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TRUNGULAR MESH DIFFEREXE SC-

FOR THE TRANSPORT DJIATION

w

Wm. H. Reed

ASSTRACT

Present transport codes require that the physical
ayatem be de8cribed by am orthogonal mesh. This restric-
tion leads b the 8imple8t difference achemea but may re-
quire that an excessive number of mesh points be used to
describe &iequately a complicated system. Triangular
mesh difference schemes for the transport equation are
discussed in this report. These 8chemes preserve the
s~licity Of difference schemes on an orthogonal mesh
yet permit a much finer representationof casplicated
geometries, for a given number of mesh cells. Solution
of the triangular mesh difference equations is discussed,
and the truncation error of these equations is derived.

I. INTRODUCTION

Solutions of the neutron transport equation are

obtained most often by the method of discrete ordi-

nates,1 often referred to as the Sn method. This

method represents a direct dfscretizationof the

integrodifferentialtransport equation. A number
2-4

of computer codes have been developed using the

method in one EUKItwo space dimensions and in rec-

tangular and curved geometries. All of these codes

have utilized an orthogonal.mesh, which we define as

a mesh whose grid lines meet at right angles. The

use of such en orthogonalmesh leads to the simplest

difference equationsbut mW require an excessive

number of mesh points to descrtbe complicatedgeom-

etries adequately.

Consider the descriptionof a circular region

in x-y geometry as illustratedin Fig. 1. This

is perhaps the simplest of complicatedgeometries.

We attempt to describe Fig. 1 by using a standard

orthogonal grid where aU grid lines run parallel

to the coordinate axes. Restricting to fewer than

50 mesh cel-ls,we obtain the representationof

Fig. 2, which is poor, but is the best that can

Fig. 1. A simple circular region in rectangular
geometry.

be done under the above restriction. To obtain

an adequate representationof the circle, on the

order of I.000mesh cells are needed. Of course,

zwst geometries of physical intereat are more com-

plicated than Fig. 1, and many thousands of mesh

cells are needed.
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Fig. 2. An attempted description of a circular
region with m orthogonalmesh of 49 mesh
cells.

The 8ource of this difficulty lies in the re-

quirement that mesh lines be parallel to coordinate

axes, or, stated more properly, that the mesh be

orthogonal. If this requirement is abandoned, then

complicatedgeometries can be drawn easi-ly. If,

however, no regularity is preserved in the mesh

grid, then the descriptionof the mesh becomes a

major problem end the difference equationsbecome

excessivelycomplicated. AtrLmw’ulw Ush iS a

good compromisebecause it is flexible enough to

represent the must complicatedgeometries and yet

preserves the regularity vital to simplicityof the

implementingcode. We IUuetrate in Fig. 3 the

flexibilityof a triangular mesh by drawing with

triangles the circular region shown in Fig. 1. It

is clear that, with fewer mesh cells, triangles

permit a much finer representationof such curved

shapes than does an orthogonal grid.

To establish conclusivelythe above point, we

present in Fig. 4 a triangular decompositionof a

complicatedgeometry, which is shown in Fig. 5 ~tb

en attempted orthogonal representation.

We propose to develop a two dimensional dis-

crete ordinates transport theory code based on ●

triangular mesh. We intend to incorporateinto this

code mst features and options of the presently

available two dimensionaltransport code ‘H’RAILk

Some of these features are
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An attempted descriptionof a circular
region with a triangularmesh of 46 cells.

Triangular representationof a complicated
geometry.

Orthogonal.representationof a complicated
geometry.
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1. (x,y) end (r,z) geometries,

2. Direct or @joint calculations,

3. General order 8ce.tteringani80tropy,

4. “Group at a time” 8olution so that storage

requirementsare independentof number of energy

groups,

5. Flexible boundary conditions,

6. Inhomogeneoussource or eigenvalue (keff

or time) calculation,

7* fhitiCLiLitysearche8 on nuclide concentra-

tion or zone thicknesses,

8. Coarse mesh rebalancingof inner and outer

iterationprocesse8,

9. Input of

file,

10. Built-in

1-1. Flexible

12. Flexible

sources, and

13. Detailed

cross sections from cards or disk

Sn constants,

restart procedures,

input for flux guesses and

editing capabilities.

