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., HEAT TRANSFER MODEL FOR CONPOSITE FIRST WALL MATERIALS IN A PULSED HIGH-BETA

CONTROLLED THERMONUCLEAR, REAC!COR
.

(CTR) “
—

by

Jefferson W. Tester and C. C. HerrLck
-< -.

ABSTRACT
-.,

A computer model has been constructed to predict ”temperature
and time excursions for radial ccnnposite walls currently under consid-
eration for pulsed high-beta Z-pinch machines. The effects of inci&nt
flux, internal heat distribution functions, thermal properties, and
material dimensions have been examined for a Nb/A1203 cc+nposite to
establish the feasibility of the model.

I. INTRODUCTION AND SCOPE

In a previous report, 1

of first wall heat transfer

effects was presented. For

a preliminary treatment

and chemical stability

homogeneous materials

~ ~, BeO, or BN temperature excur-such as Nb, Al O

sions andfor chemical reactivity with molecular or

atomic hydrogen became prohibitive, indicating that

a composite first wall might present a feasible al-

ternative. Prediction of thermodynamic equilibrium,

kinetic, thermal stressing, and radiation damage ef-

fects require first-hand knowledge of anticipated

temperature-time profiles for composite wall mater-

ials intended for use in pulsed, high-beta, con-

trolled thermonuclear reactors (CTR’S) where heat

fluxes on the order of 1 kW/cm2 or more are possi-

ble. Furthermore, estimates of maximum operating

temperatures for the molten lithium blanket are

useful in establishing the effectiveness of proposed

CTR’S in producing high temperature heat sources

for direct or indirect energy production.

11. DESCRIPTION OF THE MODEL

A. Basic Geometry

Due to the large radius of curvature (30 m)

and torus diameter (- 1 m) a rectangular coordinate

system wcs used for the model. Figure l illustrates

schematically how a Z-pinch prototype might be

Fig. 1. Schematic of

designed. 2 The major

radial arrangement of
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prototype Z-pinch desi~n.

feature of interest is the

the composite firat wall. In

the prototype design the conductor (material 1) is

an aluminum washer separated by thin layers of anod-

ized aluminum which can be conceptually thought of

aa the insulator (material 2). Figures 2Aand2B

schematically represent the geometry used in the

model. The gridhas 12pointain thex-directionand J

.“
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Fig. 2. Geometry employed for finite difference
grid. 12 x J points having Ay spacing in
the y-direction and Axl(Ax2)spacing in the
x-direction for materials 1(2).

points in the y-direction with the point at 11 on

the interface between materials 1 and 2.

A time-dependent heat flux impinges on the

inner surface of the composite [1=0, .... 11,

... 12; j=O], and a liquid metal (lithium)/metal

conduction temperature dependent heat transfer re-

sistance exists on the outer surface [i=O, .... 11,

.... 12; j=J]. The two center lines (-.-) define

mirror symmetry planes in each material and can be

represented by a zero flux [ - ~ = O] condition.

B. Design Criteria

Heat enters the first wall via several sources,

including:

1. Bremastrahlung radiation,

2. n-y reactions within the wall, and

3. direct neutron deposition energy.

In a preliminary report, Burnett, Ellis,

Oliphant, and Ribe3 demonstrated that most of the

energy deposited ( > 85%) was Bremastrahlung energy.

In our model, the total heat absorbed is divided

P

Time(t)

Ip- conductor,pulse period

2p- insulotor,puke period

c
o
=
Sr I
: I

\
s.- t
s
n \
.-
h. \
~ yp
n

\
\
\

0
.,

Fig. 3.

into twa

1.

2.

Twoll

Distonce (y )

Incident heat flux q and heat distribution
functions f = H(y)/q A y expressed aa a
fraction of thepuls~ heat flux qp (arbi-
trary scales).

quantities:

An incident flux which is deposited at

the surface y = O.

A distributed heat source function H = f(y)

representing the energy absorbed aa a func-

tion of distance into the wall from the

point y = O to the extent of the wall

y = Ywall.

Consequently, for a two-component composite,there

would be four H functions corresponding to each

material in the pulse and rest mode. In Fig. 3, we

present idealizations of these heat distribution

and incident flux functions used in the current ap-

proach.

,
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Only distribution (H(y)) curves for the pulse

period are shown in Fig. 3, since negligible values

for the rest period sre anticipated when heat trans-

fer to the wall will be primarily by radiation and

convection fras the expanding plasma. Aa a first

approximation, one might assume that H(y)/q = O dur-

ing the rest period for both materials, indicating

that all of the heat is deposited on the inside sur-

face of the wall. Nevertheless, in implementing the

model, the user is free to select any heat distri-

bution function that is appropriate. For example,

for our Nb/A1203 composite both rest and pulse H

functions are set to zero for Nb, and a finite H

used only for the pulse mode in A1203 (see Ref. 3).

In general, the insulator (ceramic) would be expectd

to have a much wider distribution function than the

conductor (metal) as is illustrated in Fig. 3.

The square wave function idealization for q is

somewhat of an over-simplification of the actual

case whtch might show an exponential increase and

decrease of heat flux during the cycle.4 However,

at this stage, a square wave functionality should be

adequate. Actual values for the incident heat flux

q may be determined by design limitations of the ma-

terials used in the first wall. For example, the

magnitude of q can be partially controlled by chang-

ing the amount of first wall surface area for a given

amount of heat produced during the cycle.

c. Governing Equations and Boundary Conditions

The following partial differential equation

(PDE) applicable to unsteady state, two-dimensional

heat conduction was used for both materials.

i = 1,2 (for both materials) .

An ambient temperature (TB) equal to the bulk

lithium temperature is assumed for the initial con-

dition at t = O. Four boundary conditions are ap-

plied to

1.

positions specified on Fig. 2B:

Incident heat flux at the inside surface

(see Fig. 3)

2.

3.

4.

at y=O(j=O),allx

() ?
-ki~= qi(t) .

Temperature dependent flux with contact

resistance at the outside surface

at y = O (j = O),,all x

()

aT t

‘ki ~= h ‘T-TB)

(2)

(3)

where h is an effective heat transfer coef-

ficient applying to the molten lithium

blanket and any solid liners that might be

used.

Continuous flux and temperature at the in-

terface

at x = L1/2 (i = 11), all y

‘1(@= k2(=) -
(4)

Zero flux condition at centerlines of ma-

terials 1 and 2 via symmetry

(5)()atx=o:(i=o), ~= o

~ = (Ll + L2)
at

2 ()
(i= 12) # = O.(6)

In solving Eq. (1) to generate temperature pro-

files as functions of time, a dimensionless tempera-

ture u was defined aa

T-TB
u=— , (7)

‘B

and finite difference equations were written to ap-

proximate the PDE. Appendix A contains a tabular

presentation of these equations. A detailed descri~

tion of the finite difference formulation of the

boundary conditions is presented in Appendix B. An

Alternating Direction Implicit (ADI) scheme was used

to solve the system of equations (ace Appendix C).

The advantages of an implicit rather than explicit

scheme should be useful in consening machine time

and in adding to the flexibility of the code.

t
In the expression ki or qi the i = 1 or 2 depending
on what material it is.
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The tridi.agonel algorithm and a complete listing of the

Madcap V code are presented in Appendixes D and E.

III. LIMITATIONS AND APPLICATIONS OF TKE MODEL

Several featurea of the model have been kept

general.; for example, various wall sizes can be used

with any two materiala. If the repeating thicknese-

ee in the x-direction, L1 and L2, become much amelk

er than the thickness of the wall in the y-dizection

Yw, the code reverta to a unidirectional (y only)

calculation of temperature profiles with area aver-

age physical propertied used. Any combination of

incident heat flux and internal heat generation

terms can be used. The outside boundary condition

(all x, y-Ywall at jd) is temperature dependent

in order that an effective heat transfer coefficient

can be used which combines the reaiatances of a li-

quid lithium boundary layer end any metallic andfor

ceramic backing material that might be present.

The interface condition (at i=Il) can be speck

fied by either of two procedures (see Appendix B):

1. Criteria of continuous flux at the bounda~

(4)

2. Criteria of continuous flux and an oper-

able PDE at the boundary.

In using the code, large tima atepa ahouLd be

avoided since they can cause inaccuracies as well as

Inetabilitiea because of the pulsed boundary con-

dition and the interface between materiale 1 and 2.

At least 10 time steps for each pulse comprise the

upper llmit, i.e., for a 10 ma (10-3 s) pulse At

would be lms . Since the reet period is usually

much longer than the pulse period, e.g., 90 ms com-

pared to 10 ms, a largerAt could be used during

this period if conserving computation time became

important.

IV. PKBLIMINAKY SESULTS AND DISCUSSION

The main purpose of this section is to discuss

preliminary results which demonstrate the feasibil~

of applying our heat transfer model to CTR appli-

cations.

A. Choice of a test ayatem

A niobium (Nb) - alumina (A1203) radial com-

posite was selected since it is currently under

3
consideration as a first wall composite material,

and because its thermal properties are representative

of typical metallic conductors and ceramic insu-

lators that might be considered at a later time.

“Present Z-pinch design eatimetes will require an in-

sulating capacity between 1 to 3 kV/cm which will

control the relative dimenaiona of insulator (2) to

conductor (1).2 Although actual sizes have not been

specified for a reel operating system, a prototype

experimental design utilizing anodized aluminlum

wsahera (0.0254 cm thick Al with approximatelyO.0005

cm of anodized coating) is currently under construc-

tion by Phillips and associates.
2

A large scale-up

from these dimensions is anticipated for future ex-

periments and consequently a test geometry with

about 1 cm width of conductor to 0.1 cm of insulator

withanoveral.1 wall thiclmeas of 1 cm was selected.

