflector
back into the core,

f tots! fraction of core neutrons returned to the core
after having leaked into the reflector,

=fJm
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Ci COtlWtttdOtt Of the i* PfeCu- ~p,
pi delayed neutron fraction of the i’h precursor

group,
k decay constant of the i* precursor group,
m number of delayed neutron groups, and
s intrinsic/external neutron source rate.

B. Overall Effective Multiplication Factor

Following the approach of Mowery and Romesburg,4
we obtain an expression for the ovemll effective nmh.iplica-
tion factor, k, of the integml system by solving for the equi-
librium condition of the above system of equations. This
leads to the following expression for the number of neu-
trons in the core region at equilibrium, N=,

(5)

and the number of neutrons in the reflector region :it qui-
libriurn, N~.

fcrTr
N,O = ~NCO (6)

c

Hetx:, the total neutron population of the integral system
at equilibrium, N@,is given by

Nco+-N,. =
(~c +fcrq s

N,O =
1- (kc+f)

(7)

By direct comparison with the source-multiplication
equation for a bare reactor, we infer from the above expres-
sion that the overall effective multiplication factor for a
rettected system is

c. Estimation of Kinetic ParmMem

Before proceeding, we would like to stress the mean-
~ and$and briefly describe how theseing of k, t=, t“ f,?, m

pammetm may beoMained fromasetiea oftransportand/
or Monte Carlo reactor physics calculations.

As previously defined, 4 corresponds to the k eigen-
value obtained from a calculation in which on;y the ban

core is modeled. In highly reflected systems, L will typi-
cally be on the mier of 0.80.

~ average neutron lifeti~ in the core, T,, is defined
as the mean time between any type of neutron interaction
that results in a loss of a nettt..n from the core. As with ~,
r. corresponds to the bare core and, in most cases, can be
ascemined directly horn the output summary of a Monte
Carlo analysis of a bare core model. Some attention, how-
ever, must be given to the interpretation of the labels that
are assigned to the quantities that are listed in the output
summary of the code in order to extract the correct value
for r=

For example, in the case of MCNP, four different life-
times am listed: !) the fission lifetime q, 2) the capture (or
nonfission absorption) lifetime r., 3) the leakage lifetime rl,
and 4) the .otal removal lifetime t. In the context of the
kinetic quations, it is somewhat of a misnomer to refer to
the first three of these four quantities as neutron lifetimes
because they actually represent (at least in the case of
MCNP) the average interaction time required for a single
neutron to obtain a given end result ii.e., fission, nonfission
capture,and leakage); tj represents the average time from
birth to interaction for a single neutron to cause a fission; t.
represents the average time from birth to interaction for a
single neutron to be captured in a nonfission reaction; and tl
represents the average time from birth to interaction for a
single neutron to leak from the system. The average neu-
tron removal lifetime in the core, 1. is related to these thee
quantities by

t, = Pfj + Pata + P,t, (lo)
k=kc+f (8)

From Eq. (7), we also define the system’s sfa?ic mean
neutron lifetime 1, &

The reciprocal of r, represents the average loss rate from
the integral system in the equilibrium state, but, as will be
shown later, differs slightly from the mean prompt-neutron
lifetime that characterizes the kinetic behavior of the sys-
tem.

where P~,Pa, and PI are tiie fiction of neutrons that interact
by fission, capture, and leakage, respectively. In the case of
MCNP, L is identically equal to z..

Because tt represents the average neutron remmal life-
time in the core, N\TCrepresents the total number of neu-
trons loss per unit time. Therefore, P#JJTc represents the
total fission rate, PJVJ%Crepresents the total nor,fission cap
ture rate, and Pfl\Tc represents the total leakage rate. We
can also represent these same interaction rates as N$tf,
where t, is the average time between fission events, N\Id,
where ~dis the average time tx!tween nonfission captures,
and NJtl, where tf is the average time between leakage
events. Hence, we can define a mean fission lifetime, Tf,to
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htiPfia~_lif*,%tobr#Pedam
leakage lifetime, z,, to be T\PO It is obvious tim Eq. (10)
U3atzfisnot thesarmastjand so froth.