In eddition,we propose to include as an option a

newly developed method designed to eliminate the ray

effect. The rw effect is a severe spatial distor-

tion of the neutron flux characteristicof the dis-

crete ordinate method in two dimensional geometries.

This effect is eliminatedby adding a fictitious

source to the discrete ordinate equations that

forces these equations to yield solutions to the

Pn equation8.

A neutron transportcode featuring a triangular

mesh and includingthe above options Offel’8nmre

flexibilityto the reactor designer than do the pre-

sent transport codes.

II. D~E MEI!HODSON~ MESHSS

In this report, we consider only the “regular”

triemgularmeshes, by which we mean that every in-

terior node Is the vertex of six adjacent triangles.

No condition is imposed on boundary nodes. A fur-

ther restrictionon the mesh is the requirement that

all ncdea lie on horizontal lines extending throu@

the system. The purpose of the8e restrictions is to

s~lifY the descriptionof the mesh tithout de-

stroying its flexibility. AU the example8 of tri-

SM&@= meshes Presented in the introductionare of

the above type.

Let U8 assume, for the nmment, that we are

dealing with x-y rectangular geometries. To specify

such a triangular me8h we must give the y coordi-

nates of the horizontal lines and the x coordinates

of the node8 along each line. The mesh is then com-

pletely determined by the direction of the first

triangle on each band. Consider a simple example

consisting of a single band with six nodes on eech

of the two horizontal line8 forming the band. The

two pos8ible triangular arrangementsare indicated

in Fig. 6. We refer to a triemgular mesh with the

first triangle pointing upward as being Type 1. If

the initial triangle points downward, the mesh is

said to be Type 2. Thus, to completely determine a

triangular mesh of the kind being considered,we

must specify a type number for each band, in addi-

tion to speci&ing the coordinates of the nodes.

Hating defined our mesh, we can now derive a

set of finite difference equations. For simplicity,

these equations will be derived only for the case

of x-y geometry, although it i8 intended that the

proposed code wWL e.l,sohandle r-z cylindrical geom-

etry. The analytic form of the transport equat%on

in x-y geometry is given by

Type 1

Type2

Fig. 6. The two possible arrangementsof trian-
gles on a single band.
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(1)

where $ is the neutron flux end p and o are the co-

8ine8 of the angles between the neutronta direction

and the x and y axes, respectively. In the above

equation, the source has been represented dmply as

S, but it must be remembered that this source in-

cludes scatteringand fission terms that involve

integrals of the neutron flux $ over the angular

variables p and q. The treatment of these terms

of the transport equation is well understood and

not particularlydependent upon the form of the

space mesh.

The discrete ordinate approximationto Eq. (1)

consists of the set of equations

at
‘m ax

2+%> + U$m= Sm, m= 1, 2, . . . . M, (2)

where the continuousvariables v and T have been re-

placed by the discrete points pm end ~. The func-

tion $m(x,y) is then an approximationto the exact

solution t(x,y,~m,~) in the m’th direction. The M

equations above are coupled only through the source

term S.

A number of difference approximationsto Eq.

(2) have been suggested. A currently pqnihr fi-

nite-elementmethod assumes that the flux $m(x,y)

is linear in each triangle and is determined by the

flux values at the vertices of the triangles. A

difference equation for the unknown flux at each of

the8e node points is then derived by multiplying by

a weight flmctlon and integratingover the hexagonal

region composed of the six edjscent triangles. With

a proper choice of weight functions, this procedure

is a Ga.lerkinmethod and is equivalent to the mini-

mization of a functionalover the trial apace of

functions of the above form. It is, therefore, cer-

tain to give accurate answers and converge to the

exact solution in the limit of an infinitely fine

mesh. It is not clear, however, that such methods

presemre neutron balance, in the sense that the total

leakage plus absorptionmust equal the total source.

