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ABSTRACT

Previous discussions of a computing method for

solving two-dimensional hydrodynamic problems are

here amplified and extended. Results of computations

are presented for problems involving shock diffraction

and refraction, surface instabilities, and viscous flow.
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INTRODUCTION

The particle-in-cell method for two-dimensional hydrodynamic calcula-

tions has been applied with various degrees of success to a rather wide

variety of problems in compressible-fluid flow. The method was first dis-
1,2

cussed in two unpublished reports which have been superseded by more

detailed published descriptions of the method and its characteristics.
3,4

The

most complete description previously could be found in Ref. 4. That dis-

cussion was mainly restricted to one-dimensional procedures, however, and

as applied to ho-dimensional calculations was incomplete and should now be

modified somewhat. It is, therefore, one purpose of this report to discuss

the presently used procedure in some detail.

The accuracy of the computing method has been tested by applying it

to a variety of problems for which theoretical or experimental solutions were

available. The results of some of these calculations have been reported; 5’6’7

others are available only in classified literature. %ill others, more recently

obtained, have revealed new restrictions, or regions of applicability, or have

produced results not previously derived by theoretical methods. It is, there-

fore, the second purpose of this report to summarize these new results.

For brevity in writing, the particle-in-cell methd for hydrodynamic

calculations has been abbreviated the PIC method. In the discussions to

follow, it will be assumed that the reader has access to Ref. 4 so that most

o~ the discussions presented there will not be repeated. On the other hand,

the outline of computing procedure h Chapter I of this report is sufficiently

-7-



complete in itself so that a computing code could be based on it.

Performance of a calculation by the PIC method resembles the per-

formance of an experiment. Iu preparation, the differential equations of

motion are transformed to suitable conservative finite-difference forms.

These, together with the initial and boundary conditions for a specific situa-

tion, are given to the electronic computer which, in turn, develops the solu-

tion at a sequence of later times separated by small time increments. There

is no a priori assumption of a model for the flow configuration; the develop-

ment of shocks, for example, occurs automatically where required. TIIus,

these computations are quite different from another type often performed by

high-speed computers, in which a complicated set of equations is solved very

precisely, often for the purpose of normalizing analytical approximation pro-

cedures. Precise solutions, however, are usually possible only with ordinary

differential equations. In contrast, the PIC method approach for solving the

partial differential equations of hydrodynamic always results in approximate

solutions . It has been observed but not proved that under many circumstances

of interest the approximations are good and, furthermore, that they can be

improved by decreasing the sizes of the finite-difference zones.

lh the absence of analytical justifications of the PIC methodology, it

has been necessary to examine by Wrial and error?’ its applicability to nu-

merous problems with known solutions. Likewise, it has been necessary to

experiment with numerous modifications of the methodology in order to obtain

maximum accuracy with the resolution presently obtainable with available

computing machines. in some cases, it has been found that a modification

would result in very little change in the answer; in other cases, a small

change could produce a very large effect. Some of these results are dis-

cussed in this report.

The calculation method is designed for use with a large high-speed

-8-



computer. All calculations described in this report were performed on an

IBM Electronic Data Processing Machine, type 704, with 32K memory.

The results discussed in each chapter were assembled mainly by the

people mentioned on the title page. There were, however, many occasions

when techniques discovered in the preparation of one computing code were

applied to another, so that contributions from all of the authors can be found

throughout the report. In addition, contributions to these later developments

in the PIC methodology have been made by Martha W. Evans and Billy D.

Meixner. hlany stimulating discussions with them have resulted in significant

contributions to tliis report; details of their recent studies are to be reported

elsewhere.
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CHAPTER I

THE CALCULATION PROCEDURE

A. Problems Involvhg Cartesian Coordinates in a Rigid Rectangular Box

1. Layout and Nomenclature. Two materials are confined to move in

a two-dimensional rectangular box whose walls are rigid and allow perfect

slippage. The materials are nonviscous and nonconducting of heat; each has

an equation of state which relates pressure, p, to density, p, and specific

internal energy, I.

The box is oriented with one corner at the origin and with the edges

along the x and y axes. It is subdivided into a number of equal rectangular
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cells to which the finite-difference

equations are to be related. The

cells have dimensions 6X and dy,

whose ratio is not necessarily the

same as the ratio of lengths of the

box sides. A typical layout is shown.

Each fluid is represented by a

number of mass points called ~?par-

ticles, ~1each with a constant mass;

as shown in the figure, these are

represented by dots and x?s; we shall
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call the materials t~dctmaterial?! and % material, M respectively. In this

example, all dot particles have the same mass, me, and all the x particles

have the same mass, mx. (For calculations in cylindrical coordinates or

for certain situations in cartesian coordinates, it is more convenient to have

a different mass for every particle.) For each particle there are stored in

the machine memory its x and y coordinates. These are changed in time,

by the method described below, to give a representation of the motion of the

fluids through the mesh of cells.

Such quantities as velocity, density, and pressure are kept in the

machine memory by cell, so that, for example, the pressure of a cell is

a certain average of the pressure throughout the cell. (Further discussion

of this point is given by Bromberg in Appendix II of Ref. 4, where there

is an enlightening alternative derivation of the PIC method equations.) The

cells are labeled with index j
()
~ , with i and j increasing in the x and y

directions, respectively; the lower left cell in the figure is cell number ~ .
()

1

The pressure for cell (~) is p;, while the average pressure along the

boundary between cells
(i) ‘d (:+J ‘s i++’ ‘lOgOus ‘Pbo’s ‘e ‘Seal

for the other boundary pressures. The density in a cell is defined to be
h

the quotient of the sum of the masses in the cell divided by its area.

The nomenclature for various cellwise quantities is shown in Table

I-1 .

2. The Pressures. The two equations of state are given in the form

P = fe (p, I)

P = fx~, I)

where f. and fx are appropriate functions for the dot and x materials, re-

spectively. For a cell containing only dot or x material, these equations

become

-11-
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TABLE I-1

()
IDENTITY OF NOMENCLATURE FOR CELL ~

J _ ~+~rec~~on component of

i

4i= y-direction component of

velocity

velocity

jN. ~mc
)

Mj
‘i ‘ ‘ss ‘f x ‘terid(= ‘+’)

Ij
“i

~ specific internal energy of dot material

Ij - specific internal energy of x material
‘i

j ~ Preamre
Pi

6Q: - the Phase I change in total internal energy

Ej_
“i

= total energy of dot material

Ej - total energy of x material
‘i

2
i

- total x-direction momentum

Yj - total y-direction momentum
i

(-) = result of Phase I calculation for ( )

( )‘ - result of Phase II calculation for ( )
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Various procedures are possible for the determination of total pressure

in a mixed cell. One of these is based on the requirement of pressure con-

tinuity across a material interface. Assuming that the fraction of a cell oc-

cupied by dot material is tY, one writes the two e~ations, from which a is

to be eliminated,

~=f*E$l’J=fJ(l~x~y141 ‘1)

If the pressure is strictly proportional to the density for both materials,

then the result is the same as that from adding partial pressures:

jpi = f,

.

L [1
~j
‘i+f— Ij (2)

x dxay ‘ I
‘i

E the equations of state are complicated, it may be convenient, as well

as sufficiently accurate, to still calculate the pressure in a mixed cell by

adding the partial pressures in this manner. In some cases, however, the

result of this is far from reasonable and the use of Eq. (1) is indicated.

An approxhnate solution of Eq. (1) has been found useful on several occasions.

A value, UO, is assumed for a and the pressure is taken to be

-13-



j_l
‘i-z

Mj
“i

Ij

1

+f
(To6x6y‘ “i x

Mj
‘i

(1
Ij

— ao)dxay ‘ xi
1}.

The choice of

Mj
“i

‘o =
M.: + RM j

‘i

has sometimes yielded reasonable results, where R is the ratio of the initial

density of the dot material to that of the x material, Thus, the value of a.

is based on the assumption that the compression of each of the two mate-

rials is in the same ratio as their initial compressions.

Various iterative procedures are possible for solving Eq. (l); none of

these has been used.