Using the bum core model, the fraction of core neu-
trons that leak from the core into the retlectoc f,, ctut be
established by integrating the positive leakage cummt over
that portion of the core surface area that is reflected. Fcr
small, fully- efkcted systems, this fracdon will typically be
on the order of 50 to 60%.

The ovemff effective multiplication factor, k, is deter-
mined from another k eigenvalue calculation using a model
of the integral system (i.e., core plus reflector). Given k and
L, the total fiaction,j of core neutrons ‘M leak from the
core into the reflector and then return to the core can be cal-
culated from Eq. (8). Once~is known, we deduce the fmc-
tion of neutrons in the reflector that return to the cure, f=,
from the definition offi

f =+rc
(11)

cr

The average neutron lifetime in the reflector, Zmis
obtained from an integraf system model calculation using
the equilibrium condition defined by F@.(6). That is,

(12)

where N. and N=. are the total number of neutrons in the
reflector region and core region, respectively, at equilib-
rium.

N~ and N.Oare easily obtained by integrating the spa-
tialdependent, energy dependent neutron fluxes over the
respective volume of the two regions:

J $(5 ~) ~Edr

N,. = — (13)
v(E)

reflector

and

N= J@(E, r)
co — dEdr

v(E)
(14)

core

where v(E) is the neutron velocity corresponding to energy
E.

D. ‘i’heShift in Prompt Critical

[n a bare reactor, the decay or gr6wth of prompt neu-
tron chains is described by

Np = Aeaf (15)

in which a is defined by

(16)

When k< 1/(1 - ~), a is negative and the prompt neutron
chains decay with time; when k > 1/(1 - ~), a is positive
and the prompt neutron chains grow with time; when a is
zero, the prompt neutron chains, once initiated, propagate
indefinitely; hence, a = Odefines the condition of prompt
critical.

In reflected reactors, tbe decav or growth of prompt
neutron chains is dtscribcd by

N, = A,ea” + A2ea2’ (17)

whew a, and q akise as the result of two different groups
of prompt neutrons.3

‘he first decay mode in Eq. (17) is associated with the

pmpt Nc’@ns that multiply contiguously within the core
region on a time scale corresponding to the average ‘ifetirne
of/1 ~mpt neu~on in b h- c=. %. T& seco~ ~~y
mode is associated with that group of prompt neurrons that
leak tim the core region into the reflector region and then
re-enter the core region where they further propagate the
prompt-neutron chains by inducing additional fissions. TWs
process occurs on the time scale of the mean prompt-neu-
tron lifetime of the integral system.

If both al a J x are negative, then the prompt neutron
chains decay with time. on the other hand, if either al or%
is positive, then the prompt neutron chains grow with time
and the system is superprompt critical. Therefore, we
define prompt critical for a reflected reactor as the point at
which either a becomes zero.

We determine the reactivity comesponding to prompt
critical in a reflected rea.tor using the solution obtaim d by
Kistner.3 In his formulation, delayed neutrons and externaU
intrinsic source neurons are ignored in the coupled point-
kinetic equations. Hence, Eqs. (2), (3), and (4) reduce to

where

dNc

z
= - ACNC+ krcN,

dN,

z
= - LrN, + AcrNc

kc =
l-kc(l -p)

rc

(18)

(19)

(20)

(21)

(22)
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— —
and

(23)

The so:uticn of the above system of equations is
obtained t~ytaking the Laplace transform of Eqs. (18) and
(19) and solving for the roots of the subsidiary quation;
that is, Cl and% correspond !0 the roots of the quadratic
equation

a2 + (X=+ i,) a + Acir - Acrkrc = () (24)

From the qundratic formula, we obtain

al ‘-[w-w ‘M)

where

A= ACA,.- AC,A,C (27)

The first root is always negative, whereas the second
root becomes zero when A = O.Thus, prompt critical occurs
when

Based on the definitions in Eqs. (20) through (23), this
expression ~duces to

f= l-kc(l -p) (29)

Using k= ~ +fi we rewrite the above prompt ciitical condi-
tion in terms of the ovemll effective multiplication factor of
the system as

or, in terms of the traditional definition of reactivity,

(30)

(31)

From Eq. (31), we see that prompt critical in a reflected
reactor is shifted downward by a factor of (1 -p. As will be
shown in the following section, this factor also appears in
the definition of t!!e mean prompt-neutron lifetime.

