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Abstract

The charge exchange X(ZAN,5_1A )Y can be reduced

N+1
in a fully antisymmetrized description to one of elementary
nature, n+p—+=n'+p'. The t-matrix for the latter has, of
course, to be averaged over the momenta distribution of

the bound constituents. For sufficiently large bombarding
energies and small Q values, the nucleon carried by the
incident system may be considered as quasi-free. That car-
ried by the outgoing system is then described in a similar
fashion. This sort of approximation is consistent with the
determination of t from an equation of the Bethe-Goldstone
type. Solutions of this equation are sought which apply to
the finite nucleus. Here, however, in contrast to the more

usual situation one of the nuclear constituents is viewed

as being in continuum states, the other in bound states.

The application of the development to Bé’(He3,T)B9*
is solely for the purpose of concreteness. A major aspect
0of the analysis is that the virtual excited states of the
intermediate system are taken into account. This is done
by making specific assumptions concerning the single par-
ticle transitions brought about by the addition of a
nucleon to the target nucleus. In addition, the possibili-
ty of a collective intermediate state excitation is con-
sidered. This is described through the introduction of a

continuum two-particle bound state. Such a state gives




rise to the principal renormalization of the two-particle

transition operator.

The final form of the elementary transition operator
is one having a single-particle spectrum of excitations,
renormalized by the coupling to the collective state.
The transition operator is additive and can be classified
both as to diagonality of its matrix elements and
according to the resonance structure of these. In its
form as a sum of diagonal and non-diagonal operators, the
former is responsible for nuclear distortions, the latter
for the physical change of state. It is the non-diagonal
operator which determines the direct interaction processes.
It, in particular, induces changes of stafe for just a few
target constituents. The diagonal part of the interaction
operator is moreover expressible as a sum of resonant and non-
resonant terms. Thege are respectively contributions arising
from the continuum bound state and those described as po-
tential scattering. The latter again include virtual tran-

sitions of the interacting constituents.

Emphasis is put upon viewing the reaction problem in
terms of the self-consistency requirements of the H-F method.
This,together with procedures arising out of Brueckner theory’
leads to the characterization of the interaction dynamics in

the manner just described.




Introduction

We shall be dealing with the direct interaction

process. In particular, we consider here nuclear charge
exchange as described on such a picture. The charge ex-
change process is an interesting one since for low Q-
values and large bombarding energies it is nearly an
elastic process. It, on the other hand, can connect ex-
cited and ground state nuclear configurations. This means
that it has a specific utility for the investigation of the

properties of nuclear excited states.

In light nuclear systems where the role of the
Coulomb force may be neglected, the isotopic spin may be
considered a good gquantum number. Thus in collisions in-
volving such systems, we have a selection rule governing the
transition which can occur. Rather than attempting to use
the exchange reaction as a means of extracting intormation
about the two-nucleon force, we assume this to be known.
The force is considered to be charge-independent and its
parameters given, for example, by the analysis of Gammel

and Thaler {1).

What one does seek to do with the exchange reaction
is to take into account the renormalizations of the two-
body force. The concept of the direct interaction involves
a statement that a few nucleons are involved in the reaction

process. Additionally, or consequently, the energy sharing
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between interacting systems ought to be slight. It is

then consistent to argue that the renormalization of the
two-body force is small. However, the simple picture is
not altogether valid. We can get at the necessary modi-
fications by considering those processes which give rise
to a large shift of energy in the single quasi-particle
states which define the self-consistent Hartree-Fock, (H-F),

potential.

The modificationsin the direct interaction picture
have to do with the accounting for possible dynamical corre-
lations which may occur in the two-nucleon system. In parti-
cular, the two-particle bound state of Brueckner, Eden and
Francis (2) is an example of the correlated motion of which
we speak. We shall see that the existence of this positive
energy bound state has to do with the coupling of collective
motions into the single quasi-particle spectrum. This
special configuration, characterized by a large shift in
energy for a single quasi-particle state, is not alone re-
sponsible for all of the couplings to collective excitations.
There are other configurations which depend for their
existence upon the couplings of three bodies, e.g., two
particles and a hole. Some, not all, of these configurations
are summed by the canonical transformation technique of
Bogoliubov and Valatin (2“2. On the other hand, an alter-

native characterization of the coupling to the collective
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motions is given by the Brueckner theory gil. Here one
speaks of the direct excitation of a collective motion by

a single quasi-particle. However, when both computations,
that of the canonical method and that of the reaction-
matrix method, are done self-consistently the condition
emerging for the energy shift is a single one. There are
to exist two quasi-particle states, one of which is an
intermediate state. The difference in energy between these
two states is to be approximately equal to the excitation‘

energy for a given collective motion. (5,6) This remarkably

simple result seems so intuitively obvious. It, on the

other hand, is not a trivial statement. This is so for the
reaction problem, at least, as long as we attempt to con-
struct a self-consistent description in terms of the non-
hermitian scattering matrix. Estimates made in a non-self-
consistent way, and we shall always mean the self-consistency
implied by the H-F method, (7) are unreliable, these being
devoid of theoretical foundation. For the first thing, the
force coupling a particle to a collective motion is not
otherwise known, nor can it be estimated. The nature of

the assumption concerning the long or short range character
of the force presupposes the answer to the problem. Next,

we know that the readjustments in the quasi-particle spectrum
must not be so large as to imply correspondingly gross
corrections in the ground state energy computations. The

effects of the collective couplings are then to alter the




quasi-particle lifetimes, in the main. Lifetimes depend

in a very delicate way upon the dynamical correlations.
Here there is altogether no reason to trust other than self-

consistent estimates.

We adopt the point of view that the reaction-matrix
and canonical transformation methods are procedures whereby
the program of successive diagonalizations in the H-F method
is achieved. A unique answer exists in the overall scheme.
Such being the case, one is entitled to take their common
result, together with the more transparent physical state-
ment, that already given, as a basis for uncerstanding the
two-particle bouné state. In another language, this state
is responsible for fluctuations about the neutron giant re-

sonance.

A fully self-consistent program is difficult to carry
out. Moreover, if we just wish to unuerstand how the direct
interaction model is to be corrected, it is equally unneces-
sary. The basic features which we hope will survive in an
exact analysis are extracted from some naive models. Thus
the discussion of SectionII describes charge exchange as
deriving from the interaction of two nucleons moving in a
given potential well. One of the pair is in continuum states
and the other in a bound state. An oscillator representation
is used for the well. And, as we consider the reaction

9
B%.(Hg ,T)B ¥ for explicitness, only the states, those of
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the p- and (s,d)-shell, of two major shells are taken into
account. The relationship of the elementary two-nucleon
charge exchange, proceeding through given virtual states,

to the overall nuclear exchange is discussed in Section JI.

To approximate the description of two nucleons moving
in the self-consistent field of other nuclear constituents
a many-particle formalism ought to be employed. Consequent-
ly, an equation of the Bethe-Goldstone type (8) is to be
solved. It is also possible to arrive at an equally satis-
factory description of the pair motion by classical techniques
owing to reaction theory. We think here of the resonating
group method as modified by certain elements from Watson's
formulation of multiple scattering theory. {9) Such a com-
rosite representation can be put on a variational basis. This
is enough to guarantee the required self-consistency of the
representation. However, we do not carry out the program
of systematic evaluation which is thereby implied. Nonetheless,

it is this point of view which forms the basis of our entire

discussion.

Apart from the single particle transitions to inter-
mediate states, there may be others involving smaller energy
denominators. These excitations may be described as collec-
tive. It is possible to include the contribution to the
charge exchange made by virtual excitation of collective
motions. This is done by carrying out a diagonalization of

the two-nucleon force with respect to a given set of inter-
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mediate states. Such is equivalent t0 the introduction

0f configuration mixing. The deduction of a collective
state excitation is achieved by means of the specificity
approximation to the internucleon force. Only T = O collec-

tive states are described by our analysis here.

Knowledge of the two-particle wave function is equi-
valent to that of a two-body transition operator. We shall
refer to either of these according to convenience. It is
possible to simply add the t-matrices for single particle
and collective excitations. The result is an overall, or
total, two-body operator describing, here, the charge ex-
change process. The underlying notion is that one contri-
bution contains the scattering states of the two-particle
spectrum of excitations. The remaining contribution repre-
sents the bound states of the spectrum. Such a simple pro-
cedure is not altogether correot. It, at the least, violates
any sum rule which we might be able to construct for the
two-particle strength function. Put more simply, part of
the force considered to be available in the scattering
states, has been lest in making up the bound states. This
introduces the notion of renormalization. In correcting the
'simple addition of t-matrices; we are then led to this aspect

in a natural way. Section III contains the relevant analysis.

In carrying out the renormalization discussion,certain

additional features appear. The nuclear system to which a
nucleon is added, thereby initiating the charge-exchange

process, undergoes fluctuations of states. Accordingly,

~10-




that state in which we seek to add a particle may already

be occupied. We account for the possibility of such processes

by sketching the corresponding self-energy computation.

The remainder of Section III is concerned with diverse
topics departing somewhat from logical order. The compu-
tation of nucleon self-energies is achieved by means of a
Green's function representation. This has the advantage of

formal compactness. A procedure is considered for intro-

ducing nucleon-nucleus distortions in initial or final states,

in an explicit way, which is just another way of expressing
H-F self-consistency. A technique familiar from the formal

theory of scattering is used to achieve this result.

There is to be found in Section IV a summary of our
methods and some comparison of these with those familiar
from earlier investigations. An enumeration of our approxi-
mations is also made, and as well that of the area of appli-
cation of the analysis. Among the former is to be found:

a statement of the ambiguity, here, of going off the energy
shell; that relating to choice of a '"chosen configuration";
and some consideration of t-matrix expansions as expressed

by multiple scattering corrections.

I. Formal Preliminaries

The contents of this section have to do with the
construction of an elementary two-body transition operator

or t-matrix. From the latter it is possible, in a fully
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antisymmetrized theory, to obtain the overall transition
operator for a reaction between complex nuclear systems.
We are restricted, by choice, to a discussion of nuclear
charge exchange. In view of the fact that some advantage
is offered by dealing with a concrete process, the reaction
Beg(Hes,T)Bg* will serve to illustrate our procedures.
Additionally, recent data, for 25 MeV Hes, by Wegner and
Hall (10) require, we believe, all of the features treated
here for its explanation. This data actually motivated
the present analysis. However, the methods presented here
have a more general validity. As such, they are not re-

stricted to the specitic reaction under discussion.

The exact transition amplitude for the given reaction
is
+ - - + (+) -
<8#T|/2¢(5",|33)|UO(SB,ST)|\I/ (83/25T172)>

We form, ignoring Coulomb forces, the objects (Hes,T) =

(t*,77) ana (Be2,B?) = (B

W
value of the isotopic spin I3 I = 1/2 in the ground

,BE) characterized by a given

state. In the space of isotopic spin there exists a 2 x 2
representation of the pairs of mirror nuclei involved in

the reaction. The A = 9 isotopic spin multiplets form the
basis of an irreducible representation of dimensionality
four, corresponding to j =3/2, in the space of total angular
momentum, in their ground states. Otherwise, the quantum
numbers for excited states must be characterized by p =

(IIJ, eJ,mJ) giving the energy, relative to the ground state,

parity and angular momentum, dJ,-J< mJS J of a given state.
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The A=3 multiplets have a ground state spin of1/2. Stanaard
notation has been used for the quantities appearing in the

v (+)

matrix elements: is the stationary state of inter-

action, and has outgoing scattered wavesat infinity; v, is
the interaction between the intial systems, having coordinates
sg and s}; ¢ is the plane wave stgte describing, here,

the relative motion of final systems, the c.m. momentum

being Ef and the relative coordinate being 33.
The actual interaction between initial systems is re-

placed by a matrix F , using the statement
(+) + + ¢
v ¥ = FBy, Ty d’(,‘&o H R_,,)

An integral equation can be derived for F in the usual way.
We observe that F carries the instruction to antisymmetrize
the product function upon which it acts. At this point,
fractional parentage representations are introduced for

the nuclear systems. The substance of these is contained

in the statements
w:“ (LTS ) - 2T+, 2S5 +1t LJ ([)\])
ST enTsL; [N 2™ T s [x’]z) V(L T'S'L5 N,

¢, =5 al(Ls) wy (LTS).

An intermediate coupling representation is employed here.

The totally antisymmetric wave functions for the A=3 and

M
A=9 systems are represented by CJ’. A variational principle
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is used to determine the expansion coefficients a. Expli-

cit details of the representation can be found in the papers

of Jahn (11) and those of Levinson and Banergee (12).

We represent the A=9 system as a (1s)4(1p)5 configuration.

The closed core of s-state particles does not contribute

to thé spectrum of states. The representation for the A=3
system is a mixture of (33),(szd)(dzs)(pzs)(pzd) configurations,
referred to a space-fixed axis.

To derive our matrix element, we observe that F sym-

3 with

bolizes the interaction of the constituents of He
Beg. It is then a sum of terms. Only the (1p)5 particles
are imagined to participate in the direct interaction. The
exchange of any two of these nucleons produces a change

n sign of the matrix element. By assumption then F =Z(He3;j)
where j = 1,...,5. The i-~-th matrix element in sum of matrix
elements can be converted to the k-th. Upon making the ex-
change (i -» k) in the i-th term, in the column vector Fi,
we follow this by the same exchange in the row vector, which
is Just the final state amplitude. Now this amplitude is of
indefinite symmetry with respect to the stated exchange.

It then can be written as a sum of antisymmetric and sym-
metric terms in the pair (i,k). The latter has zero overlap
with the column vector. Exchange of i and k in the anti-
symmetric term restores the overall sign and produces the
matrix element of Fk from that Fj. We need only then to
compute the matrix element of F(Hesgj) and multiply this

result by the factor of five.
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The 3-body systems are treated somewhat differently.
The fractional parentage representation still couples one
particle to a core of A-1 particles. However, now, the
core states of isotopic spin are restricted to the value
T=0. 4lso only the core angular momentum L=0 is employed.
The partition A =[21] in orbit will generate even parity,
3-body states with 113)==O,2. The same eigenvalues may be
produced by coupling the extra particle in states £ = 0,2
to the core in the state L=0. In following this procedure,
we pass t0 a cluster representation from that of the fractional
parentage. The core will not be a deuteron. however, for it
has a probability for being found in both singlet and triplet
states. One further approximation is introduced and tnat
is the core nucleons, much as those (1s)4 in the A=9 systemn,
do not induce transitions. This telis us how to count con-
tributions to the overall transition amplituue. The 3-body
wave functions will be given in an intermediate coupling

representaition.

The matrix element for the reaction can ve written as
L5, @ () B @i By

-<qu(5 38y 31p°) 0, (583 )k, 5 B,)|E, | w:',‘ (i S;ilps)n:/z(flisz)d’(ﬁo" R;)>'

+ + (n
The four expausiou coefricients (a ,B ) have arguments which

denote the various terms in the intermediate coupling ex-
pansions. For every nuclear state the appropriate coeffici-

ents are real and normalized to unity. We shall give the
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explicit wave function decompositions involving these co-
efficients. The vector coupled eigenfunctions are labelled
according to the sets of coordinates, e.g., S; = (81,82,83)+,
S = (z,g',z), and the configurations, e.g., 1p5, insofar as
is possible. <the interaction operator F is interpreted as
implying that the odd nucleon, "0", in the 3-body system

has an interaction with tne odd or vector coupled, nucleon,
""", in the 9-body system. Since we antisymmetrize in
initial states, the nucleons can be given numerical labels.
The antisymmetrization now occurs between nucleon "O" and

those of the 1p5 configuration.

Now having written the matrix element out correctly,
we introduce a further approximation. The exchange contri-
butions implied by antisymmetrization are neglected. Despite
the usual arguments having to do with A~ corrections and
the relative lack of importance of exchange for small momentum
transfer, this is probably a bad approximation. It certainly
destroys the self-consistency of the description. Moreover,
in a proper many-particle formulation of the reaction, it
would never be considered. We utilize the approximation
here for expediency only. This is moreover a statement that
the wrong mathematical apparatus has been employed. It is
now possible to integrate out at this stage the core co-
ordinates associated with both the A=3 and A=9 system. The
necessary coordinate transformations in such a step are

readily determined. We shall not discuss these here.
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But for the appearance of the operator F,, which we subse-
quently denote as t,, , the sense of the approximation is
just that of plane wave Born theory. The various trans-
formation coefficients, namely the c.f.p. and those for
vec., simply give formulas the appearance of complexity
when written out explicitly. We shall indicate these in a
symbolic way. For example, the coupling of one particle
with quantum number qQ, coupled to a core, Qg » reproducing
the quantum numbers q° , exclusive of the total angular
momertum, of the Be9 ground state is symbolized by the
transformation coefficient BE.;(NGq}chJ. Similar use is
made of the symbols (x*;xo,xz) in describing the couplings
yielding the 3-body functions. With this new notation
being included, the transition matrix element is given as
Tors62, 0, ()87 (1)a ()8 (1) 8] (kg 4, g ) Ty (1508503 )
(2)
"B, (MJ'q,'; 9, q,c)gf(h&e*; » aez) (){;0,0; k, 1t 12, q; 50).