Total heat flux loads on the first wall during the

pulse period are expected to be the range ofO.1 to

10 kW/rm2 consisting meinly of Bremsstrablung and

n-y energy. Niobium, due to its high mass number,

will absorb most of the plasma energy within a very

thin layer ( -0.01mm).3 Alumina, on the other hand,

will absorb the energy continuously with a dis-

tribution function given in Fig. 4. AS suggested

by Burnett et al.
3

an average electron temperature

of 25 keV was selected to define the heat generation

function. During the rest period, approximately 10%

of the instantaneoua pulse heat flux will impinge on

the inside surface of the wall with no distribution

within the wall (H(y) = O). As a first approximation

a constant value was used during the entire rest per-

iod (see Fig. 3). In order to meet the Lawson

criterion a 10% duty cycle corresponding toa 0.01 s

pulse anda 0.09 s rest period has been employed for

the test case. A range of outside surface (y = Ywall,

Fig. 2) heat transfer coefficients from h =0.14 to

14 cal/cm2 s Kwere utilized to approximate the

thermal resistance anticipated from a niobium (Nb)/

boron nitride (BN) protective liner and a molten

lithium boundary layer. Average values for material

properties were selected at approximately 800”C, and

these are tabulated in Table I for several first

wall material possibilities.

A sununary of the ayatem parameters investigated

is presented in Table II. Again, we would like to

emphasize that our purpose at this stage was to

.

.
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MATERIAL PROPERTIES
(*)

Conductors (1)

Niobium, tib

Iblybdenum, h

k

cal/(cm2 s K/cm) glcm3

0.158 8.57

0.350 10.20

_!FL__
cal fgK

0.0736

0.0630

0.250

0.545

Insulators (2)

‘aina’ a-fi203
0.034 3.96 0.198 0.0434

Beryllia, BeO 0.835 3.00 0.50 0.0557

k-thermal conductivity p-density Cp-heat capacity a-thermal diffusivity

(*) Data based on information taken at ‘800”c from

1. “Perryts Handbook for Chemical Engineers,” 4th Ed., McGraw-Hill N.Y., (1965).

2. “Handbook of Chemistry and Physics,” Chemical Rubber Publ., N.Y., 41st Ed.
(1962) .

3. “Thermal Physical Properties of Matter,” Vols. 1-2 Eds. Touloukian, Powell,
Ho, end Klemens, Plenum Publ. Corp., N.Y. (1970).

3

2

A

7
Eo
w=

I

c

‘1 A1203 kTe=25 keV

i

I

fdy K70% of energy

o absorbed internally

1 1 1 I 1

0 0.2 0.4 0.6 (I8 Lo I

Distance (y)(cm)

Fig. 4. Heat distribution function for A1203 for
puke period (original data Ref 3 kTe-
electron temperature of the plasma).

demonstrate calculational feasibility rather than

propose a definitive design.

B. Temperature-Time Excursions for a Nb/A12(13
Composite

Table III (A and B) provides a complete sunxnary

of the test runs made. The effects of heat flux,

heat transfer coefficient, time etep, end grid size

parameters were all examined.

A typical temperature-time excursion for seven

consecutive pulses (for complete parameter specifi-

cation see Table 111, Run 1) is presented In Fig. 5.

Several

1.

2.

3.

4.

features of the graph are apparent.

There are no inherent instabilities in the

ADI solution.

The outside surface temperatures, AT(O,J),

AT(Il,J), and AT(12,J), do not increase dueto

the large value of h = 14 cal/cm2 s K used.

The interface AT(Il,O) is between the mexi-

mum excursion in the &L203 layer (AT(O,O))

and the minimum in Nb layer @T(O,O)).

The inside surface temperature for either

material Nb or AI.203 does not relax to what

its initial level was before the pulse,

hence there is a conti.nuoua increase inAT

which should approach steady–state condi-

tions after a temperature profile of eff-

icient magnitude has been established

5



TAELE II

SYSTEM Pf@AMETERS INVESTIGATED

1. Duty cycle = .01,s
‘P

T = .09 s
r

2. Incident heat flux

qi (PU.lse period) 0.1-1.0 kw/cm2 (-23.82 - 238.2 cel/cm2 s)

qi (rest period) .01-.1 kw/cm2 (-2.382- 23.82 cal/cm2 s)

3. Heat distribution/generation function H(y)

eeparate functions for insulator (2) and conductor (1) during pulse

and rest mode utilized

4. Heat transfer coefficient h = .14-14 cal/cm2 s K

outside surface-combined resistance of backing material and liquid

lithium

5. Bulk temperature TB = 600°Ca

6. geometrical parameters

we.1.lthickness Ywall = 1 cm

conductor thickness L1 = .oI-1 cm
Composite

insulator thickness L2 = .0005 - .1 cm

7. Equation solution parsmetera

grid sizes Axl = .0005 - .05 cm

Ax2 = .0005 - .005 cm

Ay = .01 - .02 cm

time steps At = 10 - 20001.Is (10-6 s)

al?eally arbitrary, material limitations will set the upper bound.

to conduct away the total energy deposited

during the pulse and rest periods.

A series of temperature profiles are presented

in Fig. 6 for the conditions of Run 5 (Table 111).

In this case, heat was deposited on the inside sur-

face of the lib layer during both pulse and rest

periods and on the inaide surface of the A1203 layer

during the rest period. The heat distribution func-

tion given in Fig. 4 was used for A1203 during the

pulse period. One can see a marked reduction inthe

temperature excursion of the A1203 layer caused by

distributing the heat. All three profiles, at the

center lines of materials 1 and 2 and the inter-

face, are uniform in shape and magnitude for the

three times given. This effect is also illustrated

by comparing Fig. 7b with Fig. 8 which have identi-

cal conditions, except in Fig. 8 no heat distribution

was used (H(y)’s = O).

The magnitude of the outside surface effective

heat transfer coefficient has a aignlficant effect

on predicted temperature-time excursions (ace Figs.

7a and 7b). With h = 0.14 cal/cm2 s K to approx-

imate anticipated thermal resistances, the outside

wall temperature has increased by > 60K over the

bulk lithium value in 30 pulses. This AT will, of

course, continue to increase until steady-state con-

ditions are reached.

,

.

.

.
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TABLE111

mn,e 11X (S2CTIONA)

SUMAKY OFKSSIJLTSFOR COMPOSITE/PULSSDCASEa

Neat
Tram fer
COeff.

Time Outside
Total

Ceometry Grid Size
Step Surface

IncidentFlux

& Conductor(1) Insulator(21 ~ Ywall &l AX2&___ 4L4!L~
qi qi

. — =eNest
u cm cum cm cm ps calht’ a K Period Period

WICT82 kw/cu.2

1

2

3

4

5+9

6

7

S+lo

Niobium
Nb

Nb

Nb

Nb

Nb

Nb

Nb

Nb

Alumina

‘i203

‘2°3

*2°3

‘2°3

‘2°3

*2°3

*2°3

‘2°3

1.0

0.01

1.0

1.0

1.0

1.0

1.0

1.0

0.1

0.0005

0.1

0.1

0.1

0.1

0.1

0.1

1.0 0.05

1.0 0.0005

1.0 0.05

1.0 0.05

1.0 0.05

1.0 0.05

1.0 0.025

1.0 0.05

0.005

0.00005

0.005

0.CQ5

0.005

0.005

0.0025

0.005

0.02

0.02

0.02

0.02

0.02

0.02

0.01

0.02

1000

1000

1000

1000

1000

100

200

1000

14 0.01 1:0

14 0.01 1.0

14 0.01 1.0

14 0.1 1.0

0.14 0.1 1.0

O.lh 0.1 1.0

0.14 0.1 1.0

0.14 0.1 1.0

Malybdenm Eeryllia
Na s-to Lo 0.1 1.0 0.05 0.005 0.02 1000 0.14 0.1 1.0

= Conditionsfixed for all runs: T = 0.01 B Tr - 0.09 8.
P

TABLE III (SSCTIONs)

SOXMiRYOF IWXILTSFOR CONFOSITE/PULSSDCAS!f

_ Steady State T
b

emperatureSxcuraionsAT(x,Y,t=- )
Outside

Rent DistributionFunctic.nsUtilizedc InsideSurface (Plasma Side) Surface
Conductor Interface Insulator Average Comments
AT(x-0, AT(x-11, AT(X-12, AT( <x>,

Conductor(1)
y-o,t--) y-o,t--) y-o,t--) y=rwall,t.-)

Conductor(1) Insulator(2) Insulator(2)
& Pulse Period Rest Period Pulse Period Rest Period K K K K

Mpl(y) Rrl(y) iip2(y) Hp2(y)

1

2

3

4

3+9

6

7

S+lo

o

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

SIpz(y)

Np2(y)

Np2(y)

fip2(y)

o

BP2(Y)

o

0

0

0

0

0

0

0

0

%efer t. mmenclatwe sectim (Appmdix p) md Fis.. 1.2.

370

26o

250

360

650

650

650

600

460

26o

320

351

640

64o

64o

695

490

26o

3s0

34s

640

64o

6.4o

810

-o

--0

-0

--0

300

300 d

3d

300

unidirec-
tional
(y only)

b
hctr.sp.slatedto.atime.

Cse.fer to section IIcand Fiss. 3-4.

‘Equivalentto run 5.

7
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Im,u,o,
(a)

3 C“-,.“,,.,.!aw ,!0.,1..McllUn

o lwOccl 2fuooJ 3wcm 520000 650CO0

Time (psec )

Fig. 5. Temperature-time excursions for a Nb

(lcm)/Al 03 (0.1 cm) composite at six loca-
tions. ior parameter specifications see
Table III, Run 1, and see
metrical grid locations.

Fig. 2 for geo-

Nb/A1203

250 : ~ of conductw(l)(X=O)

\

Q 150

‘G,m

50

ol-
0.01sec

I b.w”ld .-K I

Fig. i’. Effect of outside wall heat transfer coeffi-
cient h on temperature-time excursion for a
Nb/A1203 composite. For parameter specifi-

cations see Table III, Runs 4(7a), 5(7b).

1 1 I 1 1
Nb/A120s

k Interface (X=11)

\
\

\\\\

0.01see
1-

L !Nb A1203

$. insulator (2)(X. 12)
\
\
\

,\

-<’~x,

-’\, ---$0::

0.01see

Plasma sldo Llthlum side Plaamo side Lithium side ,Plosmo side Lithium side
I I I [ ! I I 1 [ 1 1 1

0 02 0.4 0.6 0.6 1.0 0 0.2 0.4 o.e o.e Lo o 0.2 0.4 Q6 o.e 1.0

Fig. 6. Approximate temperature
0.01 s - 1 pulse). For
ture-time excursion.