E. TIM~Inttour Equation

in most refkcted mactora, k is controlled by changing
&by means of inserting w removing control rods. Never-
theless, tire are many reactors still in operation (e.g., SPR
USfi&dSKUA@kN-)ticmnlk~-
ing CT..aving reflector, thereby aiteringj Re~~ess of
the method used to control the reactivity of the system, the
definition of the overall effective multiplication factor is
still applicable. However, for the purposes of this paper, we
assume that the change in k is controlled strictly by a
change in& and that f is a constant over the operating reac-
tivity range of the sewxor.

For this situation, we obtain the applicable inhour
equation for a reflected reactor by setting the denominator
of the transfer function equal to zero where the transfer
fimction is

Tc

[

CiOki f,cN,O

1Nco+~~+ai+ (trs+l)~
&

5NC = ~
firs pis

(32)
T

‘~+ke(r,s+l) +z~- —p kc

This yields

where p is defined in the usual way as (k - I)/k.

Note that when~approaches zero (which implies that k
+ & sine k = & +j), th above expression collapses to the
inhour equation for a bare reactor. When j is greater than
zero, an ems term associated with the reflector appears in
the quation, and the reactivity of the system is reduced by
a factor of &.

Under certak conditions, Eq. (33) can be rewritten in a
form analogous to the inhour quation for a bare reactor. To
accomplish this, though, it is first necessary to define a
rvflecred-com reactivity, pC,as

(34)

which, using the relationship k = k= + f, can alsu be written
as

k-1
Pc “ ~j (35)

If we define ~, as the multiplication factor of the bare cotw
when the integra! system is at &layed critical, i.e.,

kCO= 1 -f (36)

then p. becomes
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Figure 1. Qualitative plot of the roots of
the reflected-core inhour equatioc. (Not
drawn to scale).

kC- kCO
Pc=~

c

(37)

which corresponds to the reactivity= defined by Cohn.z
Hence, Eq. (33) now becomes

If the neutron lifetime in the reflector is small enough,
we can combine the first two term on the right-hand-side
of Eq. (38) to yield the mean prompt-neutron lifetime
model originally derived by Cohn.z However, as discussed
in the following section, the mean prompt-neutron lifetime
model should be used with caution because it may not
always yield an adequate representation of the dynamic
response of a reflected reactor at reactivities greater than
1$.

F. Solution and Limitations of the Mean Prompt-Neu-
tron Lifetime Model

If we assume the standard six groups of delayed ral-
trons, then Eq. (38) will ha~e eight roots. A qualitative plot
of these eight roots is shown in Fig. (1). The exact values of
these eight roots, however, can be quite sensitive to the val-
ues of the prompt-neutron lifetime in the core and in the
reflector. Furthermore, the appropl iateness of .he mean
prompt-neutron lifetime model is also strongly dependent
on which root of the reflected-ccre inhour equation is of
interest and, in the case of the first root, on the reactivity of
the system.

caseL~Below~
. .

.Rootlcor-
mspondstothe asymptotic imrsefKaiodofti reactor. Fm
negative reactivities, this root will var- between 0.0 and -Ll
(where At is the mm decay conmttt ~f the shortest lived
delayed neutron group tlds is approximately 0.01 # f-
the commort fissionable isotopes). For positive rcactivities
rwtgittg !%orn0.0 to- 0.9$, root 1 vmics from 0.0 to a valtr
on the order of 10 S-l.Because the neutron lifemnes inmost
common reflector materials range fmm 10 pa (e.g., steel) to
1 MS(e.g., graphite), the product K#, <<1.0. Therefore,
m. (38) fedtltXS tOthe following equation

(39)

where the mean prompt-neutron generation tinw, A, is
defined as the mean prompt-neutron Iifetime,a i.e.,

‘cm = z=+ft, (40)

divi&d k=.

