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2-D EULERIAN IlY!3RODYNAMICS WITH FLUID INTERFACES,

SELF-GRAVITY AND ROTATION

Michael L. Normwl u,]d Karl-l{cinz A, Winkler

1.OSAlirmos Nationtil Laboratory and

Mtix-PIimck-lnstitut ftir Physik und Astrophysik

1. lNTRODUCTION

The purpose of this paper is to describe In dctiril the numeric:il :ipproirch we
huve developed over the past five yeirrs for solving 2-dimensicmu; gtis-dynitmicul
problems in astrophysics involving inviscid compressible tlow, self-grtivltation,
rotution, and fluid instabilities of the Ruylcigh-Tuylor irnd Kelvin -l Iclmholtz
types. The computer code to bc described I1OSbeen ilpplicd most rccent!y to
modcli,lg jets in radio gtilaxics (Normim et id, 1981, 1982) and is MI outgrowth
of a code developed for studying rotuting protostell:ir collapse (Norman, Wilson
and 13urton 1980; Norman 1980), The busic methodology drtiws heavily on the
techniques uncl cxpcricnce of Jtirncs R, Wilson tind Jumcs M, 1,c131tincof the
l.~iwrcncc I.ivcrmorc N~itiontil Luborutory. and thus the code is designed tO be it
gcnerid purpose 2-I) Euler-iun hydrocodc, tlnd is chwxrcterizcd by ir high dcgrcc of
simplicity, rohustncss, modul;:ri[y und speed, Pilrticultir emph~iscs of this urticle
;Irc: 1) the rccctlt improvcmcn(s to the code’s uccurucy through the usc of
v:ln Lccr’s ( 1977) monotonic ildvcc(ion .ilgori(t)ril, 2) u discussion O! the
import:lncc of wh:lt wc [crrn Lonsistcnt tidvcc[i(m, iinri 3) ;I dcscrip[ion of u
numcric;il technique ior mocicling c{yrl;lrrlic.Jluid intcri’ii~cs in r]~t]l[idir~ll:tlsi~~rl,.!
Eulcriun cirlc’.]luti~msdcvcl(qwd by Lclllirnc,

“MC outline of this pilpCr is its f(lllows, in Sec. 2 wc ~rcsent the physicbll
cqutitiuns and our two-step methodology for solvitlg thcnl. ITir]itc-di l’!crctlcc
cquutions lor Ihrsc Iwo steps -the source step ilnd trilrls~)orl slcp- ;Irc given in
Sees. 3 iind 4, rcspcctivcly. ‘[”he !luid in[crf;lcc technique we usc is {hen
dcscribcd ii[]d cliscusscd :il SCC, 5, In See, 6 wc sumnli{riy.c our itcr;llivc
illtcrnitt ing-dircct i(m-implicit (A1’)1)prx~cwiurc f’t~rsolving the I>oisstm ~(]uiitiotl,
our Iimcs[cp control proctxlurc is given in See, 7, f:illillly, Sfx’, 8 ~O:itilin!+
SCVCriIl ilpplicutions o! this c~xic to ilSlr(~phySi~ill pr(~blcnls of”~’urrunt inlcrcs[
invo!ving Iluiti iIllCrfilCCS,self-gr~tvily ;Ind ri)tllli{~ll,



2, BASIC EQUATIONS AM3 METHODOLOGY

2.1 Fluid Equations in m.wing coordinates

ln applications i:ivoiving gravitational col]apsc or explosions, a moving
coordinate mesh is used to maintwn adequate prob]~m co\erage and zoning
resolution. We the;efore begin by writing tile basic equations of self-griivitating
ideal gas dynam.i~s in such a coordinate system:

mt inui~ ‘Ali.Qrl

d/dt j’ pd~ + ~ p(v-v$d~ ==O,
>

(1)

r.ryamcn!umsgutitio~

1{cre, the time derivatives and spatitil integrtitions operate cm the nmving grid
zone of volume dr and surface area (IX moving with velocity v~ with respect to i~
fixed (Eulerian) observer; p, & and v tire the fluid’s mass dcr,sity, specific
internal energy imd Eulcrian velocity, rcspcctivcly. The pressure P will Us(liilly bc
computed from the ideal g;is luw P-. (y- 1)pc, wllcrc y is the r;l.tio of specific twits,
iilthough intro dllcing ii .gcncr~il cqu:ition of st,ltc P P(p,r.) ot[’crs no principle
dif!icultics. “ile gruvi[ational potential CDis compu(cd from the Poisson cquiit]on#

Equations ( 1)-(4) !w-ma cc,lnplctc set once v is spccificd, :ind iir~ suflicicnt
to rictcrm; nc tlw problcrn for given initial und lw!hnd:lry c(mdi[ions. N(JICth:it i!
one sets v -.0 in cqs, ( I )-(3), then d/d[ bccmncs the Ilul’:ri;ln [imc dcriv:ltivc i)/dt,

hwhich cot mutes with the volun-w intcgr;il, Applying [tic clivtrgcncc thctwcnl, ~Nw
~ii~ily wcovcrs the Eulcrian dil!crcnti~ll cquutitm~, ~~fhydrodynwnits,

