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Abstract

We consider the problem of using the information froLuvarious
time series, each one characterizing a different physical quantity, to
predict the future state of the system and. based on that information.
to detect and classi~ anomalous events. We stress the application
of principal components analyais (PCA) to analyze anu combiue data
horn different sensors. We construct both linear and ~mdinear predic-
tors. Iu particular. for linear prediction we use the least-mean-square
(LMS) algorithm aud for uouli.uear prediction we use both backprop
agation (BP) ne~orks and fuzzy predictors (FP). As an application.
we consider the prediction of gamma counts from past values of elec-
tron and gamma couuts recorded by the instruments of a high altitude
satellite,

1 Introduction

Here we report our progress on the problem of detection and characterization
of multi-instrument signatures of auomalous eveuts, Our approach is to com-
bine past multi-instrument information in order to predict the future state
oft he system. If the predicted and the actual wdues differ significant Iy. then
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Figure 1: Gamma and electron counts as a function of time. The time
resolution of the data is 1 min.

we may interpret that difference as evidence about the possible occurrence
of an anomalous event. .4s a benchmark. we consider the use of put electron
and gamma counts. as recorded by several instruments onboard a satellite. in
order to predict future gamma counts, Plots for gamma and electron counts
as a function of time are shown in Figure 1.

We can split our approach into two coupled problems: the predictor design
problem and the combination of multi-instrument measurements problem.
In general, the design of a prediction system involves the determination of
a function j, which relates past and present information to future values of
the quantity that we wish to predict. M’ecan design both linear (the output
is proportional to the input) and nonliuear prediction systems,

Recently [1, 2], artificial neural networks have emerged as a flexible nonlin-
ear predict ion tool. The re=on for thi6 is that fwd forward neural network6.
under certain conditions that will be discussed in Section 3, are known to be
universal approximants to functions. If t here is a linear or nonlinear function



relating past information to future values. then a neural network with the
appropriate architecture should be able to determine that functiou.

Backpropagation networks are not the only possible systems which can be
used as universal approximators of continuous real-valud functions. There
are sm-eral approach-. In particular, we use the fuzzy learning algorithm
of Wang and Mendel [3] to appro.simate the function. if any, conn~t ing the
past to the future. When constructing fuzzy rules from input-output data.
the fuzzy learning algorithm. requires a single pass through the training data.
This is in sharp contrast with the training of Imckpropagation networks:
which requir~ rnult iple pases (epochs) through the training daia.

In order to assess the goodness of our predictions WPuse two diagnos-
tics: the normalized mean squared error E and the correlation coefficient p
between actual and predicted values. Both & and p will be formally defined
in Section 2. Ideally & should be as close to Oas possible and p should be as
close to 100% as possibls.

Regarding the inputs combination issue, we have chosen to rep~ent the
input data in the principal components representation, There are several
reamns underlying this choice, In particular, if the first principal components
are the ones with most of the intrinsic information of the data, then we can get
information about the relative importance of the input data by considering
the components of the principal vectors. 1’CA will be discussed in Section 2.

2 Gamma Counts Prediction

The gamma counts prediction problem can be ~tated as follows: let ~ be a
data vector containing past information on electron and gamma counts up
to time t,

~ = (ef,el_T,. . ).:ef-(j)- l)T:~’f!?t–T . . . . . %-(9-I)T . (1)

where ef and 7( denote the number of electron and gamma counts at time t.
respect ively, Let ~1+T hot e the future value of the gamma counts at time
t + T and =sume that there exists a function / connecting past and present
information with the future.

:I+T = f(i).
The problem is to determine ~,

(2)



Lnorder to meimre the goodIIess of our predictions we use twv quantities:
the normalized error & and the correlation coefficient p. In the following we
will denote the predictd wdue of R~+~ by ~~+r. We define the normalized
error & as the ratio of the mean square error .US13.

(3)

where iv is the munber of points in the sample. to the wwiance lr.411 oft he
actual data.

un = +$(T; - (~))’m
1=1

(4)

that is.
& = MSE/1’AR. (5)

The correlation coefficient p is defined as

(6)

where U7 and a; are the standard deviations of the actual and the predicted
gamma count6. respectively. The prediction is perfect if E = Oand p = 100%.

If the function J is approximated by a linear method such as the LMS
algorit kun [-J], then the predictor is linear. Ou the other hand, if j is ap-
proximated by a nonlinear method. such as a BP uetwork with nonlinear
activation functions or a fuzzy predictor. then the prdictor is nonliuear.

2.1 Backpropagation lNetworks

Feed-fomard neural networks with 1 inputs, one or several hidden layers of
units with nonliuear activations, and one output layer with m outputs are
known to be universal approximantb to mappings oft hc form ! : @ - Z7m.
For an introduction to the theory of neuml networks we refer the reader to
[5].