The basic two-body transformation matrix is fairly compli-
cated. It carries, as 4id the original many-body matrix,
the instruction to integrate over the variables, in the
product space of position, spin, and i-spin, which are
not physical observables. We shall not mention this further
and it is a tacit assumption that our notation is consistent

with regard to this aspect.

Some of the manipulations are clarified by giving
the forms of the transformation matrix. Two equivalent

representations are given below.

-17-



(Flt, 10) = fdR,, ei=/=s-s,z<t>};(m 3 27 Rie ) B (S0) ez

./(2 y Gj‘" )q”z(1'2/3%’)<4’(ﬂl)Fw;o(So)e s |

¢ l“’(”o)F (5,) ebgo.(;,/z7)+£%-£o> ; S’ - 50' Ky » (4)

o! Y

w,=(8/27) Kk, -y , Wo = (4/3) ko + y-(2/3)q.

The additional notation n= (g ,3) has been intro-
duced for coordinates in the product space exclusive of
position. All position coordinates are defined with re-
spect to an origin at the c.m. of the (15)4(1p)4 core of
the 8-body system. The coordinate B‘adescribes the motion
of the c.m. of the neutron-proton core of the 3-body system.
The remaining notation is altogether selfcvident, being
given that "O" refers to a proton and "1" to a neutron.
Some additional comments are required here in order to ab-
stract the physics from the mathematiecs. It should first
be observed that the two-body matrix element is defined in
a laboratory system. An average of the amplitude is per-
formed either with respect to the coordinate or momentum
distributions of initial and final (n-p) core systems of
the 3-body nuclei. The appearance 0f the joint-probability
distributions demonstrates that nuclear recoil is accounted
for in the A =3 systems. A "quasi-free" approximation
would say that as a function of y = [> 1 s the momentum

~

states in the vicinity of some Yo make the dominant contri-
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bution to the average in Eq. (4). If Y, << k Kk, is
satisfied, the two-body amplitude having a slow variation,
the dependence of the latter upon vy may be completely
ignored. On the other hand, the joint-distribution in
momentum is to be evaluated "in the vicinity of yo". It

is very easy to make this notion quantitative. We do have
at our disposal intermediate coupling representations of

the 3-body wave functions. The corresponding single nucleon
functions qxiﬁq;gg are therefore known. The Fourier
transforms of these functions may be computed for each
possible nucleon state of orbital angular momentum. To

each such distribution we may fit normalized Gaussians or
combinations of these. The parameter of tne functions
characterize the spread of momentum about some average value.

Products of momentum transforms may then be formed and the

convolution implied by Eq. (4) carried out.

While our remarks have nearly the substance of the
impulse approximation, they do carry some additional impli-
cations. Trese, as we shall see, have to do with the manner
in which the two-body t-matrix is discussed. In this con-
nection we ﬁote that the overall reaction amplitude cannot
be described correctly by the formulas thus far &iven. One
has neglected to take into account the very large contri-
bution to the interaction between the initial A =3 and
A =9 system. This contribution we shall describe as the
Hartree-Fock (H-F) interaction, L}mﬂ. It is defined here

as being diagonal in the states of the initial, A = 9 system.
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The potential is constructed by placing the A =3 nucleons

in a given single particle state characterized by the relative
momentum k, of initial systems. This state is then dis-
placed to lower energy by an amount determined by the average
binding per particle in the A = 3 initial nucleus. The
potential Lﬁj. is then computed as the sum of single particle
H-F potentials between the A =3 and A = 9 nucleons.

We clearly then want to characterize the diagonal elements

of ¥*,, , computed for the state of the A = 3 system, as

3 9

giving the optical potential for He” scattering from Be~”.

The remaining interaction, namely 5xt , , is a residual one

and is considered non-diagonal in A = 3 and A = 9 states.
The two-body t-matrix is taken then to satisfy an equation

of the Bethe-Goldstone type. Its matrix elements are then
computed between various H-F configurations. And, in accordance
with the notion of Brueckner, the energy denominators

appearing in the computation are always the excitation energies.
These are measured away from the chosen configuration loosely

described as giving the distorted-wave motion of He3

relative
to Be9 in its ground state. Thus when we include the phase
shifts for scattering of initial systems in the two-body
t-matrix (this is done in one of the later sections), some

of the self-consistency is built back into our description.
By always then computing corrections to the H-F interaction,

the incorrect description of residual interactions becomes of

secondary importance.
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II. Some Reaction Specifics

We continue our shell model formulation of the re-
action process with a discussion of the nuclear wave functions.
That for the A = 9 system is the more familiar and is
examined first. French, Halbert and Pandya (13) have dis-
cussed the intermediate coupling shell model for Be9. We
slightly readjust the admixture parameters given by these

authors. The ground and first excited state wave functions

are here taken to be

- 2,2 2,2
(372 ) = 0.96 PS/Z([4I])'O.283 03/2([4l])

2

(1/2) 'zpllz(mm.

The arguments of the wave functions are the partition
symbols [A] . It is equally reliable to describe the same
two states in B by the same parameters. ‘A comparison of
the work cited with that of Kurath (14) indicates that this

is not a completely empty approximation.

The A =3 wave functions have been given by Young
and Stein Llél. The intermediate coupling assignments are
rather more tentative here due to a failure to exploit a
variational principle. Only one bound state exists in this

case and for it we have

+y _ 2_., 2_n 4
(1/2*)=0.697 °s,,+0.608 S, +0.384 D ,,.

The isotopic spin multiplicity of two is implied in the
above and as well the partition symbol [21]. Both of the

A = 3 nuclei are considered to be described by the pre-
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ceding representation. Two S-states appear and these arise
from the coupling of an S-state (n-p) system in singlet, S',
and triplet, S", configurations to the odd nucleon. The D-
state is generated from the triplet-odd-nucleon coupling

and is probably 15% too large.

We shall not introduce any additional wave functions.
However, states of nuclei other than those specifically
mentioned are implied by our analysis. In fact we take as
a starting point an assumption about the channels through
which the reaction might proceed. Those which we have in

mind are symbolized as follows:

a
Be® + He’+ed +B8°%d +n +B* =T +B°" (5a)

9 3 g% g%
Be +He —d+(n+p+Be ) —=T+8B (5b)

This is not to imply that we take these reaction schemes
entirely literally. They will, however. serve as a guide for
the manner in which virtual state transitions are incorpo-
rated into the analysis. The point of view is that the
physical reaction occurs in a manner lying between two ex-
treral descriptions. One of these is that given by the com-
pound nucleus picture and the other that from direct inter-
action theory. There is no evidence that the reaction

under study proceeds through a compound nucleus. In this

and similar situations it is necessary to ascertain whether
or not the simple momentum-transfer form factor of the direct

interaction theory furnishes an adequate description. It is
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characteristic of such form factors to drop off rapidly

with increasingly large momentum transfers. Distorted

wave theories, to be contrasted with plane-wave Born approxi-
mations, improve this situation somewhat, but not altogether.
Antisymmetrization between the nucleons of target and pro-
jectile, as simulated, for example, in the theories of heavy
particle stripping, is often required to control the form

factor decay.

More to the point for our purposes is an alteration
of the direction interaction theory so as to bring it closer
to that of the compound nucleus. The inclusion of virtual
transitions to intermediate states will accomplish this.
The selection of a few important intermediate states is
determined by the specifics of the reaction. In our example
cited, we note that for excitations in excess of 8 MeV there
are states in 510 which decay by neutron emission. The
widths of the states are some 90 to 500 keV. The spins
are not all identified but the isotopic spins seem to be
T=1, the parities probably positive. In view of these re-
marks,the channel of (5a) is a likely one. There is also
the possibility that the B1o spectrum is built in part on
the motion of a neutron and proton couple to an excited
Be8 core. The ground and first two excited states of B98
are T=O,J = O+,2+,4+. The widths of the excited states are

anormous, being, respectively, 1.20 and 6.7 MeV. The structure

of the spectrum is reminiscent of that occurring in deformed
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nuclei. In particular the ratio (4+-O+):(2+-O+) of 4 is
just about the value of 3.3 predicted by the theories of
nuclear rotations. Although the states have the short
lifetimes noted and decay by a-emission,we can describe them
as collective. This is because in the p-shell there are
only two parameters required to give level spacings. One
sees this by looking at the partition [4] in orbit. In this
sense either the phonon theory or that obtaining from an
intermediate coupling expansion can be used to deduce the
parameters. In including the channel (5b) it will be implied
here that coupling occurs to 2.90 MeV state in Be8, treated

as—a collective oscillation about the spherical shape.

In discussing the channel (5a) we seek to diagonalize
the two-body interaction t, . This can only be done in part
and produces a quantity (t, ) . Transitions are then induced
by the operator I, = t, -(%,) . The motivation for this is
straight forward. We define as diagonal those operators not
changing the state of the target nucleon. The operator I,
is to change the states of both nucleons or that of "O"
alone. Diagonalization then removes the H-F energy for the
incident particle from the transition operator. If we work
to what is identified as the second order in perturbation
theory, then transitions of the nuclear particle must be
taken into account. These we assume involve states in the
p-shell, that partially occupied, and those in the (s,d)-
shell. The inclusion of second order processes, analogous

to self-energy insertions, makes it possible to account for
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the effect of virtual single particle excitation upon the
reaction. These will not in general be important as they
involve large energy denominations. For example, the spin-
flip transition 3/2” to1/2 involves at least some 6 MeV of
excitation, viewed as a single particle transition. On the
other hand, the formalism is given in a general way to in-

clude situations when this conclusion cannot be reached.

It is convenient to use a harmonic oscillator basis
for the discussion of the nuclear wave functions. For the
A = 9 system, the oscillator spacing is hw = 19.7 MeV. The
binding energy of the last neutron in Be9 is 1.7 MeV and
this defines the single particle well. There is a continuous

spectrum of proton energies provided by incident He3

For an incident energy of 25 MeV, the 18.75 MeV available in
1)

system.

c.m. weights the proton spectrum heavily in this vicinity.

3

Approximately 5.6 MeV is required to separate the He” system

into deuteron plus proton with zero energy of relative motion.
3

In addition the average separation energy for He” is some

2.3 MeVe This value implies strong interaction between the
three constituent nucleons. A small admixture of the D-state

into the ground state wave function of He3

is to be expected.
On the basis of the cluster model used here, there is a small
probability for obtaining protons of 1.9 MeV of binding.

The proton spectrum may be characterized as extending over

9

some 12 to 15 MeV, measured from the Be” ground state.

The equivalent excitation energies measured from the Fermi

Note: Footnotes begin on page 85.
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9

energy in Be” are obtained by adding 1.7 MeV to the values
quoted. The imprecise qualitative statements are of course
replaced by exact information contained in the nuclear form

factors.

(2)

The two body wave function, V¥, in nucleons 0,41

is now assumed to satisfy an equation of the form given by
Bethe and Goldstone. It is implicit that the potential v
appearing here is that which generates the transition
operator t,, . A chosen configurationf ® is determined
carrying in principle the quantum labels for initial ground
state systems. Our sole interest at this stage is to com-
pute changes of state for the two nucleons previously
singled out. All of the other nucleons in the A +3 system
undergo no change of state. The function ® may be thought
of s the Slater determinant of wave functions 7 (Ko3Se )
for particle "O" in state k, , and ¢ (uo;sl), for particle
"{% in state py« A ohange of state for the two particles
in question takés us to a new many-particle configuration.
The latter has an excitation enérgy e with respect to the
6hosen configuration. It should be observed that while
both nucleonts move in the same well, that nucleon designated
as "O" is in continuum states. The other nucleon, namely
""", is in bound states. We shall keep the two nucleons
out of the occupied states in the chosen configuration. An
operator, usually called Q, has the funoction of preserving
the exclusion principle. In the Beg, He3 problem, Q must
project off the occupied states of the p-shell. A form of

the operator doing this is

26



Q = (1-8gq ) + 84q,Q (e, ) ;

£
ala)=1- 141" S' By (©)

me=-4£,

The operator acts in the product space of two nucleons,
Q = QQ, . If a refers to the quantum labels (nfm) of
states occupied in the chosen configuration, then n, =/=1,
(£c] =3 for our problem. Eg. (6) incicates that 1r3 of
the p-states are inaccessible to our interacting nucleons.
We will often fail to introduce Q explicitly in the develop-
ment to follow. It is understood that the factors of 2/3 are

to be introduced where applicable.

The dynamical equation determining the two-nucleon

motion is

v:e+d vW; fze+in. (7)

€+
Introducing a complete set of states for a free-bound system,

namely,

Yoo (20 202) = 1 (532)) Qulze),

we obtain a two-particleGreen's function in configuration

space,

¥ ¢
T

The unit operator appearing here should also be augmented
by s X 11, that for the space of charge-spin. It is
simplest to think of the operators, e.g., that in spin,

as decomposed in terms of the singlet and triplet projections.

Then,for example,
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1s : P“)-f-P(Z) =1/4 (3 + g, -g2)+l/4 (l-g-log_z)

and the four states (in spin) resolving the identity give
rise to the operator representation. These familiar
results are also implied in the formalism. The sums over
spin and t-spin states are suppressed since they add
nothing new in the way of details. One word about notation:
the states n (g,;f,) are those for scattering in the H-F
potential. As such, they carry the real phase shifts
arising from this potential. Moreover, the many-body aspect
is thereby emphasized. The states %#(52) are those for
bound particles in the H-F well. The outgoing radiation
boundary condition, n = n(” is implied for the scattering
states. The generic notation (1,2) should not be confusing.

We are still solving for the motion of an interacting system

comprised of a bound and a free nucleon.

We generate a set of coupled linear equations starting
from the statement
v\y:v®+v£v\1/, (7')

€+

and then operate from the left with y *,a = (1,k) being a

pair index. The equations have the form

<walvl\1/>=<wa|vl®>+}% ol ﬁn (o, o). (&)

The wave function %1 should be a Slater determinant

for the given state. In this way the exclusion principle

Y




is taken into account in all matrix elements. A two-

channel approximation to Eg. (8) is sought. Such a pro-

cedure was also employed in the Lamarsh and Fesbach (16)

discussion of inelastic neutron scattering. To do the

same thing here, we restrict the nucleon bound states in

a and B ¥o pspand p=u,. If ¥ is expanded in terms of the
Y, functions, a matrix of v connecting the two channels

is encountered. One element of the matrix, v describes

n ’
excited state elastic scattering. The explicit appearance
of this and the other elements is unavoidable. The explicit

expansion of ¥ is circumvented through the "t-approximation,
vy = t @ (9)

It is evident that u=p  is implied by ® . The substance
of the approximation (9) is that an affine transformation
has been carried out upon the v -matrix. For this reason
linear combinations of its elements determine a given element

of +t.

In the sum over intermediate states of Eq. (8), all
processes leading to finite lifetimes are neglected. Two
examples of these energy-conserving processes are shown in
Fig. 1. The point here is that the inclusion of these
introduces certain details. These are relevant to the
physical problem. However, in a schematized version of
the theory such as now presented, they are intrusive. We

shall clarify any ambiguities of presentation in the following
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section. For the present, we write down very symbolic

formal statements. The processes which we can include,

in addition to direct charge exchange, are shown in Fig. 2.
These involve a change of state for one of the interacting
particles. Bethe has argued that such processes are of

order A™ in large nuclei. They are described as the pro-
cesses involving non-momentum conserving transfers. The
processes are also small here owing to first, bad overlap and
second, the large energy denominators. With these provisonal

remarks being made, we write the coupled equations as

bOO = cOO + cOl

' (10)
blO = clO +cll

The two-particle energy e, describes the target nucleon in
(1d4,2s) orbital with the incident nucleon still in ef .

