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ABSTRACT

Previous discussions of a computing method for
solving two-dimensional hydrodynamic problems are
here amplified and extended. Results of computations
are presented for problems involving shock diffraction

and refraction, surface instabilities, and viscous flow.
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INTRODUCTION

The particle-in-cell method for two-dimensional hydrodynamic calcula-
tlons has been applied with various degrees of success to a rather wide
variety of problems in compressible-fluid flow. The method was first dis-
cussed in two unpublished report;sl’2 which have been superseded by more
detailed published descriptions of the method and its cha.rac’ceristics.:s’4 The
most complete description previously could be found in Ref. 4. That dis-
cussion was mainly restricted to one-dimensional procedures, however, and
as applied to two-dimensional calculations was incomplete and should now be
modified somewhat. & is, therefore, one purpose of this report to discuss
the presently used procedure in some detail.

The accuracy of the computing method has been tested by applying it
to a variety of problems for which theoretical or experimental solutions were
available. The results of some of these calculations have been reporl;ed;s’ﬁ’7
others are available only in classified literature. Still others, more recently
obtained, have revealed new restrictions, or regions of applicability, or have
produced results not previously derived by theoretical methods. It is, there-
fore, the second purpose of this report to summarize these new results.

For brevity in writing, the particle-in-cell method for hydrodynamic
calculations has been abbreviated the PIC method. In the discussions to
follow, it will be assumed that the reader has access to Ref. 4 so that most
of the discussions presented there will not be repeated. On the other hand,
the outline of computing procedure in Chapter I of this report is sufficiently



complete in itself so that a computing code could be based on it.
Performance of a calculation by the PIC method resembles the per-
formance of an experiment. In preparation, the differential equations of
motion are transformed to suitable conservative finite-difference forms.
These, together with the initial and boundary conditions for a specific situa-
tion, are given to the electronic computer which, in turn, develops the solu-
tion at a sequence of later times separated by small time increments. There
is no a priorl assumption of a model for the flow configuration; the develop-
ment of shocks, for example, occurs automatically where required. Thus,
these computations are quite different from another type often performed by
high-speed computers, in which a complicated set of equations i1s solved very
precisely, often for the purpose of normalizing analytical approximation pro-
cedures. Precise solutions, however, are usually possible only with ordinary
differential equations. In contrast, the PIC method approach for solving the
partial differential equations of hydrodynamic always results in approximate

solutions. I has been observed but not proved that under many circumstances
of Interest the approximations are good and, furthermore, that they can be
improved by decreasing the sizes of the finite-difference zones.

In the absence of analytical justifications of the PIC methodology, it
has been necessary to examine by 'trial and error" its applicability to nu-
merous problems with known solutions. Likewise, it has been necessary to
experiment with numerous modifications of the methodology in order to ohtain
maximum accuracy with the resolution presently obtainable with available
computing machines. In some cases, it has been found that a modification
would result in very little change in the answer; in other cases, a small
change could produce a very large effect. Some of these results are dis-
cussed in this repoxrt.

The calculation method is designed for use with a large high-speed




computer. All calculations described in this report were performed on an
IBM Electronic Data Processing Machine, type 704, with 32K memory.

The results discussed in each chapter were assembled mainly by the
people mentioned on the title page. There were, however, many occasions
when techniques discovered in the preparation of one computing code were
applied to another, so that contributions from all of the authors can be found
throughout the report. In addition, contributions to these later developments
in the PIC methodology have been made by Martha W. Evans and Billy D.
Meixner. Many stimulating discussions with them have resulted in significant
contributions to this report; details of their recent studies are to be reported

elsewhere.




CHAPTER 1

THE CALCULATION PROCEDURE

A. Problems Involving Cartesian Coordinates in a Rigid Rectangular Box

1. Layout and Nomenclature. Two materials are confined to move in

a two-dimensional rectangular box whose walls are rigid and allow perfect
slippage. The materials are nonviscous and nonconducting of heat; each has
an equation of state which relates pressure, p, to density, p, and specific
internal energy, I.
The box is oriented with one corner at the origin and with the edges
along the x and y axes. It is subdivided into a number of equal rectangular
cells to which the finite-difference

R N .. . e . equations are to be related. The
.. . e . cells have dimensions éx and &y,
R oo e o whose ratio is not necessarily the
PR ME P .. . same as the ratio of lengths of the
... R : R o . 1 . box sides. A typical layout is shown.
o * e % x|x ) X x Each fluid is represented by a
‘. : ) xx J o X i X x number of mass points called '"par-
. . " 1 ticles,' each with a constant mass;
) : ) X ) xx 0y ' x as shown in the figure, these are
* :4 L x| x" xx . "x represented by dots and x's; we shall
4 X X
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call the materials "dot material’ and '"x material," respectively. In this
example, all dot particles have the same mass, m , and all the x particles
have the same mass, m . (For calculations in cylindrical coordinates or
for certain situations in cartesian coordinates, it is more convenient to have
a different mass for every particle.) For each particle there are stored in
the machine memory its x and y coordinates. These are changed in time,
by the method described below, to give a representation of the motion of the
fluids through the mesh of cells.

Such quantities as velocity, density, and pressure are kept in the
machine memory by cell, so that, for example, the pressure of a cell is
a certain average of the pressure throughout the cell. (Further discussion
of this point is given by Bromberg in Appendix II of Ref. 4, where there
is an enlightening alternative derivation of the PIC method equations.) The
cells are labeled with index (ji)’ with 1 and j increasing in the x and y
directions, respectively; the lower left cell in the figure is cell number (i)
The pressure for cell (j) is pj while the average pressure along the

i 1

boundary between cells (1) and (i +1) is pji +%; analogous symbols are used

for the other boundary pressures. The density in a cell is defined to be
the quotient of the sum of the masses in the cell divided by its area.

The nomenclature for various cellwise quantities is shown in Table
I-1.

2. The Pressures. The two equations of state are given in the form

p=1£(]0

p=£f0D

where f and fx are appropriate functions for the dot and x materials, re-
spectively. For a cell containing only dot or x material, these equations

become

- 11 -
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IDENTITY OF NOMENCLATURE FOR CELL(j )
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TABLE I-1

i
x-direction component of velocity
y-direction component of velocity
mass of dot material (E N'jm')

i

mass of x material (E N jmx)
]
specific internal energy of dot material
specific internal energy of x material
pressure

the Phase I change in total internal energy
total energy of dot material

total energy of x material

total x-direction momentum

total y-direction momentum

result of Phase I calculation for ( )

result of Phase II calculation for ( )
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Various procedures are possible for the determination of total pressure
in a mixed cell. One of these is based on the requirement of pressure con-
tinuity across a material interface. Assuming that the fraction of a cell oc-
cupied by dot material is o, one writes the two equations, from which o is
to be eliminated,

) )
] My "y j
P = L obxdy ’ I'i - fx (1 — o0)6xdy "’ Ix a

i

If the pressure is strictly proportional to the density for both materials,
| then the result is the same as that from adding partial pressures:

‘ ] 'ji ] ji ]
| p, = f I + f I 2

If the equations of state are complicated, it may be convenient, as well
as sufficiently accurate, to still calculate the pressure in a mixed cell by
adding the partial pressures in this manner. In some cases, however, the
result of this is far from reasonable and the use of Eq. (1) is indicated.

An approximate solution of Eq. (1) has been found useful on several occasions.

A value, o

0’ is assumed for o and the pressure is taken to be

- 13 -
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has sometimes yielded reasonable results, where R is the ratio of the initial
density of the dot material to that of the x material, Thus, the value of %
is based on the assumption that the compression of each of the two mate-
rials is in the same ratio as their iritial compressions.

Various iterative procedures are possible for solving Eq. (1); none of
these has been used.

3. Phase I of a Calculation Cycle. In the machine memory there

are stored all the results of the previous-cycle calculations or else the
initial conditions for the problem. These are to be advanced in time accord-

ing to a finite-difference approximation to the differential equations

§9+u§p-+v92+p(§£+ﬂ)=0

ot ox oy ox 9oy

a du bu . %

Pt Pl " Py T ox = O

ov ov ov . 9p

— + — + — +==0

Pot TP T PVay " by

214-1-(u2'+v2) + u—a- I+—1-(u2+v2)

P& 2 PU o 2
+pvaa—y|:1+%(uz+v2)]+%+%p;1_
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The first of these equations, that of mass conservation, is automatically
satisfied by the particle model. The other three equations are treated as
follows: In Phase I, the contributions to the time derivatives which arise
from the terms involving pressure are calculated. The particles are not
moved at this step; thus the transport terms are dropped, and the equations

become, in finite space-difference form,

jeuyy _ 1[4 g
pi(ﬁt‘)i T 7 5x [p1+% pi-%]

J 9 1( 2 281 _ 1 ] )
piat;[I+ZG1 +v)]i_—&x [(pu)1+§— (pu)i_%]

1 [, g+ rﬂ
~ by [(pv)1 - (pv)1

From these result the tentative new cellwise velocities
oyot [ J jo
1Y M; _p1+% pi—%J

oo oxt[ vk 4%
O O N O

The quantity lj1 in the third equation is not defined for a mixed cell, but we
may write
]
Lﬂ*QLﬁﬁl
Pi 7ot 5xoy/ ot
wherein GjS is the change in total internal energy of the cell. Its calcula-

tion involves use of the old and new velocities
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AV ] :
_(vi) ] — syt [(pu)i_*_% - (pu)i_%]
— bxbt [(pv)i+% — (pv)ji-%]

It 1s seen that the values of pressures and velocities at cell boundaries
are required. The usual procedure in obtaining these has been as follows:
Between two ordinary cells, the boundary pressure and velocity are taken as
the averages of those quantities in the two adjacent cells. At the rigid box
boundary, the normal velocity component is zero, while the tangential does
not need specification. The pressure at the box boundary has been taken as
a quadratic extrapolation of the pressures in the two adjacent cells. The
quadratic extrapolation is used because it allows the requirement to be im-
posed that the normal derivative of the pressure vanish at the boundary. It
is nearly as satisfactory to use for the boundary pressure that of the adjacent

interior cell.

