
I
LA-4735-MS

“,

u“
CIC-14 REPORT COLLECTION

REPRcIDUCTiON
CX3FW’

Finite-Difference Solution of

Axially Symmetric Nuclear

Single-Particle Potentials .

scientific laboratory

v of the university of California
LOS ALAMOS, NEW MEXICO 87544

! ,

UNITED STATES

ATOMIC ENERGY COMMISSION

CONTRACT W-7405 -ENG. 36



This report was prepared as an account of work sponswed by the United
States Government. Neither the Unitad States nor the Unitad States Atomic
Energy Commission, nor any of their employees, nor any of their contrac-
tors, subcontractors, or their employees, makes any warranty, express or im-
plied, or assumes any legal liability or responsibility for the accuracy, com-
pleteness or usefulness of any information, apparatus, product or process dis-
closed, or represents that its use would not infringe privately owned rights.

This report, like other special-purpose documents in the LA. . .MS series, has not
been reviewed or verified for accuracy in the interest of prompt distribution.

Printed in the United States of America. Available from
National Technical Information Service

U. S. Department of Commerce
5285 Port Royal Road

Springfield, Virginia 22151
Price: Printed Copy $3.00; Microfiche $0.95



k
LA-4735-MS
UC-34

ISSUED: August 1971

7
:

J 10s alamos
scientific laboratory

of the University of California
10S ALAMOS, NEW MEXICO 87544

l\

Finite-Difference Solution of

Axially Symmetric Nuclear

Single-Particle Potentials

by

E. O. Fiset
J. R. Nix

M. Bolsterli

ABOUT THIS REPORT
This official electronic version was created by scanningthe best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.For additional information or comments, contact: Library Without Walls Project Los Alamos National Laboratory Research LibraryLos Alamos, NM 87544 Phone: (505)667-4448 E-mail: lwwp@lanl.gov



FINITE-DIFFSRSNCESOLUTION OF AXIALLY

SYFMETRICNUCLEAR SINGLE-PAKCICLE P~ENT IALS

by

E. O. Fiset, J. R. Nix, and M. Bolsterli

ABSTl#iCl

We have investigatedan implicit finite-differencemethod for solving
Schr6dinger’sequation for axially symmetric static nuclear single-particle
potentials. The method used is an improved version of the procedure out-
lined by Dickmann. The finite-differenceequations are obtained in prolate
spheroidalcoordinatesby use of a variationalprinciple. The eigenvalues
and eigenvectorsof the resultingband matrix are found by use of inverse
iteration,with the linear system of equations solved directly. The method
works satisfactorily,but requires approximately25 times aa much computing
time as an expansion of the wave function in def.ormsdharmonic-oscillator
basis functions,for comparable accuracy in the eigenvalues.

I. INTRODUCTIONAND

Many studies in

CONCLUSION

nuclear physics involve solving

Schr6dinger’aequation for axially symmetric static

nuclear single-particlepotentials. Such equations

arise for slightly deformedpotentials in connection

with various ground-stateproperties of deformed

nuclei, and for more highly deformed potentials in

connectionwith the influence of single particlea

on the fisstonprocess and on heavy-ion reactiona.

There are two general methods for solvlng these

equations: expanding the wave function in a set of

basis functionsand finite-differencemethods. Ex-

panaion methods traditionallyhave been used for

small deformations,but at the beginning of this

study serious questionshad been raised regarding

the convergenceof these methods for the large dis-

tortions encounteredin fission and in heavy-ion

reactiona (see,for example,Ref. 1). We therefore

decided to investigatethe accuracy and speed with

which the equationa could be solved by means of a

finite-differencewthod.

The approach that we have followed is en im-

proved version of the procedure outlined by

Dickmann.2 This is an implicit method, in which all

the valuea of the wave function are connected

simultaneouslythrough

For small deformation

a system of linear equationa.