An excitation of amount hw = 19.7 MeV, the oscillator

spacing, is required. The matrix element of the potential,
that v, , describes, in this unrealistic scheme, scat-

tering of the incident nucleon from an initially excited target
system. We may solve the second of Egs. (10) as

- ! !
b, = (l-cu E - e )clo’
whereupon,
]

oo = Coot Co E -¢-¢, Cio - (11)

o
'

Here’as in the preceding expression, the b's are the matrix

elements of t and the c's those of v.
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The expression (11) is suitable for a comparison
with the two-body matrix element of (4), or nearly so.
We shall indicate later how the two are related. At any
rate if we were to completely ignore the role of Coulomb
forces, (11) would be suitable for the description of the
"elastic", ground-to-ground charge exchange. We mignt
then argue that b, ~ ¢, can be used to describe the
ground-to-excited state exchange. This is untrue unless
the excited state arises from a single particle transition.
Thus the decomposition t = (tm) +I ,(tm = b
(e, 1 I,1 € ) =0, (g el I, u,e,) =0, may not be
altogether helpful. In particular, the first excited state
in B9 occurs at some 2.3 MeV of excitation. This is much
too small to be accounted for by a sirgle particle transition.
The state in question is either 5/2° »r 3/2°. It can then
be reached from the ground state by 17 magnetic (M1) or
2+ electric (E2) transitions in both cases. The M1's are
expected on the basis of a single particle model. The odd
nucleon carrying all of the nuclear magnetic moment permits
matrix elements of the moment to exist between ground and
excited states. We further observe that in the fractional

coupling model employed, the information about the excited

A=9 states is carried by geometrical factors. This says

that X, = e, in the form factor of Eq. (4). Alternately,
the extra nucleon with £ = 1 couples to L = 0,2,4 from [4]
to form ground and excited states. We should then think

of using (11) to compute both the Be? and Be?™ transitions.
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The data of Wegner and Hall show that beyond 900, the c.m.
cross section for ground and excited state exchange are
practically identical. In the forward direction, charge
exchange to the ground state shows a distinct peaking.

The 10%: 50° cross section ratio is about 10. A similar
comparison for the excited state yields a ratio of 3.

The latter form factor is very nearly a constant function
of momentum transfer. It is wholly unsafe to argue that one
process represents a direct interaction and the other some

sort of compound process.

We are stuck with the nuclear form factor. The geo-
metrical coefficients will reduce overall ratio of excited:ground
state yield. It is not likely that the 2.3 MeV change in Q
will influence the dominant contribution from the nuclear
form factor for small momenta transfer. And, certainly,
the t-matrix of (11) is a slowly varying function of momentum
transfer for small values of that quantity. A radical
change in the t-matrix can be achieved by taking the ex-
change through another channel. That of (5b) will be con-
sidered here. In the intermediate states formed by adding
the proton of He3 to the neutron of Be9, excited states of
B1o are encountered. The possible two particle states may
be generated by operating on the B1o ground state as vacuum
with two pairs of hole-particle creation and annihilation
operators. Speaking now in j=j coupling, we form, symbolical-

ly, wave functions of the type
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2
This basis with unperturbed energy e, =2, Fé(p) —ei(h)] (3)
: A

describes the motion of two hole-particie vibrations. Diagonali-
zation of the short range intervarticle force, e.g., one of zero
range, in tne basis produces a spectrum of states. Such

states have a two-hole, two-particle character in terms of

the associated shell model creation ana anninilation operators.
We may speak, however, of the excited states as arising from
the presence of two quasi-particles. Charge exchange can

now occur by the exchange of a vibration between two quasi-
particles present. The diagrammatic process is indicated

in Fig. 3. <That figure implies that the charge-excnange

force arises from the exchange of two-unole, two-particle
vibrations. It is easy to show that the excitation spectrum
of be1o computed in this way is only approximately correct

for the higher states. It is not literally suggested that
pairing theory holds here. In fact, the older, seniority
scheme of kacah (17) may be thought of as furnishing the

basis of the discussion. No exact analogy holds with either
formulation since we are interested in n-p interactions.

These occur here in a region where both species are filling

the same shell.

The energy denominators for two-particle states can

be lowered from the 19.5 MeV previously quoted to avout



10 MeV by the procedures trirst described. We can obtain

10

something lower by treating the intermediate B system

differently. This nucleus can be represented as a neutron and

proton moving in the presence of an excited Be8 core. The
excitations for the latter are loosely thought of as phonons
"for quadrupole vibrations'". In particular we consider the
1 phonon, 2% state of the core. Such a state is also built
(4)

from two-hole, two-particle excitations. The vacuum
here is the state with no phonon present. The physical
state is then that with two "particles" and a single phonon
present. The proton is added to the system at fairly high
excitation. It does not have its motion altered to any
appreciable extent. The neutron being at low excitation is
influenced by the phonon. In another language, the neutron
suppresses vacuum fluctuations. It has appreciable proba-
bility for being in the final states to which these fluctu-

ations occur. As a result its self-energy is increased due

to its coupling with the phonon.

A computation of the single-particle coupling to a
phonon excitation has been done by Kisslinger and Sorensen
(18). The interest there was in the influence of proton
core oscillations upon the single neutron spectrum in the
region of Ni. Their results are what one expects, with
the "single particle" states shifted of the order of the
phonon excitation energy. Our computation could be carried

out in much the same manner by substituting an equivalent
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repulsive interaction for the attractive one used previously.
This statement is meant to emphasize the role played by the
backward going graphs. The suppression of vacuum fluctu-
ations is almost entirely due to these graphs. One such,

occurring in second order, is shown in Fig. 41.

It is necessary to deal with the two-particle spectrum
in the present problem. The situation here is not so simple
as that discussed in the previous paragraph. To discuss the
intermediate state configuration of Fig. 4b, a device is em-
ployed. The mathematical artifice itself is attributed to
Gottfried (19) and we re-interpret it for use here. The
initial n-p system is uncorrelated, and apart from self-
energy insertions, is not coupled to the 2t phonon. We
account for this coupling while the two-nucleon system is

in strong interaction. The intermediate states to which the

nucleons scatter couple with the phonon for sufficiently
small separation-in-energy, w, 0f phonon and particle states.
An estimate of w is provided by observing that the 1p — par-
ticle, some 4.6 MeV off the phonon energy, can effectively
suppress the vibration. For purposes of enumeration, first,
only the added proton is permitted a change of state. If
then its energy lies within the interval of OSE, € 7.5 MeV,
say, the phonon suppression is effective. Outside of this
interval no coupling to the phonon occurs for the added
nucleon. The condition is then imposed that both nucleons

couple to the vibration. It is considered that the coupling
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of just one nucleon does not effect the two-particle
spectrum of excitations. Quite important is the fact
that the transition of the target nucleon alone from

1p to 1pl/2 is also effective in suppressing vacuum

3/2
fluctuations. This process has been represented graphically
in Eig. 4a. The effectiveness of this last process depends
critically upon the splitting puz-sz in the single par-
ticle well. This we have estimated as 7.5 MeV from the
neutron scattering on Be9. The estimate was made by means
of perturbation theory retaining terms up through second

(5) 10

order. The observed 10.7 Mev, T=1,n=+ state in B ~,

whose spin we would restrict as 1< J ¢ 3, is that dealt

~

with here.
Equation (7') and (9) when taken together produce the

integral equation

t vt —=2t., (12)

For definiteness and purposes of reference, the energy

denominator is written explicitly as

e = E (A+1)-R0)-R (D) +ig. (13)

The symbols h(j) refer to the H-F energy operator for the
nucleons, e.g., h(j) is that for nucleon j. The energy of
the chosen configuration is E=EO(A+1). However we are
going to discuss now the spectral representation of t,
namely t(E). This takes Eq. (12) out of its original con-

text, at least for the moment. The iuentity is resolved
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over H-F states in two-particles, and e* of (13), is diagonal
in such states, according to definition. An arbitrary matrix

element of (12) is, in pair-index notation,

@it 1BY = (alv|By+ § S &ItB) (14)
Y E-e),i-i.'r;

The approximation assuming constant matrix elements of
for certain states ¢, is introduced. This is formally
the statement

* *
<
consty ( E € e, ¢ SE tw ) (15)

0, otherwise.

(a lviB)

The Gor'kov factorization in superconductivity utilizes
the preceding statement. For the constant in our equation,
we use

(plvley = N ulp)u(v). (16)

Here A is an undetermined parameter giving both sign and
magnitude of the interaction. It is also thereby implied
that v is unknown. In particular then the v of Eq. (12)

is certainly not that of Eq. (7'). To zvoid confusion

we should have employed a notation of ¥ . Similarly, t of
Eq. (12) is unknown and should be called t. It is possible
to establish that :'is some part of v. The term residual
force applies to':. In addition it can be seen from the
Yamagouchi factorization of Eq. (16) that v is what Mottel-
son (20) would describe as a "specificity force". Roughly

speaking, such a force is that undiagonalized by the H-F
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procedure. It nevertheless has the property of describing
long range correlation in the nuclear medium. In a finite
nucleus these correlations arise from the existence of
collective degrees of freedom. It is possible to extract
these motions from the cluster corrections of Brueckner
theory. Such has already been done for the elastic scat-
tering of neutrons. This procedure is described elsewhere.giz
The present method, Egs. (12) - (16), gives the same answer
as that of a more precise analysis. It also displays both
of the approximations, one being specificity, which are
required. The other, the adiabatic condition, has to do
with the slow variation of matrix elements implied by (16).
A word or so about the backward going graphs is necessary.
These have only been taken into account through our numeri-
cal estimate 0of w. This is certainly unfortunate and as
well incorrect. It is otherwise impossible to reproduce

the energy-weighted sum rules for distribution of multipole
strengths in the nuclear excitation spectrum. (21), ngl
The importance of ground state correlations, i.e., those
already present in the medium, is the greater the closer one

comes to zero frequency.
If now we write
(pritly) =ulv)f (u)
and substitute this, together with (16), into (14), we shall

obtain
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2 (y)
Au(B) . I(E)=z u \y

T e E - e +in (17)

We define next a parameter X equal to (u?(y)%ﬂ X,

the average-in-energy yielding a mean square matrix element
connecting initial state B to those [y}. Then the condition
for the existence of a state in the two particle spectrum

of excitations is

Al w
l')\I(E)fvl——(‘,—‘tf\(l'—E?) :O, (18)
an attractive interaction, X = -|X | having been assumed.

The first zero occurs at

’

R

w

EzE =E- —— ;(¢

|)\|-————<: >CW;~u,2= uz(E*))_ (19)

This solution is mathematically acceptable for a large

range of values of £ . Physically, we can make some inter-
esting deductions. It is not possible to express the exci-
tation energy E, -E,(A+1 ) as we did in Eq. (8), namely

as e:-+e; - €,-€, The excited state of the A+1 system is
thus not separated from the chosen configuration by the
(approximate) difference of H-¥ energies. Relevant to the
two particle spectrum of excitations, our states E, are not
then given by EO(A+1)+Aeth§, In fact, we shall argue that

the lowest state of excitation in the two particle H-F

spectrum lies at an energy much higher than E -, (A+1).
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To arrange this we need only require that OSKE -E<7.5 Mev
(the figure quoted for the spin-orbit splitting). On the
other hand it can already be seen from Fig. 5, in which

1+ |A| I(E) = O is plotted versus E, that this can be
guaranteed. The three parameters of Eq. (19), these being
replaced by £ , nave certain numerical values. Thus the
splitting off oxr E from the H-F spectrum is controlled by
€ and w. Instead of estimating £ we make interpretations
of Eq. (19) based upon results obtained from more exact

treatments.

The nomenclature two particle bound state is intro-

duced to describe any state having the character of that
E.-E,. This terminology has to do with the relative position
of such states in the two particle spectrum of excitations.
However, the underlying physics is not yet clarified. To

see what this is we look again at the reaction channel of
(5b). Both the neutron and proton are originally in shell

8

model particle states with respect to the Be~ ground state,

as vacuum. The . nteraction of these nucleons with those
4q
) (1p

These are described in terms of shell model hole and shell

of the core, (1 f , can lead to core excitations.

172 3/2

model particle creation operators acting upon the physical
vacuum. An alternative but equivalent representation is
obtained by utilizing a new set of creation operators, those

for guasi-particles. Such operators are formed by taking

linear combinations, of appropriate nature, of those for
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shell model hole and shell model particle states. A

partial diagonalization of the residual internucleon

force is implied by the transformation. It is this which
determines the particular linear combination of operators.
Although this kind of technique originates in pairing
theories, the latter are not necessary for the quasi-particle
picture employed here. Summation of the cluster corrections
from Brueckner theory, according to a set of prescriptions
will produce the additional diagonalization (over and above
that giving H-F energies). To get the Be8 parity right,

we consider states with two-quasi particles present. The
lowest of these is that corresponding to the presence of a

single 2+ phonon, relative to Be8 as physical vacuum.

All of the previous remarks are summarized in Fig. 6.
Notice that we imply, by Fig. (6a), an excitation of the
collective state occurring as a self-energy insertion in a
single particle line. In addition a distinction has been
made between the shell model states of added particle (the
proton) and odd target nucleon (the neutron). The former
are characterized as having complex H-F energies or finite
lifetimes. As such the independent excitations corresponding
to these states are often, and we shall follow this usage,
also called quasi-particles. This is a charaoteristic
terminology of the Green's function treatments. (23)

The finite lifetime for the neutron is neglected here.

It thus has a real H-F energy. Charge exchange involving
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other than valence neutrons could not be realistically
(quantitatively) treated ignoring finite lifetime corrections.
We require that two states, E(k;)E e and E(k;')z €

exist in the single "quasi-particle" spectrum with energy

difference approximately equal to the excitation energy for

a collective motion. This criterion was first given by

J. Schrieffer. (5) It tells when we can expect to see a large
shift in energy or lifetime, principally the latter, in

the single "quasi-particle" spectrum. Physically, then,

the two-particle bound state represents the renormalization
of the optical potential (principally its imaginary part)

due to couplings of the single quasi-particle spectrum to
collective motions. (24) A hypothetical example, e.g.,

low energy neutron scattering on 015, furnishes more graphic
illustration than does our charge exchange problem. The
incident neutron is already in a quasi-particle state with
respect to O16 as physical vacuum. In another view, the
neutron would be described as in a particle state with re-
spect to the O15 ground state. The first, A+1 occupied,

H-F states of the (n,015) system form the chosen configuration
as before. Intermediate states of the A+1 system are those
of two quasi-particles in one picture and those of two par-
ticles and one hole in the other, for example. At this point,
the superficial differences in nomenclature vanish. We are
led to look for particle summation procedure (i.e., a partial

diagonalization) reproducing the O16 excitation spectrum of

T, N




low-lying states. This implies the quasi-particle re-
presentation. The partial summation leads to the renormali-
zation already described. On the other nand, our inclination
in a straight forward application of Brueckner theory is

to convince ourselves that the third-order and higher

cluster corrections are small. Precisely this point of

view is responsible for our failure to treat nucleon inter-

actions with finite nuclei in a convincing way.

Referring again to Fig. (6a), we require that E(k} )~
E(kd)—E;* where E:* is the 2% excitation energy relative to
the assumed vacuum. Also, E(k;) ought to be given approxi-
mately by E(ko)iw*, where w* is the interval in energy
with which coupling to the collective motion occurs. Com-
paring with Eq. (19), and using E(k!)-E(k!) = E;* *wx = E,,
we see that these qualitative arguments are consistent with
the formal results. Asterisks on quantities are meant to
imply renormalizations which cannot be dealt with in the
present context. With Fig. (6c) we show how two quasi-par-
ticles of the Be8 core can interact over large distances by
exchanging a vibration. This long range interaction is not
generally available to our n-p system. The latter is not
imagined, here, to form a part of a collectively excited
group of nucleons. Only the core nucleons satisfy this re-

quirement. A long-range interaction involving the n-p system

is shown in PFig. (64d).
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We are now in a position to add the t-matrix, ?, of
(19) to that whose matrix elements are implied by (11).
The only difficulty arises in obtaining the relevant bound

state operator. Referring now to Fig. (6b) we write

~ . c 2 n
(% (E)), = 'LWP(E%'Ex)l(A)avl'E? t (E, 3 @)- (20)

1
x
The symbols have the following meaning: P(EK;E:);V F(Eko)

is the density-in-energy of two-particle bound states at

the energy of the incident proton; (A Lv is the strength

of the two nucleon, phonon vertex; % is the t-matrix for a
system of two nucleons with lab. energy E,, evaluated at the
momentum transfer associated with the energy w. Every

quantity in (20) can be estimated. In particular, apart

from statistical factors and others for dimensions, | %(Em;w=0)f
is just the two-nucleon laboratory, total elastic cross section,
Eo, = E(k,)+E(k, ), at energy E,, . The strength of the vertex
function is determined when we construct the excitation
spectrum of our core, Be8. Fig. (6b) is relevant to this
computation. Estimates of p(E.o) can be made using simple
thermodynamic arguments. &gg) The importance of the density
of states is that it determines the energy variation of the
bound state t-matrix. The resulting sum of t-matrices

which we have constructed can give rise to an interference

structure in the (He3

,T) cross section. The matrix t is
non-hermitian. In appending t to the matrix element <¥>b

in the chosen configuration, the rapidly varying part of

A



the residual force has been accounted for. Presumably,

b,, is of slower variation. It, b, , is not however a resi-
dual force. No discussion has been given as yet of the
proton H-F field. There are questions attendant with the
simple-minded addition of t-matrices. These have to do
with whether the sum 0of residues corresponding to poles

in the resulting two-particle operator comes out correctly.
Generally, the answer is a categorical, no! The difficulty
is ignored here so as to admit simple, relevant physical
details. Actually, we should prerer o0 recast the problem
in terms of an alternative many-body formulation. Here one
would use the 012 ground state as the physical vacuum. It

9+He3, and

is then possible to project out che initial; Be
final, T+B9*, configurations, from Cw* states. The over-

lap between these would then be determined by the composition
of C‘z*states. Again we should encounter after tedious
algebraic manipulations the physical features described

here. On the other hand, the presentation would have appeared

less heuristic.