Pre8ent difference scheme8 on orthogonal grids do

preserve such balance, and this fact im utilized

throughout current transport cedes. A further dis-

advantage to using the finite-elementmethods is th?

solved for the fluxen at the nodes. Esch node point

iIIcoupled to the Sk adjacent nodes. PhyBicaUy,

the flux is coupled to only two of these nodes. The

increased coupling in the difference equation8 means

that they caanot be solved in a direct fa8hion by a

single aweep through the mesh, as can be done with

present schemes. An iterativeprocedure must be de-

vised to solve such equations. Although it i,Ynot

clear that this iterationwill be slower then the

source or inner iteration already present in trsns-

pc.rtcedes, such an iterativeprocess requires the

storage of the complete angular flux. Pre8ent

transport codes store only the scalar flux and

enough mments of the angular flux to generate the

scattering source. The complete angular flux con-

tains IO to 100 times as many numbers as the scaler

flux for most problems. The additional storage re-

quired for this array exceeds the core or extended

core capabilitiesof all computers, so that disk

storage must be used. An iterativeprocedure in-

volving repeated use of disk storage is Mkely to

consume too much computer time.

For these reasons we abandon the finite-ele-

ment schemes and search for methods similar to

those now in use. One such method can be derived

in the following manner. First, we introduceun-

knowns at the centers of the triangles end on the

faces between triangles, in addition to the un-

knowns at the vertices of the triangles. Such a

mesh arrangement is illustratedin Fig. 7.

r

I

dense coupling present in the equations that must be

4

Fig. 7. Arrangement of unknowns on a triangular
mesh.



With en even total number of trienglets N, the

totel number of umknowns in ● mesh llke that of Fig.

7 ia precisely 3N. There are 3N :1 unknuwna for

the m’th ordinate for an odd number of triangles.

We must therefore derive a set of 3N or 3N ~ 1 equa-

tions, depending on whether the mesh ia odd or Wen.

The first N equations we derived by integrating

the diecrete ordinate equation ~. (2)] over each

of the N triangles.

writing Q. (2) as

we have

where we have used the divergence theorem to ex-

press the volume integral as a surface integral for

the first term. V is the volume oftriengle being

considered,and ; is em outward pointing vector nor-

mal to the surface of the triangle. liecan remite

the above equation in the folJ.owingform where the

surface integral has been expressed as the sum of

contributionsfrom the three feces of the triangle.

fim”~f 0h+fim.fi2f $ds

‘1 ‘2

+fim.~j tid8+a~vtid?=SSdr,

‘3
v

where ~, fi2,- Z are unit outward normals. We

make the following definitions

(34

(3b)

(3C)

(w

[Sal,

so-+ #

to obtain

+ a+. = So.

(3e)

(4)

Ifwe Identt& the fluxes #1, +2, and t3w’lth the

cell-face unknowns and *O with cell-centeredun-

knowns, ue obtain the flrnt N difference equationa.

Equation (4) is abalance equation for a single

cell end equates flow in minus flow out plus absorp-

tion to the cell source So.

An additional.N equations can be obtained by

assuming that the ce.U-centeredfluxes $i ~ are

averages of either the cell-face fluxes o; the

cell-vertex fluxes. This leaves N or N~ 1 equa-

tions needed to solve for the 3N or 3N: 1 unknowns

that we have introduced. To obtain these equa-

tion8, we examine the two possible orientationsof

a triangle with reepect to a single direction, as

uustrated in Fig. 8. Triangles with the ftiat

orientation have only a single face visible from

the specified d5rection; triangles with the second

orientation have two faces visible. We assume that

the neutron flux on the faces visible from a speci-

fied direction are known from boundary condi.tion8

Orientation 1

Orientation 2

Fig. 8. The two possible orientations of atrian-
gle with respect to a single direction.
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or from previout3calculationsin adjoining calls.