Rost3 and Tarp
4
have consider-

ed en explicit finite-differencemethod, in which

the potential itself is expanded in a aum of func-

tions separable i.nthe spherical coordinatesr and

8; this leads to a set of coupled differentialequa-

tions to be solved simultaneously. However, it

appears that for large deformation ao many terms

would be required in such an expanaion of the poten-

tial to make this approach impractical from the out-

set.

In the meantime, expansion methods using de-

formed harmonic-oscillatorbasis functionshave also

been developed for large deformations.
5-7

This per-

mits a direct comparisonto be made between the ex-

psmsion end finite-differencemethods. It turns out

that for fairly smooth potentials, such as general-

ized Woods-Saxon potentials or folded Yukawa poten-

tiala~’7 the convergenceof the deformed harmonic-

oscillatorexpansion ia much faster than we had

originally anticipated,even for very large deforma-

tions. For comparableaccuracy, the single-particle

energies can be computed for such potentials roughly

25 times as rapidly by use of the expansion method

as by use of the finite-differencemethod (for a
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general reflection-asymmetricaxially symmetric

shape).

Although of limited uaefulneaa for calculating

single-particleenergies for smooth potentials,

there are two areaa where a finite-differencemethod

could still conceivablybe preferable to an osc.il-

later-expsnsionmethod. The firat ie in connection

with less smooth potentials,such as those contain-

ing CUSPS in the equipotentialsurfaces. For exam-

ple, the convergenceof a deformed (one-center)

oscillatorexpansion ie very slow for a generalized

two-centeroscillatorpotential.
8

Although this

particularpotential is efficiently treated in terms

of a deformed two-centeroscillatorexpsnaion, other

potentials containingstrong cusps might be solved

advantageouslyby a finite-differencemethod.

The second area where a finite-differencemeth-

od might be useful is in calculatingthe asymptotic

behavior of bound-statewave functions for very de-

formed potentials. The asymptoticbehavior of wave

functionscalculatedin an oscillatorexpanaion ia

Gaussian,whereas the true asymptoticbehavior of

the bound-statewave functionsia not (for realiatic

potentials that approach zero at large distances).

To obtain the proper asymptoticbehavior in the ex-

penaion method would require replacing the calcu-

lated wave function at large distancesby the known

asymptoticsolution. On the other hand, the proper

asymptoticsolution is given automaticallyin the

finite-differencemethod.

Since our primary interest is in calculating

the energies for smooth potentiala,we have not

seriously investigatedeither of these areaa.

For the benefit of anyone who would like to

pursue either these or other aapecta of a finite-

differencemethod of solution,we deecribebriefly

in the remainder of this report the method that we

have studied. Some of the details and relevant

formulashave already been given by Dickmenn2 and

will not be repeated here. Reference 7 discusses

the specific single-particlepotential that we have

used, aa well ae some physical applicationsof the

results. The present report is not intended for

further publication,end ia purposefullybrief and

informal.

II. SELECTION OF GRID POINTS

In the finite-differenceapproach the aingle-

particle wave functions are calculated at only a

finite nu&er of spatial grid points, and the dif-

ferentialHamiltonien is replaced by a finite-dif-

ference matrix which couples the values of the wave

function at neighboring pointa. Because of the limi-

tation to axially symmetric shapes, our potentials

are functionsonly of p and z, where p and z are the

usual cylindrical coordinates. Consequently the z-

componentof total angular momentum is a constant of

the motion.

Since only a finite number of grid points are

used, it is desirable to distribute them adven-

tegeously,with most of the pointa concentratedin

regions where the wave functions change rapidly.

This is accomplishedin two steps. First, we make

a coordinate transformationto prolate spheroidal

coordinates,which is given by

p=aainh~sine,

z - a cosh q cos 13,

4=*.

The coordinatesurfaces are prolate spheroids (rI=

conatent),hyperboloidaof revolutionof two sheets

(e = constant),and half planea (IJJ= constant). The

quantity a ia the distance between the origin and

the focus common to the spheroids and hyperboloida.