III. Details for 2-body t-matrix

In the preceding section it was suggested that: (i)
the matrix element of the two-body transition operator in
A
the chosen configuration could be expressed as boo+<t% H

(ii) the t-matrix could be written as a sum of diagonal and
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and non-diagonal terms, t=t+I. We wish to examine the
relationships between these statements. In regard to (i),
it is necessary to put Eq. (11) on a quantitative basis.
Also, the internucleon potential, v, must be specified

for the physical (charge-exchange) problem at hand. This
problem through the two-body matrix element of Eq. (4)
places restrictions upon any formal results. The formal
statements, relating mostly to (ii), will appear as a set

0of rules. These rules will pertain to how we interpret and
compute t(£t0|). The physical restrictions tell us what
procedures are likely to yield reliable numbers. They also
present certain concrete aspects to be dealt with. Among
these is the nearly axiomatic statement: The two-body t-
matrix appearing as the result of interactions between com-
plex systems is always off the energy shell. (This is, for
example, one of the difficulties encountered in impulse
approximation descriptions of elastic n-d scattering).

There is further the related problem that one is thereby
instructed to keep the H-F potential out of the transition-
inducing part of the interaction matrix element. This relates
to the use of nuclear distortions and their proper incorporation.
We have alluded to this aspect in a qualitative way thus far.
Finally, some attention ought to be given those formal as-
pects having to do with the addition of t-matrices. It is
actually unambiguous, following the inclusion of the formal
details. The foregoing list then comprises the topics of

this section.
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To get at the decomposition of t-matrices implied
by (i) and (ii), let us restate the rules governing such.
This is done within the framework of many-particle theory
and the H-F method. The analyses previously carried out
by Bethe (26) and Shaw (27) form the basis of our discussion.
In adding a particle to a ground state nuclear system, it is
necessary that the H-F energy operator for the particle be
diagonal. In Brueckner theory, the interactionxQ}(j=1,...,A)
between particle and target is eliminated in favor of‘%}.
We have used a version of the integral equation, (7'),
which relates the operators t and v to each other. In com-
puting the energy of the cnosen configuration in A+1 par-
ticles and then subtracting the ground state energy E (4),
that for the target, one encounters the matrix elements
zggnzn;lgﬁl nzn?). If we define t to be a sum of diagonal

and non-diagonal operators, then clearly

{n2 n? Y= 0,o0r (nz n;ItO?—-foéln: n; )= 0.

We require, following Watson, that Eoibe diagonal in nuclear
states. Thus, in forming the energy operator T, +§DE0}

for the added particle, neither the k.e. operator nor the
average interaction operator is separately diagonal in nu-
cleon states. It is however possible to diagonalize the
operator sum h(0). Because %, is a one-body operator, %

can only change the state of the added particle. However,

again these non-diagonal matrix elements are restricted

according to




(n;l To |no) + Zr(n; nilioylnonj) = 0.

Bethe points out that we are to impose tne equality
ne.n. bt bnon. )= (n"n% It In_ n°
(077 O’ [] ,) (O , Of [+] r)

even if n, # n;. We readily find from this statement,

n?—- n; » that

Also note that because of the diagonality of Eoi, we have

(] o o© () o o
(nonz',lloi.lno né«) = (no nyl tOj,lno n?).

It is altogether ciear that

(ng n,'-,l Io} ngn;) = (ng nélt“)‘ n:n;).

The rules which follow are: Iq' excites ] alone or simul-

taneously "O" and Jj; t© excites "O" alone; t,. can excite

o
either or both nucleons. V¥e have tacitly assumed throughout

°

that our matrix elements are antisymmetrizea.

These simple results enable us to put Egs. (7) - (11)
on a quantitative bagsis. 1he two-state approximation of
tinne earlier discussion is given in a valid manner here.

To tnis end the relevant single particle (j-j) states and
tne occupied state for added nucleon are shown in Fig. 7.
the oound states are generated by employing an oscillator
approximation to the self-consistent well. Yet we are re-
stricted by the c.f.p. representation which led to rq. (4).

n -]
the £ ,(1p) , configuration used tor the bound states, B,
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implies that tne individual values of total angular
momentum and its 3rad component, (j’??)’ are not good

quantum numbers. This is expressed as

_ 1/21 ¥ )
fm (17255 ndm)) = 2 . mlw‘ l,u-(ng'rr})).
1@ b4
It is possible to talx about transitions between the various
(j-j) states. Generally speaking tinis feature makes avail-
able smaller energy denominators. We shall use as our two
states M, = 1p3nqnd b, = 1pV£ I’he projection operators on
to these states have numerical values given by the v.c. co-
efficients. Thus in any two-body matrix element, a pair of

(6)

such coefficients is implied. In computations this

means that for each value of £ , a pair of operators, Azﬂ

and A;-) are introduced. The operators are connected by

the relation 1 = A;+4.A:4 - Our two-body matrix elements are

always in the same (nf)-shell ani of the general form,(7)
<szwvlﬁbk>

or

<;1.Lk/|v|pbk"> 1 <;L_Lk"|u |,;1/k> .

(+)
By operating to the right and left with the operators Al ’

observing that the identity
’ _ . + - + -
<k”‘1,|”|”‘.¢,k> : <k (Mg #yt )‘z”‘t_)lul()‘e”‘z++)‘4"l_) ">

(¥) 2
holds, and that the operators Aé are idempotent,.Al = Az ,
any combination of states can pbe obtained. Thus, for ex-

ample,

Lo




(+) *

Ni = ( <,ulk|u|,u. k>

()+

<k>\#£ lvik X "¢>5

=<
'

- <A(£)'“'l A:-)*k,l A:)u A(l-)*'lAI) -1+ > A(+) (-)*‘=; ;

LIRS ok N A
M=, N kIuIIu.jk>-)\ <k Iulk,u.>Tr1;

~E)Y e () - ’ . -
,u.j Klullu:e k>- <F-ZK|U|FZK>=T"1 2

<k/"fg*|u |;}_k> z %X; X.-E <,‘fzkl|U|,U-Ak>'

+
Identifying M, @S ¥, , B_ as Y, and the x, as v.c. coefficients,

we see that the statement is true. The matrix elements for
a change of state in j appear in the formal analysis.
These are explicitly defined in terms of the matrix elements

for no change of £ .

In so far as possible it is desirable to follow the
formulation of the Brueckner theory. To emphasize that
the single particle energies are computed self-consistcitliy,
we write E, as the energy corresponding to a state |k).
No change of notation is required for the ¢

,u.
ready carry this implication. The integral equation for t,

's as they al-

operating on the chosen configuration, is

Q
t10) = w10y -im Z#p,(t-:° “Egp ) ulpk) (Kl 1]0)

(21)
. p E; v|pk') (uk’| 110)

E° ..e,u_-Ek/

+ €
k Ho
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This equation replaces that of (7') and it is to be under-
stood that the matrix elements are antisymmetrized. ZEnergy
conserving transitions involving a change of state for both
nucleons are explicitly represented by the tirst term.
Here the density of states, in energy, is F, (Ev ) =

kd[Sl/(ZnP] . (dk//dEw)-[ d{,, . The quantization volume

is & and Ex# = €, - €& is the nuclear excitation energy.
Conservation of energy requires that E,/ = E: - Ezu 5

/ ’ -
(hx’® ‘24*) = Ew ,M* being the effective mass. The index Q

on a summation means tnat the chosen contfiguration is not

to appear as an intermediate state. It is thus clear why
the transition operator I appears. The form chosen for

Eq. (21) has its justification in a choice to employ regular
potentials, v. Therefore, t will be given in terms of an

iteration on v.

For the moment, the antisymmetrization between added
nucleon.and target constituents is given up. This can be
taken to mean that the principal value (P.V. or P) term

of (21) can be rewritten.

v I|O ’
FDE; - F,Ez | K ) Elé:f#* | g (kl
xeaes e (22)
- p vip)(#|110) ﬁ(m'-T s tk') = Ini’ s 20).
e E°’f‘~’y";ﬁf‘(0) o3 1) = Inls 2)

The one-body distorting potentisl which acts upon the

added or external nucleon is%,; . Altnough particle states
have finite lifetimes in Brueckner theory, it is sometimes

convenient to ignore this. <The computation of excitation




energies is very often characteristically done in such a
manner. The scattering boundary conditions and related
lifetime aspects associated with t, distinguish it from

the hermitian K-matrix of Brueckner. We assume that E./

is real, hence%0 is hermitian. The added particle is
distorted by its motion in the self-consistent potential

Uy. The functions n carry the real phase shifts associated
with this potential. 1In practice we often have the complex
phase shifts, §, , available. Use of §,(k') together with
real E , constitutes a small-width-of-the-line approxi-

mation (Im t<« Re t; Re t = K).

Next, the one-particle functions are constructed as

(#1t10Y) = (piviO) - Lvrz#ﬂ,(f‘:k -Exp‘)(#lvlﬂk’)(#k'l 110} -

pe st SV G1110)

[+
(e En +€'“'o €y -(0)

It is to be noted that the non-conserving transitions are
ostensibly brought about by single changes of state for
the bound nucleon alone. Of course this is not true as

we shall see shortly in our evaluations. Such processes
comprise a very small part of the number of non-conserving
transitions. According to the two-state model both (p,p')
take on the values 4, and ¥, - However, because of the
appearance of I, p is throughout restricted to #, . The
two equations arising from (23) are

<F,|U|/"|><:“'|| I|O>
ES - Eg,—h (0)

(witlo) = (wisio) +p
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or 1

=g +U
.fo ° o1 <: _ Exl' 4 (0) f:

, (24)
EC - Em-'h(O)r'

fi

"
o
+
C

The potential 9 has been formed by taking the energy-
conserving terms together with v. One-body amplitudes now
appear for the external nucleon in interaction with the
target, leaving the latter in definite state. These are
the functions f, and f, . A Tamm-Dancoff description of
the system would be given by the expansion }D%A u).

The amplitudes g, and g, arise from é and are quasi-Born

amplitudes. We identify Uo| and U' , involving v, as the

!
pseudo-potentials acting upon the external particle. This
nomenclature just means that two-particle potential is
weighted by the density in one of the particles. The inte-
gral of the potential over the density produces a potential
(pseudo-potential) for the remaining particle. The set of
equations (24) should be compared with those (10) which

arose in our qualitative discussion. We find as our solution
to (24)

o E10Y = (| 0 10) + (gl vl 1, ! 40 10Y .
R e T R

Evidently we shall operate upon this expression from the
left with some state <kl . Moreover, as an approximation,
the non-diagonal elements of U, » in the k-basis, are taken

equal to zero. The result of the foregoing is to give
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(k;%ltlo)=(k%lfdo>+z,(k% |u|k',ul.> = ! (K, lﬁlo). (25)

4 .
b- Ex By (Kulv | K Yie

We now require that all the matrix elements be antisymme-
trized again. This is a way of saying that we have con-
structed an approximation to the solution appearing in an
antisymmetrized theory. We shall not say how good the
approximation is, but simply note that the structure of

the t-matrix is physically satisfactory.

In so far as it is possible to approximate the matrix
elements of ¥ by those of v, (25) gives an explicit solution
for t. That operator has diagonal and non-diagonal elements.
Both of these are found. It is our hope that I is small.

We can be more explicit. Now at least for k=kowhere we g0

back to the chosen configuration, there obtains
A 1
<0|v |0> = <O|u|0> -Lv,':‘/(E:-E“)<O|v|k,U-'><k#||'C|O>.
The Brueckner 5282 version of our t-equation,

v +v

. ty (v=uo|,t=to|), (26)
ey +in
would define the excitation energy as

% =t'u+too+To+T| - é‘o - too - tu * (27)

Additional notation has been introduced here. The labels

O and 1 refer to the interacting pair; §>is the energy

-av

of the chosen configuration defined such that é;+ ﬁ:;+t” =

2 2 -av ~av
E,(A) =B, + ¢, B = (hk/2m) +t, , &=1_(c -t,)

2 2
+ 4 KO/ZM, the sum of k.e. eigenvalues for the two nucleons;

5l




A

t still implies no change of state, thus ﬁg =§2. (n:n;|t|n°n°
p.X

and t  =>. (Wn|7|0n), (1= 1,..., (A-1)), the m.e.
being antisymmetrized; tLL is the full interaction opera-
tor for particle i with no charge of state for this consti-
tuent. Two points are relevant here. First, the energy
of the added particle, in the chosen configuration,can be
expressed as (ﬁ?k:/ZM) + t;; . Second, the perturbation
development of (26) discloses that no second-order terms

occur in En’ leading back to the chosen configurations.

Then, using (26), and writing

(olvio) = <O|u|0>-t.77p E° [(OItIk,u.><k,u.|t|O>

—<O|u (Htlk,u.,><k,u.||t|0>:|

Oy
it immediately follows that

A - . o Q ’ ’
<O|U|O> = <O|U|O> + Lmp, E, -Ex# <O|v —Q-()—+)t|k;1.,><kp.,|t|0>.
X
For the present theory, the terms now correcting v,, are

analogous to the cluster corrections. Their specific form
is different from that ordinarily encountered. This is
explained as arising from the c.f.p. representation. To

a very good approximation %m’“ Voo when the diagonal ele-
ments of t are computed from (25). It is still necessary
to compute <x'u'|$l0> which contains still another matrix

element of t, namely that of I. We know something about

the non-diagonal elements of t from the restriction

(n,l Tolng) +f(no'n;| iln:n;) =0,

4
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Again thinking in terms of a c.f.p. representation, where

A determines the effective A to be A = n, it is evident that
5 -
| - < ~ | YL s
3 Zt =(n;n%ltlo), = - g(nngoln:)',('l = (1p) ). (28)

This means that in most practical applications, the non-
diagonal elements of t are going to be quite small. We

still however need an estimate of I in order to solve Eq. (25)
explicitly. To get this, we make the usual small-wiath-of-
the-line approximation. In an algebraic operator notation,

we write

v = v -impvt ; Ret=a, Imt = 8y and

(23')
A
t = v +uv L t.
Da
- P
Ret = v +'rrpuB+-uFRet
a
. P
~ u+'rrpuB+uD—v=x+1rpo
a
Imt = - wmpva + v E—Imt
Oq
& - wpva + v g—(—vpua)= -mpXa
)
~ . - P
t R X(l-impX)3; X =v +v Fv.
Q
(29)

All of the matrix elements of I are computed from this
equation. Consequently Vv is given in terms of v and
finally the diagonal elements of T are given from (25).

We may also note that the I matrix elements of (29) are
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improved by writing t = X(1+impX)™" The crude procedure intro-
duced here does lead to a full determination of the two-
body t-matrix. It is suitable to regular notentials

vhich can lead to finite values of the iterated form of X.

The evaluation of (25) can be completed now. There
was in our beginning equations a P.V. such that E:-Exl-E(# 0]
held. This restriction is automatically satisfied now and
the P.V. notation dropped. A small imaginary part, +ie
(used interchangably with the notation, +in), has been
added into the energy denominator. This reflects the
boundary conditions on t. The matrix element { k' | viu k')
can be approximated by the real part of the optical poten-
tial for elastic scattering at the energy B, = ﬁ?k’é/QM.
A rough estimate of the energy dependence is given by
vy (k') = £ + 0.5 E, = -40 MeV. (29) The effective
mass approximation yields E , = (M/M*)ﬁv where the ratio is
roughly (0.7)#. It is then apparent that the energy de-
nominator vanishes for fairly large E,. ,E,. = (1.35)qi
(E0 -Ex -E). 1In the example given, (see Fig. 7), this con-
dition obtains for E,, = 35.2 MeV or E, = 24.8 MeV. The
corresponding value of Ef is 23 MeV for 14.5 MeV labora-
tory protons (1.7 MeV of excitation energy is added to the
lab. energy). Even a fairly soft potential v will have
appreciable momentum components for the energies quoted.