In this case, there are four unknown fluxes in tri-

angles of Orientation 1 and two unknown fluxes in

triangles of Orientation 2. Because we have already

derived two equationsper triangle, the two unknowns

in triangleswith the second orientationmay be

solved for immediately. If the triangle is of the

first orientation,two additional equations are

needed. They are obtainedby assuming in these

triangles that the two unknown cell-face fluxes are

averages of the appropriatecell-vertex fluxes.

The above assumptions canbe shown to yield

precisely the needed number of equations. Further-

nme, this aet of equations ~ be solved in a sin-

gle sweep through the mesh, provided the source is

known. The order in which the un.knownaare deter-

mined ia slightly more complicated thau for an or-

thogonal mesh. A simple example will.best clari~

this process. Conaider a direction flmsuch that

km>Oand~>O. The flux at points along the

left and bottom edges of the system are known from

boundary conditions. Using these boundary fluxes,

the unknowns in the bottom-most band of triangles

can be determined. The solution process for the

bottom band can then be repeated eucceasivelyto

determine the fluxes in higher bands. We therefore

consider only a single band of triangles as shown

in Fig. 9. The first triangle ia of Orientation 2,

and the fluxes on the face between the first and

second triangles are needed to solve for the flux

in the first triangle. We must therefore skip the

first triangle and solve for the fluxes in the sec-

ond triangle,which is of Orientation 1. This de-

termines the fluxes on the face between triangles 1

and 2, ao that the fluxes in triangle 1 may now be

/

Clm

Fig. 9. A typical band of triangles with direction
of flow across faces indicatedby arrows.

determined. We must now skip the next three tri-

angles to obtain atriangle inwhich sufficient

boundary conditions are known to permit solution.

The full solution process ia illustratedin Fig. lo.

Difference equations derived in the above man-

ner have several attractive features. Equation(4)

guarantees that neutron balance is retained, in the

sense specified e-lier. The difference equations

maybe solvedby a direct sweep through the mesh,

if the source is known, and it is not necessary to

store the complete angular flux. Standard con-

vergence =celeration devices, such as coarse mesh

rebalancing, can be used for the source iterations

with little modification. These facts make for a

relatively easy introductionof such a difference

scheme into present transport codes.

Let us now consider some of the details of the

scheme we have just proposed. The form of the coef-

ficients flm ● fiaappearing in l?.q.(k) can be de-

rived in the following manner. Assume that the

projection of the vector flmonto the x end y axes

is given by pm and ~, respectively. The projection
A

Km of ~n on x! is determined as shown in Fig. ),)..

step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Fig. 10. A sample solutionprocess on the band of
trianglea of Fig. 9. Dots represent known
or determined fluxes.
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All

~m
Y

o

‘m

x’

xv

Fig. 11. Geometry for

liehave

determination

However,

of Km.

end

Km = pm co. Q + \ sin Q.

NOW consider neutrons streaming in the direc-

tion ~m. We want to determine whether neutrons

flow to the left or to the right across a particular

face of a triangle (Fig. M). We let Ax = xl - Xu,

where X4 is the x coordinateof the lower point and

Xu is the x coordinate of the upper mint (see Fig.

3.2)of the face. If ~ is the rightward pointing

normal to the face, then we have

fim ● fi= IAmCOSQ + \sin Q,

and

x“ x“

Fig. 12. Two triangle faces showing rightward
normals il.

TLet s . Ax +& be the area of the face of the

triangle. Then we are actudlly interested infim .

6s, which is given by

We note that the direction of flow is correctly

predicted by the above formula in the special cir-

cumstances indicated in Table I.

1

2

3

4

TABLE I

DIREXTION OF FIOW IW CERTAIN CIRCUMSTANXX3

JL 3 Ax FMw—
+ + + +

- +

+ +

+

The situations in Table I are illustrated in

Fig. 13.