The shape of the coordinatesystem is changed by

varying a, which la selected so that the eccentricity

of the coordinateapheroida approximatesthat of the

given nuclear ahape.

The second step in distributingthe grid points

advantageouslyis to use a nonuniform spacing in q,

with the pointa spaced more closely for small values

of ~ than for large values. Since in practice it is

more convenient to make finite-differenceapproxi-

mations in terms of constant step sizea, we make a

further nonlinear transformationto

defined by

bt
sinh rl=

(1 - tz)~(l + Ctz) ‘

The constsnta b, a, sad c determine

the variable t,

Cl<t<l.

the distribution

●

✎



●

)

of points. In particular, the nunber of points dis-

tributednear the p = O axis is determined largely

by the choice of b, the rate at which n approaches

infinity (i.e.,the number of pointa in the large p

region) is determinedby the choice of a, end the

distributionof points in the intermediaterange

depends largely upon c. In most of our studies we

have used the values a = 0.5, c = 1.5, and b -

2Ro/a, where R. is approximatelythe nuclear radius.

At this point we could also consider a nonuni-

form spacing in the angular coordinate El,but have

found that a uniform spacing is adequate. However,

for conveniencewe choose to change the range of the

variable so that it runs from -1 to 1. Thie is

accomplishedby the transformation

e= T(I - s)/2 , -1<s<1.

For setting up the finite-differencematrix we

have used 20 intervals in t and 40 intervalsin s

(20 for Positive and 20 for negative s). This gives

a step size of 0.05 both in t and in s. Because the

3P
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Fig. 1. Location of finite-differencepoints in the
s-t plane. The numbers indicate the order-
ing of the spatial grid points in the fi-
nite-differencematrix. Since we used
nearest-neighborfinite-differenceapproxi–
mations it is clear from the figure that
point 1 is coupled only to points 2 and 20;
point 2 is coupled to points 1, 3, and 21;
point 21 is coupled to points 2, 20, 22,
end 40; etc. Because of spin-orbit coupling
there are spin-paralleland spin-anti-
parallel componentsassociatedwith esch
point. This leade to a matrix of dimension
2 x 19 X 39 - 1482 and bandwidth 2 X (2 X L9
+1)+1=79.

wave functionsvanish both at P = m and at Iz{ = co

the points at t = 1 need not be consideredexplicit-
In the moat connnonmethod, finite-differenceapproxi-

ly. In addition, the symmetry or antisymmetryof
mations for the various derivatives that enter are

the wave functions is used to eliminate the points
applied directly to the differentialequation, in our

[These are the t = O points which lie be-
case the Schr6dingerequation. In the second method,

at P = O.

tween the two foci, and the s = i’1(e - 0 or m)
the finite differenceapproximationsare made inside

points which lie outside the foci.]
the expression for the eigenvalue, in our case

Thus we are
(Yllflw.

left with 19 points in t and 39 points in s. The
The former method has the disadvantageof

distributionof these pointa is shcwn in Fig. 1.
yielding nonaymmetricmatricea whose eigenvaluee are

The correspondingdistributionof points in the

original p-z space is shcwn in Fig. 2 for the case
of 240Pu at the deformationy = 0.24, which is the

shape indicatedby the solid curve. (See Ref. 7 for

a precise definitionof y.)

TO make the following discussionmore general,

we denote the number of points in the t and s di-

rectionsby n
t
end n respectively. The total num-

S’
ber of spatial grid points is then given by ntn6 =

741, but because of spin-orbit couplingwe have to

calculate a spin-paralleland a spin-antiparallel

componentat each spatial point. Thus the dimension

of matrices we consider is N S 2n n
ts

= 1482.

III. DERIVATION OF FINITE-DIFFERENCEEQUATIONS

There are two standard methods used to obtain

finite-differenceequations for eigenvalueproblems.