.

.

Y/yWall

profiles T = f(y) at various times

parameter specifications see Table

.

(2.01 a - 21 pulses, 1.01 a - 11 pulses,

111, Run 5 and see Fig. 7b for tempera-
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Fig. 8

71”,1/.,,. )

Effect of heat distribution function on the
temperature-time excursion of an Nb/A1203
composite. For parameter specifications
see Table III, Run 8.

c. Approach to Steady State

As steady state is reached, the temperature

profile at any position along the composite will

stabilize except in the vicinity of the inside sur-

face where it is continuoualypulsed. This behavior

was observed in a preliminary study of heat trans-

fer effects.
1

Because the thermal the constant

T“ = Yw2/a is large compared to a cycle time of 0.1

59 e.g., fora l-cm wall Tw (A1203) =23 s and

Tw(Nb) S 6 S and because so additional thermal

resistance is imposed by the low h = .14 cal/cm2

s K on the outside surface, successive pulsing

will cause AT to increase at any point in the wall.

A crude estimate of the msximum AT anticipated is

given by superimposing both the ATa equivalent to

steady-state heat transfer through the wall and the

ATh caused by thermal contact resistance at the out-

side surface onto the ATP caused by the pulse it-

self. For instance, at the center line of the con-

ductor (0,0), an estimate ofAT~ o at steady state
,

is given by,

AT: O= ATa+A~+ATp ,
s

where ATa =

.

ATP =

ATh =

.

(net heat trsnsferred/time)
kl.lYw

(q T +qr Tr) Yw

(Tp +Tr) kl

temperature rise after the 1st pulse
at (0.0)

(net heat transferred/time)
h

(q Tp+qrTr)

(Tp +~r)h “

For the case of a 1 kWcm2 (238.2 calls cm2) pulse

-d a .1 kVicm2 (23.82 cal/s
2

cm ) heat dump,

ATa= 287 K

ATp~ 90 K

A% =333K .

Therefore,

%,0 ~710K.

From Table III, one can see that excursions of 650 K

are typical for these condition (Runs 5,6,and 7).

D. Prototype Geometry - Effective Unidirectional
Heat Transport

Run 2 attempted to simulate conditions similar

to those expected in the prototype Z-pinch reactor

(Fig. 1). The widths of Nb and A1203 in the x-di-

rection, .01 cm for Nb and .0005 cm for A1203,are

very small compared to the thickness of the wall in

the y’direction, 1 cm. Consequently, conduction in

the x-direction is fast and can be neglected rela-

tive to that in the y-direction and the code per-

forms a unidirectional ADI solution to the PDE uaiug

area average properties. In Fig. 9, temperature-

time excursions are presented for the case with h =

14 csl/cm2 s K.

E. Convergence and Stability of the Method - Effect
of Grid Size and Time Step

Convergence of the ADI technique was checked

with Runs 6 and 7 by reducing the grid sizes, Axl

from .05 to .025 cm and Ax2 from .005 to .0025 cm

andAy from .02 to .01 cm, and time atepAt from

9
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Fig. 9 Temperature-time excursion for a Nb/A.1203

composite having similar dimensions to the
prototype Z-pinch (Fig. 1). For parameter
specifications see Table III, Run 2.

1000 to 200 p s. Temperature profiles varied by no

more thsn 5% at equivalent grid locations.

Furthermore, when the composite was reduced to a

single component, e.g., Nb, end a two-dimensional ADI

solution was run, ~direction variation of AT was

less than 0.1% and the temperature-time excursions

were consistent with previous data accumulated for

unidirectional heat flow using an explicit method. 1

Although the ADI technique,as applied to rec-

tangular two-dimensional problems,should be uncon-

ditionally stable regardlees of the choices of At,

Ax, andAy,9 our specific application of the ADI

technique did result in instabilities as mentioned

in Sec. 111. The pulsed heat flux and interface

condition were probably responsible for this since

when they were removed from the problem by using

a single component and continuous flux boundary, At

could be selected independently of Ax andAy. Cer-

tain improvements to the stability of the ADI pro-

cedure are obtained if the grid system is converted

to a half-interval system with the interface con-

tainingAxl/2 and Ax212 parta of materials 1 and 2.

F. Concluding Remarks

The computer model for heat flow in radial com-

posite Cl!R first wall materiala should provide a

useful tool for establishing temperature excursions

and profiles which are necessary in

mechanical and chemical behavior of

materiels.

v. RECOMMENDATION S

evaluating the

any proposed

1.

2.

3.

Additional materials should be examined,

including, Zr02, BsO, and other insulating

oxides as well as Ta, Zr, Mo, and other

conducting metala.

Having estssbliahed anticipated temperature-

tlme excursions, other properties such aa

chemical stability, radiation damage in-

cluding void and helium bubble growth,

thermal stressing, and other aspects of

materials comparability should be consid-
ered.1,5,6

By selecting a range of thermal properties,

dimensions, incident fluxes, and heat dis-

tribution functions, generalized thermal

history charts applicable to pulsed-high-

bete machines could easily be generated for

use in preliminary design work.
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APPENDIX A

FINITE DIFFERENCE EQUATION FORMALISM

Tables A-1 snd A-2 list the difference equa-

tions utilized by the code. Both sequences of

sweeping x first and then y, and vice versa,are pre-

sented. In addition, two different equations ap-

plying at the interface between materials 1 and 2

are included. A complete description of the nomen-

clature employed is given in Appendix F and a par-

tial one below for Tables A-1 and A-2. ‘rridiagonal

matrix coefficients are easily determined by re-

calling that ~ would be the coefficient of the i-1

term, ~ the i term, and s the i + 1 term and ~ the

remaining terms.

Nomenclature for

Al = alAt/(Axl)2

A2 = a23tlax2)2

(See Appendix D.)

Tables A-1 and A-2

- material 1

- material 2

B1 = alAt/(Ay)2 - material 1

B2 = oJAt/(Ay)2 - material 2

Cl = H1/plCplTB = heat distribution
for material 1

C.2= H2/p2Cp2TB = heat distribution
for msterisl 2

~ . k2Ax2
klAxl

F = [k2Axl/klAx2]

~ . k2Ax2al
klAxla2

function (f(y))

function (g(y))

.4PPENDIX B

FINITE DIFFERENCE EQUATIONS APPLYING AS BOUNDARY
CONDXTIONS AT THE INTERFACE BEmN NATERIALS 1 AND 2

I. CONTINUOUS FLUX AND TEMPERATURE AT THE INTERFACE (2) (U:l . - u;l_l )
kl

‘Axl
.

Both temperature and heat flux must be contin-

uous at an interface assumed to be in good thermal

contact. Using the nomenclature adopted in this
(U*ll+l . - U* ~l,.)

k2 (8)

report, this is equivalent to saying that
Ax2

.

(1) U*ll is continuous
Equation (8) can be used directly in the tridiag-

* *
onal matrix since only the terms u
4 11-l,j ‘ ‘Il,j ‘

and ‘Il+l,j
are involved. Therefore, by re~rranging

Eq. (8), the coefficients all, bll, c
11 ‘ and ’11

can be specified as:

u



TABLSA-1

DIFPERENCCEQOATIONSFURCCt4POSITB(x-FIRST)

Difference)?uuation CUIdltion

bssin ~aween

1.

2.

k

3b.

% - “*o.j
2eft boundav

N
=teri..d1

“*i,J-”i,j - T@*i+l, j-*’’*i,j + “*L j-l)
mterial 1

+ AtC2 + ~ (Ui,j+l
- *“M + “ioj-l)

(U*ll,,-U‘~1-1,j)~- ‘U*~+l,j- “*Ii,j)&x2 2nterf8ce

&
%2, j = “11,j

+@At + @ 2nterface
w 2Ay2

+ N (U*ll- + (l+F)U*ll + (m ,U*ll+l,)i
2(1*)

4. 61*i,j- Ui,j) - * (u*i+l,j - ‘2”*
i,j

i-l,,) mat.rlal2+ U*

+ ‘tc2 + Y (’Ji,j+l- Zui,j + “I,j-1)

5. u*12,j - U*n-l ,
,

~egin 7-8weep (no heat nource tens)

6“ b(u**i,l - ‘**i,O)- ‘yq”nlTB

smtRe

~ - 1,...,1-1
i - 1,2

j - 1....1J-1
i-1,..., xl-l

j - I,...,J-l

j - 1,...,1-1
i-Ii

j - 1,...,1-1
i - 12+1,...,I1-1

Ccnmentn

Spmetry(noflux)

PDF.,implicitx

a. cont.fhlx

b. Cmt. flux and
PD8 tJp@y

PDB, Im@kit X

right boundary j - 1,...,1-1 symmetrp (no flux)
msterial2 i - 12,22-1

material1 or 2
m - 1.2

h. ‘**M - “*M - ~ (.*i+loj- 2U*W m - 1.2

+ ~*i-l,j) + y (u**i,,+1 - 2@*i, j

+ @i,j-1)

‘“ “**11,j - ‘*Ii,j + (%”*I1-l, j
interface

- (l+F)ull,j + (F) ‘II+I,j)

+ -C&L (“**

2AY2
11,j+l - 2“**21,j + “**11,j-1)

8. -~ (U** - U**1 ~ ~) - Ayh (U**l,J)
.i,J , -

m - 1,2

i - 1,...,11-1,
22 + 1,...12-1
j - 0,1

i-1,...,l-l.
32+1 ,-..,12-1
j -1, ....J

i-22
j - 1,....J

i-1 ,...,11-1,
11+1,....12-1
j - J-l,J

Ixmideboundaq.
(incidentftied heat
flUX)
(q” ~ q= rest time)
(q” - qp p.2.setime)

otaterf.ds1 or 2 ex-
c2udinginterfaceand
right& left bomdaries.

PDEimplicity applies
at interfaceifSq.
(3b) is umd

outeideboundary
(teap.dependentflow
with liq. WIX1 heat
trarmfercoeff.)

.

,

.

.

I
12



“.. ”.” . .LADLL A-L

DIFFERSNCSEQUATIONSFOR IXINPOSITE(Y-FISST)

Differenceequation Conditions

materials1 or 2
P1,2

COments

inside boundary
(incidentfixedheat

begin y-sweep

1.

ia.