3. Phase I of a Calculation Cycle. In the machine memory there

are stored all the results of the previous-cycle calculations or else the

initial conditions for the problem. These are to be advanced in time

ing to a finite-difference approximation to the differential equations

accord-

‘:~++(u’ +V’)]+PU+[I++(U’+ v’)]

+PV;[I+#+V2)]+~ +~=0
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The first of these

satisfied by the particle

follows: In Phase I, the

equations, that of mass conservation, is automatically

model. The other three equations are treated as

contributions to the time derivatives which arise

from the terms involving pressure are calculated. The particles are not

moved at this step; thus the transport terms are dropped, and the equations

become, in finite space-difference form,

From these result the tentative new cellwise velocities

The quantity ~ in the third equation is not defined for a mixed cell, but we
L

may write

jwherein 6Qi is the change in total internal energy of the cell. Its calcula-

tion involves use of the old and new velocities

-15-
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– 6X6’ @v) j-?!:$- @v)i 1

It is seen that the values of pressures and velocities at cell boundaries

are required. The usual procedure in obtaining these has been as follows:

Between two omlinary cells, the boundary pressure and velocity are taken as

the averages of those quantities in the two adjacent cells. At the rigid box

boundary, the normal velocity component is zero, while the tangential does

not need specification. The pressure at the box boundary has been taken as

a quadratic extrapolation of the pressures in the two adjacent cells. The

quadratic extrapolation is used because it allows the requirement to be im-

posed that the normal derivative of the pressure vanish at the boundary. It

is nearly as satisfactory to use for the boundary pressure that of the adjacent

interior cell.

At the boundary between an omlinary cell and an interior empty one,

the pressure is chosen to be zero so that the velocity there need not be

specified. ,Sucha choice ensures energy conservation.

It has been found to make little difference in the final results of a

calculation whether one uses, in the energy eqyation, the product of average

pressure and average velocity, or the average of the pressure-velocity pro-

duct; most of our calculations have used the former.
j -j ‘“jFrom the result for tiQi, the values of 1.~ and I are to be determined.

xi
For an unmixed cell with, say, dot material only,

~Q:

‘yj=~j+_
“i “i

Mj
“i

-16-



One way of distributing internal energy in a mixed cell was described

in Ref. 4 (page 21). The method more recently used is based on the as-

sumption that both components are compressed or
6

through the same pressure change.r

represented by polytropic equations

P~ = (Yk - l)Pk&

(where k means

Id=

● or x), then

For example,

of state

J-Z

expanded adiabatically

if

.-

both components are

A

1

[
Y~

If the equations of state are

based on other assumptions,

more complicated, then the distribution may be

such as (1) both components receive the same

change in total internal energy, or (2) both components receive the same

change in specific internal energy. Application of the first of these two

procedures yfelded good results in one trial calculation, whereas the results

of using the second were not as good-insufficient energy was transferred

across the boundary from a heavy material to a light one.

4. Phase II, The Transport of Material. By the end of Phase I,

there are stored in memory ten quantities for every cell. Table I-2 shows

these, together with the quantities which replace them during the sequence

of Phase II calculations.

-17-
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TABLE I-2

()
jSEQUENCE OF STORAGE CHANGES FOR CELL ~ DURING PHASE II

M, Mx I Ix Y, ?’ u. v z ‘?
Step 1 >

x

!! ?1 %, Ex “ “ % Y ?? 1?

Step 2 >
Ml Ml E! El 1, ,, x, y, ,, ,,

Step 3 > “
x “ x

?! Vf !! 1! ?? ?? U1 v’ 1? 1!

Step 4 > -
tf ?! 11 I? 11 ?T 1? 1? 1? It

. x

Step 10 The results of the Phase I calculations are transformed into

total celltise energies and momentz

t? = (,MO+ Mx)?

Step 2. The particles are moved.

according to

x’ =X+iiat

Y’ =y+m

In some calculations (see, for example,

The coordinates of each change

Ref. 7), the values of ii and V were

simply the values of ti and ‘? of the cell containing the particle, no matter

where in the cell the particle originated its motion for the cycle. The re-

sults can almost always be improved, however, by using the time-consuming

-18-
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process called Welocity weighting;?’ in fact, tests have indicated that the in-

crease in accuraoy thereby realized could not be achieved by that increase

in mesh fineness which would consume equal extra time.

In the velocity weighting procedure, a rectangle of cell size is imagined

to be located about each particle, the particle M.ng at the center. Such a

rectangle then overlaps four adjacent cells, and the effective velocity for

moving the particle is taken as a weighted average of the four cellwise

velocities, the weighings being proportional to the overlap areas. If the

surrounding rectangle lies partly in an empty cell, then that cell may be

assumed to have the

any other convenient

the effective velocity

side the walls of the

same velocity as does the cell with the particle (or

and reasonable velocity) for the purpose of determining

for movement. If the surrounding rectangle lies out-

computation region, then the fictitious outside cells

may be given either reflected velocities or the same velocities as in the

adjacent interior cells. h the former case, it may be shown that for

properly small values of &, no particle will be lost from the system. The

procedure is less desirable, however, as it can lead to the %oundary catas-

trophe” discussed in Ref. 4 (page 17). In the latter case, it is necessary

to reflect the particle back h, the particle then carries a change in momen-

tum as though entering from a cell with reflected velocity, and the boundary

catastrophe is avoided.

When a particle is thus moved, it may be found to remain in the same

cell from which it started. In this case, there is no modification to any of

the cellwise ~antities. Some of the particles, however, will end up in new

cells; in these cases, cellwise changes are necessary. From the cell which

was left, the particle mass, momentum, and energy are subtracted and these

are added to the new cell. Thus, through step 2, the cellwise values of

mass, momentum, and energy cumulate to their final values for the cycle.

-19-



Step 3. The final velocities for the cycle are computed

x!
u! = M: + M?

x

y?
v? a=

Mf + M?
. x

Step 4. The final specific internal energies for the cycle are computed

E!
I! =Xt _$

[
(U’)2 + (vf)2.

. 1

5. Phase III, Functional of Motion. The final arrangement of storage

after the sequence of calculations is such as to allow immediate re-entry

into Phase I of the next cycle. Ordinarily, however, before proceeding to

the next cycle, it is useful to compute various functional of the motion such

as total kinetic and internal energy for each material, components of total

momentum, positions of centers of mass, entropy, and numerous other quan-

tities. In some cases, it is possible to compare ohanges of these quantities

with the changes calculated by summing boundary fluxes. Thus, in the example

at hand, the total energy of the system should be rigorously conserved.

(Actually, machine roundoff will introduce some change in total energy, but

the relative change per cycle should be bounded by a number which is pre-

dictable from a knowledge of the number of significant figures retained by

the calculation.) Likewise, changes in the momentum component should be

exactly predictable in terms of the sum of the boundary forces. Computed

by machine,

have proved

such checks serve to indicate machine or coding errors and

extremely valuable on many occasions.

-20-



B. Other Boundary Conditions in Cartesian Coordinates

The simple boundary conditions discussed in the previous section are

applicable only to a restricted class of problems. Various mdfications

are listed below, most of them have been used in actual calculations.

1. Periodic Channel. The rectangular computation region can be con-

sidered to be one section of an infinite channel with walls parallel to, say,

the x axis. It is assumed that all properties of the entire flow field are

periodic along the channel, the period being the width of the computation

region. The change in computing procedure is slight. For example, along

the right-hand boundary, the cells are treated just like interior cells with

their right-hand neighbors being the cells along the left-hand boundary. Par-

ticles leaving the system across the boundary re-enter from the left, while

those which go out the left-hand boundary are inserted from the right. The

condition of periodicity is applied in such a way that the positions of the

vertical boundaries are immaterial as long as they are separated by one

period. Such a system is completely conservative of particles, energy, and

horizontal momentum. This type of system was used in performing the cal-

culations discussed in Chapters V and VII.

2. Prescribed hput. Along one or several of the boundaries, a pre-

scribed input of fluid can be inserted. This could, for example, be used to

represent the flow conditions behind a shock which has entered across one

of the boundaries at the beginning of the problem. Consider the example of

input along the left boundary. The left-band cells of the computation region

can be treated as interior cells with their left-band neighbors being con-

sidered to possess the prescribed conditions of the input flow. Particles

are periodically ~?created~?for insertion across the left boundary, there is

thus a slight additional bookkeeping difficulty

-21-
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particle coordinates. TMS type of input system has been used in numerous

calculations, including those discussed in Chapters II, III, and IV, and in

Refs. 5 and 7.