In th: vicinity of delayed critical, k is approximately
1.0 andso #ica (1 -O. Therefore,

(41)

Equations (39) and (41) constitute the meitu prompt-neu-
tron lifetime time model for a refle W&core rector.

As can be observed, Eq. (39) is now identical inform

to the inhour equation far a bare reactor. However, it must
be stressed that the neutron generation time in Eq. (39) rep
resents a n,ean value as defined by Eq. (41) and that the
reactivity p. does not correspond to the traditional defin-
itionof reactivity [see Eq. (34)]. Nevertheless, because the
form of the inhour equation is the same for both a bare
reactor and a reflected reactor, the fi~ctivity cormponding
to a given inverse period must also be the same providing
the characteristic neutron generation time in both systems
is the same.

For example, if we compare a bare reactor having a
prompt-neutron generation time clf 50 ps wi)h a reflected
reactor having an equal mean prompt-neutron generation
time and a return fraction of 20%, then, in accordance to
the inhour equation for both thle bare reactor and the
reflected reac:or. a 10s asymptotic period wi!l yield a reac-
tivity of approximately 0.40$. in the reflected reactor, how-
ever, 0.40$ corresponds to p. - not p. If converted to the

z We note that the mean lifetime defined by Eq. (40) differs
from the static mean lifetime previously defined in Eq. (9).
The significance of this difference. however, is not well
understood tt this time.
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Figure 2. Plot of the tlrst and seventh mot of
the retlected-core inhour equation.

traditional definition of reactivity, a 10s asymptotic period
in the reflected reactor would actually comesprmd to 0.32$
reactivity. It follows, therrfore, that the absolute value of k
necessary to produce a 10s period in a reflected system is
smaller than in a comparable bare systcm.

Case N. W! 1 Ahove Romp@iticaI. Although
the condition of t,( o, e< 1.0 is satisfied for root 1 in the
vicicity near prompt critical and below, it is not necessarily
satisfied for reactivities greater than 1$. For those situations
in which the neutron lifetime in the reflector is relatively
small, it is likely that the condition Cml e< 1.0 will still be
satisfied at reactivities significantly geater than 1$. When
this occurs, then the mean prompt-neutron lifetime model
will be applicabe and the first root will closely follow the
asymptote

PC-P
o)=—

A.
(42)

over the normal reactivity operating range of the system.
An example of this situation is shown in Fig, (2) in which
the exact solutions for roots 1 and 7 are compared to the
asymptote corresponding to the mean prompt-neutron life-
time model. As can be readily observed, both roots hug the
asymptote very snugly over the range shown, thereby, con-
firming that the r.~ean prompt-neutron lifetime model is
applicable for the situation pictured.

Before continuing, it is worth mentioning that the
above asyqtotecroaaea thereactivity tisatpc=~wtich
Ckfinexprcxnpt critical in the@ vs. p. plane. usingq. (w
aF~●M •pp~x~~~ion thatkc= 1 -fin the vicinity of

mm titid, we again obtain the Ieaultthat promptcriti-
cal in a reflected teactor occurs at a reactivity of approxi-
matelyp-f)(l -j).

~ ~1. MWYKQUM AS wi~ ~ ~-f=
inhourequation, roots 2 through6 are compktely bound by
the decay constants coneaponding to each of the six precur-
aorgroups. -I%emfote*root2rat3gea from -A, to-&, root3
ranges from -k to -13, and $0 forth. b gC4WttLthe WW
of the A’scorrespond to approximately 0.01,0.03,0.1,0.3,
1.0, and 3.0 S1. Consequently, the conditkm t~, <c 1.0,
where i equals 2 through 6, is easily satisfied. Hence, for
these five roots, the mean prompt-neutron lifetime model is
applicable.