2b.

3.

b (u*i,l- U*l,O) - AY q#B

@
i,j- ‘ipj

.$!(U
i+l,j - Zui,j

i-1....11-1.2.2+1,
....12-1
j-loo flux)

(q”-qr for rest time)
(q” ‘qp for pu~= p.riod)

-teriti 1 or 2
(excludinginterface
and left boundaries)

*
i-l,?

m - 1,2 i-1,....11-1,22+1,
....IZ-1
j-1*...,J

Sm
+ A th + Z- (“*I,j+l-2”*i,j **I, j-l)

+C1+OC2AC
‘*11,j - ‘Ii,j (1 + G)

+ (~ ‘“11-1,j - (l+r)uu,j + (F)U1l+l,,)

+ ~ (“*l~j 1- 2U*11 j + ‘*I1 j+l)
2At v - , .

~ (u*i,J-U*l,J.~) - Ayh(u*iOJ)

appliesat interface
11.q.(6b) is used

interface 1-11 if

m -,1,2 outsideboundary
(temperaturedependent
fh% with liquidmetal
heat transfercoeff.)

i - 1....11-1,11+1
....12-1
j - J-l,J

beiainx-sweep (no heat source term

4.

5.

da.

6b.

7.

8.

@*i,j - “**o,j

“**M - ‘*Lj “ y (.**i+l,j - 2“**i,j

+ “*l’l,j ) + + (u*i,j+l -2’’*I,j +“*i,j-l)

(u**Il,,
k2

- ‘**11-1,j‘A= - ‘“**11+1,j

kz
- ‘**11,j~—ti

‘**11.j - u*21,j
+ C6U* At + _

2 (PW)
2hy2

(U**I1-l,j + ‘l+F)“**Ii,j + ‘F) ‘**Il+l,j)

‘@*i,j - ‘*i,j - & (u**i+l,, - 2u**i,j

+ “**i-1.j) + y (u*i,j+l - 2“*i,j+ “*i,j-1)

‘%2 ,j - ‘**x2-1,j

aymetry (no flux)

PDE, iM@iCit X

material1
left boundary

material1

j = 1,...,1-1
i.- O.l

j - 1,...,1-1
i - 1,...,11-1

interface j - 1,...,1-1
i-xl

*. COntilluoun flux

b. coatinuous flILX
and PDE

j-l,....J-l
1-11

material2 j - I,....J-l
i - 11+1....12-1

PDE, iaplicitx

material2
right boundary

j - I,...,J-l
i - 12-1,12

●vtv
(no flux)

13



. .1
aIl

-1+k2Ax.l
bIl kl.Ax2

- k2Axl
’11 = kl.Ax2

‘11=0 . (9)

The stability and convergence of the ADI pro-

cedure appeared to depend on the choice of Axl and

Ax2 for a given k.1and k2. If values of Ax2 were

selected such that

(lo)

the ADI technique waa convergent and stable. Con-

sequently, an alternate form of the interface con-

dition was developed to keep the PDE itself contin-

uous at the interface.

II. CONTINUOUS FLUX AND TEMPERATURE WITR MODIFIED
PDE AT THE INTERFACE

By utilizing the technique suggested by

Carnahan, Luther, and Wilkes,
7

one can develop ap-

propriate finite difference equationa for the

boundary between material 1 and 2 for our case.

Following the conventions of the model, the dimen-

sionless temperature at position 11-1 in material

1 can be approximated by a Taylor expanaion as

()

- Axl &
‘11-l,j s ‘Il,j

ax 11-

()

+ + & + ...

ax2 ~1-

by .901viflgEq. (n) for (a2u/ax2)11-, one gets

()

a2u 2%—
~ [

‘11-l,j -“Il,j

11-
(Ax1)2

+ Axl ~ .
() ]

11-

(11)

(12)

Using the finite difference equation for (32u/3y2)

and aulat

(a2ula92) = -j [u11,j+l-2u11,j +U1l,j_l]
(13)

[

*
(au/at) = + u ~l,j - ‘Il,j1

‘u*atnewttiet+At . (14)

Likewise for material 2, Eqs. (11), (12), (13), and

(14) can be rewritten as,

‘Il+l,j = ‘Il,j )
+Ax2 (~ *1+

()

++ a2u
~

11+

()

a2u 2~_
~

[

‘11+1 ,j - ‘Il,j

11+
(AX2)2

-Ax2(~)11+

.1

(!$)=* PI,j+~2uIlj+”I,$j-11

(~)= & (U*IM - %,,) .

(15)

(16)

(17)

(18)

By substituting into the differential equation,

()

~ a2u 2
~++

au

ax ay
‘c-z ‘

one can develop an expression for 3u/3t at the

interface. For medium 1, using Eqs. (12), (13),

and (14)

[(

2
al — ‘11-l,j - ‘11,,

+ Axl au

(Ax1)2 ())x ~1-

+~
(
‘Il,j+l - 2U11,, ‘“Il,j-l)

1

+ c1
Ay2

(

*
.

u Il,j )/- ‘Ii, j ‘t .
(19)

.

,

.

.



Solvtig for (3u/3x)11-, by defining

.

.

Chn = un, j-l - 2uIl,j + ’11, j+l ~

Eq. (19) becomes

()
Axl~ =

11-

+

&* (u11,j - ‘Ii, j)

* _4.!3Q36u

2(Ay) 2 ‘y

’11, j - ‘11-l, j “ (20)

Similarly for medium 2, using Eqs. (16), (17), and

(18)

()-Ax2 ~ . 2* (U*

11+ 11,j - ‘Ii, j )

@#c2_@d6u
2(Ay)2 n

+
’11, j - ‘11+1, j “ (21)

Applying the interface condition of continuous flux,

viz,

u (%)Ir =:2 (%),,+ . ,22,

We can use Eqs. (20), (21), and (22) to elimi-

nate [+) ,l_ and f~~ll+by just rearranging Eqs.

()~~ . k.LAxl *
ax ~1- 2ulAt (u 11,j - ‘Ii, j)

_ kLAx.lcl _ klAxl ~u
2.ctl

2(Ay)2 ‘y

M
+ Tti (’11, j - ‘11-l, j) (23)

()

~2 & - k2Ax2 ‘U*
ax ~1+ = m ( 11,j - ‘Ii, j )

+k2Ax2C2 + k2Ax2 ~u— .
2 a2

2(Ay)2 w

- k2
G2 (’11, j )- ‘Il+l,j “

Equations (23) and (24) can be used to solve
*

u Il,j”

[
ic.1.Axl 1+k2Ax2 *.—
2alAt 2 a2A t u Il,j

[.

kl A xl + k2Ax2. —
2alAt 2a2At

1
‘Il,j

+
[
klAxlcl

2 U1
+ k2Ax2e2

2 a2 1
[

klAxl 1● k2Ax2 ~u+——

2(Ay)2 2(Ay)2 ‘y

(20 and (21).

[
kl”.—
A Xl

‘Ii, j - ‘11-l, j
1

.

2 [
‘Ii, j

1
- ‘Il+l,j .

By simplifying Eq. (25),

* ~At 6U
+@At 1.

‘x [

‘11-l,j - ‘11,$ [~ +-]+ U,,+,,j [%4
u 11.j = ‘Ii, j +

Ay2

[

w ~+!&?g 1

(24)

for

(25)

(26)

15



(Note that again the heat source 1#1*is put inwitb

*Z
[

cl + k2Ax2ctl
k.1.Axlct2‘21/[ k2 Ax2 al

1 + klAxl a2 1 (27)
full At, and At/2 is used for other time inter-

\ Vals. )

<=al[l+*l 1/[~ + k2Ax2cil .1 “Todetermine the coefficients for the tridiagonal

klAxla2 (28)
mstrix, viz.,a

fOllowi% ~ua~t~t~fi’ ‘H’ ‘II’ we define tie

Equation (26) is similar to the explicit difference
2

equation presented by Arpaci.

For the case of no heat generation, Cl = C2 = O;
~ ~ k2Ax2.

klAxl ‘
F ~ k2Axl .

klAx2 ‘

~ ~ k2Ax2cxl
klAxla2 “ (33)

Axl = Ax2 = Ax; and only one direction dependence

for u, i.e. , &u = O, u* becomes
YY

* + 2alAt
u 11,j = ‘Il,j Axz [‘11-l,j (’+ H)+ ‘11+1,, (H- ‘Ii, j .

.

I
~+~

kla2 1 (29)

By multiplying the numerator and denominator of the
Note that &u

second term on the right-hand side of Eq. (29) YY = ‘Ii, j-l - 2uIl, j + ‘Ii, j+l ‘s

by k3./k2 and rearranging, one gets,
defined at the old time t rather than t +At.

* + 2alAt [‘Il+l, j - ’11, j(’+%) +%1,, (H
u Il,j = ‘Il,j ~x2

I

kl
9

~+~
1 (30)

which corresponds to Eq. (7.67) presented by

Carnshan eta.1.70n page 463. If both materials are
‘Ihe first three terms on the right-hand side

the same, al = az = a; kl = k2 = k and,
of Eq. (32) are used to specify dll, while the

fourth term specifies all, bll, and C1l, along with
*

u 11,j
the left-hand side of l?q. (32). Consequently,

= ‘Il,j

aAt

( )
-2alAt12

+—
‘11+1 ,j - 2uIl,j + ‘11-l, j ‘ (31)

aIl “
A X2

(Ax1)2(1+G)
(34)

which is in standard explicit form for a homogeneous
b

- ~ + 2alAt/2(l+F)—. .

system.
11

(Ax1)2 (l+G)
(35)

Using implicit formulation in order to imple-

ment this algorithm in the current ADI code, one can
-2alAt12(F)

’11 =
(Ax1)2 (1 +G)

(36)

show that

* +@*At+&U(Ad2)&*u11,j = ‘Ii, j
A yz

[
* * J ~ + k2Axl

+ alAt/2 u 11-l, j -UI1 kIAx2 ) ,j (%%)1
(Ax1)2

‘ mEzi”*=’+l— (32)

,
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I

+At (Cl +GC2) +Atal (l+E

‘%1 = ‘Ii, j (1 +G)
2(1 + G) Ay2‘1

’11, j-1 - 2uIl, j + ‘Ii, j-l1 (37)

.