However, the point is the matrix elements of v and ¥ are
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appreciably cut down. In particular, this is true for the
states required in the physical problem. For example in
the m.e. <k'p‘|9|0> , with the numerical values cited
above, we ask for the correlation of momentum components

(8)

in Vv separated by some 19 Mev. The components are taken
from those lying in the intervals about 23 and 42 Mev. Our
statement is only semi-quantitative as one has yet to con-
sider the c.m. and relative energies of motion in the two-
particle system. At any fate we shall be avle to see

for conventional potentials v that the matrix elementsof t
are mostly given by the first term of (25). Again, only

the diagonal elements of t are computed from this equation.
The non-diagonal elements are, we indicated, gotten from
(29). It is also true that (28) gave a restriction which
must be observed to get an H-F representation. The P.V.
terms of (25) are likewise expected to be small. In a rough
way, contributions from states E <35 Mev tend to cancel
against those witn E,. > 35 Mev. The potential v and also
that ¢ will not in general have appreciable momentum com-
ponents beyond an energy corresponding to E,, = 90 Mev.

These remarks and others made here serve to emphasize the
ofif-energy snell character of Eq. (25). ‘The problem is

more extensive than this. And, this remark has to do with

the restrictions imposed upon t by the m.e. of (4).
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It should be our point of view, regarding Eq. (4),
that the two-body matrix element is computed according to
prescriptions from many-body theory. +These have been dis-
cussed in connection with (25). The procedure by which
the spatial 2-body m.e. of (4) is reduced to one calculable
from many-body theory is straightforward. It is only neces-
sary to require the Lorentz invariance of t,, matrix elements.
we use tnis invariance nere. ieller (30) has given the

invariance relation as
(W, wi) it 107 R ) = F(W, WS,) (5, B, 80 8°). (30)

The quantities p, are four-vectors, p, = (BL’EL) where the
energies E; are the corresponding kinetic energies for the
particles i. The factors f are explicitly £ = ¢ W,W3 ,
the positive root being taken; W,, = ¥, ¥, is the product
of total energies for the interacting particles. RBach P,
is carried into ﬁi througnh the Lorentz transformation

Lp. = EL . Similarly, the t-matrix transforms according to

t = Ltz . We choose the translation

-

Lp = p =p
~l ~ ~

as our transformation. The vector g is chosen so0 as to
give particle "1" of Eq. (4) zero momentum in the initial
state; thus g = 30. We have gone into a frame in which
the bound nucleon is at rest. This is by definition its
laboratory system. It is straight forward to show that

the m.e. of (4), apart from factors of f's, is replaced by
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Loz, iLo-20 )
<w(7r')f;o(s°) € l TO" ‘I/ ("0) Fq,l(sl)€~ > = 9= (t'ol )m.e. 5
Le = (b,s+2/3<k' 7) + %/273 Lo = '(bo+2/5?§' )’)- (31)

One has written r,, for the operator occurring in the

matrix element. This is quite correct. It is understood
that this is the operator giving rise to transitions within
the specified laboratory system. In particular it is this
operator whose matrix elements are computed in the product
representation of the two-state model. We have yet to obtain
the operator which our many-body analysis applies. The
Lorentz transformation factor, § , accompanying (31) is

v (Aot v (AeL,) -
€(Kookesy) =
(ke ) [ y (koAc) y(wohe)y (we "0)]

(32)
y(x)=1408x" A, = h/Mc, k¥ = k /e7.

This factor has been given in the non-relativistic limit

and will not differ appreciably from unity at a bombarding
energy of Eju(ky) = 25 MeV. This is true for all scattering
angles J(%:\go). So, we expect £ to be insensitive to the
momentum transfer ¢. Although f is integrated over all
values |?| , the form factor entering (4) selects a range

of value; about some n). Within this range: a) the n.r.
approximation to & holds, and; Db) £ is essentially equal

to unity. The matrix element replacing that of (4) is now

_ [y .» '
(Ft,10) -f(—a—"—)_,, qxé (Z)quz(1'2/3%)€(5°‘5“~7)9(50’5F ;1-2/3%). (4')
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The last factor, namely g, has been written in a manner

which suggests the neglect of off-energy-shell effects.

Strictly speaking, (3), (4) and (31) show that we
are always off of the energy shell. This continues to be
true for ground-to-ground transitions of elastic scattering
where |§ﬂ = IEF]. For charge exchange, the ground-to-
ground transition does not imply the equality. (We cite,
for example, a Q-value of -1.09 Mev for the Be9(He3,T)B9
ground state transition). We intend to exploit this fact.
Relevant to the m.e. of (31), the salient feature is that
the same bound state orbital appears in both initial and
final states. Nucleons in this orbital are bound with some
effective energy Bt Transitions are however induced between
scattering states of energy E(Q:)-B' and E(C:)-B'. We shall
return to this aspect subsequent to a discussion of (4').
It is our intention to ignore the g-dependence in g. This
is done by writing 2 = k%o/ko)yo where y, measures, for
given (x; y ¥, ), the predominant momentum component for a
nucleon in the form factor. The determination of Y, has
been discussed previously. In effect, we reduce Eo(ko) by
an amount Lb(vo)-ZJEEE;, which for 2 Mev of binding of a
single nucleon in the 3-body system amounts to 12 Mev. The
2 Mev is an effective value of E, determined by the form
factor of (4'). It can be argued for the problem at hand
that E, & 2 Mev is about correct. Our previous qualitative

arguments that Eo(ko)-B should be about 15 Mev thus hold.
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The approximation to (4') is then

aY
(F| to,}0) = 4((2_—?;)3 GJ:Q'(Z) Guz(z-2/39:) a( 50,5F-,2/35) (33)

= ot ey q)alko ke 2/3g),

This form is familiar from the usual impulse approximations,
with local t-matrix, to elastic nucleon scattering. (31)
In evaluations of the g-element of (33) we shall not use the

diagonal part of t, , namely (EOI) . This emphasizes the

d
off-energy-shell aspect. Instead, (EOI)m¢’ the operator
changing scattering states, is to be employed in (33).

Some discussion of (3g, )oq has appeared in connection with
(28). But, this must be augmented for quantitative purposes.
The H-F energy giving nuclear distortions, i.e. distorted-
wave matrix elements, is computed from the sum (%0|)+%,

(see Eq. (20)). We require no explicit knowledge of J

the non-diagonal operator, when the combined c.f.p. and

cluster model representations are employed, together with

regular potentials v.

We still must snow how the various operators %OI,%
are used in computations. And, in particular the relation
between %01’% and T, must be examined. There is an tndis-
tinguishability between the transition implied by (31)
and that which we write, in i-spin and position coordinates,

as

z

+ - Lg;'f,o - + Lo ~0 '
<€|/z(l)§§l)€|/z(o)e l ro||£l/2(l)l'-‘%l(l)£|/2(0)e~ >= 9 - (34)
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Again, recall that Q = (n,ljégives the principal and
orbital quantum numbers of the bound nucleon. In the
c.f.p. representation, we shall have q, = a4, - Of course
there is a difference in binding energy of the last nucleon
as we go from one member of a mirror pair, e.g. (Be9,B9)

to the other. However,6 this difference is reflected in the
initial and final kinetic energies of the observed particles.
Thus, we can consider the bound constituent to remain in
some given energy state, B'. The scattering constituent
has its energy measured from this value. Its relative
kinetic energies are E(g:)—B' and E(§Z)-B' in initial and
final states. That|f,l # |{,.| is a reflection of the physi-
cal difference of nucleon binding energies in the mirror
pairs. These qualifications permit us to use g” of (34)

in place of g of (31). Fig. 8 shows that g' differs from
g only in the manner in which the nucleons are labelled.

We shall understand in what follows that our single par-

ticle functions are

v v v’ v/ . ik'z ,
go(l):é'/z(l)FQSo(l) and )\L(O)-':{VZ(O)G“"VO ;(y,y Y= 41, (35)

However, it is less cumbersome to carry the indices
(¥,v'). These will only be implied in the subsequent
work. Our aim now is to replace (31) by a matrix element
which we shall describe as being self-consistent. %o

this end we rewrite (31) as

9 * <go )‘5’ l(TOI)d (7 )na. ! go)‘5> (31")
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The diagonal operator (z,, )d is defined as giving the

H-# energy. The operator (Tm Jn.d. changes only the state

of the particle in the continuum. Eg. (31') must not be
solved as g = (go M (g )ned.| goxk> which solution
would emphasize the model replacements of (35) and (34).
Instead, a two-particle correlated function Q& , the station-

ary state of interaction, is introduced as
7o, 91X, (0) = (u,, +1r01) Y (0,1). (36)

The potentials Um and n are respectively diagonal and

ol
non-diagonal according to definitions previously given.

(+)
The function'\I/k satisfies an equation of the form

) 1 +
Y = goh + _(U0|+7'01) ¥

T Kk *% ° E-To-f\(l)*'i.e (37)
Qo

It is imagined thnat h (1) is H-F energy operator for the
bound particle. Introducing the approximation that we are
on the energy shell, according to which a set of time-

reversed distorted wave functionsn:’q)exist, we write

=) o - -+ (-)
nk’go go)‘k'+ a}ﬁLb'nw 90' (38)
0

The g-matrix element is then determined using the procedure

of Gell-Mann and Goldberger. (32)
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(e}
'

(+
= <g° )‘k’l U0I+7r0I l% >

(=) | (=) (+)
<17 Y 'QT-)Uonnk/ golU01+"01|\I/k >

k' o

=(n:,-)9|U o 1Y m> (n( )OIUo,l‘I’ ~ 9,2 > (39)

=) g a1 Y+ (a9 lu Tg 2 )

It is now correct to take second term of (39) as equal to
zero. On the other hand, we define the non-diagonal t-

matrix, (%o‘)n.d. through the relation

(+) (+) -

(tanA.'nk % = "o Y 5(toomd.=(ﬁn)m¢° (40)

In view of these statements, we write our matrix element

as
<’7:;) go l (EOI )n.d. lnk“) go > * (41 )

The analogous statement for (31) is

) @
9=(ton.o2 (¥ im Foaln (82 I Eordal ¥ 7 Blo)n (Lg32,) ) (311)
Here, again, we are off the energy shell. Nevertheless,
our procedure has detined the manner in which one is to
g0 off the energy shell. Distortions in the initial and
final states are produced by the potential U;lwhose matrix

elements equal those of (75, )4 = (Eo,)d +%. We recall

w0
that t contains the collective excitations.
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Apart from the antisymnmetrization, (31') represents a
self-consistent statement of the exchanse problem. We can now
account for the scattering interactvions of initial and
final nuclear systems. With'% turned off, the phase shifts
in 7' are those for protons incident upon the target
(A=9 for Be9) at the energy E(;:). A similar statement

holds for the neutron channel 7'’ .

In constructing the
cluster representations for 3-body systems, a totally anti-
symmetric 3-body iunction is employed, or should be.
‘herefore, the initial A=3 system scatters, in principle,
in the H-F potential generated by, here, the A=9 target.
rhe role of t is to describe, by (20), the collective ex-
citations produced by the bombaraing or scattering systems.
e have discussed the specific nature of the collective
states for Beg(Hes,T)Bg*. Every other problem will require
a similar analysis. It is relevant to observe that T will
influence »'? for BI*(Q =-3.42 Mev) quite importantly while

(-}

n for Be9 will not be so seriously effected. In the

“

1 | we expect to be able to ignore t

entrance channel, 7
altogether. The advantage provided by (31'), which offsets
some of the formal complexity, is seen by referring to (28).
In view of the latter we can express the interaction as

2 2
LY

(£01)n.d. = o M%

8 (,Eo— 51) Op.x. * (42)

The constant M* appears as an effective mass, but this is
not to be taken literally, Oex gives the exchange mixture

of the force.
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We specify now the exchange mixture of the force.
It is fairly well established that the 2-body force is
charge independent. And, for the energies of interest
here, this is certainly a valid picture. On such a basis,

we can write

345°% v, l-g% s| T, ST, | )
Uo|=[ "'zum{» 7 vo|]P,P-§(l+r 7,)

o™ = {(%)m(phﬁm)qexp-h%#%)]v2(l+-PM). (43)

The spin-orbit and tensor forces have been omitted here.

The latter is certainly important for the computation

of binding energies. Also, the former enters the H-F
interactions for both positive and negative energy states
in a significant way. As P™ is the space exchange operator,
(43) implies a Serber interaction. The potential parameters
are: p, = p, with p, = (1.19)" £ (inverse fermi units);
(Vo L = 0.6 ( Vo)t 3 ( v;)g = -40 Mev. These are para-
meters suggested by the complex of low energy analyses of
the two-body problem. (33) For charge exchange, we use
only the part of Pr, the isotopic-spin exchange operator,
given by Uﬁ4)[r*(0)r‘(1) +r'(0)r+(1)] . The notation in-
volving raising and lowering operators in isotopic spin is
standard. This completes the specification of Yo, » Which
enters Eq. (29). For Oex of (42), we use a more indirect
procedure, giving the same answer as (43), but having its
value in an illustrative context. In the space of totally
antisymmetric, two-particle wave functions, the following

representation for the force, v y is useful.
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v::I—GSZT:T'STAS AT;SE[S]’TE[T]' (44)

Sums are carried out over the (2S+1) =[S] and (2T+1) = [T]
labels, singlet and triplet, of spin and isotopic spin.
The t-matrix tsr in each state is multiplied by the pro-
jection operators in spin and i-spin. Introducing the

labels (e,0) giving the parity of the space states, we have

~ ] o 0 .,T o e T o . e T o o ,T
vV s E [A' tllAl + Al tlaAs +A 3"31 Al + As taa As ]
The tf} , I = i1, are numerical functions of position,

parametrized according to (i,j), e.g., range p(ij) and
depth ¢, (ij). Again, for a Serber interaction, using

7 =!@(V° + V® ), we find

ve ='18'[Aate AT +A¢r te AT]

| 13 3 3 31 1

as the even state force. The identities Ag + Af = 1 and
A& -.&] = Ixcan be used to rewrite this expression as
~eg 1 o e o e o e o e .. T
v 16 [(Al t th, t,, ) + (A| LI ta:)P ] (45)

In the spirit of charge independence, the isotopic spin
states do not affect the force parameters, thus t,,= t,,

t,, = t; . Clearly, for the physical problem only the P
term contributes. Charge exchange then measures the dif-
ference between singlet and triplet interactions. Again,
this conclusion holds in the space of totally antisymmetric
functions. Operating upon a product function of indefinite

symmetry, V® has the following properties for a charge ex-

change process
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Ve ¥ (space) ¥ (spin) ¥ (¢t-spin)
£ s i

- \«;o_l e + 0 Acr +A¢r RA l+ o
\/g-(w 4’)( ' ¥ 3“’3)“/5(“’0 ‘po)
= L7, A7 6) O ¥ (0T v K0 ) (vt w8)).

The normalization has been changed in $° to take into
account the fact that only 8 spin and i-spin states
exist for charge exchange processes. The complex conju-

gate function which must be used here is

(5 ¥ (KT 000s) (b 9a) s PR(Yy + 90 ) = 4 - v,

(o]

Then, the expection which obtains is

RO TR RS NI

= lLG <‘I’e|t|'3t5|‘l’e>.

Now, we compare this with (31') and (43) where, in a sym-
bolic language, the Dirac representatives, bra and ket,

are

o

(va_(w V) ATy ~A%y)l, and | ¥

| 0 o o
ﬁ(w 90 ATy, + A7 4 )
This is to say that all of the coordinates have been ex-
changed within the n-p system. The expectation of UQ ’
which generates to good approximation a local t-matrix

t,» i.e. t,,~ Yy, » is

2 (¥ 13y —u | W),
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This is the same sort of result as that first obtained. ‘e
measure the difference between singlet and triplet interactions
in the charge exchange reaction. The apparent sign and
normalization differences relative to the previous result

are trivially recovered anu are unimportant nere. Having
made the point that (45) contains the same information as

(43), we express O,  in the form
0py = (A% +0.647) PF (46)

The restriction to a Serber force is not necessary here

as Oex multiplies a force of zero range.