Case IV. ~t 7. The seventh root of the retected-
core inhour equation varies from -h to -l/zn and at reac-
tivities in the vicinity of delayed critical, is asymptotic to

q. (42). Mom O@Mthan n~ the seventh root will not ~.
is~ the condtion T- <c l.0 except when the teflector life-
time is very small atdor the reactivity is in the vicinity of
prompt critical. As such, the mean prompt-neutron lifetime
modd will frequently be invalid for this particular root. An
example of when the mean prompt-neutron lifetime model
fails is shown in Fig. (3) where oh (and co,) can be seen to
deviate significantly from the mean prompt-neutron life-
time asymptote.

As madly obsemd thm Figs. (2) and (3), the o root
below prompt critical and h to, root above prompt critical
appear to be a mere continuation of each other. This, in fv~
is the case. If one ignores the region very near prompt criti-
cal, it can be readily shown by direct comparison that the
composite of’~ below prompt critical and (01above prompt
critical coincides almost exactly with % in Kistner’s model
[see Eq. (26)]. (The comparison is not exact between the
roots of the two models as a result of the inclusion of
delayed neutrons in the exact solution.)

Consistency between Kistner’s model and the exact
solution of the reflected-core inhour equation is further
demonstrated by expanding the radical in Eq. (26) and eval-
uating the resulting function at delayed critical. This yields

B(l-fl
a20 = - %, +f’rr

(43)

which agrees with Eq. (42) evaluated at delayed critical.

a. A Foman code was written to solve for the roots of the
inhour equation using a numerical ;cheme. in the context of
this paper, therefote, exucr means to wilhin muchine accu-

racy.

Case V. -. The eighth root of the reflected-
core inhour equation varies from-l/z, to e and, at reactiv-
ities in the vicinity of delayed critical, is asymptotic to
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Figure 3. Plot of the 6rst and seventh root of
the reflected-axe inhour equation.

where

(44)

(45)

is the prompt-neu!ron generation time cf the bon core.
It should be noted that this root does not exist iii the

mean prompi-neutron lifetime model. It disappears as soon
as it is assumed that ~Ak <e 1.0 which, in most reactors,
would rarely be .atisfied because of the large magnitude of
~. For this reason, we are forced to solve for root 8 using
m. [38) rather than ~. (39) regadess of the validity of the
mean prompt-neutron lifetime model.

111.REACTIVITY FORM OF PONT-KNETJC MODEL

Obviously, when the mean prompt-neutron lifetime
model is not applicable for a given system, then the point-
kinetic model represented by Eqs. (2), (3), and (4) should
be used to predict the transient response of the system at
reactivitics greater than p. = 1$. However, the forms of
Eqs. (2), (3), and (4) are not very convenient for obtaining
numerical solutions since they are based on a timedepen-
dent multiplication factor kc rather than on a time-depen-
dent reactivity.

Whh the use of Eqs. (34) and (35), Eqs. (2), 13), and
(4) can be rewritten in terms of reactivity as

(47)

dCi (1 -f) ~iNC

Z=TC
- aici (48)

where we have assumed that the term (1 - .9/(k -f) that
wouIdnormally appear intidenominator of the 6rstterm
on ttw right-hand-side of Eq. (46) is approximatelyequal to
1.0 in the vicinity of delayed critical and that kC= 1 -fin
Eq. (4).

Note that Eqs. (46) through (48) collapse to the tradi-
tional point-kinetic equations for a bare system when the
retrim tiaction from the reflector, ~=, is set qual to zero.
This, by definition, faces f to equal zero [seeEq. (11)1d
forces pCto collapse to the traditional &finition of reacti-
vity[see Eq. (35)].