3. Continuative Output. Whenever the input boundary condition (para-

graph 2 above) is used, a provision for output at some other boundary is

usually required. If the flow out of that boundary is supersonic, then the

exact manner by which it is treated is of little importance. We have always

used a ?Icontinuative~~boundary treatment for such an output line. Accordingly,

the boundary cells are treated as interior, being bounded on the outside by

cells with identically the same properties, at any iiwtsnt, as their adjacent

interior neighbors. The machine memory locations for storage of the co-

ordinates of lost particles are made available for incoming particles, so

that the total required machine memory is bounded, and a calculation can

be continued indefinitely.

4. Moving Mesh. In paragraphs 1, 2, and 3 above, the computation

region is at rest and the fluid streams by. Alternately, if it is desirable to

study some feature of the flow moving with fluid speed (or some other speed),

it could be possible to have a traveling region of computation. Suppose, for

example, one wished to follow the motion of a shock wave during its passage

down a channel in, say, the x direction. TMS could be accomplished as

follows . A zone of several cells would always be present ahead of the shock;

whenever the shock had advanced a cell width, a new column of cells would

be created to their right with conditions representing the initial state ahead

of the shock. At the same time, a column of cells downstream would be

destroyed. Conditions ahead of the shock could be constant or could vary

with space. Boundary conditions at the downstream boundary could be con-

tinuative. No calculations have been reported which used a moving compu-

tation region in this manner.

-22-



5. Rigid Obstacle. A rigid obstacle can be placed within the compu-

tation region. This is most easily accomplished if the boundaries of the

obstacle follow cell boundaries. The treatment is then exactly the same as

at the rigid walls of the computation region. Such a calculation was reported

in Ref. 5. If the obstacle boundary is curved or oblique relative to the cell

orientation, then the procedure is somewhat more complicated. Numerous

partial cells are created. The finite-difference equations for such cells can

be derived from the integral form of the equations of motion by a procedure

like that used by Bromberg (Ref. 4, Appendix II) for deriving the equations

under ordinary circumstances. The results of calculations for flow past a

circular object were reported in Ref. 7.

6. Applied Pressure. An applied pressure, prescribed as a function

of space and time, can be exerted on the irregular surface of a fluid. We

have accomplished this by varying the empty cell treatment, using the empty

cells to signal the presence of an applied pressure. First, the motion of

particles is subjected to an additional constraint: If the motion of any par-

ticle results in emptying a cell, then the particle is not allowed to move

during that cycle. An exception is allowed if the emptying cell is adjacent

to one which is already empty. Initially, the fluid interior has no empty

cells; the region of applied pressure is an empty-cell region surrounding

the fluid. In most of our problems the resulting motion is compressive, so

that the constraint by which no interior cells may empty is not serious.

The boundary of every fluid cell adjacent to an empty cell is given the ap-

propriate applied pressure, and it is assumed that the veloci~ at that bound-

ary is that of the fluid cell. The pressure within a cell next to an empty

one is calculated using normal density in the equation of state, if the cell

would otherwise have subnormal density. k all other cases these edge cells

are treated as ordinary interior cells. This procedure has been used in the

-23-



calculations reported in Chapter VI and in other calculations not reported.

An interpretation of the applied pressure boundary condition is as

follows ● The “empty” cells behave as though they were filled with a gas

whose density is very small compared with that of the adjacent material,

but whose temperature is very high in such a way that the pressure is

finite (the prescribed value). As a result the sound speed is very high so

that the pressure remains homogeneous.

c. Generalized Problems in Cartesian Coordinates

If there is an applied body force, or if the fluids are viscous and con-

ducting of heat, then the equations and boundary conditions become somewhat

more complicated, but the basic method is not altered. As an example, con-

sider the problem of determining the nonsteady motion of a polytropic gas

flowing through a periodic two-dimensional channel bounded by walls parallel

to the x axis. The basic equations (in addition to that of mass conservation,

which is still identically satisfied) are

where the additional symbols are
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4=+H
first (ordinary) viscosity coefficient

second viscosity coefficient

7Jp (assumed constti, an idealized monatomic gas has

A ;)=——

ratio of specific heats (assumed constant)

Pxandtl number (assumed constant)

y/Pr [a relatively simple theoretical model gives

B= ;(97 – 5)]

acceleration of body force (exerted in the x direction only)

Transformation of the equations to finite-difference

before. For Phase I of the calculation

form proceeds as

L

(Equation continued)
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Again, each quantity at a cell boundary is taken to be an appropriate

average between the two adjacent cells. Perhaps the only feature of the

finite-difference form which is not otherwise obvious is the manner in which

the acceleration term is written in the energy equation:

rather than, say,

jUi g6t

Choice of the form

conservation by the

shown is based on the

difference equations.

requirement of rigorous energy

More details for a specific application of these equations are given in

the discussion of results in Chapter VII.

D. Two-Dimensional Calculations in Cylindrical Coordinates

There are many problems which are characterized by independence of
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the flow field from the angle about some fixed axis. Such cylindrical prob-

lems with axial symmetry can be treated by the PIC method

modification of the procedure already outlined. Consider the

determining the motion of a single nonviscous, nonconducting

with almost no

problem of

fluid through

an infinite periodic cylindrical pipe with rigid walls. In some plane through,

and parallel to, the axis, one period of the flow field will be a rectangle,

bounded at the bottom by the axis, at the top by the pipe, and at the left and

right by the ends of the period. This region is divided into rectangular cells

(actually toroids of revolution), and the fluid is again represented by particles

(actually circles about the axis). In such problems it has been found con-

venient to assign different masses to the particles, each particle being given

a fixed nmss whose value is proportional to the original radius of the par-

ticle, so that the particle density is initially proportional to the true density.

The differential equations

du 8p
P~ = –,5

dv= 8p
P% 82

become, for the Phase I calculations,

j

4 j
21rri 6z6t

=U+
(

jj
‘i i

M?
pi.*

)- pi+*
i

~vj
‘?r 4i &&

(
j-~ _ Pj++=

i+ ~ ‘i 1 )
i
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I
I

where u and v are the r- and z-direction velocity components, respectively,

and i and j count cells in those respective directions. At the axis, u = O,

while a quadratic extrapolation of pressure, as discussed before, is appro-

priate. These difference equations are perfectly conservative. Moreover,

they tend to preserve spherical symmetry. This fact is not in contradiction

to the statements in Ref. 4 (p. 27) wherein the difference eqmtions were

written with differences between cell centers, rather than between cell bound-

aries. The present form of the equations also has the advantage of avoiding

the peculiar boundary condition at the axis required in Ref. 4 [Eq. (52), p. 28].

The particle movement of Phase II proceeds by a velocity weighting

proportional to areas, just as in Cartesian coordinates, rather than to vol-

umes. A test of the latter procedure produced unsatisfactory results, es-

pecially near the axis. Again, if a partiole does not cross a cell boundary,

then there is no change to the cellwise quantities; if it does cross, then

mass, ?~momentum,” and energy are added and subtracted as before. (Here

the radial-direction “momentum” is defined as the product of the mass and

the radial velocity.)

Numerous calculations using the PIC method in cylindrical coordinates

show that it is nearly as useful for such problems as for those in Cartesian

coordinates, even when there may be large radial-direction motions of the

fluid. Results of one series of cylindrical problems are discussed in Chap-

ter VI.
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E. Limitations of the Method

The PIC method has been found useful in solving a wide variety of

problems concerning the dynamics of compressible fluids. Very little ana-

lytical work has been accomplished in the direction of proving the validity

of results, so that considerable experimentation has been necessary. The

range of applicability is discussed in this report and elsewhere; it is also

appropriate again to emphasize the limitations.