20 - . ...” . . .
‘..“

“.
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g
. . . . . . . ..O

. . . . . .
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5

Location of finite-differencepoints in
the ~-z pl~e for 240PU at the deformation

y - 0.24. Also shown is the outline of the
equivalent sharp-surfacepotential for this
shape. Cross sections of the spheroids
and hyperboloids correspondingto constant
~ and 9 are easily discernible.
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not necessarily real. Although this problem can be symbol to denote different forma of a given quantity.)

removed by a techniqueused by Dickmann,we chose to The subscripts i and j each refer to the N apatial-

use the latter method, where the bilinear appearance spin grid points used in the calculation. The weight

of Y enablea a symmetric finite-differencematrix to factor Wi in the right-hand side of this equation ia

to identified. removed by the transformation

In the

is obtained

proximation

latter method, the eigenvalueequation

directly from a finite-differenceap- ~i = Yi$.

to the variationalequation

1 1

H6(Y](ff-E) [’# =6 da dt w(s,t)Yt(s,t)(H- EI)Y(a,t) - 0 .

-1 0

The wave function Y(a,t) is a two-componentcolumn

vector representingthe spin-paralleland spin-anti-

parallel components,‘+~(s,t)ia its complex-conju-

gate tranapose,H is a 2 X 2 Hamlltonianmatrix

which couples the two spin components,and I is the

2 x 2 identitymatrix. The azimuthal dependenceof

the wave functionhas been eliminated explicitly.

The weight functionw(s,t) is given by the product

of the volume element in prolate spheroidal coordi-

nates and the Jacobian for the transformationto s

and t, namly

d~ dEIw(s,t) = 2Ta3(sinh2tl+ sin2e)sinhrlSinexz .

In the above integral, terms that involve

second derivativesare integratedby parts before

the finite-differenceapproximationsare made. This

transforms the second derivativesinto first deriva-

tives, which are then approximatedby uans of a

two-point finite-differencerule (whose error is

proportionalto the square of the grid-pointstep

size). A two-dimensionaltrapezoidalrule (whose

error is consistentwith the error in the finite-

differenceapproximation)is used to evaluate the

integral. Taking the variation of this result then

leads to the matrix equation

N-.

x‘ijYj = ‘Wiyi ‘ i=l, ”””,N,

j=l

where the finite-differenceHsmiltonisn matrix H Is

symmetric. (In several instanceswe use the same

This converts the equation into the standard form

N

L
.~ij~j-‘vi ‘

i=l, ”””,N,

j=l

where the elements of the symmetric

given by

Ii l%.%j - ij

matrix H are

The ordering of points in the s-t plane for the

purpose of constructingthe Ilamlltonianmatrix ia in

principle arbitrary. The system we have used ia

shown in Fig. 1. Since the finite-differenceapprox-

imation couples only nearest-neighborpoints, the

wave function at point number n ia coupled to the

wave function at points n + 1, n - 1, n+nt, end

n - nt, provided that point n is not on any of the

edges of the s-t plane.

The spin-orbit term requires that the wave

functionshave two components,which correspondto

the spin being parallel to and antiparallelto the

total angular momentum. That is, the two ~z values

fl+ % and Cl- % are coupled because ~z is not a good

quantum number in the presence of spin-orbit forces.

Such a two-componentwave function is commady

written as

()
Y1

Y= s

Y2

.
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where Y1 is the spin-parallelcomponentend Y2 ia

the spin-sntiparallelcomponent. However, if writ-

ten in this way, the apln-orbit coupllngbetween Y1

and Y2 would lead to nonzero elements far off the

diagonal,which would make a direct diagonalization

of the matrix more difficult. It is far more con-

venient to reorder the various elements of Y accord-

ing to

(
VI(l)

Y2(1)

Y1(2)

Y2(2)
Y=

.

.

.