At the boundary between an ordinary cell and an interior empty one,
the pressure is chosen to be zero so that the velocity there need not be
specified. Such a cholce ensures energy conservation.

It has been found to make little difference in the final results of a
calculation whether one uses, in the energy equation, the product of average
pressure and average velocity, or the average of the pressure-velocity pro-
duct; most of our calculations have used the former.

From the result for GQj, the values of 'f.j and 'f'j are to be determined.

i Xi
For an unmixed cell with, say, dot material only,

Ti-1ds i
4Ly j
M,

- 16 -




One way of distributing internal energy in a mixed cell was described
in Ref. 4 (page 21). The method more recently used is based on the as-
sumption that both components are compressed or expanded adiabatically
through the same pressure change.f- For example, if both components are

represented by polytropic equations of state

= (v, — 1) )
(where k means . or x), then 4

v, — Doa]

w2 (sl

If the equations of state are more complicated, then the distribution may be

-t

based on other assumptions, such as (1) both components receive the same
change in total internal energy, or (2) both components receive the same
change in specific internal energy. Application of the first of these two
procedures ylelded good results in one trial calculation, whereas the results
of using the second were not as good—insufficient energy was transferred

across the boundary from a heavy material to a light one.

4, ©Phase II, The Transport of Material. By the end of Phase I,

there are stored in memory ten quantities for every cell. Table I-2 shows
these, together with the quantities which replace them during the sequence
of Phase II calculations.

4 B Yo 4 e . "% "% 6
T’;rr: d 0 = M¢ ( (;L - (‘:) + MJ Z(E(J/j "'((/ ) 1‘/(1) ] - ,'Jf
(4
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TABLE I-2

SEQUENCE OF STORAGE CHANGES FOR CELL(j)DURING PHASE I

i

M, M I L T 'i;{ u v 9| ¥
Step1 >

" n 'E 'EJ " n 'i ? " "
Step 2 > X

M' M' E| E' " " X' Y|~ " "
Step 3 > X x

" " " " " " u' v' " "
Step 4 >

" " I' I’ " " " " " "

. X

Step 1. The results of the Phase I calculations are transformed into
total cellwise energies and momenta;

5 = [t + 2625

¢ w27

= (M' + Mx)?i

2

Hl

o14

Y =(M + M)y

Step 2. The particles are moved. The coordinates of each change
according to

x! X + uédt

y' =y + Vot

In some calculations (see, for example, Ref. 7), the values of u and ¥ were
simply the values of W and V of the cell containing the particle, no matter
where in the cell the particle originated its motion for the cycle. The re-

sults can almost always be improved, however, by using the time-consuming

- 18 -




process called 'velocity weighting;" in fact, tests have indicated that the in-
crease in accuracy thereby realized could not be achieved by that increase
in mesh fineness which would consume equal extra time.

In the velocity weighting procedure, a rectangle of cell size is imagined
to be located about each particle, the particle being at the center. Such a
rectangle then overlaps four adjacent cells, and the effective velocity for
moving the particle is taken as a weighted average of the four cellwise
velocities, the weightings being proportional to the overlap areas. If the
surrounding rectangle lies partly in an empty cell, then that cell may be
assumed to have the same velocity as does the cell with the particle (or
any other convenient and reasonable velocity) for the purpose of determining
the effective velocity for movement. If the surrounding rectangle lies out-
side the walls of the computation region, then the fictitious outside cells
may be given either reflected velocities or the same velocities as in the
adjacent interior cells. In the former case, it may be shown that for
properly small values of 6t, no particle will be lost from the system. The
procedure is less desirable, however, as it can lead to the '"boundary catas-
trophe' discussed in Ref. 4 (page 17). In the latter case, it is necessary
to reflect the particle back in; the particle then carries a change in momen-
tum as though entering from a cell with reflected velocity, and the boundary
catastrophe is avoided.

When a particle is thus moved, it may be found to remain in the same
cell from which it started. In this case, there is no modification to any of
the cellwise quantities. Some of the particles, however, will end up in new
cells; in these cases, cellwise changes are necessary. From the cell which
was left, the particle mass, momentum, and energy are subtracted and these
are added to the new cell. Thus, through step 2, the cellwise values of

mass, moméntum, and energy cumulate fo their final values for the cycle.

- 19 -



Step 3. The final velocities for the cycle are computed

X
u'_M'+M'
. b4
t Y'
VS WA
. X

Step 4. The final specific internal energies for the cycle are computed

El 1] 2 2]
' =30 —2 @) + ")

E' - e
] =-—§._—1_. |2 <+ b | 2
Ix M "2 _(u) ') ]

5. Phase III, Functionals of Motion. The final arrangement of storage

after the sequence of calculations is such as to allow immediate re-entry
into Phase I of the next cycle. Ordinarily, however, before proceeding to
the next cycle, it is useful to compute various functionals of the motion such
as total kinetic and internal energy for each material, components of total
momentum, positions of centers of mass, entropy, and numerous other quan-
titles. In some cases, it 1s possible to compare changes of these quantities
with the changes calculated by summing boundary fluxes. Thus, in the example
at hand, the total energy of the system should be rigorously conserved.
(Actually, machine roundoff will introduce some change in total energy, but
the relative change per cycle should be bounded by a number which is pre-
dictable from a knowledge of the number of significant figures retained by
the calculation.) Likewise, changes in the momentum componentg should be
exactly predictable in terms of the sum of the boundary forces. Computed
by machine, such checks serve to indicate machine or coding errors and

have proved extremely valuable on many occasions.

- 20 -




B. Other Boundary Conditions in Cartesian Coordinates

The simple boundary conditions discussed in the previous section are
applicable only to a restricted class of problems. Various modifications

are listed below; most of them have been used in actual calculations.

1. Periodic Channel. The rectangular computation region can be con-
sidered to be one section of an infinite channel with walls parallel to, say,

the x axis. It i1s assumed that all properties of the entire flow field are
periodic along the channel, the period being the width of the computation
region. The change in computing procedure is slight. For example, along
the right-hand boundary, the cells are treated just like interior cells with
their righi;—ha.nd neighbors being the cells along the left-hand boundary. Par-
ticles leaving the system across the boundary re-enter from the left, while
those which go out the left-hand boundary are inserted from the right. The
condition of periodicity is applied in such a way that the positions of the
vertical boundaries are immaterial as long as they are separated by one
period. Such a system is completely conservative of particles, energy, and
horizontal momentum. This type of system was used in performing the cal-
culations discussed in Chapters V and VII.

2. Prescribed Input. Along one or several of the boundaries, a pre-
scribed input of fluid can be inserted. This could, for example, be used to
represent the flow conditions behind a shock which has entered across one
of the boundaries at the beginning of the problem. Consider the example of
input along the left boundary. The left-hand cells of the computation region
can be treated as interior cells with their left-hand neighbors being con-

sidered to possess the prescribed conditions of the input flow. Particles
are periodically "created' for insertion across the left boundary; there is
thus a slight additional bookkeeping difficulty with regard to the storage of

- 21 -



particle coordinates. This type of input system has been used in numerous

calculations, including those discussed in Chapters II, III, and IV, and in
Refs. 5 and 7.

3. Continuative Output. Whenever the input boundary condition (para-

graph 2 above) is used, a provision for output at some other boundary is
usually required. If the flow out of that boundary is supersonic, then the
exact manner by which it is treated is of little importance. We have always
used a "continuative' boundary treatment for such an output line. Accordingly,
the boundary cells are treated as interior, being bounded on the outside by
cells with identically the same properties, at any instant, as their adjacent
interior neighbors. The machine memory locations for storage of the co-
ordinates of lost particles are made available for incoming particles, so

that the total required machine memory is bounded, and a calculation can

be continued indefinitely.