The principal limitation of the PIC method arises from the requirement

that the fluid speed relative to the computational mesh must not be small

compared with the sound speed. An exception is allowed in a uniform region,

where the fluid speed may be zero. Thus it is not possible to apply the

method to problems in incompressible-fluid flow. There are two related

reasons for this restriction. First, interactions within the fluid are propa-

gated only from cell to cell, whereas in an incompressible fluid, the changes

in configuration at a point depend upon conditions at that instant throughout

the fluid. Second, as the fluid speed decreases, the ?’effective viscosity?f due

to the dissipative procedure used in cell crossings (Ref. 4, p. 16) decreases

to zero. The difference equations, in this limit, can be shown to be uncon-

ditionally unstable. Thus, in a region of ~~rturbed stagnation,?! fluctuations

of the field variables grow until the velocities are large enough to produce

sufficient dissipation. A further discussion of this matter is given in Ref. 6,

page 100 This second difficulty can be relieved somewhat by the incorpora-

tion of artificial dissipative terms into the difference equations. Usually

such terms also have somewhat undesirable results, such as the increased

smearing of discontinuities. A discussion of these extra terms is in prepa-

ration by Longley. 8

Another significant limitation of the PIC znethod results from the in-

ability of the fixed mesh of cells to resolve features of the flow field which
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are small in size compared to the over-all region to be studied. In some

cases the limitation can be overcome by the creation and destruction of

cells, so that computatioml mesh is present only where needed. It would

also be possible to have fine zones at some localities and coarse zones at

others, but such a procedure has not yet been tried.
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CHAPTER II

SHOCK-WAVE REFRACTION AT A GASEOUS INTERFACE

A. Introduction

Jn a recent paper, Jahng presented the results of a set of experiments

designed to study the regular and irregular refraction patterns arising from

the interaction of a shock with an oblique interface between two gases. Re-

sults of his regular-refraction experiments agree closely with the theoretical
10

results of Polachek and Seeger. The experiments also revealed several

types of irregular refraction process, for which no comparison theory ex-

isted. Jahn discussed these patterns and showed that they could be explained

qualitatively by application of simple gas-dynamic principles. His discussions,

in amplified form, are also given in a series of Princeton University reports.
11

The experimental set-up consisted, ideally, of a two~mensional channel

in which there was, initially, an oblique, essentially-massless diaphragm sep-

arating two gases in equilibrium. A plane, steady shock was allowed to ap-

proach through one of the gases and interact with the interface, and the re-

sult was photographed during the interaction. As such, the experiments dif-

fered from the theoretical model assumed by Polachek and Seeger, and by

Taub’2 in his similar calculations. In the model, the interface was of in-

finite extent, and no effects from the corner were considered. IU the ex-

perimental work, Jahn was able to separate the corner effects from those
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of the pure refraction by suitable adjustment of the sngle of the channel wall

just beyond its intersection with the corner. These corner effects cannot be

completely eliminated, however, and any complete theoretical description of

the processes must include them.

Because no initial assumptions concerning the nature of the Mxmaction

are required in PIC-methcd calculations, it was expected that both regular

and irregular refraction processes, together with corner effects, could be

computed. Some representative calculations were carried out, and the re-

sults confirmed the expectations and exhibited well certain properties of the

method.

IU the calculations the gases were considered to be nonviscous, non-

conducting, and polytropic. They were confined between rigid parallel walls

in a two-dimensional channel, with shook input on the left and a continuative

boundary on the right. Each was initially homogeneous and the two were at

the same pressure. The section of channel studied was divided into 1200

square computational cells, having a maximum average of four partioles per

cell. The interface between gases was inclined at 45° in all calculations.

TMS was the easiest angle to represent in the mesh of square cells; the

angle could be changed if rectangular cells were allowed, or if the particle

placements were altered. With the angle chosen, however, all features of

interest for this study were revealed,

The best representation of an tiput shock is obtained if the average

number of particles per cell behind it is an integer. Therefore, in each

case the density ratio across the incoming shock was required to be four

to two.

The results of the calculations are presented mainly in the form of

illustrations of the flow configuration at suitable times during the inter-

actions. Each picture was formed by plotting the positions of all the mass
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points in the system and superimposing an interpretation of the main features

by lines representing shocks, slip planes, and rarefaction fronts. These

positions were, in every case, determined by observation of deflections of

the mass-point lines. Where the signals were weak, the results of this

procedure were not always in good agreement with known results; the details

are discussed in the individual cases, and it is pointed out that there are

usually other satisfactory means of

tain peculiarities of the mass-point

with Fig. II-1.

Numerous other results were

These included internal and kinetic

locating the weak-signal positions. Cer-

plots are discussed below in connection

also obtained from the computations.

energies of each gas and other functional

of motion such as the vertical and horizontal momenta. Because these were

considered to be of less interest here, they are discussed only briefly h a

few cases. Among the least reliable results from the calculations are such

qumtities as local, instantaneous densities, These and other local features

which depend upon the number of mass points per cell may fluctuate rather

strongly about their true values. It is an essential feature of the computing

method, however, that the gross functional of motion (those which extend

over numerous cells or depend upon

spite of these local fluctuations.

In our computations, the gases

non-heat-conducting, and polytropic.

time averaging) are well reproduced in

have been considered to be nonviscous,

Effects from the computtng-method ap-

proximations, however, can be interpreted as imparting certain other char-

acteristics to the gases. Principal among these is an effective Wiscosityt’

which allows for the calculation of shocks, but which also results in a shear

adhesion. This is mathematically similar to true viscosity but differs, for

example, in being anisotropic in a manner dependent upon the orientation of

the coordinate system. The effects are clearly visible in the results reported

-33-



in this chapter, but are unimportant in their effect on most features of

interest.

We have used the notation of Jahn, according to which the initial shock

I of strength & (~ = ratio of pressure ahead to pressure behind) is incident

from the left on the interface O. In the resulting configuration, there is a

reflected shock RS or reflected rarefaction RR, a deflected interface D, and

a transmitted shock T. In Table II-1 are tabulated the essential features of

the problems.

Table II-1

LIST OF COMPUTATIONS

Problem Gas
Number Combination

‘RIPL ~L yR t

1

2

Air/C02

Air/CH4

1.529 1.405 1.304 0.362

0.554 1.405 1.310 0.362

3 Air/Neon 0.696 1.405 1.667 0.362

4 Air/Polytropic 0.237 1.405 1.667 0.362
Gas

5 Air/He 0.138 1.405 1.667 0.362

With the restrictions previously mentioned, it was not possible to cal-

culate for any situation corresponding exactly to an experiment by Jahn.

Instead, as a check on our results we calculated points on two of the curves

of Polachek and Seeger, choosing curves on which several points had been

verified by Jahn~s results.

The interaction configuration for problem 1 is shown in Fig. II-1.
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This regular refraction pattern consists of transmitted and reflected shocks,

and a smoothly deflected interface. Also visible is the corner signal (a

rarefaction wave) which, in its propagation along the interface through the

air, induced a more slowly traveling rarefaction signal in the C02. Inter-

action of the oblique transmitted shock with the channel wall resulted in a

Mach reflection pattern. The effects of various weaker disturbances can be

seen in the pattern of mass points in the lower part of the air.

There are certain features of the mass-pohd plot and interpretation

which also apply to the other illustrations. First, it is apparent that there

is a vertical discontinuity in the pattern of the plus points. Those to the

right of the discontinuity were present in the calculation region at initial

time, those to the left entered subsequently, and the manner of their intro-

duction was not such as to produce the same pattern as resulted from com-

pressing the gas already present. The deflections of the vertical or diagonal

mass-point lhes are more significant in the determination of boundaries in

the flow pattern than are those of the horizontal. Indeed, near the deflected

interface, at which there should be slippage, the effective hdscosityl~ arising

from the computing method caused rather strong deflections of the horizontal

mass-point lines.

The most clearly discernible features are the interface position and

the positions of the initial and transmitted shocks. Location of the corner

and reflected signals is usually difficult and requires the use of a straight-

edge placed along the mass-point lines. In problem 1, the reflected signal,

a shock, was extremely weak. As a result, its location as determined by

the mass-point-line deflections is not as high as it should be; the angular

discrepancy is about 7°. Reference to the detailed cellwise listings of the

calculation, however, shows that a sQna.1had actually penetrated higher than

is shown in Fig. II-1, and gocd agreement with the correct result can be
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obtained by drawing a line through the group of uppermost cells, each of

which shows any change in temperature from that in the cells above it. The

positions of the interface and of the transmitted shock, however, are in good

agreement with the correct positions, differing in angular deflection by ap-

proximately 2“ and 0° respectively. The position of the corner signal is

likewise consistent with the expected position as determined by the sound

speed in the air behind the reflected shock.