.

.

(inthelfadcap codeal = D1 and a2 = D2) .

In the ADI scheme, we also need an equation to

allow us to implicitly calculate u
11,j

at the inter-

face when aweeping in the y-direction. Since Eq.

(25) ia an equivalent form of the PDE applying at

i = 11 (interface), it can be rewritten implicit in

y and explicit in x. Equation (26) thus can be re-

structured as

*
[

+OAt+~u*
* *

u Il,j = ‘Il,j
2A y

11,j-1 - 2U 11,j + u 11,j+l I

[
+2QU ull_l

~ + k2Axl

P 1 [ 11k2A X1

(Ax1)2
- ‘Ii, j_ u Ax2 + ‘Il+l,j m- ,

~ +k2Ax2al
klAxla2 (38)

which is similar to Eq.

solve for the tridiagonal

Eq . (33) to define terms

(32). Again we can

Coefficients using

* + At [cl +GC2~
u 11,j = ‘Ii, j (1 +G)

+ Atctl

[‘11-1, j
-(1 +F) ull, j + (F)uIl+l, j

(Ax1)2 (l+G) 1
+_5&- *I

* *
2A y2

u Il,j-1 - 2U Il,j ‘u Il,j+l 1 (39)

~=w

(40)

all.~=_al(l+E)At

2A y2 (1 +G)(2AY2)
(41)

=1+=-- ~+al(l+E)At

bIl
A y2 (1+G)AY2 (42)

c~~._J& .-al(l+@At (43)
2Ay2 (1 + G) (&2)

Atal
’11 = [@xl)2 (l+G) ‘ll-l~j

- (1 + F) ull, j + 1 + At(Cl +GC2)
‘F)uIl+l,j ‘“Il,j (1 + G) (44)



APPENDIX c

ALTERNATING DIRECTION IMPLICIT METHOD (ADI)

The implementation of the ADI method as dis-

cussed in Appendix A has been considered by numer-

ous authors (7,9,10,11), and consequently only a

brief discussion is included here. The ADI tech-

nique when applied to a rectangular grid network

avoids the step size ltiitations of an explicit

method and also uses a tridiagonal coefficient ma-

trix for rapid calculation of the temperature grid

at any time step. The basic concept ia to use two

difference equations, each applied at half At steps.

Each difference equation is implicit in either

the x or y direction. For example, solving the

two-dimensional elliptic equation

[1

~ a2u 2~+q .*

ax ay at
(45)

would involve iterations using difference equations

of the following form for an (i,j) grid. The x-

sweep [implicit in x] is written se

*
ui,j ‘value ‘f ‘i$j

at t + At/2 @elf time step)

**

u i,j = ‘lue ‘f ‘isj
at t + At (full time step).

Richtymer and Morton3 have demonstrated that

this form of the ADI method is unconditionally stalie

regardless of the choice of Ax, Ay, or At. Our

particular problem has three additional complica-

tions:

(1) A heat eource term C ia present [Eq. (l)].

(2) An interface between two materials is
present.

(3) The inside boundary condition ia time
dependent (pulsed flux).

All of the above can induce instabilities andfor

inadequate convergence unless the difference equa-

tions applying at the interface and boundaries are

properly formulated. (See Appendix B.) Consistency

for the difference equations has been demonstrated

if the heat source term is introduced at the full

time step, i.e., CAtis introduced in either the x

*
ui,j - Ui,i= (u*i-l - 2u*i +u*i+l, )

At12
+

A X2

(Ui -1- 2ui +Ui +1)
s

Ay2 (46)

and the y-sweep

** *
u i,j - ui,~

At12

[implicit iny] as

.

*
- 2u*i

*

u i-1.i + u i+l,~
.

Ax’

where

‘i$j = ‘due ‘f ‘i,j at ‘ime t

+
(u**i -1- 2u**i +u**i +1)

s

A y2 (47)

5or y sweep and not at both half-time steps. sys-

tematic errors due to this procedure were eliminated

by altering the sweeping sequence to xyyxxyyx ... .

.

.



APPENDIX D

FORMULATION OF ‘IME TRIDIAGONAL ALGORITRM

‘Lhe ADl technique inherently generates equations

for each grid point involving 3 adjacent terms in

the u metrti.

‘i-l,j’ ‘i,j’

or

‘i, j-l’ ‘i,j’

The coefficients

‘i+l,j

Ui, j+l . (48)

a,b, c refer to i-1 (j-l), i(j), and

i+l(j+l)terms, respectively, whfle d refers to the

remaining terms. Furthermore the a,b,c coefficients

would be for terms involving the new time step ei-

ther u* or u** (see Table I). ‘lhua, the tridiagonal

matrix can be represented as

—

bozo Cozl

%zo blzl C1Z2

.....................

aizi-l blzi c izi+l

~ n-l bnZnaZ

.

‘o

‘1

...

‘i

.

d
n

.

(49)

[z] refers either to Ui j , j fixed: or Ui,j >

i fixed. The algorithm ~or solving the tridtigonal

matrix is relatively straightforward. The matrix

is sweeped from top to bottom and then from bot-

tom to top to solve for [Z]. The following flOw
7

sheet depicts this procedure.

TRIDIAGONAL PROCEDURE
START

I

E

$0 = b.

‘o
Yo=~

I

fori=ltoN

bi - (ai Ci-l)

!3i =
s
i-1

G+, - ai Yi_l)

Yi =
!3i

1
Emil

!
forj=N-lto O

Zj = y. - (C.z.+l)
J

‘j

/

STOP
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MADCAP V LISTING

26 Ju1 7> 0926*hl

01,001

01,002

01,003

o~,Oob

01,005

Ot ,006

01,007

01,008

01,009

01 ,Ooa

01 ,00b

01 ,Ooc

01,006

01 .Ooe

01 ,Oof

01,010

01,011

01,0!2

01,0!3

01, olk

01,015

01,016

01,017

01,016

01,0!9

01. ola

Rec 01 Pa~F 01

I I I I 11111
‘OTll CUMPO.SIZE UEA7 FLCV M02EL -

●ALTPXitl A?XUG DZRECXXON lHPZxCIX klCTIIODUSEDm

“Puloed caae”

●Isotropic and hO~og OnroUS properties SaSUne6

“Moelfiea Coda V%t.b Cbr.cinnus interface cOnd*tlOn”

“Varisbla SDecificetion”

*T * ~e”per.t”re, Oo -

●TB ● bulk litaiuntenperaturc, OC-

●cp = kott capacity, cal/coc”

●p * deneity, c/cr.3”

rh - Rest t.rancter Coefficient. cal/c=2sec0C”

-K 9 thOrmax c0n6uctivxty. cal/cm sec° C”

●i)- thermal ditf UsiVitY ■ K/PCp, Ca2/SaC”

‘Tp - burn tine for ptuse, I!icro-see”

●Zr m test tim~, xicro-see”

bAx$ 9 X-, tbtl sise ill kIStOrhi 1“

9Ax2 = X-St Opsizein Material 29

‘by = y-step #i%e-

~kt. step size for %inc -

~Tlme = sctual tir.c. Ret=

~Tprint - ifitarv.1 bctueen prints Eicro-sac -

-x“ = Mali thickness, CD”

‘L1 ● 6:20 of ●atcrial 1 ●leaent, cm”

-Lz = size or Zatwial 2 ●lement, cm”

‘sub or poet. acrlnts 1 and 2 refer to two cliff-rent JIaterials”

, sub or voct. cript j rorers to ●verace value ●t interface”

.
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.

26 Ju1 73 0926+4s
liec OI Page 02

I I Itlllll II
01. Olb “Diffariential XquatiortIRectancuxar coordinates)-

01, otc ‘D(d2u/dx2+d2u /dy2)*Cly)

01,010 “DimenaiOn Aea9 parameters”

Oloolc Ou ● {T+B)/fB.

01 ,Olf *A w I)At/bX2*

0! ,020 88 - n~t/&y2.

09,021 ‘Cb% - 21bt./VC>”

● dulate

of ,022

01,023

01 .02h

01,025

Ot ,026

01,027

01,026

01,029

09 ,02a

01 ,02b

●QAY/11 8 il)citlentbeat XIUXg

“where:●

“Postscripts 1 and 2 rmfor %0 two different materialcg

“postscripts r and p refer to rest ●nd burn periods.

“ror exanple. -

“ H is 2,21e internal heat. generation torn, it can takr on-

‘vaiucsi Hrl(y), Upl ly), im2(y), up2{y)-

“Likewiae fo? Q: Qrl. Ql!le Cr2e QP2”

‘U* w dinen=ionle.a t.aparature ●t j/2 ti.. #t*p.

‘u. * = dimensionless tefiperdture ●t conploke ti-e stop”

.
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26 Jul 73 0926*k8

02,001

02,002

02,003

02,00&

02,00s

02,006

02,007

02,008

02.009

02,00a

O?,00b

02.00C

02. ood

O?, ooe

02,001

02,010

02,011

02,012

02,013

02,014

02,015

02.016

02,017

02,016

02,019

02,01s

Oz. alb

.

.

.

.
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. 02,096 Caxo to 2000

02,010 Yaxia
G %0 500

02,011 D629o t.o 10

02,020 v-o

02,021 to.ATlo,bT20.ATJo,ATLo,AT50,A?60 - 0

02,022 {200 caaractors) COml. c0~P2

02.023 for i = O to !10

02,024 •i.bi.ciea~.z~ ■ o

02,026 for j ■ Oto 11O

02,027

02.028 fo is ● Tenperagure Profiles [T-Tn , ‘Cj 8

.
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26 JU~ 73 0926+SS

03,00!

03.002

03,003

03,00h

03,005

03,006

03.007

03.008

03,009

03,00a

03.008

03,00C

03,008

03, Oom

03,00f

03,0to

03,011

03,012

03,0!3

03,01h

03,015

03,0}6

03,017

03,016

03,019

03,01a

03,01b

03,01C

[xl*12)/2 X2-!