In the context of thiS model, the temperature feedback
=mti~t associated with the core region is defined as

dpt
a= =-—

dT=
(49)

and the core temperature is coupled to the neutron popula-
tion (i.e., core power) by Newton’s Law of Cooling:

all-c

z
= KCNC-Y(T= - TCO) (50)

where

K. reciprocal of the total heat capacity of the core,

Y reciprocal heat transfer time constan~ and
T@ initial temperature of core at r = O.

IV. CONCLUSIONS

Based on the solution of the reflected-core inhour
equation, we make the following conclusions:

1. The reactivity p, measured in reflected reactors
using smrdl positive or negative periods is a factor of k/kC
larger than the reactivity p defined in the traditional man-
ner.

2. As a consequence of the aforementioned shift in
reactivity, prompt critical in a reflected reactor occurs at a
reflecred-com reactivity c f pC= ~, which is quivalent to a
reactivity of p - 9(1 -f) where p is defined in the tradi-
tional manner.

3. The validity of the mean prompt-neutrov lifetime
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model is mot &pen&ot. W negative and samll positive
reactivities, tbe inverse ●symptotic period 01 is small
enough to satisfy the coodition rml <<1.0. However, for
reactivitiesabove promptcritical, this condition is only m-
istkd when t, is relatively small or the reactivity is very
close to pronqn Critics!.

4. When the condition T* << 1.0 is not satisfied a;
motivities above prompt critical, the asymptotic inverse
periodwill vary m ● non.finea~fMlion with reactivity.Cott-
~Udy, the dynamic ~ttae Of 8 refkted-tote PtdSe

~Ctti IttSy 00t be Xk?qtttttdy X’epfeSetttedduring SUpef-
S critical opmdona using the bare core ~int-kirtetic

5. For reflected-core systems in which the mean
prompt-neutron lifetime model is not applicable, t!! rela-
tionship between asymptotic inverse pcriod and super-
prompt critical reactivity can be well represented by the
second decay constant obtained in the two-region model
developed by Kistner.

NOMENCLATURE

k
kc

P

P.

NC
N,
N,
N,
k.

P
v,

z.

%,

Tf

t,

‘rm

A.

&

f <r

f.

effective multiplication factorof integral system
multiplication factor of/mm core
traditional reactivity
=(k-l)lk
reflected-core reactivity
=(k-1)/~
number of neutrons in the core region
number of neutrons in the reflector region
=NC+N,
number of prompt neutrons in integral system
multiplication factor of the ban core
effective delayed neutronfraction
total numberof neutronsborn per fission
neutronlifetime of the ban core
neutronlifetime in the reflectorregion
mean time between fission events in the bare core
= v,~~k<

sraric mean neutronlifetime of the integral system
=7. +frrq
dynamic mean neutronlifetime of the integralsystem
=T=+fi
mean prompt-neutron generation time of integral
system
= (?C+frr)/k,
mean prompt-neutrongeneration time of the barecore
= ‘rJk,

fraction of neutrons that leak from the core into the
reflector
fraction of neutrons that leak from the reflector back
into the co~

total fmction?fcasenemottst!mtare rcturnedtotk
Coseaft exhavingkak odkmtt hecore
-M
oormentrationofdte PpmcurWr group
&layedneutron fkacdonof thei~ group
-~ oftbe PpreCWorgrouo
in@inSiitcrnal neutron~ rate
mtttrat flux
mttron velocity
Prootofittbourequwion
8SYmpt0tkinveme @od
m-mbwa decay ~ in One-regionmodel
pfomp~-~uti decay constant in two-region model
associated with the bare cae region
3 ~ in the exact solution of the reflec”~-core inhour

-
prompt-neutron &cay constant in two-region model
associated with the mean prompt-neutron lifetime of
integral system
s @ for negative reactivities and E O1 for positive
reactivities in the exact solution of tt,e reflected-core
;nhourequation
q evaluated at delayed Cfiticai
WV tewmm feedback coefficient of core
reciprocalof the total beat ca~ity of core
reciprocalheat transfertime constant
average temperawreof core
initial reference temperature of core
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