The results for problem 2 are shown in Fig. II-2. In this case, the

computed angular deflection of the interface was too great by about 3°, while

that of the transmitted shock was too small by about 2°. Again, the reflected

signal (a rarefaction) was too low, as measured by mass-point-line deflections,

with an angular discrepancy of about 7°. The primary signals from the cor-

ner are more complicated in this calculation. They include a weak signal

which propagated rapidly through the methane and a stronger signal whose

propagation rate along the interface through the air was nearly the same as

that observed in problem 1. The strength of this second signal (a shock)

was great enough so that a following rarefaction was produced; this, in turn,

induced a rarefaction in the methane. In the lower part of the region, there

are numerous signals whose effects on the interface are shown by the flexures

thereof. A plane of considerable slippage has been drawn in.

In both problems 1 and 2, the accuracy of the calculations is consistent

with the resolution to be expected from this size of finite-difference cells.

The most apparent discrepancies are in the reflected-signal positions, when

they are we~, but, in these and other calculations, such weak-signal loca-

tions can be determined by reference to detailed listings of cellwise tem-

peratures.

c. Irremdar Refraction

We have investigated, h particular, the irregular refraction pattern
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arising when the right-hand gas has a higher sound speed than that of the

left-hand gas. We were especially interested in studying cases similar to

those in which the experiments showed the deflected interface to be unstable

&Zef. 9, Plate 6, Fig. 14(c) and Plate 12, Fig. 18].

The irregular refraction pattern and the unstable interface were both

observed in the calculation of refraction from air to helium. To study the

development of these, we performed a sequence of calculations. The first

one-a regular refraction from air to neon– is shown in Fig. II-3. The con-

figuration is particularly simple; the corner signals were weak and the de-

flected interface is nearly straight. The reflected shock was extremely

weak and is not shown. In the lower part of the air there are indications

of a slip plane snd a rarefaction. These became progressively more evident

in the subsequent two calculational results.

In the next calculation, the density of the right-hand gas was reduced

to a value intermediate between those of neon and helium, and the tempera-

ture (hence also the sound speed) was increased for initial equilibrium. As

a result, the transmitted-shock speed along the interface was greater than

that of the input shock, and detachment occurred. The configuration is shown

in Fig. II-4. The reflected shock is now evident, as is its strong modifica-

tion by the following rarefaction. The slip plane and rarefaction in the lower

air were much more strongly developed than in problem 3. The deflected

interface showed some instabili~, adjacent to it, the right-hand gas was

turbulent, while the air remained fairly stable.

The air-to-helium refraction pattern, presented in Fig. II-5, shows a

strong development of the irregularity as well as a great instability of the

interface and of the shocked helium. The irregularly reflected shock inter-

acted with the rarefaction, and the resulting disturbance was somewhat weak-

ened. The lower slip plane and rarefaction in the air were even more

-37-



strongly developed than before. The result of continuing the calculation to

a later time is shown in Fig. II-6.

It is not thought that the structure of the deflected interface is cor-

rectly represented in detail. Just as in an experiment, the exact nature of

the structure depends on the form of the initial interface irregularities, as

well as on the nature of interactions with the complicated, small-scale struc-

ture of shocks and rarefactions. In the calculation, the initial irregularities

of the interface correlate with the nature of the finite-difference mesh, and

many of the small-scale structures are not resolved by that mesh. Never-

theless, it seems significant that the computed refractions are stable in many

cases and become unstable in circumstances under which the experimental

patterns are also unstable.
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CHAPTER HI

SHOCK PASSAGE THROUGH A DISCONTINUOUSLY ENLARGED CHANNEL

A. Introduction

Considerable attention

theoretically the changes in

has been paid to the problem of determining

a shock as it passes through a channel of vari-

able cross section. The problems for weak shocks or gradual area changes

have been treated by numerous authors from several points of view. only

a moderate amount has been written, however, about the more difficult prob-

lems associated with the passage of a strong shock through a channel with

rapidly varying cross section. Whitbam’3 has devised an approximation

method which should be useful in mzmy cases. A different approach has

been used successfully by Laporte
14

for constricted channels. It does not

seem likely, nevertheless, that any analytical treatment which might be de-

veloped in the near future will be capable of describing the entire flow field

in these complicated cases, but that solutions for particular situations will

have to be obtained by use of special numerical techniques.

In this chapter, we describe the application of the PIC method to the

special problem of determining the two-dimensional flow of a strong shock

through a discontinuously enlarged channel formed by two rigid planes which

are parallel except at the discontinuity. There, one of the plsnes has a

double right-angle bend, doubling the channel width. This is one element,

-45-



in simplified form, of some of the problems which arise in studies of shock

damage to building interiors and in questions concerning establishment of

flow patterns in a shock tube. In this situation, development of the flow

field with time can be divided into two phases. In the first, the shock, which

approached from the narrow side, diffracts about the corner. Behfnd it,

there is established a complicated structure which includes an expansion fan,

together with several shocks and slip lines. The entire structure retains

geometric similarity as it expands linearly with time. In the second phase,

the shock interacts with the wall of the enlarged channel, is further modified,

and the flow near the corner eventually becomes nearly steady.

The features of both phases are discussed in some detail in this chap-

ter. In addition, comparisons with experiments are presented for the first

phase of development. For the experimental results, we are grateful to

Dr. Russell E. Duff who generously made available unpublished photographs

of the results of experiments performed with nitrogen at the Shock Tube

Laboratory, University of

B. The Commdations

Wo di.iferent gases

Michigan, in 1950●

were studied, nitrogen and helium. They were

considered to be polytropic, nonviscous, and non-heat-conducting, with specific

heat ratios y = 1.404 and -y = 1.667, respectively.

In each of the computations, the Mach number behind the initial shock

was greater than unity so that no changes in flow occurred in the narrow

section of channel, in this instance to the left. TINIS, the region of com-

putation was ohosen to cover a rectangular section of channel just to the

right of the discontinuity. In the three problems with nitrogen, the region

waa shorter along the channel length in order that the best possible resolu-

tion could be obtained near the corner. In the problem with helium, the
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region was longer along the channel length in order that down-channel effects

could be studied.

At the upper half of the left boundary, the input represented the steady

flow behind the initial shock which, at time t = O, was at the discontinuity.

At the right, the boundary condition was continuative. The channel walls

were treated as rigid and reflective with perfect slippage. At initial time,

the gas in the computation region was homogeneous and at rest, represented

by two mass points per cell. Units were scaled so that a cell length was

unity, and the undisturbed gas was at unit density. In the undisturbed nitro-

gen, the sound speed was unit~ however, the shock in helium was of infinite

strength, and in this case the material speed behind it was initially unity.

The units of time were accordingly chosen.

c. Development of the Flow Patterns in Nitrogen

The larger section of channel was 40 units high, and the region of

study extended 30 units to the right of the discontinuity. Calculations were

performed for three different strengths of the initial shock.

The configuration of mass points at time t = 12.593 is shown in

Fig. III-1 for the case in which the Mach number behind the shock was

M= 1.008. The solid lines represent the shock and rarefaction fronts as

deduced from the deflections of the mass-point lines. The long-dashed

curves were taken from a photograph by Duff. The short-dashed curve is

theoretical Prandtl-Meyer streamline. The mass points plotted by dots are

those which were in the region at t = O; those plotted by pluses entered

subsequently. (The individual mass of a plus point was not the same as

that of a dot point, so that the apparent density discontinuity between them

is not real.)

A similar configuration is shown in Fig. III-2 for time t = 6.329. In
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this case, the Mach number for flow behind the shock was M = 1.588.

In both cases, the shape of the diffracted shock is represented to

within the expected resolution of the computations, while the rarefaction

front, as determined by deflection of the mass-poht lines, falls somewhat

below the experimentally observed position. The discrepancy is not sur-

prising. Where the upward-traveling signal was weakest, the deflections

of the mass points were so small as to be undetectable in the plot. Refer-

ence to detailed cellwise listings of results from the computations shows,

however, that a signal had indeed penetrated higher than the position shown

by the particle-line deflections, and approximate agreement with the experi-

mentally observed line can be obtained by an appropriate interpretation of

the listings. The situation is the same as encountered with the reflected

signals in Chapter IL

It is not expected that the Prandtl-Meyer streamline should lie along

a mass-point line in the early development of the flow. The first tendency

of the mass-point lines is to curve downward; for weak shocks, this tendency

results in the formation of the well-known spiral vortex. As the flow con-

tinues, however, the mass-point lines should approach the streamlties. This

expectation was closely realized in the two computations which were extended

to late times. In them (one case is shown in Fig. III-6), the hand-computed

Prandtl-Meyer streamlines lie very close to the mass-point lines up to the

point where the flow is perturbed by reflection from the channel bottom.