Rae 03 Pago 01

1111111 1111
ft is ●i ● o 9 1112 1!

t2 is ● s~

Tstop = 1000000

%f ●enm t 18 on ‘Trial dbta sat=

road consol. by s bt ■ x AX* - x hx2 ■ x bY - x ●8btbbxl, bx2a4

r.ad con-d. bY ●L! - x L2 G x YuaIl - %s8 L!, L2,YW

raad chsola by ● lrt= x k2 ~ X ‘gkf, k2

raad console by ●cpl= x CP2= x ●lcP!, cp2

r-d console bY ● Pf~ x 92 = x ctF.l,P2

read console by s Df= x D2 ● x 98Df, D2

road eOnsOla bY c h = X-:FI

rmbd cOn#Ol. bY 9Qrt ● x Qr2 - x ●

cant . ‘cPf = x cP2 ■ x“I arf, ar2, epl. Qp2

reae cOn#Olm bY ● cOnPI - x CUMP2 - x ●lcOmpf, c0mp2

read cansola by ●Tprlnr, (micro-**cl m X9: ?prin~

it 8an.e ~ :S on

read COn#Ol. bY 9T#L0P-Xu 8 r#tOP

othOrb-180 “:nput 48te9

AL*1OOOI AX I.,05; bx2=,005J AY=,02

L$9t8Z2=,l Jyv=t

kt=,l SSl k2=e03k

GO1-. O731I cp2=. t98

P1=8.57s P2=3.96

D1=,251 D2=,0k3L

h - .fh

Grl ● 23.82 s Qr2 - 23.02

G01=23.3.21 QP2=236.2

COUU1 - ~lfb-

.
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26 JU1 73 0927+02
Me 03 Pag* 02

1111111 1111

00ap2 - 9Ax203
sRall B ● , ~& eal/om2sm00 ●03,0!ll

03,019

Os, olr

03,020

03.02f

03,022

03.023

03.02&

03.025

03.026

03.027

03.028

03.029

03,0aa

03002b

03002c

03.02a

03002e

Torint ● 10000

%Stop = 3000000

T, . too .o~.

*r ● 90000 ‘micro-aoc’

1P = [( Sp/AtJl

11 9 [( L,l/(2Ax\) ● .5)1

X2 9 1! ● t(L2/12AX21 ● ,511

J ● [( Xw/AY + ,511

A% 9 .00000$ A% ‘conversion to sac from micro SOC9

‘2 ■ i12[At/Ax221

S1 ● D1 lAt/AY2)

82 9 D2 (At/Ay2]

ir ●on-a 9 is on ●acrmonic ●ans

X3 = t2Cl Xlt21/{kt*k2)

.
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26 JuX 73 0927+05

04,001

o&ooo2

ok,oo3

Os,ook

Ob,oos

0\,006

oh,oo7

Ok, ooo

ok,oo9

Oh. ooa

Ok.00b

oi,ooc

Ok,ood

ob.oo*

Ok.oof

04.010

04,011

OL,0!2

oi, o13

Oh, oth

04,015

04,016

Ok, ol?

oi.016

Oi, ol!l

Ok. ola

Ok.Olb

Eec 04 Page 01

11111111 I
“Srithrhtic sr.a ●v.rsco”

for i = iO to Points

●x*cuto

iomi

othar~ite

mactl =

sract2 =

rract.3 .

rractk .

exitsrom loop

otherwise: looP back

1

1

1

1

.

.

.
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Oa,o:c

Ot, ola

Oi, o!a

Ok, otl

04.020

Ok, oa!

obvo22

Oh0023

Oh, ozi

Ok,025

oh,026

Oi,027

0h,02b

Ok,029

okoo2a

Ot,02b

0A,02C

Ok,02d

ok,02e

Oh.ozf

06,030

oioo3!

oi*032

ok,033

ok,03L

OL,035

0h,036

II 1111
l!r13. ilP13*llr23*nP2~ ● 0

●Conversion from pert.at absOriItZon

Zor3~Oto J

Kr!d ● Qrl Wrlj/Ay

iir24 ■ Q?2SllT23/AY

Evl$ ● Qpl XHp13/AY

SP2, ■ QP2xllP2/AY

Qrl - rractlxarl

Qr2 - Zract2xQT?

Qpl ■ rractjxepl

QP2 - 7racckxQg2

Ill

to aaat, cal/ca3eac ●

f0ri=0t0x2 .xnitial condition Ui, j . 0-

iorj-o toti

‘iaj ““*1.3‘@*i,j ■ 0
Time w o

“begin. of itcrationl for each tire.pcrioa At as n-l to infinity”

‘oeOe uill prececd with one OS tuo●lCOrithin#-

. 1 - if x and Y FrOfiles ~TO iRpOTtant. 2-D ADX”

. i8 uae6 with entire bet source adaea at one-

● half tine ctep, ●nd it. oration sequanco altered”

. ●s XYXXXYYX in %ee9ing x sne y srrays. ”

. 2 - if compomite has very saall x aimenaiona, ”

. i.e. if L1 ●nd LZ ●re small compsr.a to the”

. thermal diIfuaiOn oortas, OnlY tae Y direction”

. is U@ed in the code. and s unialr*cciOnal ADI-

. ia run with aver.ce propartY values used=

“Test fOT mrabolic (21))Or Uaidire CtiOnal de PenalOnCa’

.
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26 Ju1 73 0927+14

0s,001

0s,002

0s.003

0s,004

0s,00s

05.006

05,007

05,008

0s,009

05.00s

Os.oob

05,00C

Os, ood

OS,00Q

05,001

0s,010

05,011

05,0!2

0s,013

Os,oli

0s,015

05,016

05,017

05.018

05,019

Os. ola

mc 05 Pa#o 01

I 1111111 Ill

~UX! ● lL!/2)2/Dl

TWX2 = (Lz/2] 2/D2

%UYI ● x“~/Dl

TUY2 ● Yw2/D2

$f ●wo 6 10 off or (k!=k2) ●nd (DI-021 ●nd IAx19Ax2)

10mit - 12+1

othorwisa

Iomit ■ 11

for n* = 2 to %ntinity

if mode> () . 1

it Ind~X $ IP

Qt ■ Qpl

02 ● Qp2

‘inoludss lnter:aca in computation

‘axcludas lntorfme”

‘Parabolic ADX (2D) X ●nd Y Directions -

●connt.ar to dotornine if io pu18* or rast moae~

03 - lalxbX4+a2xAx2) llbxl+Ax2)

othorwlae

al = Or!

a2 - Qr2

a3 ● (QlxAX20q28bX2) /lAXl*AX21

if ne ie ●ven .~wo. p x first.~

exacut. ●qene [0)

for 4 . ~ to J-1

if :ndex : xp

c1 - Mpt,/(plxcPlxrml ●pul#e geriod”

C2 - llp2j/(p2xcp2xTBl

Otherwlae

c1 ● nrl /lp IX Cpt*XBj
3

‘r*at. period.

.

.
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Os,otb

Os,otc

05,014

0s,010

Os, ots

0s,020

05,021

05.022

0s.023

05,024

05.025

05,026

05,027

05,028

0S,029

05,02a

05,02b

05,02C

os,02a

05,02a

os,02f

U*C 05 ●age 02

11111 I 1111
:2 ● Mr2$/(B2xop2xTtl

tbr i ● 1 to :1-3

●XOCWO ●qW#Oll, $, A!, Sl, Ot ,At,l )

●xecute ●qtnroa(Xl, $,kl, k2,D!,02, Cl,oa,Ax! ,AX2, AVOM,0)

Xbr t ■ It*l to 12-!

●XoCUt* ●qtwOti, $, A2.B2,02, ~t,l )

●xecute ●qtivo (12)

●xocute #t4fx21a,5#c#a, zJ

fbri-0t012

‘“i, d = ‘i

ror 3 ■ ! to J-1

ifl$Il

●X6cUt. ●qZOUr{i, $,1, A,000, o)

otaorulae

omcutg ●acavan(ll ,3,RI ,k2.nl, D2.0,0. &X9, Aa2. &Y. bt, O)

●xocute ●qeicBtl J,Ay, h,k)
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26 Ju1 ?Z 0927*22

I
06,001

06,002

06.003

06,00b

06,00S

06,006

06,007

06,006

06,009

06,00a

06,00b

06,00c

06.00d

06,00e

06.00t

06,010

06,011

06.012

06,013

06. olb

06,015

06,016

06.01’?

06,018

06,019

06.018

06,01b

BoC 06 Pago 01

11111111 II
●ifocute ●tat JSa, bOe, d.Z)

for3-Oto J

‘“**, $ - ‘3

ettmrwiao t =suaep Y first”

for % s 1 to X2-t * i + IOait

if 1 < x1:A= A!j D= B! IX-kl; q=ql “8aterlm 1“

iZ i ● Ztt q=a3; lt=k3 ‘interlaccg

if i b 111 A=A2j B= D2jlC=k2sq=q2 %storlal 2“

●;ecute ●q~ixl O, Ay, q, U.TBJ

ilisxl: c-c!

Otaeruiaai C - C2

ifioxl

execute ●qtUoli, j,Bo4,0.6t, ol

etacrviso

●xectlta ●Q8eV*nf llOj O&$,&2, Dl, D2,G? .02,Axl, Ax2. bY, Ab91

●Xacute ●qaicIItlJ.AY.h.Icl

●XOCUt~ sCrll J#s. b. C,d, Zl

f0r3-Oto J

‘*1,3● ‘J
Zor J = 1 to J-1 ‘begin of x sweep.

.

.
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26 Jul 73 0927+27

II
06*O!C

06.016

06,01*

06.O$t

06,0a0

06,021

06,022

06,023

06v02b

06.025

06,026

06,02?

06.028

06,029

06,02s

06,02b

06,02c

06.024

06,02e

MC 06 Pace 02

II II 1111 1
●xocute eqonaf OJ

fd i ● 1 to X1-1

●x.cute eqfourti.3, Al. !ll.0,0,11

●xecute ●qt.breel If,j,Xl,k2,01, D2,0,0, bxf,AX20AY. At, f)

for i = X1*1 to X2-!