Up to this point, we have discussed the manner in
which a charge exchange reaction is to be regarded as a
shell-model computation. The point of departure has been
such that one seeks to keep as close to the Brueckner,
Bethe and Shaw formalisms as possible. This leads to a
H-F self-consistent picture within which it is clearly pos-
sible to define residual interactions in an unambiguous way.
Por the reaction treated, the residual force induced tran-
sitions and gave the coupling of the single particle spec-
trum to collective nuclear motions. Actually such a result
is quite general and independent of the specific model in-
troduced here. It emerged that the H-F interaction gave
rise to nuclear distortions but no transitions. This t00
is a general result, in view of which one is cautioned
against misunderstanding the basis of procedures which may

be obscured by terminology such as "the distorted-wave method"
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Distortions arise as a systematic consequence of the
application of the H-F method. This cannot be emphasized
too strongly. We have not gotten to the point yet where
we attempt to analyze the reactions between complex nu-
clear systems in terms of "real" (with hard cores) t-
matrices. Indeed, the work of lMoszkowski and Scott (34)
gives an indication tnat such may never be necessary. At
the same time that we introduced the t-matrices, in what
might seem an arbitrary way, namely, one unrelated to
Brueckner theory, integral equations were given for each
such operator. These equations can always be examined in

a2 quantitative way to explore questions of ambiguity.

There is one last aspect which we would like to illu-
strate in this section. This has to do with the change in
the optical potential, or (Eo,)d, experienced by the added
nucleon when the n-p system couples to a collective state
through t. It is our aim to show that tne 2-particle H-F
energy is changed in a way which reflects itself in the
transition operator. This is to say that the transition
operator of (42) implies that some of the two-nucleon force
has been exhausted in achieving the collective coupling.
When, then, t is added to (%, )y, and it is stated that the
residues of the two-particle operators are conserved, we
simultaneously imply a renormalization of the transition
operator. We have of course accounted for this possibility
by means of the M* factor of (42), M* # 0.6M of Brueckner

theory. It is worthwhile to see why the inequality must

~-71-



be imposed. We use techniques originating in the reference
of Gell-mann and Goldberger previously cited. Symbolism
of algebraic nature will be taken from the many-particle
Green's tfunction theory of Martin and Schwinger. gzgl

An exact analogy with that theory does not hold here, as

we shall point out. It is nevertheless possible to con-

struct the required analogy. The'equation for the 2-particle

stationary state of (37) implied that there existed states
¢b diagonalizing the energy operator H, = h +T +Ug(h,=

n(1), U, =U,, ). We rewrite the total energy operator as(g)

H = go +;”01 Z Hotm, =‘(H0+Ac)+(7’o:-Ac)' (47)

Transitions now occur through an operator %o.. If we call
the stationary state or the 2-nucleon system QQ , then

tue average value of T in ¥ is
(7) = (¥ 7¥) = (¥ t'|¥). (48)

We imply that 45 is the lowest physical state of the ¢é
diagonalizing Gg , defined below. Introducing the propa-

gators, or Green's functions G, and G , at some energy E,
Go“l = E-Hg = G,o-l +Ac's G™'= E‘Ho'z= G;-l '2'1 (49)
where G' ¥, = 0, thus E is the ground state energy E,, we

imply that

1

~
0 G = mG + 4.

(50)
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In the above, Elis the proper self-energy for the two-
nucleon system. Eq. (50) is to be compared with the G
equation of Kadanoff and Martin, (36)

G, (1) 6, (12,1'2) = 8(1-1) 6 (2-2')-8(1-2)6, (2~ 1)

st (51)
+iVG, (123,/ 2'3) sy

where G, is a 2-particle function, analogous to our G,

G, is a one-particle propagator and G, that for 3-particles.

1
We 40 not in any sense work within the hierarchy of many-

particle functions here. Eq. (50) can be rewritten as
E:G =76 (52)

which is an obvious result, having, K the expected physical
significance. It is of interest to compute the change of
normalization as we go from the function ¥, to that y;
However, we first note that (52) and (48) together imply
that

Then from
T+ 7)) =t , 76 (6" +%)6, =t'6, ,
we infer by approximation to (52) that

S =t 6 . (53)

[
This provides a prescription from which EZ may be computed.

A similar result is obtained by Baym and Kadanoff (37) and
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the necessary details are to be found there. The t-
approximation giving Eglis often quite useful in practice.
And we have used this approximation throughout our analysis.
The reason for computing < ?;l%;) is that ou} approxi-

mation to (48), namely (31'), involves writing
(m) =2 (V1) (54)
We have then

(Yolwg) = 1+ (aodWlys ) = 1+ {y Lt/ 6 lyy).

The error made in the normalization in computing <%>o
by (54) involves the operator combination of (53). This
is to say that there has been a loss of probability from

our H-F spectrum ¢% . This has gone to make up the states

%; reflecting the coupling to collective states through
A, - The change in the transition operator from t(nol )

to t'(;o|) reflects itself as a change of the two-particle

self energy with total energy, at E=Eo.(1o)

Alternatively,
there is a loss of normalization with respect to the origi-
nal H-F basis set. The results of this paragraph imply

an energy-shell approximation.



IV. Summary and Conclusions

We have chosen to discuss a reaction for which it
is not possible to directly take over the measured 2-
body scattering amplitude to evaluate that relating to
complex systems. By working in the impulse approximation,
we confront the usual energy shell problem. Apart from this,
we have found it necessary to incorporate the random phase
approximétion into our reaction description. Such, intro-
duces renormalization and hence further ambiguities in
the relationship between measured 2-body amplitude and
that, weighted by a form factor, which pertains to.the

interactions between complex systems.

The point of view expressed here has been that the
elementary, 2-body, t-matrix is a dynamical operator.
Associated with such an operator is an equation of motion.
The specification of the latter must come from many-body
theory. That theory, basically H-F theory restated in the
formulation of Brueckner, is relatively unambiguous.
Particularly, within its framework, it is possible to de-
fine what we mean by residual reactions in a satisfactory
way. Such interactions are not always small. This is a
fortunate and physically significant aspect for the finite
nucleus. For, when we compute t in such a system, having
its own degrees of freedom, the appearance of large resi-
dual interactions usually reflects the coupling of the

single particle spectrum (in which t operates) to the col-
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lective nuclear motions. While there are singularly few
collective nuclear motions, lying at low frequency, which
we can treat in a satisfactory quantitative way, the situ-
ation is far from being discouraging. Most often we couple
the single particle spectrum to 2+, at and 3" electric vi-
brations. These couplings are quite easily extracted from
the Brueckner cluster expansion. A partial summation pro-

cedure is used to do this.

In such a view as that just expressed, we give up any
aim of describing the spatial distribution p(S) of the nuclear
density; and thus also that of having t{p, retlect the corre-
sponding spatial behavior. PFor us, the finite nucleus is

just a spectrum built on a particular class of states.

We consider the present treatment of the charge ex-

change problem to be closely related to that of (p,p')

given by Levinson and Banerjee (L-B). Not so much emphasis
was placed upon the H-F self-consistency by these authors.
However, their work clearly implies and contains the optical
potential aspect of self-consistency. This is chiefly ex-
pressed through the antisymmetrization in (A+1) nucleons and
2-nucleon dynamical equation. Note that, in this connection,
we only have to antisymmetrize in the mn-space of initial
states, e.g., o7V [Wl(n‘)~¢6(no) o/ (no) %)(n|)] , to make
(31') self-consistent in this sense. But, actually, this is
automatic owing to the way in which the charge exchange ma-

trix element has been written down.
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Both of the treatments, that of the present paper
and (LeB), have much in common with that known as the
resonating group procedure. (38) The latter contains
the elements necessary for H-F self-consistency. Its
chief difficulties lie in the unphysical approximations
to the internucleon force and to certain wave functions
made in order to: a) produce a two-particle dynamical
equation, and; b) to resolve the kernel or integral opera-
tor which appears, over a suitable orthonormal basis.
These aspects can in fact be avoided by the introduction of
suitable t-approximations. Moreover, one has to exploit
the fact that the effects owing to certain distorting
interactions, e.g., optical potentials are in fact known.
Strict attention to this fact was paid by (L-B) in their
derivation of a two-particle dynamical equation. We have
explained that the dynamical equation of this paper came

from a parallel drawn from the Bethe-Goldstone equation.

In many ways the method of resonating group is superi-
or in its presentation to that of the c.f.p. and cluster model
as used here. This will continue to be true whenever com-
plex nuclei, d,a,T, etc., are used as projectiles. At the
other extreme, nucleon projectiles, an adaptation of the nu-
clear matter computations of Brueckner, Bethe and Shaw is pre-
ferred. Such an adaptation has as its basis the charac-
terization of the finite nucleus according to techniques

arising from field theory. Given an appropriate definition
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of the physical vacuum, one goes ahead to construct the
Green's functions G,, G, and G;. There are dynamical
equations connecting the members of this hierarchy. Some
approximations must be made in this scheme. However, these
are non-perturbative and as such not generally damaging

to the physics. In speaking of the Green's function hier-
archy, we do not imply thg use of ensemble Green's functions.
Such are implied in the pairing theories, e.g., the work

of Kisslinger and Sorensen. An example of the technique

to which we allude here would appear in a computation of

the hole-particle spectrum of c®,

The field theory characterization emphasizes the
role of correlations in the finite nucleus. Such can be
induced or excited by nucleon (or complex nuclear) projec-—
tiles. The point is however that the correlations are not
always reproduced by either the ladder or random-phase ap-
proximations. Also, contrary to the depiction of Brueckner
and some of the work of this paper, particles do not always
scatter from particles, nor holes from holes. Particles and
holes should appear on the same footing. The Green's functions
Gy G,y etce., are of the Feynman type and thus preserve this
symmetry. Ferrell and his collaborators (39) have emphasized

the role of correlations carried by the backward going graphs.



A collective excitation has been introduced in the
present analysis. We computed in a simple-minded way how
this excitation coupled into the H-F spectrum through an
operator t. The description we gave was schematic. Its
motivation lay in trying to reproduce a situation which
was known to exist from an analysis of the reaction graphs.
Of course, the physical nuclei involved always guide such
an analysis. It is possible to sum the Brueckner cluster
expansion using a Feynman projection operator off the
chosen configuration to obtain the appropriate collective
couplings. Some error is made in doing such a partial
summation, since one does not choose to re-examine the
Brueckner ladders, in order to correct them for redundant

countings.

The introduction of the collective coupling leads us
to expect certain renormalizations of the inter-nucleon
force. This renormalization, and as well the "collective"
vertex operator %, is quite strongly energy dependent, and
A-dependent. It is then straight forward to envisage
physical situations of more interest than that described
here. Charge exchange, (p,n), for E, = 15 Mev in the region
of the Ni-isotopes will depend upon the processes described
here. Low energy (Hes,T),E = 25 Mev, in this same region,
will also be similarly governed by a similar description.
High energy (Hes,T),E > 490 Mev introduces two additional

considerations, namely strong absorption and the adiabatic
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approximation. The microscopic, 2-body description given
is not then particularly attractive. One instead resorts to
discussions based upon considerations given by the Blair

model.

A serious question may be raised having to do with
our use of a two-state model. That was introduced to be
able to include some aspect of H-F self-consistency. More-
over, such a model is formally tractable. To the point
however is the observation that some account must be given
of the virtual channels or states into which the actual re-
action channels couple. This is a very old idea which was

stressed by Thomas. (40)

We have been lead to distorted-wave expressions for
our two-particle matrix elements. Again, such are only a
reflection, here, of H-F self-consistency. This is one of
the chief contentions of our analysis. It is possible to
check the role of such an effect. The methods of this
paper comprise a point of view. This stands alone as an
exposition picture which derives from our qualitative under-

standing of reaction processes.

Machine computations are in progress for the example
cited throughout, Be9(He3,T)Bg* at 25 Mev. The computations
are designed to compute -3 1) a plane wave approximation
to the 2-body transition m.e., (31')s 2) the H-F statement
of that m.e. with %, the collective coupling, set equal to
zeroy 3) finally, the m.e. of (31'). The results will be

reported in Part II of this work.
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Footnotes

(1);(p.25) The c.m. system of the initial and final nuclei has
been deliberately chosen for these energy arguments.
This provides us with what is essentially a one-body
equation of relative motion for the colliding nuclei.
Obviously we satisfy the requirement of translational
invariance. At the same time, it is consistent that
elementary, two-body, matrix elements and wave functions
be computed in some laboratory frame. That frame of
reference is in motion with respect to our original one
in which the system c.m. is at rest. The new frame is
selected according to convenience, i.e., reaction model
and associated wave functions. It is related to the
original frame through a linear vector transformation

carried out upon each particle coordinate.

(2);(py26) This is a representative of a many-particle
functional in wnich only the initially occupied states
referring to "O" and "1" can be found empty. Initially
occupied states are specified by the non-zero occupation
numbers in a chosen configuration, taken here to have a
two-particle representative ® . The introduction of ®
and ¥ , as defined, allows us to solve an equivalent
two-body Schrddinger equation. But, in a later section,
I1I, we shall want to employ some results from many-
particle (secona-quantized) theories. At such a point,

then, the functionals themselves are implied.
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(3);(p.33) Tne wave function basis w; for two-hole,
two-particle vibrations is discusseu in appenaix B.
Note he appearance of the time-reversed rfunction $ .
If 3 =y, the representation employea is that ramiliar
from pairing theories. The choice of quantization axis
M, = O corresponds to viewing the nuclear excitation
as resulting from nucleon interactions with an incident
phonon, furnishing the quantization axis, of positive
parity, multipolarity J. The arguments of €. namely
p and h,refer to particle and hole, respectively. The
nomenclature quasi-particle (state) will in general
refer to an excitation generated by taking linear combi-

nations of shell model hole and shell model particle

states.

(4);(p.34) The 2% state, here, occurs at very low frequency.
Consequently, deformed shell model orbitals are implied.
These are generated by introducing a one-body quadrupole

operator into the H-F energy operator.

(5);(p.35) The details of this estimate are to be found in
Appendix C. - Underlying the present discussion is the

notion that the 10.7 Mev B

state may be represented
as a composite of 2+, one-phonon excitation plus single-
particle excitations. The excitations envisaged, of the
latter type, are that either the extra proton or extra

neutron gets excited from 1p to 1p . The bindin
372 is2 g
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energy of the last nucleon in B1o is about 8.5 MeV.
Clearly, these statements take on a somewhat different
character when viewed from the p+Be9 system; thus, the

two-particle, one-phonon coupling scheme is introduced.

(6)3(p.49) The discussion to follow can be equally well
given in terms of (L-S) to (y-jy) transformation coefficients.
The projection operator method used, was thought to be

more compact and convenient in the present connection.

(7)3(p.49) States of the added nucleon are denoted as
k,k', etc. Those for the target nucleon appear here as
B but, however, generally involve a change of } owing
to the interaction. The notation is then sufficiently
general for the representation of the two-particle matrix

elements.

(8)3(p.58) The number quoted here, 19 Mev, is obtained as
follows: Eko= 23 Mev, E = 35.2 Mev, €€ is the

! [+]

1p|/2-1p3/2 splitting taken as 7.5 Mev; E,, + w, —Ey, =

= 19 Mev.

(9)3(p.72) The operator for the energy shift, namely A, ,
arising from interactions between independent excitations,
e.g., quasi-particles, is introduced. As previously
shown, the interactions come about through the exchange

of the virtual phonons for collective excitations. We
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shall then be led to an expression for the self-energy,
or its change, owing to the coupling between quasi-

particles and phonons.

(10)3(p.74) Tne Brueckner ladder giving M* = 0.6 M
corresponds to our t(m, ). On tne other hand t'(%,, )
operating within the basis ¢é has been obtained by
additional diagonalizations, or partial summations,
yielding the couplings to collective motions. It is
clear that M* so obtained will not in general equal
that found for infinite matter. The latter supports
compressional modes of wide variety, which are collective
extensional and dilational disturbances. These are not

under discussion here.
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Appendix A.

The results of Section III depend upon certain
aspects of the Brueckner theory. This is in particular
true for Bgs. (26) and (27) and that following for
the matrix element <G|V|U> where two successive t-inter-
actions, leading back to the chosen configuration, are
dropped. What we can employ of the Brueckner theory is the
method. No single K-matrix element, e.g., that appearing

in t,/Y , computed by that theory can be used nere.

The summation of graphs implies certain diagonalizations
of the two-nucleon force. This in turn says that we know
not only certain diagonal matrix elements but also the
basis within which the diagonalization is carried out.
Every diagonalization introauces new eigenvectors. To say
that we want the tz—terms out of the perturbation expansion
for the ground state energy of the free-bound system is
stringent. This means that the single-particle energies
Ek and €L have to be computed in sucn a manner that this is
true. The oscillator well in which all of the particles
are assumed to move gives a basis set. This well may even
be assumed to be the H-F consistent potential. However,
nothing has been done in the direction of the Brueckner

method.