The configuration for M = 1.296 is shown in a slightly different way

in Fig. III-3. The time is t = 10.063. The fine lines connect mass-point

lines which formed a square grid in the initially unshocked gas, as shown

in the lower right-hand corner. The computed shock and rarefaction fronts

were again determhwd by the deflection positions of these lines. The ex-

perimental positions are shown as dashed lines; also included in this figure
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are the details of additional flow structure observed on the photograph

(Fig. III-4) near the diffracting corner. On the photograph the two lines

diverging from the corner represent the end of the expansion fan and the

slip stream. The former is truncated by a shock. These structures are

suggested by the computations, but the lack of resolution with this coarse

cell size precluded reproduction of the details. The structure just below

the corner is not clearly correlated with any feature of the computations.

The experimentally observed curved line bebind the shock, and approximately

parallel to it, is represented in the computation by a thin region of strong

slip and of compression gradient, as shown by the mass-point-line positions.

Structures similar to these are also present in photographs (not shown)

for the other two Mach numbers, corresponding to Figs. III-l and III-2, but

likewise in these cases the computation did not well reproduce the details.

Figures III-1 and III-2 show a region of instability in the flow field

just below the corner. The boundary between incoming gas and that which

was initially in the computation region folds back and forth in a manner

suggesting Helmholtz citability. Positions of this line at two different times

are shown in Fig. III-5 for the computation with M = 1.296. This computa-

tion was continued to considerably later times. Shortly after t = 20.127, the

regularly folded structure of the interface was no longer recognizable, and

byt= 35 the region of mixing had reached the right side of the computation

region.

Byt= 51.178, considerable of the original gas was still trapped in the

lower left corner. The configuration of mass points at this late time is

shown in Fig. III-6. The position of the rarefaction front where it is weak

is not well indicated by the mass-point-line deflections. Some effect of the

reflection of the rarefaction from the upper channel wall is suggested by

the appearance of the upper right corner of the region.
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D. Functional of Motion

Until a signal from the corner has reached the top or bottom of the

channel, all quantities in the disturbance region should be functions of only

the ratios of the position coordinates to the time, and not otherwise depend

on time. As a consequence, such functional as vertical momentum and ex-

cess kinetic energy (over input) should increase exactly quadratically with

time. The first of these can be computed by hand, and the result serves

as a check of the machine computation. The result for the case with

M = 1.296 iS shown in Fig. III-7. In the early stages, the computed-momen-

tum curve is indistinguishable from the theoretical one, whose extension is

the dashed line. At t = 10.7, the shock arrived at the right-hand end of the

computation regfon and, shortly thereafter, it began to interact with the

channel bottom. Thus, the computed-momentum curve departs from the

theoretical one. Much later, the flow in the computation region was in

nearly a steady state, at which time the vertical momentum was nearly con-

stant.

In Fig. III-7 there also is shown the average specific internal energy

of a 5 X 5 square at the lower left of the computation region. The effect

of shock arrival just before t = 12 is clearly visible.

In each of the three problems, the total kinetic energy in the compu-

tation region rose almost precisely at the rate of the flux across the input

boundary during the first phase of development, indicating that kinetic and

internal energy were nearly conserved separately during this time. Thus,

the increase in kinetic energy which the gas received in the expansion fan

must have been matched closely by the decrease as the gas decelerated at

the back of the curved shock.

-50-



E. Infinite Shock in Helium

A calculation similar to those described

infinite shock in helium. In this problem, the

above was performed for an

enlarged section of channel

was 30 units high, and the region of computation extended 40 units along the

chsnnel. The flow pattern for time t = 30 is shown in Fig. III-8 snd that

for time t = 70 in Fig. III-9. With the elongated calculation region, it was

possible to see the reflected shock from the turbulent region along the channel

wall. Local mean-velocity vectors, whose magnitudes can be compared with

the input-velocity vector, show a divided flow in the turbulent region. In the

lower left corner, the fluid was slowly and irregularly rotating, the upper

part interacted irregularly with the main stream, and occasionally small

amounts were rapidly carried away, some being fed back into the vortex

and the rest being carried downstream.
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Fig. HI-1 Configuration of mass points at time t = 12.593 for the calcula-
tion for nitrogen with M = 1.008. Solid and long-dashed lines
represent, respectively, the computed and observed positions of
shock and rarefaction fronts.
Prandtl-Meyer streamline.
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Fig. III-4 Schlieren photograph by Duff of the flow field struoture in nitro-
gen with M = 1.296.
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CHAPTER IV

INTERACTION OF A SHOCK WITH A DEFORMABLE OBJECT

A. Introduction

The encounter of a strong shock with a deformable object can result

in a very complicated flow field which contains both diffraction and refraction

processes. The PIC method calculations have been applied to a study of

several idealized situations in which the object and the surrounding gas were

both represented by the polytropic equation of state of a monatomic, non-

viscous, nonconducting gas. The flow was two-dimensional, confined IxAxveen

rigid parallel channel walls. The object was rectangular in shape and at-

tached to one of the walls; it and the surrounding gas were initially cold,

so that the incoming shock strength was hfinite.

In all calculations, units were scaled in such a way that the width of

a computational cell was unit distance, and the material velocity behind the

input shock was unity. The initial density of gas around the object was like-

wise unit mass per cell, while the object density was four times as great.

Thus, the speed of the incoming shock was 1.33 and the density behind it

was 4. The channel was 24 cells wide and the computation region in it was

50 cells long. The object was 10 cells wide in each case, but its length was

variable. Along the left boundary there was input corresponding to constant

conditions bebind the shock.
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B. Configurations of the Flow Fields

A typical interaction configuration is shown in Fig. IV-1. The object

was a long rectangle, extending to the right side of the computation region.

Positions of the interface and of the shocks were determined by reference

to plots of the mass potits, in a manner similar to that used in previous

chapters.

A similar result is shown in Fig. IV-2. In this case the object length

was twice its width. In addition to the features shown in Fig. IV-1, there

is also shown the set of initially-horizontal mass-point lines. These are

dashed in the turbulent-vortex region, where the flow pattern, as represented

by the particle positions, is considerably more contorted.

c. Functional of Motion

In the various computations reported in this paper, numerous functional

of the motion were calculated. For this set of calculations, it is appropriate

that they be discussed in some detail, because they demonstrate several prop-

erties of the PIC method. In particular, several of the functional can be

compared with corresponding hand-computation results. Thus, for the prob-

lem whose late-time configuration is shown in Fig. IV-1, the vertical momen-

tum of the entire flow field could be computed exactly by hand for times up

to when a signal from the corner of the object reached one of the channel

walls. The comparison is shown in Fig. IV-3. The effect of collision of a

corner signal with the channel wall is clearly visible at t = 26.

Likewise, the circulation around the computation region could be hand-

computed as a function of time. This was done for the shorter object, since

the result shows a discontinuity in slope resulting from shock break-through

at the back edge just after t = 28. The result is also shown in Fig. IV-3.

The change in slope is clearly visible in the machine-computed results.
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Finally, an approximate hand computation

and internal energies of the object; the results

times after the encounter. The comparison is

could be made of the kinetic

should be valid for early

shown in Fig. IV-4 for the

short-object calculation. The kinetic energy from the machine computation

agrees with the hand-computed result nearly as well as do the circulation

and verti,cal momentum. The time-wise lag in the internal energy curve

has also been observed in various other PIC method calculations. It is

easily explained by the nature of the finite-difference equations, and can be

made smaller by a decrease in cell size.
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CHAPTER V

HYPERSONIC SHEAR FLOW WITH PERTURBED INTERFACE

A. Introduction

We have used the PIC method to study the plane, two-dimensional in-

teraction of two gases moving past a perturbed slip plane. The gases were

confined between infinite, parallel, rigid walls; in cross section, the initial

slip plane was approximately a low-amplitude sine wave with mean position

halfway between the walls. The gases were initially cold (zero sound speed);

the upper one was moving to the right and the lower one to the left, both

parallel to the channel walls and with the same speed. Both gases were

polytropic, nonviscous, nonconducting, and monatomic (specific heat ratio

y = 5/3).