●xecute ●qfourli, j, A2, f12,0,0, \)

execute eqtiva 1X21

execute ●ttil Iz8a, D,e..2, Z)

f0ri=Ot012

‘I!issincvsluea for u at [1=0.11.121 $-O.J]We ●ssicned Tic B.C.ts”

“These sre not used in tho computation of ulx, Y,tl”

Uaa 0,0 = ‘O.l, O

Uae ● U*.
o,J I,J

Uea
12,3 = ‘**12-1,0

U**
X2.J = ‘**x2-l, J

if k2 $ kl “interfaca vslues ●t j-O.J”

PIIi = (k2xAXt)/lkl MAX21
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26 Ju1 7> 0927+30
Rae 07 Page 01

I
07.001

07,002

07,003

07,00i

07,005

07,006

07.007

07,008

07,009

07.ooa

07,00b

07*OOC

07.006

07.008

07.Oof

07.0$0

07,011

07,0!2

07,013

07,01i

07,015

07,016

07,017

07,016

07,019

07,01a

07,01b

Iilllll 111

‘-*l I,J ● ‘( PB*’U*%!+l, J + ‘Oe Ii-l. J
1/(1 + ?alj

torl=O %0X2.

torj-oto J

oth.rvioa ‘Llnldirmctional (Yonlyl 6*p0nda0c@m

A - lA!l Ll)+A2(L2) )/lt!+L2] ‘avaraca propmtias’

8 = (01 lLl)+B2tL2 )l/(Ll+L21

k ● [X$ (2.\)+k2(L2})/(Ll+L2)

11 xndax : IV

q! ● Qpl

q2 = qp2

otharwlae

ql ● Qrl

q2 ● Qr2

e m (al(Ll)+q21L2 ))/1 Ll+L2)

cxocuta eQ#ixlo#Ay#q.ksfB~

C2 ● llP2 /l PZXCP2XTB1
#

0therVi8e

CI = Ur!3/(plxOp~xTnl

c2 ● m2j/lp2x0p2x2Bl

C . lCtlLll*C2t L21)/t Li*L21

●xacuta eqtwO1l .3,2 B.O,C,At.0)

●xecuto eqOi Cht lJ,~Y,h.kl

●xecuta Std(J)a, b,C,d, Z)

32



.

S6 Ju1 73 0927+35

I
07. OIC

07,016

07,01*

07.012

07.020

0’/,021

07,022

07,023

07,0ab

07,02s

07,026

07,02’1

07,028

07,025

07,028

07e02b

07,02c

07,02d

07,02e

07,02X

07,030

07,031

07,032

07,033

07,03k

07,035

07,036

07.037

07,038

07,039

Roc 07 Pago 02

11111
;or X= Ot0X2

Zor$=oto

it Index ● Xt8 Xn4mx=t

0thorwi8a: Xn4eX. XndaX41

it Sonao 2 is on; :ntarval

othorvisos xntarvm ● 1P

1111

90

● ●n4 or b% **ri04m

iz (no-l) - Intarval(no4 Delta)

Time= tn.-l )At

:1 ●*nxa & is on

v ● V*9

%“ = T~8*

ATIW - Uo,oUfD

br2v ● uz2,0sT~

AZ)” ● u
xt,OXTB

m“ = uo,J*za

A?5” ● u XTBx2,J

bZ6v = Uxt,JX?B

if [(loooooo Tim)1 m [ITprint) ]

new paca

print: date

Skip k X1116X

print! ‘cTR COWUSXTI PIRST UALL~

●xip 2 linen

if ●0401 () ■ 1

Print: ozuo 4imenaienal ADI (x ●nd YI ●

othervtm

prints ●unidirectional ADX (Y -Onlll”

print: ●averue property valuao Um4°
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Oo.oot

08.002

08,003

Ocoook

0s,00s

06.006

08,007

08,00b

06,009

08.008

08,00b

08,00c

08,00d

08,00*

08.002

08.090

08,0ff

08,012

08,0$3

08. o1h

08.015

08,0!6

08.017

08,098

06.019

08. ola

08,01b

08,01c

I

cont.

aont.

MC 08 Pa[o 0!

1111111 Ill
SKiD 1 lUIO

oriatt ‘heat concratlon functions for Pubc. ●a ras% sodO-

lor$moto J

Print by ●s-xx yJ=x. x& llrl=xOx5*90 ●

●lir2=x,x5*oo gP1-x. xS+co ●

●Rp2=XOX500a91 5,jxAy, nrj,, nr23, npf$, Ip23

new pagm

Print: date

8kip k lin9a

Or$ntl ‘cTR cellP13sITE?xIMT UAZL~

sk$p 2 lin-s

tr ●oaal(l - f

print: Wvo dinensionaa ADX (x Snd Yl -

otherwiee

printt %nldiractiOnal ADI (Y onlyl -””

print: %verac. pr0pert7 valuas nsed~

skip 1 line

it ●enee 8 la on

print8 %ont, <lox Intertsco cOndition*

atherxiae

prints “coat, flux and PDf at lnt*rr4ce8

it ●enae 9 iw on

print: •b~rnonic ●ean for k at lntOrZa Ce*

otharwise

urint: ‘aritnmetlc area .Vorsg. fer k ●t io$.rtac~m

urint by c conductor ● x insulat0r12) ● xQs Ooapl, C0ap2

Skip 1 line

Drint: ‘inCia@lit flux - k[6T/dy Jy - os

>
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Oo. old

08,010

08,09K

00,020

06,021

06,022

.08,023

Oa.ozb

oaoo25

0.2,026

06.027

08.02C

08.029

08.02a

08,02b

06,02C

oI. oaa

MC 06 Pag* 02

11111 Ill
?.riot by s p~lse jeriol Qpl=xi. xi qp2=X4cxh”

cont. ●cal/sae cn2~8 QPl, Qp2

9riat by ‘ rcat period qrt=x&, x$ qr2=xt Ox\-

eont. ‘cs1/scc CmZ*: ert, Qr2

●k:p 1 line

~r~nt by ‘wall thicknees (y diract.ionl 9 X3,X4 C9D:YW

print “by ●aleeent uize amterial t (X direct.ioo) ● X3.X& C8*SLI

Drint by ‘elasent ●lzc ●aterial Z (x diraction) ■ x3,x6 CS*SL2

8klP 1 lin.

Dr*nt by ●At ■ X5 micro-eec ?S [(10000OOAt ● .S)]

~rint by ‘A~l s X4.X5 C8 ‘sAX!

Drint by ‘Ax2 - X4.X5 cm ‘8AXZ

urist by ‘&y = x~*x5 cm WSAY

skip 1 zinc

orint by ‘DtAt/Ax 12=xitxSDt Al

print by ‘D2Atlbxzz-xk*x5m8 AP.

orint by ‘DfAt/AY2 =xi,xs-# 81

.
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09,001

09,002

09,003

09,00i

09,005

09,006

09,007

09,U06

09.009

09,00s

09.00B

09.00C

09.000

09,000

Oy, oof

09,0fo

09,011

09,012

09,0!3

09,0!k

09,015

09.016

09.017

09,09b

09,019

09,01A

I

coat .

cont.

Cont.

cont.

coat .

cont.

11111111 II

print by ●D2A%/@ =xi,xs~: 82

skip t Iino

tw;nt by ●PUlm tiaa ● X,X5 SOO rest tiaa - X@X5 soc~s

TD/l cooooo, Tr/f 000000

skip q line

Drint by ‘fOr ●atmrid f k= xs.xs cd/sac cm”c @

●cp= X>,X5 CWC”G p- x~, x& c/c# ~

SDl= XS,XS ca2/sec~8 kl, CPl, P!, Dl

SkiD f line

Driot by ‘for Satorial 2 k= XJ. XS caX/Saa emOO ●

“Cg= X3,X5 cal/c 00 p- X3,X4 g/cm 3,

9Dz9 x3,x5 Cm2/8mCm: k2, Cp2, p2, D2

Aip 2 line.

mint by “ B = xJ, xb ●ffective beat transfer coaff. cal/cm28eco0 “sh

SkiP 1 line

Orint by ‘Cria dss o lx tmatariwl 1) - X3 Points, ●

“X{mstericl Z) - X3 polnt8J bY [y = X3 point8J ‘111. t12-Z! ).J

new pace

print by ‘Time. X kkiCrO-#eC ● , 1000000 Time

Skip ? line.

mint I zO

Drintt f!

orinta 12

JkiD 2 llnne

176 - [111/2)1

177 = Jl(Il +12)/2))
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09. Olb

09,0$C

0900ta

09,01e

09.01s

09.020

09,02!

09.022

09,023

09,02k

09,025

09.026

09,027

09,028

09,029

09.02s

09.02b

09.02c

09,026

09.02-

09,02f

09,030

111111
t6rj=ot0J

11111

print by ‘xax~~~,aax.xk+ae)?ea’: 30

cont. uo.3mTB*ul,3*Tn* ux76,3#fB*

con%. ‘T #“~77, j=T#~u12-t, j=TB*‘11,3 B

eoni.
‘12,$%

it ●.na. 7 i, on

read cOnsolo by ●Tmint=x98 TPrint

Dolts. ll. OoOoOf~Tpriat/As* .Sll

if ●arise 6 im 08

TatOP = o

%f looooooxzim ● TstOp ●nd senaa s is on

“plotting r0utine9

Xor8ui%e6
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08.001

0s,002

0s.00>

0s,004

0s,005

0s,006

oa,oo7

oa,oo8

oa, oo9

Oa,ooa

Oa.oob

Oa, ooc

0s,006

Oa,ooe

08,00C

Oa,olo

Oa,ot I

0s.012

oa,of3

Oa. oth

0s,015

08,016

0s,017

Oa, ols

oa,o19

0s,01-

Oaooltl

me Oa Pace 01

11111111 II
8629 ■ ● TXIIl!RIcRo-SZO~

T629 ● ● T-fn ~Cl m

U629 - ●COHPOSIT~-puL8XD CA~g”

0xaeut6 cprime{cax,2000,1, f2)

●xecuto cSYmbol l.. t,9.5a,l&, U629, O)

QXCOU%O CSYabO1l. t,9.2. .lhSO0nDf .O1

●XOCUtS cSYmbol l.!,9. 0..l&00mP2, ol

ii ?Bax 4s00 8 Max = Soo

Oth*rvisat Tmax ● !000

TOtOP -

Clxacuta

.mxecut*

●xmcute

●xacut9

●Xacuto

●xecute

tar n =

1000 OOOX71M

csc.ler 10, T#tOPOO, Tmsx40.10.0, $0)

Cplot (0, TS*X,3)

Cplot ( TctOp, Teax, 21

cplOt. fletop,0,21

caxie{O, O.O, fO#S629, $7)

cax~a(O.OO $0, -~0, ?629, -fO)

lto6

.