What is involved here is to determine f:v for the

terget or A-particle system and then u°

oo for scattering

from the same system. The former is handled oy writing
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= + —_—
K v v o K (a.1)
with ,
e = E%(L)+E%(f) -E#(i.a",,uo)- E#(“;po)
- (o] [] o _.0 o 0
'Eo("i.” Eo(n'.,) - E, (n;5n; n )-E (“é”‘i, n, ). (a.2)

2he symbols p, and p stand for the ground state target, or
chosen, configuration and an excited configuration, respec-
tively. In order to write the second of (a.2) an approxi-
mation owing to Brueckner nas been used. It says that we
may compute the energies of particles i and j which occupy
states n; and n, in the excited configuration g as a sum

of effective single particle energies. In these energies,
the influence of one member or the excitea pair upon the
other is taken into account in some average way. The single

particle energies appearing above are written as

AR RALST

E, (nz) =zo(n§nﬁ |K‘zk | nz nz)A-i-(nf [ T nf)
"k (a.3)

E(n; 30305 ) =3 (ng nglK glngnga+(nel Tlng) =(n; 1ty + T lny)
"

The effective one-body operators tyx are hermitian. This
notation is introduced to correspond with that used earlier.
There are problems of detail concerning how the operator
Kij differs from that K;j. These are widely known and

shall not be discussea here.
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A wave-matrix statement is introduced, which defines

wnat we mean by K;j ;y this is

Sile gz ks, 0, (= o, ¥, 5

o _.0 . 0 o
(n:nL,m-n? 3 N ,ny-,n,u.o)

The configurascion p, is the chosen one; Qﬁb is the station-

(a.4)

ary stete of interaction generated from interactions within
Mo+ #e have from (a.4) and (a.1) the integral equation

Y (i3)= . . oy

,u_o(l,y) ®,uo(t.3)+ q:“'o vq \I/,u_o(t. 7) 3
Q13 pto) (a.5)

— 2 (& |.
By Bulid;p)t #

05,19

And, if we can define the inverse of the Green's function

as
!

q#o z E#o (¢3) - h(i)-nij)

then, the following differential equation is implied:

[Ep, - P ) -n() ] Y id) = Qu vi; Yulid).

The one-body operators appearing here are those oi (a.3).
rhese we shall descrive as the H-F operators. The station-
ary state will contain 211 configurations in two-particles
which can be generated from My + 1t is sufficient that we
retain this information in the operator Q#n' rthe two
particle equation is rewritten as

ECed) -h (D) - D] Yy =Q v.. ¥(iy).
[T Y (a2.6)

[+]

This type of equation was tirst written down by Bethe and
Golustone. In solving the equation, we take into account
H-F self-consisvency anu ignore that ot Brueckner. To do

this, we write
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—av

2
t;, =-V2kAa, + a d:es, 3 and

2
T o=-(h/am™) V. (a.r)
The first of the statements permits us to use oscillator
wave functions. The second tells us that the oscillator
spacing is Hw = hz/M*b. We nave introducea M* as an
effective mass but this cannot be taken literally; b2 is

the oscillator parameter.

The approximation procedure consists of introducing
a well and the wave functions ¢L(ij) parametrically depen-—

dent upon the well. The stationary state is expanded as
Vi) = Tc, @,

This, when substituted into (a.6), leads to o secular equation.
The unperturbed energies E(i), E(j) are .generated from
(a.7). It is assumed that vij is a regular potential.
Solution of the secular equation yields a spectrum in energy
E(ij). Taking the lowest value which appears here and the
corresponding{C#o} we then find‘gujij). The K-matrix

elements are computed with this tunction according to

(a.4), i.e.,

(@, 1y le, )= (@, lv;ly, ). (a.8)

(a.9)
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as the interaction energy felt by the nucleon in state n
This will in general be different from the matrix element

of E{;, as ziven by (2.7). Iteration of (2.7) is carried out
until the two results agree. The result of this procedure is
to determine the H-F consistent potential f;;. The X-

matrix elements which emerge are not those computed from

Brueckner tneory.

It is easy to see, nevertheless, that we have kept some
of tne aspects of that theory. In particular from (a.3)
and (a.5) it is evident that we have built into the H-F
energy: all of the forward scatterings off of unexcited
particles, and the sequence of self-energy insertions to
infinite order in vij' It follows from these remarks that
tz-terms leading back to p,, the chosen conriguration,

do not exist.

Having completed the self-consistency computation
for what we cailed %ﬂv earlier, the interaction relating
to the bound constituent, it is indicated that the nuclear
binding energy be checked and also the r.m.s. nuclear
radius. If both of these quantities come out correctly,
we have been fortunate. It will not be surprising if the
energy/particle comes out correctly but at too high a
nuclear density. This has to do with our omission of
collective excitations in the bound state problem. These
permit a strong correlation structure in the presence of

reduced nuclear densities.
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To go to the Bethe-Goldstone equation for the free-
bound system, namely to compute E:: a modification of the
procedure described is introduced. Given that we know
Eﬁv , the corresponding H-F operator h (1) is specified.

If the two-particle equation is written as

[e, -h@-h] Yon=a, v ¥O. (a.10)
we must fix t;?fat this step. We have talked about par-
ticles "O" and "1" moving in a'"common well". The added

)
nucleon was described by a wave function 7, (%o;%o) in the

A + 1 particle chosen configuration. Claarly, the two nucleons
move in a common well if they help determins the A + 1

average H-F potential for each other. We cannot solve this
problem rigorously. However, a suitable approximation is
available. An extra nucleon, j, is added to the A-particle
target system. It nas initially the (E?g)p.g interaction with
the target, and is added in the A-particle H-F state lying
closest to that of "0', The latter occupies the state of

energy Ekc,: Eko- €F= T(ko) + B; GF is the Fermi energy for the
target, T(ko) is the kinetic energy of particle "0", B > 0 is
the binding of the last nucleon in the ground state target. The
dummy nucleon "j" and the ground state system form a chosen con-
figuration XA, in A+1 particles. The self-consistent H-F

ov
JJ

described, since j moves in the well of (a.7). Then for

-0V
any well, t ., e.g.,

interaction (E )X can be computed by procedures already
[




=0V
o0

(a.11)

[1]
o
>
[-)
v
£y
o

the self-consistency will be considered to hold, if,

E;Y = E:; s+ in the sense that,
. TV, - o ;%1 0
(1’0 (bo’f\"p)l too |"70 (bo’ﬁo))vo - ( 1’* l tg@ l Ty ))\ (a.12)

.
The expression for the matrix elements of(%S} &;s construc-
ted from equations similar to (a.8) and (2.9). It is a
restriction of this method that the states n;(uo) and
n;(xo) must not be separated in energy by more than the
half-width of the optical potential state. This width is
given in terms of W, the imaginary part of the optical po-

tential. It cannot be obtained from the hermitian approxi-

mation employed here.
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Appendix B.

The material of this Appendix was referred to at an
earlier stage in the text than that given in Appendix A.
However, the latter is helpful for the understanding of

certain ideas and notations here.

The two-particle, two-hole unperturbed basis set
H; (1,2) is fairly complicated. Indeed, we should write
for these objects
I, « 2)=li % i [mj 5 ?}Deillw M @il
v B e e )\£|m 2w R ()
the states Ja(i = E ,E, € ¢, ) are occupied, and those
mé(j = B,E >e ) are unoccupied. The determinantal
function is implied as normelized to unity. It can be
demonstrated that the factor 2 '*leads to <vJ |v > = ..
In order that this be established easily we have introduced
symbols ¥ ,m. It is then the understanding that SF,SMO
is implied in (b.1). The symbol v stands, as before, for
the excitation energy Ek+Ep-Ea—Eb or a sum of two hole-

particle energies.

It is assumed that the H; diagonalize the energy
operator H;, =h(1)+h(2), a sum of H-F operators. These
are defined again in the sense of Brueokner. At this point
such a2 definition is of considerable utility. This is to
say that the perturbed, two-hole, two-particle eigenfunction
Wdcan.be taken as diagonalizing the operator HL'*”WD*”ph

+ Upp , OT
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(E - Ho,! )\I/J z (u‘,p +uph+vhh)\1/‘j (b.2)

The interactions (particle-particle, particle-hole, and
hole-particle) appearing on the right correspond to the
various factor-pairings of the two-body interaction in

a second quantized, or many-particle, description. It is
our understanding that the interaction are residual, i.e.,
not accounted for in H& . As long as we restrict vy

to arise from the cluster terms, it is non-vanishing.

We have not said how the two-hole, two-particle states
were established initially. It is within the context of

*
our charge-exchange problem to argue that the B1o states

9

are generated by adding a proton to the Be” ground state.

Here, then, certain 3-body clusters appear. The B1o*
states which we consider are to be enumerated in a manner
consistent with these cluster contributions. It can then
be argued that vy, is small but non-zero. Technical problems

arise in the counting of states above the Fermi energy €

These involve details but no new physical considerations.

The hole-hole interaction vy, is certainly not zero
within a Brueckner formalism. It is sufficient to recall
that hole states have zero widths within the formalism.

One must also recall that finite nuclei of intermediate and
low mass number may not resemble infinite nuclear matter
with its characteristically large excitation energies.

The particle-nole interaction Vo is clearly non-zero
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within the formalism of Brueckner theory. It represents
the largest undiagonalized contribution to the inter-
action. In view of this it is easily understood why the
vibration v ois often represented as a pair of hole-

particle vibrations, Voo ana v being taken equal to

h
zero in this approximation.

Eq. (t.2) is to be solved by making the substitution
v = E:cv U: providing us with the usual seoular equation.
It might be remarked tnat v,, is the easiest of the resi-
dual interactions to estimate within the formalism we have
chosen. That,v,, , can be gotten at through certain experi-
mental evidence such as (p,2p). It probably does even in
finite nuclei involve considerable excitations. The force
v,, 1is the subject of much current investigation. The
preliminary conclusions seem to indicate that it is nearly
pure exchange force and, capable of giving saturation.
In view of our restrictions to residual forces, the latter

presents a c¢lear difficulty.



Appendix C.

This section contains an estimate of the spin-orbit

9

in the A=10 system, n+Be”. The nuclear

9

system is formed in elastic neutron scattering from Be~.

splitting PPy

We expect to reach states of excitation 6.82 Mev or greater
in the scattering of thermal and slow neutrons from Be9.
The Be9 system is so light that for the bombarding energies
(0.3<E, <1 Mev) of interest we shall be in a Breit-Wigner
region. Pcattering resonances instead of those for capture
are expected here. In order to pass to a single particle
picture, that of the optical potential, the A=10 level den-
sities should be large. <Yhis condition begins to be satis-
fied at about E, = 1 Mev. We shall for the purpose of sim-
plicity assume that there are enough levels to average

over - that the optical potential applies. The error made
will not be too large, if the splitting corresponds to a
value of E, > 0.5 Mev. Also, at such energies,states

Jn, equal to 1+,2+ are among those formed in the reaction.
The method of analysis used is only satisfactory for the
location of the 1% state. In the body of this paper it

is considered that a collective 2% state is excited in

B1o owing to the addition of a proton to Be9. The position
of this state is determined by that of the 1V,7=1 state,

*
under discussion, together with the Be®

phonon excitation
of 2.9 Mev. The arguments to follow are restricted to the

inference of the single particle splitting E(1427)-€(1p,,,).

-99-



The method of computation here is based upon a
perturbation expansion of the two-particle interaction
energy, v » In the first two orders of perturbation theory,
the single particle energy of a neutron added in the 1pvf
state to the A=9 ground state, will be E(l/2')+V:(l/2')
with Vi(l/zﬁ being given by the diagrams of figs. 1G(a) -
1C(c). The parameters of the intergction v are fized
by computing the binaing energy per particle and separation
energy of the last nucleon in the A=9 (Be9 ground state)
system. <this involves determination of the H-F potential
and the strength, a, of the spin-orbit interaction for the
A=9 nucleons. No attempt is made to achieve H~F gelf-
consistency. The computation is first of all illustrative
and, next, should contain a proper two-body force, a rea-
listic two-body reaction matrix, to make H-F self~consistency
worth-while. A Serber force of zero range is used for the
two-particle interagtiony . It is convenient to work
within the basis of oscillator functieons. ‘he size para-
meter for these is fixed from the mean square, A=9, radius.
We find that it is consistent to explain the low binding
energy of the last A=9 nucleon as arising from a renormali-
zation, x, of the two~nucleon force. woucn comes about if
this nucleon moves in the presence of collective, A=8,
core or vacuum fluctuations. both the volume strength,

A, of the two-nucleon i10rce and the renormalization con-

stant x are determined.
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A finite well is impiied tnrougaout, both 1or
nucleon-nucleon and nucleon-nucleus interactions. Tne
configurations relevant to the latver are depicted in
Fig. 2C. The position of the state E(1/27) is fixed by
requiring that the real part of the optical potential,

Re V;,(1727), equal Re V; (1/2'). From Fig. 1C, we see that
the diagramsinvolve E(1/2°) and thus the equality gives an

algebraic equation for £(1/27).

The appropriate relations for the binding energy per
particle and the mean square nuclear radius using oscilla-

tor functions are

e

2
<2> = __Z<h' >nl- wni. , <E>/N = z enl_ Yne ;
z Wnt zwnj.

2 2
</3>£ =%, (Me” 7hw) (A +3/2), €

n

(c.1

2 :ﬁw(Ani} 3/2),2 w, =N

Here, N is the total number of nucleons; w;l is the occu-
pation of the oscillator shell, equal to 2.(Ahﬂ+1)(AnL+2)
for a filled shell; ‘An£= (2n+£-2) where n is the principal
quantum number and £ is the orbital angular momentum; &c

is the nucleon Compton wave length; Me? = 938.2 MeVv; hw

is the oscillator spacing equal to h® /sz, with the size
parameter b being given in terms of the force parameter K
as 54 = MK/ha. On the assumption of a uniform charge dis-
tribution, the second moment of the distribution is r: =
(O.6)(1.25Nn)zf2. For the A=9 system, the value Hw equal
to 20.8 Mev agrees well with Hw = 19.7 from 41/4"° applying
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to saturated (normal density) systems. These details are
repeated for completeness and reflect one way in which one
may treat the electron scattering data. We have now de-

fined a set of independent particle wave functions.

The two-nucleon potential is taken to be

M
1+ P
ualn) =g g™ o T B ) (c-2)

a Serber force of zero range. We take the ratio of singlet
to triplet volume strengths as equal to 0.6, whereupon

A2 = 0.11 X, . The nature of the assumed force has rele-
vance for the form in which the wave functions are presented.
In computing the H-F potential, we encounter matrix elements
of the form
¢|(l) ¢,(2)l

(¢ (N p2v |
1 2 12 ¢2(l)¢2(2)

The Slater determinant is not to be normalized and the
single particle functions ¢ are here taken as products

of §-% Dbasis functions ¢ 1 and those in isotopic
niyp

spin 532 . A Serber force allows us to write the deter-

minantal function as

al az

l/z(al @ +a? 1 st st
2,m, L,m, dim, L,m, Q! 2

spta  3,tp

The determinant is now in the space of charge-spin. All
of the information as to # - # coupling basis is contained

in the missing, but implied, vector coupling (vec.) co-
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efficients. Throughout the analysis, a charge-independent
force is employed. Moreover, the dependence of the matrix

elements of v Eq. (c.2), upon isotopic spin states is

12 ?
completely trivial. We perform an average over the i-spin

states to obtain

12 12 | 12 2 1
(ulz)m,e. = [(asl' asél Vi |aslasz> - -é<asl,as,2|u|2|aslasz>:| E(.ﬂlm'.ﬂzngl2). (C- 3)
This result says that the charge symmetric force is written
as [(174)(V,, +V,,)+(1/2 )V, ] = (172)(V'+V,,). Then the

’

charge independent force is V =V =V, . The factor E(12)
in Eq. (c.3) represents the space part of the vy, -matrix

element.

We shall give two forms for the matrix element of
v, . The first of these is in the representation a=(ndyu).