2,2 ‘1’wo-step s(dution procedure



pdvldt = - (VP + pVUq - VOQ (5)

pde Idt = - PVOV– Q:VV . (6)

We have introduced additional terms involving Q in eqs. (5) and (6), which
represent acceleration and heating due to artificial viscous stresses used to
mediate the numerical shock transitions. In the tmnsport step, fluid is transported
through the computational mesh by solving finite-difference approximations to
the following intcgrdl equations:

d/dt j pcdz = - ~ pE(v-vg)dX. (9)

The upda[ed values of v and E from the source steps arc used to evaluate the
right-hanct-sides ofcqs. (7)-(9), and enter as the old values in the time-discretized
kft-himd-sides of eqs, (8) and (9).

To understand the origin of these m]uations, consider the rnumcntum
cquwion in differential form, whicl. ctin k derived from cq. (2) using the idwuity

Vwg s d/dt (In d~). (lo)

[,ctling S = pv, wc huvc

which wc Mdvcincrcrncntally iIs

dS/dt dS/dt ),,)U,CCI dS/dt )l,U,I,P(,,, (12)

wtwrc

(iShlt),,,”rcc - (VP 1 pvo) - v’(.), (13)

dS/cl[) lrunsp~)rl = - V“I(V-VK)SI - W“VN. (](i)

Noting dp/Ilt)M,u,.e-(1in ml, ( I J), WCrccovcr q, (5); inlcgrillillg Cq, ( 14) over ii
tmwing V(JIHIIIC wc rwwvcr w]. (H) using c(1.( lo), ‘1’Iwiidvili)[~l~c(>fthc il)fcgrill

f(vmlul:ltiw] for the trunspwt step is 111;11it is ill c[msurv:ltivc l(lrm in ii moving
c[urdinutc syskm, whcrcus cq, ( 14) is IMN (IUC to IIN ~rid c(m~prcssion !crm,
Morrmwr, iltl iiltcgriil ftwtntllilti~)nis n]ilt~clit~)ryl~willlv~t.titlg tluid intcrfii~.cs,
which, since wc ~rcill tl:cn~ l~unlcricillly iis [rue dist’(:)lltil~tlitics, {siillll~~t h

dcsrrihcd by diffcrcntia! c(][iilli(~ils.



3.1 Grid and variables

3. SOURCE STEP

Let U, V and W be the velocity components of a fluid element in the Z, R
and t3directions, re ,pectivclyt of a cylindrical coordinate system, and let S=pU,
T=pV, and A=p’ VR-pQR- be the element’s associated linear momentum
density componer. ts and angular momentum density, respectively. Then, usi~g
the fdCt that dp/dt)SJ *.C=

d
O, we write eq. (5) in :he explicit component form in

which it is difference as

dS/dt)sO,,,CC= - aP/az - paaldz - ap?dz, (15)

dT/dt),,)U,CC= - ~P/(lR - pd@/dR - 7QRR/~R + p@R. (16)

dA/dt)sO,rCC= O, (17)

and write eq. (6) us

dE/dt),ou,C, = - P(NJ/ilZ + R-lr3RV/ilR) - @zWJ/dZ - QRRiW/~R, ( 18)

where E=pc is the intcmid energy density. Notice that oniy the diagonid clem;nts
of the artificia! viscosity tensor huve been rettiined in eqs. ( 15, 16 iind 18), imd

that geometric terms such as QRk/R and Q~RV/R huve not been included. The
reasons for this are, first, we want artificial viscosity to be sensitive only to
compressions to pick out shock fronts, hence we discard the off-d lagoniil
elements, and second, we wtint the numc]icitl shock width to be the stime
rcgtirdless of its disttince from the symmetry iixis, as it would be in ntiture on a
microscopic SCOIC,Note, however, that a proper tensor formu]tition nuy he
rtquired for the urtificiid viscosity if spcciul properties are sought (SCCWink ‘:r
and Norman, this volume).

The ccntcring of (I1c vilriiibl~s (m the finite diffcrcncc nwsh and zone
metisurcments arc shown in Fig, 1, The Z imd R grid Iir,cs htivc indices k tind,;
rcspcctivcly. I.incar momentum :Ind vcl~wity c[~mp(munt:, arc I }catcd tit the zo
f’;iccs; sculw dcllsitics, the gravitu[ion;il potential ;ind thu angular moment’111.
density are Iocatcd tit the zone ccntcr, The velocity components (J imd 1’ arc
derived by dividing their rcspcctivc momentum cmnponcnts by tin wvt~~meti~.
;ivcragc of k two adjwwt muss dcnsitiw