.
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Soc 0s ?aco 02

1111111 1111
Oa, o!c ●xacute cplOt(loooooot,, Yaxism, q62!J}

Oa, old Q629 ● 2

0s,010 ●XecUte cnURb{(TSt0P+,02 ), YSXi#w,, !s, SYXb,0,0]

Os, otf ●xocuto cempty[l, h)

oa,020 Stop 41

oa,021 if Senca s is on: ●toP

oa, o’22 ‘proceaurewm

0s,023 “aaena thru ●qeight conerata coefricionts for the tridiaconax astrix”

on.02h 9 ●aone - loft han4 boundary -malarial f (x-4irection I”

0a,025 . 6atWo - ●stmrial 1 Or 2, PDE at ●ven bt/2s

08.026 m ●qtlIree - %nterf. ca condition at If Ix-diractionl”

0&,027 . ●afour - matarlal 1 or 2, PDs ●t odd bk/2”

0C,028 . ~qfive - right hand bOunda?Y-matOribl 2 lX-dlraCtiOa)”

0s,029 . ●081x - inai6el Pxba%a) ●ide boundary (Y-direction)”

oa*02m . 6a.even - lnteri. cm cOnOitl O~ (PDXI ZOr Y SMOeP”

0SQ02B . ●aeight - out-id~. liquio zetsl aaat transfer coeff, (y direction]”

0S,02C ‘Std #OIVes the Lrldiagonal xstrix”

0s,02d ‘lmgrsn Ceneratea a l.grancian interpolation polynominsl for”

Oa.02e ‘aatihatinc discrete values of tho heat generation tern-
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Ob, ool

0B,002

ob, oo3

Ob,00k

Ob, oos

0b,006

Ob. oo?

Ob, ooe

0bO009

Ob,00a

Ob,00b

Ob, ooc

ob, ooe

ob*oo*

Ob,00t

Ob, OIO

eb, ol 1

0b,012

oboo13

Ob, Ol&

Ob, OIS

0b,016

Ob, Ol?

0b,018

Ob.019

Ob, ott

ROC Ob ?agt 01

1111111 1111
“MOO-10 datarminea %th a 2-D 0? unidirectional Solution”

‘will 00 usad”

[.., ●qone(nlall)

●nmo~bno$ ,Cnm-l ,dnmO

. . . I

(... ●qtuo(n. m,r. a. C.6t. remt#*lll

larrsyl u

it Teat- 9

X-lu
a,8*l-%s

●u n,n-t 1

kc-n

Otherwieo

X-III -2U ●U
n+l ,a nsw n-!, m)

sawn

. -r/~
%

b~e - l+r

. -r/2
%.

d~e - OX6t+ (s/2) (x)+u
n.8

. . . )

1,.. eqt3ree 1XS.~. &l, x2, El, D2, Cl, C2, bXl. Ax2, bY, At, ?emt2lall)

Iarray)u. uc

i2 sense 8 1s on .centinuous tlux at intartace=

ax 1
. -1

%1
= t+(k2xAxf l/(kfxAx21

’11
■ -lk2x Ax!) /( Xl XAX2)

%1 - 0

o“therbisa “Continuous flux ●nd PDE ●pply at lntOrface”

.
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Ob,OfB

Ob, Otc

Ob, Old

Ob, Ol@

Ob, Olf

0b,020

.Ob, oa!

Ob ,022

0b,023

Ob.02h

0b,025

0b,026

Ob.027

Ob.028

0b0029

0b,02s

0b002b

0b,02c

oB.02d

0b,020

0b,02Z

0b,030

Ob.03!

0B0032

I

.,0)

Boo Ob P%.” 02

Ill 11111
W2xAx2)/ttlxAxl/

(k2XAXl)/lXlxAx2)

{... ●qZOUrln,8. ?.a. O. At, Z. StIall)

(array] u*

if zest - 1

x - Iue
11, m+l

-2U* ●U*
a,m-1

I
n,a

ke=n

oth.ruiso

x m {U* -au* ●ub
n*l, m n-1 #m 1n.m

he-a

akb
. -~/2

‘k*
- l+r



Ob,033
I 1111111 I’ll

%
● .?/2

Ob.03k
%.

= oxAl,*#{x)t2*ua
n,a

0B,035 .,0)

ob,036 t.., ●eriv*(x2jsll)

00,037
%2 ● -“%2= ’’c12=0’%2*o

0b,038 . ..)

Ob ,039 1... ●qaix[n, Ay. a.k. TBBaXII

Oc,oot

OC,002

08,003

Oc, ooh

Oc, oos

OC.006

Oc ,007

0C,008

OC.009

Ocooos

OC.00b

Oc, ooc

Oc,00d

Oc,ooc

Oc. oo;

Oc, olo

Oc, oll

OC.012

oc, ot3

Oc, oth

OC,015

oc.0f6

0C,097

OC.0!8

OC,019

Roe Oc Pag* 01

1111111 1111
.,*J

(.., eqnovaa(ll .3. xI, Ic2, D1,D2, Cl,02, AXl, AX2, bY, At, T0a%31alX}

(array lu,ua

X = (kZ=Ax2)/lklxAxf)

y s (&2 XAxl]/{&l XAX2)

O ● [k2nAx2xD1 )/{k8#AXtaD2)

S - Dill+X)/(l+GJ

P - lAtXD!) /l AX12(l+O))

if 70at3 ● 1

u ● P(II
xl-1. j

-Il+?)ux, ,$+lytux, ., ,3)

92-U
11, i

otharMi#O

x 8 plu- ~,-, ,#-tt*r)u* 11,3 +I?)u.
Xt+t,d’

C2 ● U*Z,, $

’11
= -[ WXAt)/(?Ay2)

b If ■ l+(XxAt)/f Ay2)

’11
● -fk!XAt)/[2Ay2)

a ~, = n2*H+At (Cl*6XC2) /[1 +fl)

.,0 )

I*., ●qeiKht(a. dy, h,k~tlll

● 9 -1’ bn91+Ay Xh/k; C =O#dn=O
n n

.ss )

(... ●sdln84. b,c, d.Z) “Tridisconal matrix algorttnia~

larray}a. b.c. d.z

S,o
o co 110

.
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.

.

Oc, Olb

Oc. olc

Oc. ola

oc, ofe

Oc, o!f

0C,020

oc,02t

0C,022

0c,023

oc,02h

OC.025

0c,026

0c,027

Oc.02b

OC.029

oc.02a

0c,02b

OC.02C

0C,02d

oc,02@

oc,02t

OC,030

0C,031

OC.032

oe.033

oc,03k

0C0035

OC.036

0C0037

0C,036

0C,039

oc,03a

0C,03b

0C,03C

oc.03d

Roc Oc Pago 02

I 11111111 II
tor ● ■ O to 1!0

Ea, om ● o

‘o ■ ao

00 - ~o’”o

torm=l ton

Bm “ IS-t/B.-,
- b,-a c

Om = Mm-s,aa-$ 1/Bm

2“ ■ Iin

for a = n-l, n-2....0

z.
, ,+1’8,

- Ore-c z

.0, )

1.., lscranlj, i. Dacreo. ~J~lll

(array )ap$. Hp2. Url. Hr2. cpl .ap2. Crl, or2~z. Y

fork =lt,ol

12 X=1 t S=OP1

if k=2: 2-0P2

it k-3s s=orl

if k-ks s-Gr2

C*91

for 3- . i-l to I+necrae-1

if ; ● Y3*

nPlj ● Gp13*

Mpzj = ap23.

Iirlj = arljo

IIrzj = ar23.

●xit frem prdcaaur.

.
o~a~rvl~=t ce=c* ~y-y$a ~

;910

ior i* - 1-1 co i+ DecrOe-1

- - Yia)t~ = c@zi. /lY

Zo? j~ - i-! ta $+ Decrea-1

If i~ - #*: 100P hack

ta - t./(y ~.-Y3*l

.
s 9 E*W

it k=lt kkPlj = z

Lr k-2s MP2J = =
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Roc OdPago 01

Od, oot

00,002

od, oo3

Od. oob

Od, oos

oti, oo6

06,007

06.006

06,009

Od, ooa

Od. oob

11111
if km3sMrt ● :

3

M kmig Mr2j ●’ s

.,0 )

1... moa.1{none~●ill

Xba;x - [Ti?xl*T!Ix2)/2

Tbary . Ixwyl ● XUY2) /2

11 Xbarx ● .OIZb*ry

model ( ) = o

othorwi~o

modal ( ) ● 1

● ,. )

s

111111

●

.uoidir. ctionax”

●2.dimanaiOnal~
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APPENDIX F

Variable

Al=

A2=

B1 =

B2 =

cl =

C2 =

Cp =

c (y) =

Dora=

Ay =

Axl =

Ax2 =

At =

AT =

F=

h=

H(y) =

NOMENCLATURE

Specification 11 =

alAt/(Axl)2
12 =

a2At/(Ax2)2
J=I

aI.At/(Ay)2
k=

a2At/(Ay)2
L1 =

H1/PICplTB

H2/ PICPITB

heat capacity, cal/g”C

H(y)/PCpTB designated as Cl or C2

thermal diffusivity = k/~p, cm2/s

step size in both materials (y direction)

step size in material 1 (x direction)

step size in material 2 (x direction)

full time step

T-TB K or “C

k2Axl/klAx2

L2 =

P=

qorqt=

T=

TB =

‘P =

T=
r
u=

*
ui,j =

**
ui,j =

number of grid pts in x-direction materlall

number of grid pts in x-direction materia12

number of grid pts in x-direction meteria12

thermal conductivity, cal.fs cra°C

size of element in material 1

size of element in material 2

density, g/cm3

incident flux on the inside surface

temperature, K or ‘C

bulk Lithium temp., K or “C

burn time for pulse, u s or m s

rest time, U s of m s

dimensionless temperature = (T-TB)/TB

dimensionless temp. 1/2 time interval

dimensionless temp. full-time interval
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