The second form is that for the representation p=(nlj ),

namely the average filled shell potential. In computing

the H-F potential from the B-matrix elements, one multiplies
the diagonal, two-particle matrix element by the occupation
factor Wit . The ac-matrix elements depend upon pro-
jection, p. Lo use these for incomplete shells, more pos-
sible states than particles can mean, in the simplest
applications, that coupling rules, e.g., Mayer-Jensen,

} -3 coupling, are required. However, the square, potential
matrix in occupied states, from which the H-F potential is

obtained, may be constructed in terms of operators projec-

ting off the empty states. To such a construction, carried

-103-




out by enumeration, we attach the isotopic spin labels
through V., , Vi, » Vyp Then, independent of coupling
rules, it is possible to obtain the H-F potential for a
partially filled shell. In the g-representation, we have

the matrix elements

“)dh- #ﬁl"z"ll“z? . /2 é| 3-'1 L 4‘!2 3.'2 L
o™ A R (B ]
[L]-l :_l)(nlﬂl nz‘az ) ( 111‘01 ’Ll/a) w (}2 ?ELIZ ’Ll/z)
o Ltdyr ar ‘[t ] | g
v i 3 l )
(172) 1) [3’,][?2]%)\[ ( 2 &, 1’/2I)] [_,u_z,u_ll-)\ :|( ) (c.4D)

> 0t o Lo l5)w (4L 0,1, 505)

|l22

da

2 ¥+, 2
S 2o [0 S, €l )
zf(- 1y [F]W(3'eL 2,5 2,5 )WL 105 f)z(-n')?[q]w@z'/z LL; L,qW( 3,4, ks 2 q)

5 [fh é‘zln]zw (3 Fh 93 W)W (5 1E 5LA) (c.4¢)
n Lw-pt-p

eX.

v e[iJall] en® wats g g (ﬁ2 L2)

L (2 % z (c.4d)
5 o [§]w (L411, ,Lf)[" "ZI ] 1 1,+
Af pewsel |
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The corresponding matrix elements in the S-representation

are

dn 72 .
“ = - (1/2) (LG] [lz]) (-1 )1|+£22L 9(:)(nl£|n2f2)w (3‘,*,1,[, "LVZ)W(*: i'zﬁzﬁz;Ll/z )

(c.5a)
ex £| 2 2 L
N e N Y WAL
y . (c.5b)
zf = [f][W (izﬂzé'lll;l/zf)] w (‘éll'ézﬂz;l-f)
dn
N - szi( n:‘lnfninzzzé'z ) 8 =0 (c.be)
ox s _ l [ N . 2 2
At = -[l] (-1 4 ’2("1) e MK zL(-l)L QE:)(nlllnzlz)
(c.5d)

4 byt
2 [f]W(ﬁ,ﬂ,fzfz;Lf)§[h] [‘3, Zf }
b, i,

The notation for the v.c. coefficient, Racah coefficient,
2 2
L2 o 02 )

and (9-4) symbol is standard; [k] means (2k+1); g:_i"(nll

is defined as, (i=1,2),
00 2int2) = N, 10,220 L)LY L)L IV, 118):

L 11

2 2
1(nf, nd;) - jd/mz R (n) R;L(Zh),
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in terms of the Slater integral of oscillator functions,
the reduced matrix elements of the -irreducible tensor
operator for the potential multipole, and the potential
strength. Although the answer is well known, the matrix
element of the one-body spin-orbit force is appenaed to
the preceding list of formulas.

12 Ltlo-i -1

Vs?hlllé'lﬂl):'a(1|[I|](£|+l))"/8/—2('l) W(I/Zl/zjl' lé‘l) (c.6)

1712

The parameter a is the multiplicative factor in the force

written as a Leg.
~N

We can at this point compute the H-F potential.
This is done in the B-representation. Two equations are
used to fix the values of \,, and a. These arise from
the requirements that the average binding per nucleon,
B = E /N, and the separation energy, S, , for the last
neutron be given correctly. In the A=9, Beg ground state
the values of these quantities are B = -6.46 Mev, and S, =
-1.7 Mev. The Slater integrals which appear are:
I(1p*) = (5/6)(b™ /ofm); I(1s*) = 2(p®/+m); I(1e*,1p%)
= I(1p°,18") = (1/42)(v"° /o/®). Using the definition
e, = (X,;/4n€ ), with A, being measured in Mevef® , We
oObtain diagonal two-particle matrix elements with the

) = 0.593 e

following values: (1p., | v ] 1P;, .

3/2
2 2
(10,18, v | 18,, 105,) = 0.24 €, (1s,,|v]|1s,,) = 0.508 e .
The H-F potentials which we obtain from these values are,
(A=9),
VH.F.(ls'/z) =l.rze,, Vn.r.(lpslz)= 5.13e,.
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In the oscillator representation, hw = 19.7 Mev, the single
particle kinetic energies are T(1s ,) = 14.8 Mev, T(1p, )
= 24.6 Mev., Introducing the required factors of (1/2) VHF

to compute the energy sum, we find that B is given by

-6.46 = 20.24 - 1.25¢e, - 0.278a, (c.7)

To obtain the second equation, that for S, , we consider
the last neutron to move in the field of a fluctuating

A=8 core. This core undergoes collective oscillations,

the maintenance of which is achieved only by depleting a
part of the single particle probability distribution.

With the latter there is also associated a loss of matrix
element. This can be thought of as a reduction in the
strength of the average nuclear field. The effect is state
dependent. It is largest for the states at the top of the
Fermi distribution. Conversely it is negligible for the
states at the bottom of that distribution. To calculate
the force renormalization requires the use of more compli-
cated reaction matrix operators than have to date appeared
in the literature. The expedient adopted here is %0 replace

e, by xe, ,(x«<1), in the equation for S, which then reaas

- L7 =24u6-l.565xel-0.5a. (c.8)
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The two requirements: 1) that we cancel out the assumed
binding field, the oscillator well, as tne first and
trivial step in achieving H-F self-consistency; 2) that
the spin-orbit force lie in the neighborhood of values
given by intermediate coupling calculations, then fix

the parameters of Eqns. (c.7) and (c.8) as

x=077, a=24 Mev, e =208 Mew

The mean square radius determination for A=9 gives a

value of 1.48 f for b. Then, A, equals 855 Mev-ft

To estimate the contributions arising from the graphs
of Figs. 1C.b) ana 1C.c), we adopt the following physical
picture. The incoming neutron incident upon the ground
state A=9 system is at sufficiently high energy (ﬁi\/zif;
= ln-ﬁ ; &, =1) tuat coth s- and p-state phase shifts are
important. In its interaction with the target, the neutron
de-excites to the s-state, k,:k = 0. The target excitation
in this intermediate state is restricted to be no greater
than hw . Subsequent interaction between target and neutron
returns us to the initial state. “his picture allows us
to use erfective range theory; an enoruous simplification.
Furthermore, the two possible vacuum suppression contri-
outions (,l.|<eF ) >e. A = (1py2;Sn), A)= (1p3ﬂ;B), m=03
L= (1p,,,;8,) =4, m=0; m=0 being E(k=0))vanish rigorously.
We are left with, then, the selr-energy term which is written

as
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-
Vo= (el 3a) ¢ 1326 - 5E(%) _
w52 (1.7 -e(%)][6.96-€(%)] (c.9)

Here, as in all of the preceding work, we compute anti-

symietrized matrix elements. <the state 'u' is that with
zero kinetic energy, £(k=0), ana spin-parity, ve ‘. Again,
effective range theory gives the scattering wave function.
It is important to point out the sum-over-intermediate
states, which is implied, will be simulateau by varying
E(172) in the equation Re L%p () = Re\é{ug). The matrix

element arpearing in Eq. (c.9) is compuied as

[CEARIERAN ppEpe—— ) Y PRI PA T lqs;f(nw{:(a))A © e.10)

[#][4]1.)

which is the form appropriate to tue B-representacion.
It is unrortunately too tedious to reprocuce all of the
rormulas pertaining o £q. (c¢.10). Tae most usefu., and
also those leauing o the non-vanishing coniributions in
our final result, are given below for reterence and zid
to future computations. Note first taat, in Eg. (c.10)
the following definitions apply a, = 1p'/2u,,a2 = 1py2p2,

'

X =85,y ,a =5

’ . . .
/¥ in the a-representation. Thus, we

have £ =L, and L'z 1 = 0 in the following formulas.

7}(_0“ (c.11a)

1 4

dw 12 'zﬂ

AN 91"(“5"'42)2[?' ) 1 [

! MipM iy [ -M

ex 1/2 ?' 1'!

M- (1/4)( [yl] [jfz]) [i,]-zg;')(oz-, f\,f,) Z;J:,u.l A

p [0, 4]
vl a L |G (et
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dre e c2y-v-v  p e -p-p

O YT 0T A g e )
Y hro|¥|| &2 P2 ¥ | 21 i
O i M P SO U EERIEHEE

pm T

2,(")-? [g]w (L 1 oW (sdi, 15 gp) (c.11e)

1/2 “Hy -H, l,

S e (D)

TV h, ¥ P TP
S0 ][ |
P Hp -V Y-

(4] 9(::(02; n0})

_”jl %:ﬂ(‘l) 9’+i’2+2’"[%] [),,] W (921,1 I/z',l/z?)

W(&'i'll/z;l/z"‘)w (é'z %é‘,h;lp) W ('/21, Ph; ?'/2) (c.11d)

In the formulas to follow, we use D to mean direct and
X to mean exchange. The formulas as given describe the
second order transition of two nucleons in the orbital
n,l‘ to the state of zero kinetic energy. This is true
although we compute a self-energy for a particle and not

a hole state.

l('/zl/zlulé'lfzz)Alzv [a,][a/] [l] (( (n) ( u)) )‘*Z[ ](( (2)) +(X(:))2)
+2 0, %' T (-1 “[6][w (3, Yo' ik )] (1)

(c.12a)

[8,] 0, 0, (- ikl o) 3, (0 wler, i, 50,9)

i iy -4

(1)

ps

_(1/2)(-1)1/2”22“](-l)-s[s] o(pz) x(sz) (1/23, 3, ;ps) }
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D:;:) = (172) ([ [?z])vz [Jln]-l QI:(Oz;nlllz) (c.12b)
5! = ) ([ )[w) ] 4 (00, 27) (c.120)
op = 1] ([1][&]) ¢1)' (4] 5;:(°z;n,if)zf("5f (51w (1% 5k5) w (%4, 157 9)

. (c.124)
2o 0¥ [qlwlad it q)w(hl i1, q0)

y, +j ek

s (0] ([0][w])" (1) 1) qj’<o2;n,ﬂi>g<-n> [ qdw (B4 % )

(c.12e)
W(t21% 3% q) W (7,47 23518)W (b2 sn;q's)

The factors q:’(o';nllq) are defined in an exactly
ll
analogous manner to that previously employed. Only this

time, a different Slater integral will appear, namely
1(0*3n, L) =Idm»z VxR, (). (c.13)
k=0 ",

Our procedure for handling the scattering state has been

to employ the interior wave function from effective range

theory, i.e.

(c.14)
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The scattering length, ag , is taken to be equal to the
range of the nuclear potential, r, of Ea. (c.1). Also,
the quantization volume § is taken equal to the A=9
nuclear volume. The approximation for ag; leads to an
underestimate of I(O%n,lf) . A further diminishment
occurs if the integral is cut off at r=r,. To obtain a
roughly comnensating situation, the integral was extended
to infinity. The value so obtained, namely I(Oz;112) =
7.9 x 10-3,was however checked against that, 5.1 x 10-3,
obtaining from numerical integration of the integral with

a cut-off.

We still require the one-body potential for the

neutron in the 1p,, . state. In this potential, there is a

/2
contribution from the repulsive spin-orbit force. Of course,
all of the interaction strengths have been fixed by the
considerations applying to the A=9 system. We find now

that
vi/2)= viip )-a= 2.813¢-a = - 56.1 Mev. (c.15)

The final equation determining E(I/2) is, then, using

Re vop(l/a') = -45 Mev + 0.5E(1/27),

- 13.26 -5 /e~ - .16
1.1 + 0.5E(I/2) = E ) 6.95x 10 2. (c.16)

[1.7-ewz][6.96- eW?)




The solution of this is £(1/2) = 6.4 MeV, or a spin-orbit

splitting p,,-1p,,, of E(W2)+1.7 = 6.1 MeV. We believe

3/2
that we overestimate the splitting by perhaps 0.5 MeV

due to improper treatment of the principal value. Other-
wise, the technique is certainly useful. With the advent

of better reaction matrices, a more carerul computation

would be warranted.
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(2s,1d)

Fig. 1. Potential interactions, f, leading to vanishing energy
denominators in second order. The open clilrcle, 0, on an
external line refers to neutron; that, ® refers to a
proton. Coulomb forces are neglected. H-F potentials
appear in first order.

~11k-



Fig. 2

k i 1p1 H2s1d) ’ ___'p@ub
—— - 1

®
(a) (b)

Potential interactions leading to charge exchange in
the two-state model. One of the interacting nucleons,
"o" and "1", in particular the bound constituent, has
undergone a change of state. Such can occur through
the interaction as in (2) or indirectly as in (b).
Direct charge exchange occurs in first order.
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Fil 7 {Fqmy N (e JNkgny n, 17 |Aet
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t, t t
A, By m,h; fi, By Ay A, 1 Ay
(3d)
(3e) (3f)

Fig. 3 Diagrammatic representations leading to charge ex-
change through the intermediary of two quasi-particle-
single phonon vertices. The 3-~particle, 2-hole inter-
action (a), and the 2-particle, l-hole interaction (b)
are described in terms of the A-particle ground state
as physical vacuum. The interactions occur through t-
or K-matrices, whichever is appropriate. The same
interactions can be viewed in a representation vhere
the ground state A+1 system defines the vacuum. Here,
2-hole, 2-particle excitations occur, symbolically
represented as in (c). All of the interactions are not
drawn in. The effect of these upon a given unperturbed
configuration is shown in (d). Diagonalization of these
residual interactions leads to the Feynman diagrams (e),
for the A-particle vacuum, and (f) for the A+1 vacuun.
In both of these the time-~orderings are specified for
the complete or single~particle propagators; .~~~ denotes
the phonon connecting ground and excited states of the
A+1 system,
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1p36

Fig. &

—— (proton)

- - =15 MeV 1Py,
Nas T 1MeV ¢ o
t t *ohonon
Pyl E. .(B&) 2.9MeV (@*shonon|MeV
q.s.
11Ps, =0 -[17Mev

+(1py,;neutron)

(a) (b)

suppression of vacuum fluctuations assoclated with

Be8

core by lp3/2 neutron in Be9, (a). The corre-
sponding process, Be? suppression by the added proton,
has been accounted for in Fig. (3a). The location

in energy of the two particle states and the phonon

state is shown in (b).
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Fig. 5

I(E)

m
o

s o o o o — —— o o

Canonical plot depicting one state Ec splitting off
from the spectrum éﬁ_ of independent particle ex-~
citations. The 6& refer, here, to independent
pairs of particles. The lowest such excitation is
€, The state E; has split off because of the de-
generacy or near degeneracy of the 64 , within some

energy interval w , about an energy EB*.
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(b)

1 K, k,
r I |
K,
‘4

" k. / )
k. _
t

k %

(c) (d)

Fig. 6 Diagrammatic representations, not of the Feynman type,
displaying some of the interactions involving the
virtual 2+ phonon (~~~). In (a) the emission con-
dition for the phonon is reflected by the labelling
on the line for added nucleon. Apart from this self-
energy insertion, there appear vertex corrections
similar to (b). Two nucleons in states below the
Fermi sea, core states, can exchange a vibrational
bhonon as in (c). This long range force is available
to particles in states above the Fermi sea only
through more complicated processes, such as (d). The
interaction notation is t = t +1I.
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/—w%

Fig. 7 Finite well representation, not to scale, of levels
appearing in two-state model, (L-S) and (j-j). An
oscillator representation has been for the target
systeme Use hw = 19.7 Mev to locate lp, the center-
of-gravity of the p-states. The added nucleon has
the spectrum of states Ek'
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Fig. 8

q.(B) k.

(a) (b)

Collision schematics for two t-matrix representations
of charge exchange: (a) refers to Eq. (31) and im-
plies an exchange of all of the coordinates for the

two nucleons involved, hence an exchange of the quantunm
states; (b) refers to Eq. (3%) and implies a trans-

fer of charge between the two nucleons, no change

of state occurring. The two processes are physically
indistinguishable. The collision asymptotes are
labelled by , and S , the initial and final relative
momenta. Lg
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1C(@) 1C(b) 1C()

Fig. 1C

Contributions to the interaction energy for the
neutron incident upon the A=9 ground state: (a)
H-F potential; (b) self-energy term; (c) vacuum
suppression term. These terms are those through
second order in perturbation theory.
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EQ(~)

[Bl=17 Me

v
6.96 MeV €(1p3,)=€r

Fig. 2C

{:l(lF)§Q )

€(1S12)

Finite well applying n-Be? scattering; E(1/27) is
taken as the k.e. of incident neutron. The last
neutron in Be? is in the state e(1p3/2). The re-
maining p-shell nucleons are in the state e'(lp3/2).
A square well has been used for simplicity of

presentation.
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