I 2 3 4

Fig. 13. Direction of flows given in Table I.
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The coefficientsfim ● ilaappearing in Eq. (4)

can now be written explicitly. We con8ider both

upward and downward pointing triangles illustrated

in Fig. lk. For the downward pointing triangle,

these coefficientsare given by

fin”%%=

hm ● ;282 =

and

fin ● 63s3 =

lj#Y+ %(X3 - “1), (54

-VmAY- N(X3 - X2), (5b)

q$xl - X2) ●
(5C)

The coefficientsfor the upward pointing triangles

are

.A

‘m “ ’282 =

and

Flm
“ ‘3s3=

Let us

IAmAY+ ~(”1 - “3), (5d)

-VmAY - ~(x2 - X3), (5e)

-~(xl - X2). (5f)

now consider the solution of the 8et of

difference equation8 for a particular triangle. We

will assume initiaJly that the cell-centeredflux

is the average of the cell-face fluxes; the other

pOBBibilitywill be considered later. If the tri-

angle is of the second orientation,as depicted in

Fig. 15, then we need only solve for $0 and *1 in

terms of the boundary fluxes bl - b5. We have the

folhwing equations.

‘1% - *2b2 - A-Jk + IYWO- Sov,

and

*1 + b2 + b4 = 3$.,

( 6a)

(6b)

“v’A i.
% ~z 9, xl

b,

Fig. 15. A triangle of the second orientation.

where ~, A,, and A3 are positive and equal in mag-

nitude to ?lm ● ~k, k = 1, 2, 3, in zzomeorder, de-

pending on the po8ition of the triangle. The solu-

tion of the above two equations is given by

Sv+ (~+ A2)b2+ (A1+A3)bk
*O = 3A1 + Uv (7)

for the cell-centeredflux. The cell-face flux is

then found from

*1= 3ti0-b2-b4. (8)

We note that the cell-centeredflux is a.lwws

positive if the boundary fluxes b2 and bk and source

So are positive, but that EZI.(8) zuw produce a

negative cell-face flux. A similar problem arises

on an orthogonal grid, where a detice known as a

negative flux fixup is used to guarantee positivity.

We propose to use the same device on the triangular

grid. If a negative $1 is detected, it is set to

zero and the cell-centeredflux *O is recalculated

from ~. (6a) to preserve neutron balance.

If the triangle is of the fir8t orientation,

as shown in Fig. 16, more unknowns ue involved.

We must solve for the four unknowns *0, tl, +2, and

$3 in terms of the boundsry values bl, b2, and b3.

The equation8 are

Fig. 14. Mesh definition for upward and downward
pointing triangles.
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(la)

12b

Again, the use of a negative flux fixup is eug-

gested. There are now four fluxes that !@f be neg-

ative in any combination,therefore such a scheme

is likely to be complicated. The simplest but

lesat accurate remedy is

(gb) through (gal)by the

the replacement of

following relation

Eqs.

Fig. 16. A triangle of the first orientation.

~*2 + A2*3 - ~b2 + aV*O = So’J,

3$0 =*2+ti3+b2,

2$2 = bl + *1,

end

2*3 = b3 + *l.

(13)

(98)

(gb)

(9C)

(gal)

The above assumption la similar to that of the

“step” scheme on an orthogonal grid. It gives

*O = *1 S*2=$3= ‘ov+A3b2
~+A2+uV’

(i+)

and thus guarantees positivity of all cell fluxes.

In the above anaJYsis, it was assumed that the

cell-centeredflux is the average of the cell-face

fluxes. An equalJy valid assumption is that the

cell-centeredflux is the average of the cell-vertex

fluxes. Slightly different results are obtained

with this second assumption. For triangles with

the second orientation,we replae ~. (6b) with

The coefficients~, A2, and A are again positive

and equal in magnitude to ?lm.3~~, k = 1, 29 3>

in some order. We solve for the cell-centeredflux

@o

+.-0
3%+32

.

2
~+av

(lo)

3tiO= b3+b1+k-, (15)

which completely determines $.. The cedl-face flu

$1 is then found from U. (6a) tobe

*l=&l[SOV + A2b2 + A3bk 1-$%3+bl+b5
(16)

Becausethe coefficientof either bl or b3 is neg-

ative, posititity of the celJ-centeredflux cannot

be guaranteed for this scheme. It Is not known how

serious this problem would become in practice. When

+0 is determined,the cell-vertex flux tilcan be

calculated from

A fixup will again be

negative.