The initial configuration waa perfectly periodic along the channel, and

it was assumed tht subsequent interactions would preserve that periodicity.

One period was divided into 1200 square cells– 30 from wall to wall and 40

along the channel. The total number of mass points was 4800. Boundary

conditions were reflective at the rigid channel walls and periodic at the ends.

Dimensions were scaled so that each cell was of unit width, the initial

velocities were of unit magnitude, and the density of the upper gas was four

units. Thus, the time unit was the time required for the undisturbed gas to

move one cell. The initial perturbation of the slip line was always the

-68-



same– of unit amplitude and in the form of a step-function approximation

(along cell boundaries) to a sine wave with origin at the left of the period.

The parameter which was varied among calculations was R, the ratio of

density of the upper to lower gases. The values studied were R = 1, 0.5,

and 0.2, and the scaling laws allowed additional results to be derived from

these, equivalent to R = 2 and 5.

B. The Interaction

Along the section of slip line with

in the early stages. From this col~sion

positive slope, the gases collided

line, shocks proceeded into each gas;

the gases were heated, and vertical kinetic energy was created. The shocks

diverged and were carried along as shock pulses in undulating ribbon form,

separated by rarefied regions of relative stagnation. h the early stages, a

cavity opened along the section of slip line with negative slope.

Typical appearance of a well-developed configuration is shown in

Fig. V-1 for the initial density ratio R = 1; the elapsed time was 30.7 units

(the free-stream motion had carried the gas about three-fourths of a period).

Mass-point lines shown for the upper gas were initially horizontal and evenly

spaced; those for the lower gas were initially vertical (transverse to flow)

and also evenly spaced. The dashed line shows the mean interface between

the gases; initially, this approximately followed the dotted line. The central

strip is rarefied and strongly turbulent as indicated by the admedian mass-

point line of the upper gas. For R = 1, the configuration always satisfied

the symmetry property that vectors reflected through the center point should

change sign but not magnitude, while scalars remain unchanged.

k Fig. V-2 are shown the positions of the diverging shock fronts at

various times for the problem with density ratio R = 0.2. These locations

were defined by the positions at which the magnitude of vertical velocity
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was one-tenth of the initial free -stresm speed. The maximum and minimum

heights of the two shock fronts are shown as functions of time in Fig. V-3.

By t = 30, these shock fronts were moving at speeds of 0.36 and 0.14 cells

per time unit in the upper and lower gases, respectively.

In addition to the two diverging shock-pulse ribbons, there was a cen-

tral region of rarefaction wherein both gases had dropped to about one-thiti

normal density at late times. In Fig. V-4 is shown the compression as a

function of height above lower channel wall, at time t = 30, for the problem

with densi~ ratio R = 0.2. These compressions were obtained in the com-

putation as cellwise quantities, “qwmtized~? by integral numbers of particles

in each cell, and have been smoothed in the plots.

The distinction between the diverging ribbons and the central rarefaction

region is slso strongly indicated by the vertical profiles of specific internal

energy. One of these is shown in Fig. V-5 at time t = 30, at channel mid-

length, for the density ratio R = O.2 (corresponding to the upper part of

Fig. V-4). The ribbon temperature was slightly higher than that behind a

theoretical plane shock of this speed. (A shock speed of 0.36 would tidicate,

with y = 5/3, a vertical material speed of 0.27–which is close to the ob-

served value-but this in turn leads to a specific internal energy of O.37.)

The explanation lies in the fact that the shock was actually oblique on its

left face, where the shock speed was greater relative to the material.

Energy was transferred from the denser to lighter gas at a rate which

is roughly proportional to (1 – R)/R in the range of density ratios considered.

This transferal was a secondary effect, in that the rate remained negligible

for some time and then gradually increased.

Another secondary energy effect was the production of vertical kinetic

energy. The rate of production roughly equaled the rate at which energy

was transferred to the lighter gas in the case R = 0.2, but was somewhat
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larger for larger values of R. Crude calculations using simple shock theory

suggest that the rate of production of vertical kinetic energy in the upper

gas should be proportional to (1 + ~R)-3 for all values of R. This crude

calculation agrees surprisingly well with the results of the full machine cal-

culations for early times. In Fig. V-6 is shown the vertical kinetic energy

in the upper gas for five different densities of the lower gas. (The curves

for R = 2.0 and 5.0 were obtained by scaling the energies of the lower gas

from the runs with R = 0.5 and 0.2, respectively.) Also shown as a set of

isolated points at t = 10 are the values of 45(1 + ~R)-3, the constant of

proportionality having been chosen to fit the value for R = 0.2. Variation

in the accuracy of agreement at earlier times is consistent with the expected

variations in the fhMte-difference results. The late-time drop in the curve

for R = 0.5 arises from collision of the shock with the upper channel wall.

The other problems were not run far enough for collision because of the

machine time involved.

A primary energy effect was the production of internal energy. In

Fig. V-7 is shown the internal energy of the upper gas as a function of

time. The inset, at the same scale, shows the early-time secticn of the

curves as the data came from the machine. The contortions can be traced

to a fictitious effect of the finite-difference technique; these have been

smoothed slightly in the full curves.

-71-



-7
2
-



I
Uu

\

I/I

\l
I

1
-

III
I

III
I



IIIiI

0m
m

0
u
)

13
N

N
V

H
0

N
I

1H
913H

w=t
=

E
J

E
l N“.

-7
4

-



10

/

-!

-1wzzasv

N
O

lS
S

3U
d

W
09

0mu)N0m
l

U30

z

sb
jE
l

-7
5
-



I
I

I
—

1
0

0
In

;
o

0
0

0
0

A
W

13N
3

1V
N

U
31N

I
01d

103d
S

-7
6

-

u
’)

0



om
l

ma

L

oII

A
W

3N
3

9113N
I)I

.

-7
7
-



b

o

A
9L

13N
3

1Q
N

U
31N

I

-7
8
-



CHAPTER VI

TAYLOR INSTABILITY

The PIC method has been applied to problems involving the instability

of irregular gaseous interfaces subjected to normal acceleration. A typiCd

seqpence of configurations is shown in Fig. VI-1. The calculations were per-

formed in cylindrical coordinates, with the axis forming the left boundary

of the picture; the other boundaries were rigid and reflective. The two

gases were initially cold, nonviscous, nonconducting and polytropic, with

specific heat ratio y = 2. The initial boundary between them, as shown in

Fig. VI-1, was perturbed to a square-tooth shape. Smaller Pe@urbations

were not studied because of lack of resolution, larger ones could not be

studied because of the effects of boundary signals. Acceleration was sup-

plied by an applied pressure in the empty cells; the procedure is discussed

in Chapter I, Section B-6. As mentioned there, the ~lempty~’region behaves

as though it were filled by a very hot gas at very low density. The pressure

is finite (specified) but the sound speed is very high, so that the pressure

remains homogeneous. It is assumed that this “gas” is backed by an in-

finite reservoir, so that its pressure is constant in time. Thus it is ex-

pected that the applied-pressure boundary will always be unstable.

A shock passing through

between gases. The resulting

the upper gas eventually crosses the boundary

compression in the vicinity of the boundary
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(by a factor of three for y = 2) initially decreases the perturbation amplitude.

If the ratio, R, of density of lower gas to that of upper gas is greater than

unity, then it is expected that the perturbation amplitude will subsequently

grow. For R s 1, the surface should be stable.

In each of the calculations, there were 1200 square computational cells;

units were scaled so that each was of unit width. The applied pressure was

such as to give a material velocity behind the initial shock of 0.1 cell per

unit time.

In Fig. VI-1 there is shown a sequence of configurations of the upper

gas for the calculation with density ratio R = 2. Corresponding configura-

tions are shown in Fig. VI-2 for density ratio R = O.5. In the latter case.

the lower surface was stable, but had changed phase by late time. lh the

former calculation the lower-surface perturbation amplitude had increased

back to its original amount by time t = 230. Subsequently, however, the

amplitude remained nearly constant, while the shape of the interface changed.

In both cases, the upper surface had become perturbed; the amplitude in-

creased most in the calculation with R = 0.5, in which there was the greatest

acceleration of that surface.