\/

Yl(741)

Y2(741)

where, e.g.,Yl(n) refers to ~1 at the =th spatial

point. With thie ordering the~th (spatial-spin)

componentof Y is coupled to at most the n f

(2nt+ 1) componentsof Y. These couplingsresult

in a finite-differenceHamiltonianmatrix that haa

a band structurewith nonzero elements off the

diagonal only as far as 2nt + 1 elements on either

side. Of course, many of the elements within the

band are alao zero, reflecting the fact that the

finite-differenceapproxhnstiondoes not couple,for

exsmple,the 13th and 18th points. The actual struc-

ture of the resultingband matrix is shown in Fig.

3, where nonzero elements are indicatedby black

dots.

IV. DETERMINATIONOF EIGENVALUESAND EIGENVEC7TORS

For each value of O there are N (1482) eigen-

values of the finite-differenceHamiltonienmatrix.

However, we are interestedin obtaining only a rela-

tively few of them, in particular the bound states.

Therefore,we uae the method of inverse iteration,

which picks out particular solutions. The method

involves making an initial guees for a particular

eigenvalueand eigenvector,end then successively

improving the eigenvector. For example, to find

1 5 10 15 20 25 ~

Fig. 3. 8tructure of finite-differenceHamiltonian.
Dots indicate nonzero matrix elements.
Numbere along the axes indicate the numbers
of the spatial points as shown in Fig. 1.
The number of the row or column of the
matrix ia given by twice the number shown
minus one. The numbers on the top and left
refer to the upper left-handportion of the
matrix, and the numbers on the bottom and
right refer to the lower right-hand portion.

the eigenvalue closest to A, we let A be our eigen-

value guess. The initial guess $0 to the eigenvector

can be taken to be en N-element-columnvector whose

elements are all equal. We generate a new (unnor-

mslized) guess II to the eigenvector from the equa-

tion

(H - AI)@l = $0 ,

or

$1= (H-@I$o s

where H la the finite-differencebend matrix, and I

Ie the N X N identity matrix. In general, a Lth

guess can be generated from the &st guess by

or

9 -(H- AI)-l+j-l = (H- AI)-j@o .

To demonstrate that @j is a better approxima-

tion to the wave function correspondingto 1 than



is

$0

H.

‘$3

By

$., it is convenient to use completenessto write

as a linear combinationof the N eigenvectoraof

Then the preceding equaticm beco=a

virtue of the factor l/(Ei - A)j, the ~th guess

has greatly accentuatedthat eigenvector in the ex-

pansion of $0 correspondingto the eigenvaluenear-

e.etto A.—

The general procedure that we have followed

involves selecting a A and a @O and then obtaining

the inverse of the matrix (H - AI). The inverse is

then raised to the ith pwer (wherej ~ 5 in prac-

tice), and the result ia dotted into +0 to give a

new wave function @ .
j

The quantity El - @jlHloj)/

(@jI@j) is formed, and if it is sufficientlycloee

to .4,we atop. If it differs from A by mere than a

certain amount we start over again using $ 55 $.,
j

but still using the original A. We calculate a new

$j andanew E1. We continue the process until the

new El is sufficientlyclose to the previous one.

When this occurs we say the process haa converged

to the eigenvalueEl, and the final @ (afternor-
3 (1)

mslization)is the correspondingeigenvector $ .

The value of A ia not changed to El in subsequent—
iterationsbecause the inverse of (H - kI) has al-

ready been obtained whereas the inverse of (H - Eli)

has not, Since the process of taking inveraea is

the most time-consumingpart of the calculation,it

is desirable to minimize the number of inverses re-

quired.

The inverse of (H - AI) can in general also be

used to find the second closest eigenvalue to A

once the closest haa been found. This is accom-

plished by using ae the initial wave-functionguess

a vector that is orthogonal to the previously found

eigenvector. Once the second eigenvector end eigen-

value have been found, a third can in general be

obtained by using a guess that is orthogonal to

both previously found eigenvectors. In principle

this process could be continued and all deeired

eigenvectorsfound with just the one inverse,

(H- AI)-l. However, in practfce a point ia reached

where A ie sufficiently far from the eigenvalue

being aought that the number of iteration required

is too large, and it becomes more economical to use

a new A end compute a new inverse. With the use of

any one X, it ia neceseary to continuallysubtract

out from a newly generated $ components of previous-
.j

ly found eigenvectora that are generated becauae of

nmnerical errors.