For triangles of

place Eq. (9b) with

needed because $1 can be

the first orientation,we re-

(17)bl+. b2,t1=3tJo-~ (XL)

Solving Eqs. (9a), (17), (9c), and (9d) for $., we

obtain

and the X cell-face fluxes cam, in turn, be csl.-

culated fran

9



A A.

In this case, the cell-centeredflux iB alwqrs

pmitive, but ~1 is given by

(M)

and sww be negative. The fluxes $2 and *3 are again

given by I@. (1.2)and ISW also be negative. The

fixup scheme of EqE. (13) and (14) can W* be ‘

used to ensure poaititity of the flux.

We next examine the truncation error of the

above approximationsto the discrete ordinate equa-

tionn. TO determine this truncation error, we sub-

stitute an exact solution of the discrete ordinate

equations in the difference equations. The amount

by which this exact solution fails to satiafy the

difference equations ia called truncation error.

Since Eq. (k) was derived by integratingthe

discrete ordinate equations over a triangular cell,

en exact solution of the discrete ordinate equa-

tions satisfiesthis equationwith no truncation

error, provided the definitions [Eq. (3)] of $0 -

*3 are used. We therefore need only examine the

auxiliary assumptionswe have made, which appear

above asl?qs. (6b), (9b) through (9d)~ (15)> d

(17). With the notation of Fig. 17we need only

examine the following three equations,which are

representativeof those listed above.

$’”

I

F=. 17.

10

Mesh definition
ansJy8ia.

~-Axr+

for truncation error

(lga)

(19b)

(19C)

Recalling the definition m. (3)] Of *1, *2, ~

+3, we have the following expression for the trun-

cation error Ea of Eq. (19a)

Es=] M-J(
4) +*(5)

2 )
s. ‘1

1.

where the integral 18 taken along the face between

points 4 and 5 and *(4) and 6(5) are the exmt

fluxes at points 4 and 5. The length of this side

of the triangle is sl. Expemding t about the point

1 we obtain

82
Ea5~ J[ 1~+ stia+~tiss+... ds

‘1 8

[(

2

; t->
‘1.-

)
*S + r *SS

(
2

‘1
+*+T

‘1 H*6+~*s6+..0
2 2
‘1*SS %*SS.$+F-*-T+ ●**#

ad

square of the length

‘lhus,the truncation error of Eq.

order of the

face.

We next

~. (19b)

1$ = 3*(O) -

(l$Ia)is of the

of the triangle

examine the truncation error ~ of

t(k) -*(5) -$(6).

&pandhg about the point O,

.



4 $y+ O(q, AY2)I~=3*-[t-&l$x-3

- [* + Ax3tx + * w + O(dx:,AY2)I

~ by + O(d$ LW2)1-[$+ Ax#x-3

and

+ O(t+, L+,

cOn8ideIXIth’I

that

Ax:,&2)●

of the triangle in Fig. 1’7 shows

AX2 + &3 . AxI,

so we have

Mith some additional.algebra, the above error can

be given by

~ = 0(s:, s:, s;),

so that again the error is of second order.

The error of Eq. (19c) can be shown to

second order by using previous results. We

E= = 30(0) - b(l) - *(2) - *(3).

But we have shown that

0(1) = $(4) + *(5)
2

+ 0(s:).

In a similar fashion,

~(21 = v(5) + J(6)
2

+ 0(s;),

and

*(3) = $(4) + $(6)
2

+ 0(s$.

Substituting,

be of

have

3$(0) - $(4) -

~+o(s:, s:,

We have shown that all truncation errors are

of second order. If the equations are stable

(they have not been ahown tobe stable), then the

true error, defined as the exact minus approximate

tiolution,will be second order. Thus, the above

methods should retain the accuracy characteristic

of the dienwnd difference scheme on an orthogonal

mesh. We note that the fixup routines suggested

to ensure positivlty of the flux are not, in gen-

eral, second order. The use of these fixup routines

may lead to a global loss of accuracy.
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