Results of a similar, but more extreme, pair of calculations are shown

in Figs. VI-3 and VI-4. The initial configuration was the same as before

in both cases, but is not shown in Fig. VI-3 because of overlap in drawing

the later configuration. In the first of this pair, the density ratio was R = 20;

by time t = 230, the lower-surface amplitude had increased to three-halves

its original amount, and the upper surface was considerably irregular. For

the case R = 0.05, there was again a phase change in the lower-surface

perturbation. The shape of the surface was quite distinctive. The upper

gas remained quite thick; the upper surihce is not shown, again because of

overlap with earlier lower-surface positions, and because only by the last
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time had that surface become appreciably perturbed.

In one additional calculation, the lower gas was omitted and the per-

turbation placed along the upper surface of the upper gas, adjacent to the

applied pressure. A sequence of interface configurations is shown in Fig.

VI-5. Some small droplets which broke from the top of the axial spike are

not shown. The lowest configuration in the drawing is

from its true position to prevent overlap.

It is unfortunate that none of these results could

experiment or other theory. Qualitatively, the results

it is thought that they also have quantitative accuracy,

displaced dowmwml

be compared with

appear reasonable;

to some extent.
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Fig. VI-1 Sequence of configurations of the upper gas for calculation with
density ratio R = 2.

-82-



. ..... .. ... .... ... ... ... ... ... ... .... ... ... .... ... ... .... .. .... ... ... ... .. ... ... . .. ... ....... .... .... ... ... ... ... ... .... .. .... .. ..... ....................................................... .... ./##. .:: :: : .. .. .... ... .. .... ... ... .... ... .. ........... ......... ::::..... ..... ... ... .... OO. O. .0..................00 . . . .‘ “ ““ “ . . v................####... .

t=o

t=23o

Fig, VI-2 Two configurations of the upper gas for the calculation with
density ratio R = 0.5.
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t=eso

Fig. VI-3 Late-time configuration of the upper gas for the calculation with
demity ratio R = 20.

-84-



! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
..:+:.:./ . . . . . . .



. . . . . . . . . . . . . . . . . . . . . .

j:,:+.. .

. . . .4:.:+. . .. . ............... . ,...:.:.:.:.:.::::.:.:.:, ,..%..%w..,.... ..... . . . . . . . . . . . . . .. . . . . . . . . . . . . . . ..-.%%%%%.... . . . . . . . . . ................................................. . . . . . . . . . . . . . . .

t=o

,Ox+>. . . ..:.:.:.:.:.:.:.:.:., . . . . . . . . . .............
. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.:.:.:.:.:.:.:.:.:.:.:.:.~.:.:.:.:.:.~.:.:.:.*.:.~.:.:.. .

..:.:.:.:.:.~:.:.:.:.:.:.~..:.:+y
%..%.... ........%............%..,..::::::::::::::::\:: :::::::::::..

Fig. VI-4 Sequence of
with density
t o.=

configurations of
ratio R = 0.05.

the upper gas for
Upper surface is

the calculation
shown only for
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Fig. VI-5 Sequence of configurations of the upper gas surface for the cal-
culation with
configuration

applied-pressure-interface perturbation. Lowest
is displaced as shown to avoid overlap.
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CHAPTER VII

VISCOUS-FLOW CALCULATIONS

A. Introduction

The procedure outlined in Chapter I, Sec. C, has been applied to sev-

eral problems concerning the flow of a viscous, heat-conducting, polytropic

gas . Results of several of the calculations are presented here.

The gas in each case was air for which we took y = 1.4, A = – 2/3,

B = 1.9. The first viscosity coefficient was assumed to vary with specific

internal energy (hence with temperature) according to the relation p = pOl?,

where the exponent was a constant. (’h Sec. B below, n = 0.5; in Sec. C,

n = O.) In each case, the channel wall was allowed to be conducting and

held at a fixed temperature. There were ten cells across the channel and

three columns of cells along one period of the channel. In each case, the

flow was actually one-dimensional, but results were improved by along-

channel averaging.

B. Couette Flow

Initially, the gas was at rest and at uniform density, P., and specific

internal energy, 10 = 1.0. (The value of I at the walls was held fixed at

that value.) At time t = O, the lower wall (at y = O) was impulsively ac-

celerated to velocity U., and thereafter moved at that constant rate.
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It can be shown that under these circumstances the final (steady-state)

maximum

Thus, we

accofiing

case., the

channel.

value of I should be

2
‘o

Im=Io+~

may distinguish between low-velocity and high-veloaity Couette flow

as u: is distinctly less than or greater

temperature (hence the density) remains

In the latter, the central temperature is

than 8B10. In the former

nearly uniform across the

large and most of the

mass is confined to narrow bands at the walls.

At first we placed the particles in an orderly fashion, four per cell,

one at the center of each qutdrant. h the low-velocity calculations, the

results were satisfactory because the density changes were so small that

there were no vertical particle crossings. In the high-velocity calculations,

however, such functional of motion as total kinetic energy of the system,

plotted as a function of time, showed discontinuities in slope. These oc-

curred whenever a row of particles aU simultaneously made a vertical

crossing. An alternate procedure in particle placement was found to be

considerably more satisfactory Initially, the positions of the four particles

in each cell were generated at random. “ AS a result,the functioIMIs of

motion were much smoother and in better agreement with analytical calcu-

lations.

Simple tests of the calculation procedure produced results whose ac-

curacy is as good as expected with the coarse mesh used. Some plots of

velocity and specific internal energy are shown as functions of height above

lower channel wall in Figs. VII-l and VII-2. This was a low-velocity case;

= 1.0. The results of a high-velocity Couette flow calculation (u. = 10)
‘o
are shown in Fig. VII-3 for a late time. The five-times-compression
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should rise to a value of 36 at each side to maintain constant pressure. It

was apparent that the channel center would never cool to the theoretical

limit in this calculation. The reason could be traced to a fault of the bound-

ary conditions at the walls. It was assumed that there the speclfic-internal-

energy gradient was the value obtained by subtracting from the value in the

first cell the assigned wall value and dividing the result by half the cell

width. The gradient thus calculated was much less than the true value;

thus, a quadratic fit procedure was tried for calculating the gradients. The

result showed considerably better agreement in the value of maximum tem-

perature.

Even

momentum

which -S

though the final density was far from uniform, the alon&channel

from the machine calculation asymptotically approached a value

very close to that obtained analytically as a result of the simple

assumption that the density and velocity gradients were constant across the

channel.

-c. Poiseuille Flow

The initial conditions were the same as in Sec. B. At time t = O, a

bwly acceleration was applied: g = 0.04. An approxhnate analytical solution

was obtained for the problem, and comparisons with

results are shown in Figs. VII-4, VU-5, and VII-6.

of the same magnitude as the expected error in the

the machine-computed

The discrepancies are

approximate solution.

-89-



1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0. I

o

\

\

‘\

\ \ t=60
\
\ \

\

2 4 6 8

HEIGHT ABOVE LOWER WALL

.

10

Fig. VII-1 Solid curves show machine-calculated velocity as a function of
height for low-velocity Couette flow. Dashed curves are ana-
lytical solutions.

-90-



>
0
a
w
z
ld

A
4
z
a
u
1-
Z

1.08

1.0{

I.0

1.02

II

—

In1.001 I I I

2 ‘4 6 8 lW
o

HEIGHT ABOVE LOWER WALL

Fig. v~-z Solid curves show macMne
-calculated specific internal energy

as a function of height for low-velocity Couetie flow. Dashed
curve is analytical steady-state solution.

-91-



10

9

8

7

6

5

4

3

2

I

o 2 4 6 8 10

HEIGHT ABOVE LOWER WALL

Fig. VII-3 Specific internal energy, velocity, and five times the compres-
sion plotted as functions of height for a high-velocity Couette
flow calculation. Dashed curve is analytical steady-state solu-
tion. Points show the actual cellwise values of five times the
compression.

-92-



g

x

Fig. VII-4

I .(

Oof

O.f

0.7

0.6

0.!!

0.4

0.3

0.2

0. I

o

/

I
/
I
I
I
/
/
/
I
I

‘1
\

I

\

\

\

\

\
\

\

\
1

2 4 6 8 10

HEIGHT ABOVE LOWER WALL

Velocity as a function of height in the Poiseuille-flow problem.
Solid curve is from macbine-
approximate solution.

-93-

calculation; dashed is analytical



Fig. VII-5
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