The inversion of the bend matrix was performed

by the etandard procedure of firat factoring the

band matrix into upper and lower triangular factors

and then inverting the two factors. The use of a

direct method for inverting the band matrix was

found to be roughly 100 times as fast as the Reczmsrz

iterative method used by Dickmann.
2

However, the

direct method requirea aubatentiallymore atorsge

space then the iterative method, which makes some

form of extended-corestorage imperative for imple-

menting the direct method.

v. NUMERICAL ACCIJRACT

The computer program that we have written finds

all eigenvalues and eigenvectorsbetween two input

energies. (For example, all bound states are calcu-

lated if these two energiee are the bottom of the

potential well and O.) The accuracy with which the

eigenvalues of the Hamiltonisn matrix (which are only

approximationsto the eigenvalueaof the true Hamil-

tonian) are found ia an input quantity,which we

have taken to be 10-5 MsV. With this accuracy re-

quirement and the number of grid points that we used,

the program averages about 30 aec of CDC 6600 com-

puting time per level. The program has no problem

resolving very nearly degenerate statea because of

the orthogonalizationprocedure described above; it

has resolved atatea that are se close together as

10-5 MeV.

The progrsmwaa used to obtain the eigenvalues

and eigenvectorafor 240Pu for eymmetrlc deforma-

tions ranging from y = O to y = 0.4 end for the
298

auperheavynucleus 114 for deformationsfrom

y=otoy=o.z. (See again Ref. 7 for a definition

of y.) In addition, the program waa tested exten-
240

sively for Pu for the spherical ahape, for y =

0.24, for the case of two equal tangent apherea, and

for a very asymmetric ehape correspondingto the

x = 0.8 Businaro-Callonesaddle point.9

The

an error

accuracy

finite-differenceapproximationintroduces

which is to be distinguishedfrom the

of the inverse-iterationsolution mentioned

.

6
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above. This finite-differenceerror depends upon

how rapidly the wave function ia varying and upon

the magnitude of the step size. If tha wave func-

tion is a smooth function of P end z (and therefore

of s and t), the solution is quite accurate. How-

ever, for more oscillatorywave functions there is

a degradationof the accuracy. We found in practice

that nodes (or oscillation) in the radial direction

caused more serious degradationthen did nodes in

the angular direction.

The accuracy of the solutions could be checked

by comparingthe eigenvalueaobtained for a sphere

with exact sphericalsolutions obtained with a one-

dimensionalprogram, and for general shapes with

solutions obtainedby use of deformed harmonic-
5-7oscillatorexpansiona. For superheavynuclei

like 298114, the accuracy for the ntmber of grid

points used ranged from several thousandthsof an

MeV for the ground-statelevel up to almost 1 MsV

for highly oscillatory.levelsthat are nearly un-

bound. The accuracywas somewhat better for lighter

nuclei. For almost every level, we found that the

finite-differenceresult was lower than the exact

results. (This is not a contradictionof the varia-

tional principle,which applies only when an exact

Hamiltonien is used; in our case the Hamlltonianhas

been replacedby a finite-differenceapproxfmation.)

The single-particleenergies can be computed

with comparableaccuracy for a general reflection-

asymmetricaxially synxnetricshape in about 1.2 aec

of CDC 6600 computingtime per level by use of de-

fOrmed harmonic-oscillatorexpansions,5-7 which iS

approximately 25 times as fast as the finite-differ-

ence method. Expansion methods are therefore to be

preferredwhen the main interest is in calculating

the single-particleenergies of relativelysmooth

potentials. It is possible that a finite-difference

method could be useful in connectionwith less

smooth potentiala and for calculatingthe asymptotic

behavior of bound-statewave functions. However,

we have not pursued either of these areas.
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