4. Moving Mesh. In paragraphs 1, 2, and 3 above, the computation

region is at rest and the fluid streams by. Alternately, if it is desirable to
study some feature of the flow moving with fluid speed (or some other speed),
it could be possible to have a traveling region of computation. Suppose, for
example, one wished to follow the motion of a shock wave during its passage
down a channel in, say, the x direction. This could be accomplished as
follows. A zone of several cells would always be present ahead of the shock;
whenever the shock had advanced a cell width, a new column of cells would
be created to their right with conditions representing the initial state ahead
of the shock. At the same time, a column of cells downstream would be
destroyed. Conditions ahead of the shock could be constant or could vary
with space. Boundary conditions at the downstream boundary could be con-
tinuative. No calculations have been reported which used a moving compu-

tation region in this manner.
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5. Rigid Obstacle. A rigid obstacle can be placed within the compu-
tation region. This is most easily accomplished if the boundaries of the

obstacle follow cell boundaries. The treatment is then exactly the same as
at the rigid walls of the computation region. Such a calculation was reported
in Ref. 5. If the obstacle boundary is curved or oblique relative to the cell
orientation, then the procedure is somewhat more complicated. Numerous
partial cells are created. The finite-difference equations for such cells can
be derived from the integral form of the equations of motion by a procedure
like that used by Bromberg (Ref. 4, Appendix II) for deriving the equations
under ordinary circumstances. The results of calculations for flow past a
circular object were reported in Ref. 7.

6. Applied Pressure. An applied pressure, prescribed as a function

of space and time, can be exerted on the irregular surface of a fluid. We
have accomplished this by varying the empty cell treatment, using the empty
cells to signal the presence of an applied pressure. First, the motion of
particles is subjected to an additional constraint: If the motion of any par-
ticle results in emptying a cell, then the particle is not allowed to move
during that cycle. An exception is allowed if the emptying cell is adjacent
to one which is already empty. Initially, the fluid interior has no empty
cells; the region of applied pressure is an empty-cell region surrounding
the fluid. In most of our problems the resulting motion is compressive, so
that the constraint by which no interior cells may empty is not serious.

The boundary of every fluid cell adjacent to an empty cell is given the ap-
propriate applied pressure, and it is assumed that the velocity at that bound-
ary is that of the fluid cell. The pressure within a cell next to an empty
one is calculated using normal density in the equation of state, if the cell
would otherwise have subnormal density. In all other cases these edge cells
_are treated as ordinary interior cells. This procedure has been used in the

- 23 -




calculations reported in Chapter VI and in other calculations not reported.
An interpretation of the applied pressure boundary condition is as
follows. The "empty" cells behave as though they were filled with a gas
whose density is very small compared with that of the adjacent material,
but whose temperature is very high in such a way that the pressure is
finite (the prescribed value). As a result the sound speed is very high so

that the pressure remains homogeneous.

C. Generalized Problems in Cartesian Coordinates

If there is an applied body force, or if the fluids are viscous and con-
ducting of heat, then the equations and boundary conditions become somewhat
more complicated, but the basic method is not altered. As an example, con-
sider the problem of determining the nonsteady motion of a polytropic gas
flowing through a periodic two-dimensional channel bounded by walls parallel
to the x axis. The basic equations (in addition to that of mass conservation,
which is still identically satisfied) are

du_ ., 8 fu), 9Q
pdt-pg+ax(P+2uax)+8y
dv _ 8 vy, R
pdt 8y(P+2M8y)+8x

pgt [I+%(u2 + vz)] = pug +§;[Pu + Qv + uf; (BI+ uz)]

+%[Pv+Qu+u:—§(BI+v2)] »)"

where the additional symbols are

ou  ov
= — —_— 4+ —
P p+”A(8x. 8y)
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IR

p = first (ordinary) viscosity coefficient

>
]

= second viscosity caefficient

A=A (assumed constant; an idealized monatomic gas has
A= _E)
3

v = ratio of specific heats (assumed constant)
Pr = Prandtl number (assumed constant)
B =

y/Pr [a relatively simple theoretical model gives

B = 707 - 5]

g = acceleration of body force (exerted in the x direction only)

Transformation of the equations to finite-difference form proceeds as
before. For Phase I of the calculation

g "yt Est Y —NT{PL% - P:—% ¥ E[“ﬂ% (u1+1 ui) Hi-4 (ui ui"l)]}

=]
"

<.
Il
<.
+
|a°
&
'Ut-h
+
=
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Again, each quantity at a cell boundary is taken to be an appropriate
average between the two adjacent cells. Perhaps the only feature of the
finite-difference form which is not otherwise obvious is the manner in which
the acceleration term is written in the energy equation:

1 o

rather than, say,

]
u1 gét

Choice of the form shown is based on the requirement of rigorous energy
conservation by the difference equations.

More details for a specific application of these equations are given in
the discussion of results in Chapter VII.

D. Two-Dimensional Calculations in Cylindrical Coordinates

There are many problems which are characterized by independence of
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the flow field from the angle about some fixed axis. Such cylindrical prob-
lems with axial symmetry can be treated by the PIC method with almost no
modification of the procedure already outlined. Consider the problem of
determining the motion of a single nonviscous, nonconducting fluid through
an infinite periodic cylindrical pipe with rigid walls. In some plane through,
and parallel to, the axis, one period of the flow field will be a rectangle,
bounded at the bottom by the axis, at the top by the pipe, and at the left and
right by the ends of the period. This region is divided into rectangular cells
(actually toroids of revolution), and the fluid is again represented by particles
(actually circles about the axis). In such problems it has been found con-
venient to assign different masses to the particles, each particle being given
a fixed mass whose value is proportional to the original radius of the par-
ticle, so that the particle density is initially proportional to the true density.
The différential equations
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P&t = "or
dv _  0p
P& =~ "oz
d 1({ 2 2]_ 1 spur Opv
pdt[I+2(u +")'“r or — oz

become, for the Phase I calculations,
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where u and v are the r- and z-direction velocity components, respectively,
and 1 and j count cells in those respective directions. At the axis, u = 0,
while a quadratic extrapolation of pressure, as discussed before, is appro-
priate. These difference equations are perfectly conservative. Moreover,
they tend to preserve spherical symmetry. This fact is not in contradiction
to the statements in Ref. 4 (p. 27) wherein the difference equations were
written with differences between cell centers, rather than between cell bound-
aries. The present form of the equations also has the advantage of avoiding
the peculiar boundary condition at the axis required in Ref. 4 [Eq. (52), p. 28].

The particle movement of Phase II proceeds by a velocity weighting
proportional to areas, just as in Cartesian coordinates, rather than to vol-
umes. A test of the latter procedure produced unsatisfactory results, es-
pecially near the axis. Again, if a particle does not cross a cell boundary,
then there is no change to the cellwise quantities; if it does cross, then
mass, "momentum,'" and energy are added and subtracted as before. (Here
the radial-direction "momentum!' is defined as the product of the mass and
the radial velocity.)

Numerous calculations using the PIC method in cylindrical coordinates
show that it is nearly as useful for such problems as for those in Cartesian
coordinates, even when there may be large radial-direction motions of the
fluid. Results of one series of cylindrical problems are discussed in Chap-
ter VI
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E. Limitations of the Method

The PIC method has been found useful in solving a wide variety of
problems concerning the dynamics of compressible fluids. Very little ana-
lytical work has been accomplished in the direction of proving the validity
of results, so that considerable expe'rimentation has been necessary. The
range of 'applicability 1s discussed in this report and elsewhere; it is also
appropriate again to emphasize the limitations.

The principal limitation of the PIC method arises from the requirement
that the fluid speed relative to the computational mesh must not be small
compared with the sound speed. An exception is allowed in a uniform region,
where the fluid speed may be zero. Thus it is not possible to apply the
method to problems in incompressible-fluid flow. There are two related
reasons for this restriction. First, interactions within the fluid are propa-
gated only from cell to cell, whereas in an incompressible fluid, the changes
in configuration at a point depend upon conditions at that instant throughout

the fluid. Second, as the fluld speed decreases, the "effective viscosity" due
to the dissipative procedure used in cell crossings (Ref. 4, p. 16) decreases
to zero. The difference equations, in this limit, can be shown to be uncon-
ditionally unstable. Thus, in a region of "perturbed stagnation," fluctuations
of the field variables grow until the velocities are large enough to produce
sufficient dissipation. A further discussion of this matter is given in Ref. 6,
page 10. This second difficulty can be relieved somewhat by the incorpora-
tion of artificial dissipative terms into the difference equations. Usually
such terms also have somewhat undesirable results, such as the increased
smearing of discontinuities. A discussion of these extra terms is in prepa-
ration by Longley.8

Another significant limitation of the PIC method results from the in-
ability of the fixed mesh of cells to resolve features of the flow field which
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are small in size compared to the over-all region to be studied. In some

cases the limitation can be overcome by the creation and destruction of
cells, so that computational mesh is present only where needed. It would
also be possible to have fine zones at some localities and coarse zones at

others, but such a procedure has not yet been tried.
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CHAPTER II