In all of our nonlinear predictors, we use feed-forward networks with one
hidden-layer of nordiueal activation functions. g(x) = tauh(x). The networh
are trained using the backpropagation algorithm [6] with the addition of a
moment urn term [7] to accelerate convergence. The inputs to the network



are given by the first few principal components. obtained by projecting <:
into the principal components basis. The network has one output for the
predicted ;,+I.

2.2 Fuzzy Rule Extraction From the E)ata

The theory of fuzzy sets [8] provides a useful framework for representing and
making inferences with vague or uncertain information. Traditional fuzzy
inference systems have been constructed usiug fuzzy rulfi provided ~ a hu-
man expert. On the other hand. in a neural network the rules are extracted
by the ne~ork using the input-output training data. R&ently,.Wang and
Mendel [3] have deviced a fuzzy krning algorithm for extracting Iuzzy ruies
from numerical data. Wang and Mendel also showed that the resulting infer-
ence system can be used to approximate any continuous real-valued function.
In the s~ial case in which we apply the Wang and Mendel algorithm to a
prediction problem. we refer to it as the fuzzy predictor.

The fuzzy predictor has several advantages over backpropagation net-
works

1. The extraction of fuzzy rulw rquires a single pass through the training
data. (’)n the other hand, backpropagatio~ nerworks require several
pass- through the training data in order to achieve good function
approximate ion:

2. Rules generated by a imruau expert can be ezwily incorporated iuto
the fuzzy rule bass. Iu contrast. there is not an straightforward and
general procedure to implement rules generated by a human expert into
a backpropagation network:

3. Fuzzy predictors are local. that is, the effect of each rule is conce~tratcd
in the vicinity of t he training input which was used to generate the rule.
Backpropagation networks implement global mappings. The presence
of a new training sample tiects, in general. all the weights iu the
network.

We now describe the fuzzy learning algorithm of Wang md Mendel. The
discussion follows [3] aml is included here just to make the presentation self-



contained. Suppose we are given a set of 1[ input-output pairs:

(~’)”~(’))““”””(flK)$ii’)“ (i)

where F is an m-dimensiomd vector of input values. y is the corresponding
output value, and the superscript denotes the sample number. The task is
to apprtmiznate a function I relating the inputs .7 to the output y.

(8)

The approach is to approximate f through the generation of a set of fuzzy
rules such as:

if [(xl is .41) and (.r2 is .42) and . . . (x~ is .4*)] then (y is C;) , (9)

where .4 is an antecedent or predic~te fuzzy reqicm and C’ is a consequent
fuzzy region.

The WaJlq and Mendel algorithm cousists of the following steps:

1.

..d.

3.

Divide the input and output spaces into fuzzy regions. Let

[%x;] ~ [ .,-] I“md y–. V– cenote the domaiu intervals for the jth iuput Tj
and the output g, respectively. IN-fide each domain interval into 2N+ 1
regions and assign each region a fuzzy membership function p, as shown
in Figure 2.

Generate the fuzzy rules from the training input-output data
pairs. For each one of the trained samplm and using the ~~signed
membership functions: a) determine the degrm of given x~ ), ..., #..
and y in different fuzzy regions. b) =ign a given x~), . . . . .r(~) or y to
the region with maximum degree. obtain one rule. such M Eq. (9), from
each training inpu:-output sample. d) assign a degree to each of the
fuzzy rides. and e) solve conflicts betvwn rules by giving priority to the
rule with maximum degree, Fuzzy rules generated by a human expert
can be e~ily implemented into the fuzzy rule base. This is achieved
by assigning a degree to the rule generatd by the human expert and
solving conflicts with other rules ~u the way just described.

Determine a mappbg ~ based on the fuzzy t-ciative mem-
ory (FAM). Given the out-of-sample data {(xl, X1,..., x~ )}, use some
clefuzzification procedure to determine the output y. Wang and Mendel
use a cent roid defuzzificat ion formula.
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Figure2: Fuzzy regions and fuzzy membership functions

2.3 Principal Component Analysis

One of the most important issues when applying fuzzy predictors aud back-
propagation networks is that of data preprocessing. Appropriate datapre
processing leads to a more efficient use of the information contained in the
past values vector {of Eq, (I). In our data preprocessing stage we use PCA.
With PCA we get good input data compression (dimeusionality reduction)
and noise reduction while presem ing as much information about the inputs
as possible. PCA has been used for image coding [9] and to reduce the dimen-
sion of speech signals for vowel classification [10]. For a general discussion
on I?CA see [11].”

We obtain the ith principal component. ,~i, projecting ~ along the ith
unit eigenvector. i3iJ, of the covariance mat rhc C.

Cj~ = ((&j - (&j)) (&&– (<~))). (lo)
The principal components are ordered in terms of decre~sing eigerwalue. The
ith eigenwdue Ai is the variance of the data along the ith direction.
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2.4 Results

The way in which we
the input vector ~ of

preprocm our
Eq. (1) with 8

input data follows. We start with
component 5 (4 for past wdues of e

and 4 for past values of ?) and project it into the principal components
representation [12]. The input ~1 io the predictors is given by the first 3
principal components. predictors with more than 3 principal components as
inputs did not lead to any improvement in the predictions.

Figure 3 is a plot of the absolute value of the components or loadings of
the first unit eigenvdor F 1) of the co~iance matrix. The first principal
component ,y1 is obtained by projecting ~ along fi l]. The components of the
input vector ~’are past values of e and past values of ~. For the case shown
in Figure 3. the time lag is T = 120 min. In Figure 3 the components 1-4
of idl) determine the contribution of past values of e to ,~1. Similarly, the
components 5-8 of til J determine the contribution of past values of ~ to ,y1.
From Figure 3 we have that the relative importance of the contribution of
past electron and gamma counts to ,~1 is similar.

Figure 4 is a plot of the eigenvalues of C as a function of the principal di-



Figure 4: Eigenvalues of the covruiance matrix as a function of the principal
component number.

rwtion number. We observe that the only significant eigenvalues are the first
three. This is consistent with the obsewation that. in all our trials, the best
prwlictions were obtained using only t he first three principal comp~nents. It
is inter~ting to note that whenever we used the raw data vector ( as input
to our predictom. the prediction error was larger than in the case when we
used only the first three principal components. The moral is that PC.+ is an
effect ive taol for ~“ombiningdiverse signals, for dimensionalit y reduction, and
for ckmping the effect of noise.

Figure 5 is a plot of the normalized prediction error and the correlation
coefficient as a function of the prediction time 1’. The results shown corre-
spond to single-step predictions of gamma counts using the previous value
(stars) and fuzzy predictors (boxes). h all our trials, the prediction results of
both linear LMS predictors and nonlinear BP networks were only comparable
to the results obtained using the previous va!ue as the predicted value. The
poor performance of BP networks compared to fuzzy predictom is due to the
fact that BP networks implement global mappings between past information
and future gamma counts and then. given the nonstationary character of
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Figure 5: >Tormalized prediction error & and correlation coefficient p as a
function of the prediction time for single-step predictions. The results wer.
generated using the previous wdue as the predicted wdue (stars) and fuzzy
predictors ( lxmes), It is interesting to note that. due to their local char-
acter. fuzzy predictors outperformed backpropagation ne~orks and linear
predictors.

the time series displayed iu
properti~ of the mapping.
mappings betweeu the past

Figure 1. BP networks capture ouly the average
On the other hand. fuzzy prdictors implement
an the future using local inference rulm,

The resuhs of EhI&+h?p predictions T =“ 120 min ahead of time are
shown in Figure 6. The solid curve represents the act ual gamma counts
and the dotted curve represents the predicted gamma counts using a fuzzy
predictor, Figure 7 is a scatter plot of the predicted and the actual gamma
counts. Perfert predictions would lie along the diagonal (dashed) line.
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Figure 6: .\ct ual (solid ) and predicted (dots) gamma counts. The results
correspond to single-step predictions 120 min ahead of time using a fuzzy
predictor.
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lie along the diagonal line (dashed). which is shown just

3 Conclusions

1.0

Perfect predictions
for reference.

We consider the problem of anomalous event detection from multi-instrument
information. Our approach consists of ~o pats: combine past multi- instru-
ment information in order to predict the future state of the system and use
significant deviations between the predicted and act ual values as evidence
for the occurrence of an anomalous event. As a benchmark. we consider the
prediction of future gamma counts from past eiectron and gamma counts
recorded by two instruments onboard a satellite.

We have found that the principal components representation provides a
useful framework to combine past multi-instrument inforrnat ion for predic-
tion purposes. Iu particular. PCA allows us to compress the input data, to
determine the relevant variables. and to reduce noise,

We have applied both backpropagation networks and the fuzzy learning
algorithm of Wang and Mendel to the prediction of future gamma counts
problem. The fuzzy predictor consistently outperformed backpropagation
networks in the prediction task. The reason for this is that I.mckpropagation



network implement a mapping from ~t to future information using global
inforrr~tion. On the other hand, the fuzzy prdictor implements the mapping
from local inference rules. Given the nonstationary character of the electron
and gamma counts time series. a backpropagation network learns the average
properties of the time series. whereas a fuzzy predictor exploits the details
in the time serk

It is important to note that when we used the raw multi-instrument data
as input to our predictors, the prediction accuracy was ahay~ smaller than
that obtained using only the first principal components. This shows how
useful can PCA be for data preprocessing and noise recluction.
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