SHOCK-WAVE REFRACTION AT A GASEOUS INTERFACE

A. Imtroduction

In a recent paper, Ja.hn9 presented the results of a set of experiments
designed to study the regular and irregular refraction patterns arising from
the mteréction of a shock with an oblique interface between two gases. Re-
sults of his regular-refraction experiments agree closely with the theoretical
results of Polachek and Seeger.10 The experiments also revealed several
types of irregular refraction process, for which no comparison theory ex-
isted. Jahn discussed these patterns and showed that they could be explained
qualitatively by application of simple gas-dynamic principles. His discussions,
in amplified form, are also given in a series of Princeton University report;s.11

The experimental set-up consisted, ideally, of a two-dimensional channel
in which there was, initially, an oblique, essentially-massless diaphragm sep-
arating two gases in equilibrium. A plane, steady shock was allowed to ap-
proach through one of the gases and interact with the interface, and the re-
sult was photographed during the interaction. As such, the experiments dif-
fered from the theoretical model assumed by Polachek and Seeger, and by
Taub12 in his similar calculations. In the model, the interface was of in-

finite extent, and no effects from the corner were considered. In the ex-

perimental work, Jahn was able to separate the corner effects from those
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of the pure refraction by suitable adjustment of the angle of the channel wall
just beyond its intersection with the corner. These corner effects cannot be
completely eliminated, however, and any complete theoretical description of
the processes must include them.

Because no initial assumptions concerning the nature of the interaction
are required in PIC-method calculations, it was expected that both regular
and irregular refraction processes, together with corner effects, could be
computed. Some representative calculations were carried out, and the re-
sults confirmed the expectations and exhibited well certain properties of the
method.

In the calculations the gases were considered to be nonviscous, non-
conducting, and polytropic. They were confined between rigid parallel walls
in a two-dimensional channel, with shock input on the left and a continuative
boundary on the right. Each was initially homogeneous and the two were at
the same pressure. The section of channel studied was divided into 1200
square computational cells, having a maximum average of four particles per
cell. The interface between gases was inclined at 45° in all calculations.
This was the easiest angle to represent in the mesh of square cells; the
angle could be changed if rectangular cells were allowed, or if the particle
placements were altered. With the angle chosen, however, all features of
interest for this study were revealed.

The best representation of an input shock is obtained if the average
number of particles per cell behind it is an integer. Therefore, in each
case the density ratio across the incoming shock was required to be four
to two.

The results of the calculations are presentéd mainly in the form of
illustrations of the flow configuration at suitable times during the inter-
actions. Each picture was formed by plotting the positions of all the mass
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points in the system and superimposing an interpretation of the main features
by lines representing shocks, slip planes, and rarefaction fronts. These
positions were, in every case, determined by observation of deflections of
the mass-point lines. Where the signals were weak, the results of this
procedure were not always in good agreement with known results; the details
are discussed in the individual cases, and it is pointed out that there are
usually other satisfactory means of locating the weak-signal positions. Cer-
tain peculiarities of the mass-point plots are discussed below in connection
with Fig. II-1.

Numerous other results were also obtained from the computations.
These included internal and kinetic energles of each gas and other functionals
of motion such as the vertical and horizontal momenta. Because these were
considered to be of less interest here, they are discussed only briefly in a
few cases. Among the least reliable results from the calculations are such
quantities as local, instantaneous densities. These and other local features
which depend upon the number of mass points per cell may fluctuate rather
strongly about their true values. It is an essential feature of the computing
method, however, that the gross functionals of motion (those which extend
over numerous cells or depend upon time averaging) are well reproduced in
spite of these local fluctuations.

In our computations, the gases have been considered to be nonviscous,
non-heat-conducting, and polytropic. Effects from the computing-method ap-
proximations, however, can be interpreted as imparting certain other char-
acteristics to the gases. Principal among these is an effective "viscosity"
which allows for the calculation of shocks, but which also results in a shear
adhesion. This is mathematically similar to true viscosity but differs, for
example, in being anisotropic in a manner dependent upon the orientation of

the coordinate system. The effects are clearly visible in the results reported
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in this chapter, but are unimportant in their effect on most features of
interest.

We have used the notation of Jahn, according to which the initial shock
I of strength £ (¢ = ratio of pressure ahead to pressure behind) is incident
from the left on the interface O. In the resulting configuration, there is a
reflected shock RS or reflected rarefaction RR, a deflected interface D, and
a transmitted shock T. In Table II-1 are tabulated the essential features of

the problems.

Table II-1

LIST OF COMPUTATIONS

Problem Gas
Number Combination PR /pL 7L TR £
1 Air/COz 1.529 1.405 1.304 0.362
2 Air/CH 4 0.554 1.405 1.310 0.362
3 Air/Neon 0.696 1.405 1.667 0.362
4 Air/Polytropic 0.237 1.405 1.667 0.362
Gas
5 Air/He 0.138 1.405 1.667 0.362

B. Regular Refraction with Corner Effects

With the restrictions previously mentioned, it was not possible to cal-
culate for any situation corresponding exactly to an experiment by Jahn.
Instead, as a check on our results we calculated points on two of the curves
of Polachek and Seeger, choosing curves on which several points had been
verified by Jahn's results.

The interaction configuration for problem 1 is shown in Fig. II-1.
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This regular refraction pattern consists of transmitted and reflected shocks,
and a smoothly deflected interface. Also visible is the corner signal (a
rarefaction wave) which, in its propagation along the interface through the
air, induced a more slowly traveling rarefaction signal in the COZ. Inter-
action of the oblique transmitted shock with the channel wall resulted in a
Mach reflection pattern. The effects of various weaker disturbances can be
seen in the pattern of mass points in the lower part of the air.

There are certain features of the mass-point plot and interpretation
which also apply to the other illustrations. First, it is apparent that there
1s a vertical discontinuity in the pattern of the plus points. Those to the
right of the discontinuity were present in the calculation region at initial
time, those to the left entered subsequently, and the manner of their intro-
duction was not such as to produce the same pattern as resulted from com-
pressing the gas already present. The deflections of the vertical or diagonal
mass-point lines are more significant in the determination of boundaries in
the flow pattern than are those of the horizontal. Indeed, near the deflected
interface, at which there should be slippage, the effective "viscosity" arising
from the computing method caused rather strong deflections of the horizontal
mass-point lines.

The most clearly discernible features are the interface position and
the positions of the initial and transmitted shocks. Location of the corner
and reflected signals is usually difficult and requires the use of a straight-
edge placed along the mass-point lines. In problem 1, the reflected signal,
a shock, was extremely weak. As a result, its location as determined by
the mass-point-line deflections is not as high as it should be; the angular
discrepancy is about 7°. Reference to the detailed cellwise listings of the
calculation, however, shows that a signal had actually penetrated higher than
is shown in Fig. II-1, and good agreement with the correct result can be
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obtained by drawing a line through the group of uppermost cells, each of
which shows any change in temperature from that in the cells above it. The
positions of the interface and of the transmitted shock, however, are in good
agreement with the correct positions, differing in angular deflection by ap-
proximately 2° and 0° respectively. The position of the cornmer signal is
likewise consistent with the expected position as determined by the sound
speed in the air behind the reflected shock.

The results for problem 2 are shown in Fig., II-2. In this case, the
computed angular deflection of the interface was too great by about 3°, while
that of the transmitted shock was too small by about 2°. Again, the reflected
signal (a rarefaction) was too low, as measured by mass-point-line deflections,
with an angular discrepancy of about 7°. The primary signals from the cor-
ner are more complicated in this calculation. They include a weak signal
which propagated rapidly through the methane and a stronger signal whose
propagation rate along the interface through the air was nearly the same as
that observed in problem 1. The strength of this second signal (a shock)
was great enough so that a following rarefaction was produced; this, in turn,
induced a rarefaction in the methane. In the lower part of the region, there
are numerous signals whose effects on the interface are shown by the flexures
thereof. A plane of considerable slippage has been drawn in.

In both problems 1 and 2, the accuracy of the calculations is consistent
with the resolution to be expected from this size of finite-difference cells.
The most apparent discrepancies are in the reflected-signal positions, when
they are weak; but, in these and other calculations, such weak-signal loca-
tions can be determined by reference to detailed listings of cellwise tem-
peratures,

C. Irregular Refraction

We have investigated, in particular, the irregular refraction pattern
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arising when the right-hand gas has a higher sound speed than that of the
left-hand gas. We were especially interested in studying cases similar to
those in which the experiments showed the deflected interface to be unstable
[Ref. 9, Plate 6, Fig. 14(c) and Plate 12, Fig. 18].

The irregular refraction pattern and the unstable interface were both
observed in the calculation of refraction from air to helium. To study the
development of these, we performed a sequence of calculations. The first
one—a re'g'ulai' refraction from air to neon—is shown in Fig. II-3. The con-
figuration is particularly simple; the corner signals were weak and the de-
flected interface is nearly straight. The reflected shock was extremely
weak and is not shown. In the lower part of the air there are indications
of a slip plane and a rarefaction. These became progressively more evident
in the subsequent two calculational results.

In the next calculation, the density of the right-hand gas was reduced
to a value intermediate between those of neon and helium, and the tempera-
ture (hence also the sound speed) was increased for initial equilibrium. As
a result, the transmitted-shock speed along the interface was greater than
that of the input shock, and detachment occurred. The configuration is shown
in Fig. I-4. The reflected shock is now evident, as is its strong modifica-
tion by the following rarefaction. The slip plane and rarefaction in the lower
alr were much more strongly developed than in problem 3. The deflected
interface showed some instability; adjacent to it, the right-hand gas was
turbulent, while the air remained fairly stable.

The air-to-helium refraction pattern, presented in Fig. II-5, shows a
strong development of the irregularity as well as a great instability of the
interface and of the shocked helium. The irregularly reflected shock inter-
acted with the rarefaction, and the resulting disturbance was somewhat weak-

ened. The lower slip plane and rarefaction in the air were even more

- 37 -



strongly developed than before. The result of continuing the calculation to
a later time is shown in Fig. II-6.

It is not thought that the structure of the deflected interface is cor-
rectly represented in detail. Just as in an experiment, the exact nature of
the structure depends on the form of the initial interface irregularities, as
well as on the nature of interactions with the complicated, small-scale struc-
ture of shocks and rarefactions. In the calculation, the initial irregularities
of the interface correlate with the nature of the finite-difference mesh, and
many of the small-scale structures are not resolved by that mesh. Never-
theless, it seems significant that the computed refractions are stable in many
cases and become unstable in circumstances under which the experimental

patterns are also unstable.
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Fig. II-1

Interaction configuration for problem 1.
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Fig. II-2 Interaction configuration for problem 2.




_'[?_

tH+++++ e+ + +
th+ bbb+
++++t b+ +
+H++e+ 4+
FHE+ e+ 4+
+t+ 4t + 4+
++t e+
+t+tt+++ 4
IR R E R R R L RIS
+++++ e+ 4+
t++trttdr e+ 44
+tH++++H+ 4+ 4
++t+rr b+ 4+
+++ 4+t +++ 4+
+++t+++++++++ 4+
A RAEE LT EEE R RS
+H+t et e+ 44+
+H+ 4+ttt
LR R R A Rk
AR R R
++++t e+
+t++++ 4+ 4+
+H+ 44+ 444+
+H++ et 4
+H+E+ 4+
+++t ittt e+ 4
+t++t++t b+ 4o+
+H++ 4+t ++ 4+
tH+++++tr+++ 4+
+t++t++++++ 4+
+H++te 44+
LR R R R R e
++++++te 4+ + 4
++++ e+t ++ 4+

tH+ 4+ t1+ T+ T+ F 4+ +++ 4
AR R I b b ah i T S e
LR I R T ey
R T b Tk b b o = R AR A
L A R R R R T R
LR I R R i R N e
R R R R L L L R T T TPy
R I A R R I o T S A A R Y
R R AR R TR Lk TR arararny
R R R R R e R LT Ty
R A R R L T L sy
R R R R R R Tk U
LR R A L LR R R R T e
AR AR B B Rk TR Ry
tHtt 4+ttt e+ o
A R R R T T T R T e
R R R R R Rk R R SRR
R R R R R Rt
LR R A R i R R R X R
R R R I R R L e R T T
PR R R R R Rk bk X P SR
R e e R R RS Ty
R R R R R R R R R X T RO
LR R R R R e R R e S
R R R R RS
LR R R e A R R T
++++ ++ F++ 4+ttt 44+ 1
tHt+ 4+t
OO OIRAAIARIE R R E S T I,
tH+ 4+ 4+ttt Y
M BUTRARARE R S SR A I I
tHe++H e+t
+++ 4+ ++ ++++rre+++ 4+t *e.,
DO
10000000 S0P S OB R DIl R AN
LR R R R R ¢+++++++++++++++ﬁ*+
thbd b tb bbb et bbb bt brb e aett Yy
+++++++++++++++++++++++++++++*++,, ¢ . 0
R Y R R E R ORI ¢ S
LR R R R SR NS R e % sews e

R R R R U A S R A/ D *e,
A LR S S R AR R
DA EE R T R T U
AR R R B R N R o e
ttttt bbbt bbb by
R R E R R Y
+++tt b4+ 4

¥ + + + + + + + + +

+++ 4+ 44
+ 4+

R I o L A

MR TR
I+++ +++++++W+N+++++..OOOO eeec o 0 4, ,,
ti4 4+ +t 4y T+ 44 4+ + L) e o o o o o o

+ ++++++++++++++++++‘++u ce o0 0%e s g0 0o,
YV ++idt+t+aqit 44+ +4 +4+

+ * e e o o o o o o
+

+ .o'...."..""..o e o o o o+ o o
+ %o,

+ s® %% 0 *% et s e e ® o o o o o .
.+
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CHAPTER I

SHOCK PASSAGE THROUGH A DISCONTINUOUSLY ENLARGED CHANNEL

A. Introduction

Considerable attention has been paid to the problem of determining
theoretically the changes in a shock as it passes through a channel of vari-
able cross section. The problems for weak shocks or gradual area changes
have been treated by numerous authors from several points of view. Only
a moderate amount has been written, however, about the more difficult prob-
lems associated with the passage of a strong shock through a channel with
rapidly varying cross section. Whitham13 has devised an approximation
method which should be useful in many cases. A different approach has
been used successfully by Laport;e14 for constricted channels. It does not
seem likely, nevertheless, that any analytical treatment which might be de-
veloped in the near future will be capable of describing the entire flow field
in these complicated cases, but that solutions for particular situations will
have to be obtained by use of special numerical techniques.

In this chapter, we describe the application of the PIC method to the
special problem of determining the two-dimensional flow of a strong shock
through a discontinuously enlarged channel formed by two rigid planes which
are parallel except at the discontinuity. There, one of the planes has a
double right-angle bend, doubling the channel width. This is one element,
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In simplified form, of some of the problems which arise in studies of shock
damage to building interiors and in questions concerning establishment of
flow patterns in a shock tube. In this situation, development of the flow
field with time can be divided into two phases. In the first, the shock, which
approached from the narrow side, diffracts about the corner. Behind it,
there is established a complicated structure which includes an expansion fan,
together with several shocks and slip lines. The entire structure retains
geometric similarity as it expands linearly with time. In the second phase,
the shock interacts with the wall of the enlarged channel, is further modified,
and the flow near the corner eventually becomes nearly steady.

The features of both phases are discussed in some detail in this chap-
ter. In addition, comparisons with experiments are presented for the first
phase of development. For the experimental results, we are grateful to
Dr. Russell E. Duff who generously made available unpublished photographs
of the results of experiments performed with nitrogen at the Shock Tube
Laboratory, University of Michigan, in 1950.

B. The Computations

Two different gases were studied, nitrogen and helium. They were
considered to be polytropic, nonviscous, and non-heat-conducting, with specific
heat ratios y = 1.404 and y = 1.667, respectively.

In each of the computations, the Mach number behind the initial shock
was greater than unity so that no changes in flow occurred in the narrow
section of channel, in this instance to the left. Thus, the region of com-
putation was chosen to cover a rectangular section of channel just to the
right of the discontinuity. In the three problems with nitrogen, the region
was shorter along the channel length in order that the best possible resolu-
tion could be obtained near the corner. In the problem with helium, the
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region was longer along the channel length in order that down-channel effects
could be studied.

At the upper half of the left boundary, the input represented the steady
flow behind the initial shock which, at time t = 0, was at the discontinuity.
At the right, the boundary condition was continuative. The channel walls
were treated as rigid and reflective with perfect slippage. At initial time,
the gas in the computation region was homogeneous and at rest, represented
by two mass points per cell. Units were scaled so that a cell length was
unity, and the undisturbed gas was at unit density. In the undisturbed nitro-
gen, the sound speed was unity; however, the shock in helium was of infinite
strength, and in this case the material speed behind it was initially unity.
The units of time were accordingly chosen.

C. Development of the Flow Patterns in Nitrogen

The larger section of channel was 40 units high, and the region of
study extended 30 units to the right of the discontinuity. Calculations were
performed for three different strengths of the initial shock.

The configuration of mass points at time t = 12.593 is shown in
Fig. OI-1 for the case in which the Mach number behind the shock was
M = 1.008. The solid lines represent the shock and rarefaction fronts as
deduced from the deflections of the mass-point lines. The long-dashed
curves were taken from a photograph by Duff. The short-dashed curve is
theoretical Prandtl-Meyer streamline. The mass points plotted by dots are
those which were in the region at t = 0; those plotted by pluses entered
subsequently. (The individual mass of a plus point was not the same as
that of a dot point, so that the apparent density discontinuity between them
is not real.)

A similar configuration is shown in Fig. III-2 for time t = 6.329. In
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this case, the Mach number for flow behind the shock was M = 1.588.

In both cases, the shape of the diffracted shock is represented to
within the expected resolution of the computations, while the rarefaction
front, as determined by deflection of the mass-point lines, falls somewhat
below the experimentally observed position. The discrepancy is not sur-
prising. Where the upward-traveling signal was weakest, the deflections
of the mass points were so small as to be undetectable in the plot. Refer-
ence to detailed cellwise listings of results from the computations shows,
however, that a signal had indeed penetrated higher than the position shown
by the particle-line deflections, and approximate agreement with the experi-
mentally observed line can be obtained by an appropriate interpretation of
the listings, The situation is the same as encountered with the reflected
signals in Chapter II.

It is not expected that the Prandtl-Meyer streamline should lie along
a mass-point line in the early development of the flow. The first tendency
of the mass-point lines is to curve downward; for weak shocks, this tendency
results in the formation of the well-known spiral vortex. As the flow con-
tinues, however, the mass-point lines should approach the streamlines. This
expectation was closely realized in the two computations which were extended
to late times. In them (one case is shown in Fig. II-6), the hand-computed
Prandtl-Meyer streamlines lie very close to the mass-point lines up to the
point where the flow is perturbed by reflection from the channel bottom.

The configuration for M = 1.296 is shown in a slightly different way
in Fig. III-3. The time is t = 10.063. The fine lines connect mass-point
lines which formed a square grid in the initially unshocked gas, as shown
in the lower right-hand corner. The computed shock and rarefaction fronts
were again determined by the deflection positions of these lines. The ex-
perimental positions are shown as dashed lines; also included in this figure
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are the details of additional flow structure observed on the photograph

(Fig. IOI-4) near the diffracting corner. On the photograph the two lines
diverging from the corner represent the end of the expansion fan and the
slip stream. The former is truncated by a shock. These structures are
suggested by the computations, but the lack of resolution with this coarse
cell size precluded reproduction of the details. The structure just below
the corner is not clearly correlated with any feature of the computations.
The experimentally observed curved line behind the shock, and approximately
parallel to it, is represented in the computation by a thin region of strong
slip and of compression gradient, as shown by the mass-point-line positions.

Structures similar to these are also present in photographs (not shown)
for the other two Mach numbers, corresponding to Figs. III-1 and III-2, but
likewise in these cases the computation did not well reproduce the details.

Figures III-1 and III-2 show a region of instability in the flow field
just below the corner. The boundary between incoming gas and that which
was initially in the computation region folds back and forth in a manner
suggesting Helmholtz instability. Positions of this line at two different times
are shown in Fig. OI-5 for the computation with M = 1.296. This computa-
tion was continued to considerably later times. Shortly after t = 20.127, the
regularly folded structure of the interface was no longer recognizable, and
by t = 35 the region of mixing had reached the right side of the computation
region.

By t = 51.178, considerable of the original gas was still trapped in the
lower left corner. The configuration of mass points at this late time is
shown in Fig. III-6. The position of the rarefaction front where it is weak
is not well indicated by the mass-point-line deflections. Some effect of the
reflection of the rarefaction from the upper channel wall is suggested by
the appearance of the upper right corner of the region.
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D. Functionals of Motion

Until a signal from the corner has reached the top or bottom of the
channel, all quantities in the disturbance region should be functions of only
the ratios of the position coordinates to the time, and not otherwise depend
on time. As a consequence, such functionals as vertical momentum and ex-
cess kinetic energy (over input) should increase exactly quadratically with
time. The first of these can be computed by hand, and the result serves
as a check of the machine computation. The result for the case with
M = 1.296 is shown in Fig. III-7. In the early stages, the computed-momen-
tum curve is indistinguishable from the theoretical one, whose extension is
the dashed line, At t = 10.7, the shock arrived at the right-hand end of the
computation region and, shortly thereafter, it began to interact with the
channel bottom. Thus, the computed-momentum curve departs from the
theoretical one. Much later, the flow in the computation region was in
nearly a steady state, at which time the vertical momentum was nearly con-
stant.

In Fig. III-7 there also is shown the average specific internal energy
of a 5 X 5 square at the lower left of the computation region. The effect
of shock arrival just before t = 12 is clearly visible.

In each of the three problems, the total kinetic energy in the compu-
tation region rose almost precisely at the rate of the flux across the input
boundary during the first phase of development, indicating that kinetic and
internal energy were nearly conserved separately during this time. Thus,
the increase in kinetic energy which the gas received in the expansion fan
must have been matched closely by the decrease as the gas decelerated at

the back of the curved shock.
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E. Infinite Shock in Helium

A calculation similar to those described above was performed for an
infinite shock in helium. In this problem, the enlarged section of channel
was 30 units high, and the region of computation extended 40 units along the
channel. The flow pattern for time t = 30 is shown in Fig. III-8 and that
for time t = 70 in Fig. III-9. With the elongated calculation region, it was
possible to see the reflected shock from the turbulent region along the channel
wall. Local mean-velocity vectors, whose magnitudes can be compared with
the input-velocity vector, show a divided flow in the turbulent region. In the
lower left corner, the fluid was slowly and irregularly rotating; the upper
part interacted irregularly with the main stream, and occasionally small
amounts weré rapidly carried away, some being fed back into the vortex

and the rest being carried downstream.
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Fig. III-1 Configuration of mass points at time t = 12.593 for the calcula-
tion for nitrogen with M = 1.008. Solid and long-dashed lines
represent, respectively, the computed and observed positions of
shock and rarefaction fronts. Short-dashed line is a theoretical
Prandtl-Meyer streamline.
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Fig. II-2 Configuration of mass points at time t = 6.329 for the calcula-
tion for nitrogen with M = 1.588. Solid and long-dashed lines
represent, respectively, the computed and observed positions of
shock and rarefaction fronts. Short-dashed line is a theoretical
Prandtl-Meyer streamline.
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Fig. -4 Schlieren photograph by Duff of the flow field structure in nitro-
gen with M = 1.296.
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t=20.127

Fig. -5 Boundary between incoming gas and that which was in the region at t = 0 for the calcula-
tion for nitrogen with M = 1.296. Only the lower half of the computation region is shown.
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Fig. IlI-6 Configuration of mass points at t = 51.178 for the calculation for

nitrogen with M = 1.296. From lines A to B, the gas speed
drops by a factor of two. To the left of line C, the vertical gas
motion is predominantly upward. Computed and theoretical Mach
lines are shown as solid and long-dashed, respectively. Short-
dashed line is a theoretical Prandtl-Meyer streamline.
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Fig. -8 Configuration of the flow pattern at t = 30 for the calculation for helium, showing mass-
point lines, shock front, Mach line from cornmer, and boundary of turbulent region.
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point lines, region of turbulence with shock reflected therefrom, Mach line from corner,
and some local-velocity vectors.




CHAPTER 1V

INTERACTION OF A SHOCK WITH A DEFORMABLE OBJECT

A. Introduction

The encounter of a strong shock with a deformable object can result
in a very complicated flow field which contains both diffraction and refraction
processes. The PIC method calculations have been applied to a study of
several idealized situations in which the object and the surrounding gas were
both represented by the polytropic equation of state of a monatomic, non-
viscous, nonconducting gas. The flow was two-dimensional, confined between
rigid parallel channel walls. The object was rectangular in shape and at-
tached to one of the walls; it and the surrounding gas were initially cold,
so that the incoming shock strength was infinite.

In all calculations, units were scaled in such a way that the width of
a computational cell was unit distance, and the material velocity behind the
input shock was unity. The initial density of gas around the object was like-
wise unit mass per cell, while the object density was four times as great.
Thus, the speed of the incoming shock was 1.33 and the density behind it
was 4. The channel was 24 cells wide and the computation region in it was
50 cells long. The object was 10 cells wide in each case, but its length was
variable. Along the left boundary there was input corresponding to constant
conditions behind the shock.
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B. Configurations of the Flow Fields

A typical interaction configuration is shown in Fig. IV-1. The object
was a long rectangle, extending to the right side of the computation region.
Positions of the interface and of the shocks were determined by reference
to plots of the mass points, in a manner similar to that used in previous
chapters.

A similar result is shown in Fig. IV-2. In this case the object length
was twice its width. In addition to the features shown in Fig. IV-1, there
is also shown the set of initially-horizontal mass-point lines. These are
dashed in the turbulent-vortex region, where the flow pattern, as represented
by the particle positions, is considerably more contorted.

C. Functionals of Motion

In the various computations reported in this paper, numerous functionals
of the motion were calculated. For this set of calculations, it is appropriate
that they be discussed in some detail, because they demonstrate several prop-
erties of the PIC method. In particular, several of the functionals can be
compared with corresponding hand-computation results. Thus, for the prob-
lem whose late-time configuration is shown in Fig. IV-1, the vertical momen-
tum of the entire flow field could be computed exactly by hand for times up
to when a signal from the corner of the object reached one of the channel
walls. The comparison is shown in Fig. IV-3. The effect of collision of a
corner signal with the channel wall is clearly visible at t = 26.

Likewise, the circulation around the computation region could be hand-
computed as a function of time. This was done for the shorter object, since
the result shows a discontinuity in slope resulting from shock break-through
at the back edge just after t = 28. The result is also shown in Fig. IV-3.
The change in slope is clearly visible in the machine-computed results.
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Finally, an approximate hand computation could be made of the kinetic
and internal energies of the object; the results should be valid for early
times after the encounter. The comparison is shown in Fig. IV-4 for the
short-object calculation. The kinetic energy from the machine computation
agrees with the hand-computed result nearly as well as do the circulation
and vertical momentum. The time-wise lag in the internal energy curve
has also been observed in various other PIC method calculations. It is
easily explained by the nature of the finite-difference equations, and can be

made smaller by a decrease in cell size.
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Fig. IV-2 Positions of the interface, shocks, and mass-point lines at time t = 35 for the shorter object.
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CHAPTER V

HYPERSONIC SHEAR FLOW WITH PERTURBED INTERFACE

‘A. Introduction

We have used the PIC method to study the plane, two-dimensional in-
teraction of two gases moving past a perturbed slip plane. The gases were
confined between inﬁnité, parallel, rigid walls; in cross section, the initial
slip plane was approximately a low-amplitude sine wave with mean position
halfway between the walls. The gases were initially cold (zero sound speed);
the upper one was moving to the right and the lower one to the left, both
parallel to the channel walls and with the same speed. Both gases were
polytropic, nonviscous, nonconducting, and monatomic (specific heat ratio
v = 5/3).

The initial configuration was perfectly periodic along the channel, and
it was assumed that subsequent interactions would preserve that periodicity.
One period was divided into 1200 square cells—30 from wall to wall and 40
along the channel. The total number of mass points was 4800. Boundary
conditions were reflective at the rigid channel walls and periodic at the ends.

Dimensions were scaled so that each cell was of unit width, the initial
velocities were of unit magnitude, and the density of the upper gas was four
units. Thus, the time unit was the time required for the undisturbed gas to
move one cell, The initial perturbation of the slip line was always the

- 68 -




same—of unit amplitude and in the form of a step-function approximation
(along cell boundaries) to a sine wave with origin at the left of the period.
The parameter which was varied among calculations was R, the ratio of
density of the upper to lower gases. The values studied were R = 1, 0.5,
and 0.2, and the scaling laws allowed additional results to be derived from
these, equivalent to R = 2 and 5.

B. The Interaction

Along the section of slip line with positive slope, the gases collided
in the early stages. From this collision line, shocks proceeded into each gas;
the gases were heated, and vertical kinetic energy was created. The shocks
diverged and were carried along as shock pulses in undulating ribbon form,
separated by rarefied regions of relative stagnation. In the early stages, a
cavity opened along the section of slip line with negative slope.

Typical appearance of a well-developed configuration is shown in
Fig. V-1 for the initial density ratio R = 1; the elapsed time was 30.7 units
(the free-stream motion had carried the gas about three-fourths of a period).
Mass-point lines shown for the upper gas were initially horizontal and evenly
spaced; those for the lower gas were initially vertical (transverse to flow)
and also evenly spaced. The dashed line shows the mean interface between
the gases; initially, this approximately followed the dotted line. The central
strip is rarefied and strongly turbulent as indicated by the admedian mass-
point line of the upper gas. For R = 1, the configuration always satisfied
the symmetry property that vectors reflected through the center point should
change sign but not magnitude, while scalars remain unchanged.

In Fig. V-2 are shown the positions of the diverging shock fronts at
various times for the problem with density ratio R = 0.2. These locations

were defined by the positions at which the magnitude of vertical velocity
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was one-tenth of the initial free-stream speed. The maximum and minimum
heights of the two shock fronts are shown as functions of time in Fig. V-3.
By t = 30, these shock fronts were moving at speeds of 0.36 and 0,14 cells
per time unit in the upper and lower gases, respectively.

In addition to the two diverging shock-pulse ribbons, there was a cen-
tral region of rarefaction wherein both gases had dropped to about one-third
normal density at late times. In Fig. V-4 is shown the compression as a
function of height above lower channel wall, at time t = 30, for the problem
with density ratio R = 0.2. These compressions were obtained in the com-
putation as cellwise quantities, "quantized' by integral numbers of particles
in each cell, and have been smoothed in the plots.

The distinction between the diverging ribbons and the central rarefaction
region is also strongly indicated by the vertical profiles of specific internal
energy. One of these is shown in Fig. V-5 at time t = 30, at channel mid-
length, for the density ratio R = 0.2 (corresponding to the upper part of
Fig. V-4). The ribbon temperature was slightly higher than that behind a
theoretical plane shock of this speed. (A shock speed of 0.36 would indicate,
with y = 5/3, a vertical material speed of 0.27—which is close to the ob-
served value—but this in turn leads to a specific internal energy of 0.37.)
The explanation lies in the fact that the shock was actually oblique on its
left face, where the shock speed was greater relative to the material.

Energy was transferred from the denser to lighter gas at a rate which
is roughly proportional to (1 — R)/R in the range of density ratios considered.
This transferal was a secondary effect, in that the rate remained negligible
for some time and then gradually increased.

Another secondary energy effect was the production of vertical kinetic
energy. The rate of production roughly equaled the rate at which energy

was transferred to the lighter gas in the case R = 0.2, but was somewhat

- 70 -



larger for larger values of R. Crude calculations using simple shock theory
suggest that the rate of production of vertical kinetic energy in the upper
gas should be proportional to (1 + s/Tl)-s for all values of R. This crude
calculation agrees surprisingly well with the results of the full machine cal-
culations for early times. In Fig. V-6 is shown the vertical kinetic energy
in the upper gas for five different densities of the lower gas. (The curves
for R = 2.0 and 5.0 were obtained by scaling the energies of the lower gas
from the runs with R = 0.5 and 0.2, respectively.) Also shown as a set of
isolated points at t = 10 are the values of 45(1 + w/Tl)—s, the constant of
proportionality having been chosen to fit the value for R = 0,2. Variation
in the accuracy of agreement at earlier times is consistent with the expected
variations in the finite-difference results. The late-time drop in the curve
for R = 0.5 arises from collision of the shock with the upper channel wall.
The other problems were not run far enough for collision because of the
machine time involved.

A primary energy effect was the production of internal energy. In
Fig. V-7 is shown the internal energy of the upper gas as a function of
time. The inset, at the same scale, shows the early-time section of the
curves as the data came from the machine. The contortions can be traced
to a fictitious effect of the finite-difference technique; these have been
smoothed slightly in the full curves.

- 71 -



7
— A )
_=-—”””-‘-’ 7 \;Z ----“Ek/__,f/’/ - et
- A S U

_ZL_

(! /] //
il

Fig. V-1 Configuration at time 30.7 units for problem with R = 1, Upper gas shows longitudinal
mass-point lines; lower gas shows transverse mass-point lines. Dashed line is interface
position which was originally along the dotted line. Locus of ends of lower mass-point
lines delineates normal density isopycnic.




L \/

INITIAL INTERFACE

\\y‘/’"_,o'
\_/\4_,//
------ t=10
—— 1220
— t= 30 -

Fig. V-2 Position of the shock fronts at various times for the problem with R = 0.2.




30

25

20

15

_?L_

HEIGHT IN CHANNEL

CHANNEL CENTER

Fig. V-3

25 30

TIME

Position of the maximum and minimum shock heights as a function of time for the prob-
lem with R = 0.2.




_gl‘_

COMPRESSION

I I I l
CHANNEL MIDLENGTH

INTERFACE
| 4

ii

END OF CHANNEL

INTERFACE
-

| |

5 10 5 20 25
HEIGHT IN CHANNEL

lem with R = 0.2,

30

Fig. V-4 Vertical compression profiles at channel end and midlength at time 30 units for the prob-



_91‘-

SPECIFIC INTERNAL ENERGY

0.20 T I I T

0.05 — —

] l I |
o S 10 IS5 20 25 30

HEIGHT IN CHANNEL

Fig. V-5 Vertical internal energy profile at channel midlength at time 30 units for the problem
with R = 0.2.

S




_LL_

a5 l i I I I —
o~ -/ Re02 e
25 |- _
> R=0.5
@
>
Z 20 .
—t
-
W osk R=1.0 |
2
0 |- =
R=2.0
[ J
5| _
R=5.0
z | | ! 1 | ! 1
0 5 10 15 20 25 30 35 a0
TIME

Fig. V-6 Vertical kinetic energy of the upper gas as a function of time for various values of the
density ratio. Isolated points near each curve are values of 45(1 + VvR)™3,



I l l | l I l I
140 |- 4
R=0.2
120 -
>
100 |— -
& R=0.5
m
Z
W gof- N
4
, <
® % R=10
e 3 L] ar—
® & eo0
-
<
40 |— -
R= 2.0
20| I _
R* 5.0
1 | | | 1 1 | |
0 5 10 T 20 25 30 35 40

TIME

Fig. V-7 Internal energy of the upper gas as a function of time for various values of the density
ratio, Inset, at the same scale, shows the unsmoothed appearance at early times.




CHAPTER VI

TAYLOR INSTABILITY

The PIC method has been applied to problems involving the instability
of irregular gaseous interfaces subjected to normal acceleration. A typical
sequence of configurations is shown in Fig. VI-1. The calculations were per-
formed in cylindrical coordinates, with the axis forming the left boundary
of the picture; the other boundaries were rigid and reflective. The two
gases were initially cold, nonviscous, nonconducting and polytropic, with
specific heat ratio y = 2. The initial boundary between them, as shown in
Fig. VI-1, was perturbed to a square-tooth shape. Smaller perturbations
were not studied because of lack of resolution; larger ones could not be
studied because of the effects of boundary signals, Acceleration was sup-
plied by an applied pressure in the empty cells; the procedure is discussed
in Chapter I, Section B-6. As mentioned there, the "empty" region behaves
as though it were filled by a very hot gas at very low density. The pressure
is finite (specified) but the sound speed is very high, so that the pressure
remains homogeneous. It is assumed that this "gas" is backed by an in-
finite reservoir, so that its pressure is constant in time. Thus it is ex-
pected that the applied-pressure boundary will always be unstable.

A shock passing through the upper gas eventually crosses the boundary
between gases. The resulting compression in the vicinity of the boundary
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(by a factor of three for y = 2) initially decreases the perturbation amplitude.
If the ratio, R, of density of lower gas to that of upper gas is greater than
unity, then it is expected that the perturbation amplitude will subsequently
grow. For R = 1, the surface should be stable.

In each of the calculations, there were 1200 square computational cells;
units were scaled so that each was of unit width. The applied pressure was
such as to give a material velocity behind the initial shock of 0.1 cell per
unit time.

In Fig. VI-1 there is shown a sequence of configurations of the upper
gas for the calculation with density ratio R = 2. Corresponding configura-
tlons are shown in Fig. VI-2 for density ratio R = 0.5. In the latter case.
the lower surface was stable, but had changed phase by late time. In the
former calculation the lower-surface perturbation amplitude had increased
back to its original amount by time t = 230. Subsequently, however, the
amplitude remained nearly constant, while the shape of the interface changed.
In both cases, the upper surface had become perturbed; the amplitude in-
creased most in the calculation with R = 0.5, in which there was the greatest
acceleration of that surface.

Results of a similar, but more extreme, pair of calculations are shown
in Figs. VI-3 and VI-4. The initial configuration was the same as before
in both cases, but is not shown in Fig. VI-3 because of overlap in drawing
the later configuration. In the first of this pair, the density ratio was R = 20;
by time t = 230, the lower-surface amplitude had increased to three~halves
its original amount, and the upper surface was considerably irregular. For
the case R = 0.05, there was again a phase change in the lower-surface
perturbation. The shape of the surface was quite distinctive. The upper
gas remained quite thick; the upper surface is not shown, again because of
overlap with earlier lower-surface positions, and because only by the last
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time had that surface become appreciably perturbed.

In one additional calculation, the lower gas was omitted and the per-
turbation placed along the upper surface of the upper gas, adjacent to the
applied pressure. A sequence of interface configurations is shown in Fig.
VI-5. Some small droplets which broke from the top of the axial spike are
not shown. The lowest configuration in the drawing is displaced downward
from its true position to prevent overlap.

It is unfortunate that none of these results could be compared with
experiment or other theory. Qualitatively, the results appear reasonable;
it is thought that they also have quantitative accuracy, to some extent.
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Fig. VI-1 Sequence of configurations of the upper gas for calculation with
density ratio R = 2,
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t=230

Fig. VI-2 Two configurations of the upper gas for the calculation with
density ratio R = 0.5.
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t=230

Fig. VI-3 Late-time configuration of the upper gas for the calculation with
density ratio R = 20.
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Fig. VI-4 Sequence of configurations of the upper gas for the calculation
with density ratio R = 0.05. Upper surface is shown only for

t=0.
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Fig. VI-5 Sequence of configurations of the upper gas surface for the cal-
culation with applied-pressure-interface perturbation. Lowest
configuration is displaced as shown to avoid overlap.
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CHAPTER VI

VISCOUS-FLOW CALCULATIONS

A. Introduction

The procedure outlined in Chapter I, Sec. C, has been applied to sev-
eral problems concerning the flow of a viscous, heat-conducting, polytropic
gas. Results of several of the calculations are presented here.

The gas in each case was air for which we took y = 1.4, A = —2/3,
B = 1.9. The first viscosity coefficient was assumed to vary with specific
internal energy (hence with temperature) according to the relation u = yoln,
where the exponent was a constant. (In Sec. B below, n = 0.5; in Sec. C,
n = 0.) In each case, the channel wall was allowed to be conducting and
held at a fixed temperature. There were ten cells across the channel and
three columns of cells along one period of the channel. In each case, the
flow was actually one-dimensional, but results were improved by along-
channel averaging.

B. Couette Flow

Initially, the gas was at rest and at uniform density, po, and specific
internal energy, I0 = 1.0. (The value of I at the walls was held fixed at
that value.) At time t = 0, the lower wall (at y = 0) was impulsively ac-

celerated to velocity Uy and thereafter moved at that constant rate.
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It can be shown that under these circumstances the final (steady-state)
maximum value of I should be

u2

0
= I + —

Im 0 8B

Thus, we may distinguish between low-velocity and high-velocity Couette flow
according as ug is distinctly less than or greater than 8BIO. In the former
case, the temperature (hence the density) remains nearly uniform across the
channel. In the latter, the central temperature is large and most of the
mass is confined to narrow bands at the walls.

At first we placed the particles in an orderly fashion, four per cell,
one at the center of each quadrant. In the low-velocity calculations, the
results were satisfactory because the density changes were so small that
there were no vertical particle crossings. In the high-velocity calculations,
however, such functionals of motion as total kinetic energy of the system,
plotted as a function of time, showed discontinuities in slope. These oc-
curred whenever a row of particles all simultaneously made a vertical
crossing. An alternate procedure in particle placement was found to be
considerably more satisfactory: Initially, the positions of the four particles
in each cell were generated at random. As a result, the functionals of
motion were much smoother and in better agreement with analytical calcu-
lations.

Simple tests of the calculation procedure produced results whose ac-
curacy is as good as expected with the coarse mesh used. Some plots of
velocity and specific internal energy are shown as functions of height above
lower channel wall in Figs. VII-1 and VII-2. This was a low-velocity case;
u. = 1.0. The results of a high-velocity Couette flow calculation (u0 = 10)

0
are shown in Fig. VII-3 for a late time. The five-times-compression curve
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should rise to a value of 36 at each side to maintain constant pressure., It
was apparent that the channel center would never cool to the theoretical
limit in this calculation. The reason could be traced to a fault of the bound-
ary conditions at the walls. It was assumed that there the specific-internal-
energy gradient was the value obtained by subtracting from the value in the
first cell the assigned wall value and dividing the result by half the cell
width. The gradient thus calculated was much less than the true value;
thus, a quadratic fit procedure was tried for calculating the gradients. The
result showed considerably better agreement in the value of maximum tem-
perature.

Even though the final density was far from uniform, the along-channel
momentum from the machine calculation asymptotically approached a value
which was very close to that obtained analytically as a result of the simple

assumption that the density and velocity gradients were constant across the
channel.

C. Polseuille Flow

The initial conditions were the same as in Sec. B. At time t =0, a
body acceleration was applied: g = 0.04. An approximate analytical solution
was obtained for the problem, and comparisons with the machine-computed
results are shown in Figs. VII-4, VII-5, and VII-6. The discrepancies are
of the same magnitude as the expected error in the approximate solution.
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Fig. VII-1 Solid curves show machine-calculated velocity as a function of
height for low-velocity Couette flow. Dashed curves are ana-
lytical solutions.
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Fig. VII-2 Solid curves show machine-calculated specific internal energy
as a function of height for low-velocity Couette flow. Dashed
curve is analytical steady-state solution.
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Fig. vII-3
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Specific internal energy, velocity, and five times the compres-
sion plotted as functions of height for a high-velocity Couette

flow calculation. Dashed curve is analytical steady-state solu-
tion. Points show the actual cellwise values of five times the

compression.
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Fig. VII-4 Velocity as a function of height in the Poiseuille-flow problem.
Solid curve is from machine calculation; dashed is analytical
approximate solution. -
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Specific internal energy as a function of height in the Poiseuille-
flow problem. Solid curve is from machine calculation; dashed
is analytical approximate solution.
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Fig. VII-6 Horizontal momentum as a function of time in the Poiseuille-flow problem. Solid curve
ig from machine calculation; datum points are analytical approximate solution.
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