I’hc l[}Ciition of the qu:in[itics (m the tncsh (I:i,g, I ) iill(~w ftw simple ccn[crcd
dif’fcrcnccs i~t~diiv~rilgcs of th~ terms ilpl>~iiritlg 011 thC right-hiinci-sides of’cqs.
( 15,16 iind 18), ‘1’h~sccqudtions ii~~s(~lvcd in steps M f(~llows: 1) :mclcrtitc S
;Ind ‘1’duc to pressure, grilvitiiti(iniil itnd centrifugal forces; 2) usitig the up(lilted
vclocitics, ~otnput~ IhC iirtiflciiil visC()\is l\ Ciltitlg ilnd il~~~l~rilti(ln; 3) tlsing !hc
updii[~d I’iilnd vcl~)city ~otl~pimcl][s l’r(m~s[cp 2), pcrftmn {’(~tlll~rc;siotl:~lh~iitillg
otl th~ gils, ‘1’IIu$,Icttiug th~ supcrscrip~s ii, (1iltld p rcprcscnt the Ultiiltcd villu~s
from the thtrc StCpS ilt](i IIIC unsupcrscriptcd q[lilt][i[i(:!;rcprcscnt viil(l~s ilt the old
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Fig ! Centering of the primtiry tind secondiwy (derived) quimtitim on the mesh
(7,~,Kj).

time Icvcl, w; SOIVCthe following explicit difference cqu~{tions:

WLl

-- [(pk,j-pk ~,j)+ (p)z((Dk,j-fDk ~,j)]/ A~k*(S”-s)k,j / & -- (19)

(’p. T)KJ / & ,. - l(p~,j-p~,j.~) -(~k j ,)] / ARj+ (p)R((D~,j ,

-t (@R (i2J/Rj, (20)

WQ.-z
@.y’)kJ / at. - (Q~’fj- (pk ,,,)//\zk,

(“r%’p)ki / & -- (Q1{Rk,j QRRk$j,)/Ailj,

(21)

(22)



-- Qzk,j (uak+l,j-u’kj)/A%+l/2(Eq-E )kJ / & :-

– QRRk,j (Vak,j+l-vak,j)/ARj+112, (23)

where

Qzzk,j = ~k,j(uak+l,j-uak,j) [-cla + c2min(uak+l,j-uak,j> O)]J (24)

‘vakj)[-e~a ~ ~.2min(vak,j+~ “:ak,l,o)]oQRRk,j‘pk,j~vak,j+l , (25)

Here Cl and C2 are constants of order unity which govern the linear and
quadratic artificial viscosities and a is the adiabatic speed of sound. The linear
viscosity is rarely used, and then only sparingly to damp oscillations in stagnant
regions of the flow.

Here, to improve energy conservation, we write an implicit difference equation
involving the time-centered pressure Pn+l’2=IP”+(y- l) EY’]/2in PV”Vwhi;h can
be rearranged and solved explicitly:

(Ep-Eq)k,j / & = - [Pn+(y- l) EP]/2 (V”v)~,j\ (26)

or

Epkj = [Eq–P”5t(v6 v)/2]~,j / [1 t-(y-l)~t(v”v)/;2 ]k,j? (27)

where

_Uqk j)/A~k+l/~(V”v)k,j = (Uqk+l)j ,

+ (Rj+l ~ ‘1
k,j+ 1_RjVq~j)/(llj +l,2ARjtl ,2) (28)

This procedure cxpl icitly itssunws i.Igtinlma-lu~w gm; for ii gcnural equation of
state P- P(p,c), we use ii predi( [or-corrector oppro,ich to find the time-centered
pressure, thus

d~
(E’-fyl)k,j / ijt :: - l’n(T’”v)k,j* (29)

!smss.k’uu

(30)([ip-[i(l)k,j / 8t , - [1>”113’1/2(v”l’)k,j,

WINrc

Ixpcricncc has $Ilowll tllilt energy conscrv;l:ic.’ IS im;wovcd by using the same



pressllre in eqs. (19-21) as is used for acceleration (i.e., P“ rather than, say
(y-l) El)

4. TRANSPORT STEP

We now describe our numerical procedure for solving eqs. (7-9), whi n are
all of the form

(32)

Equation (32) is manifestly in conservative form, and describes the advection of a
quantity q on the moving mesh allowing for volumetric changes due to fluid iv)
and zomd (v ) convergence. This compound process we term trznsport. The
obvious secoi%-orde~ accurate finite-difference approximation to eq. (32) is

(q Gq~j)”+llz (33)‘+l?r+l. qn~n)k,j/& ~ - (F’q}L+l,j- F’q~,j+‘qk,j+l - ,

where ~
?

~is the zone volume and Fq aud Gq are the time-centered fluxes at the
~ttces o t~e zone ~t ~,j in the axial and radial directions, respectively, Note that
since q is assumed to be located at zone centers and at time-level n, interpolation
and extrapolation procedures are in general required to compute the value of q at
zone faces and at time-levei n+ 1/2. A variety of such procedures have been
developed over the years; indceci, the history of numerical JSulerian
hydrodynamics is largely concerned with devising accuriite estimates for the
fluxes while insuring numerical stability, We employ Van Leer’s (1977)
second-ord+tr accurate monotonic interpolation scheme for the spatial centering,
and extrtipo!ate q along the relative streamline given by dx/dt = v-v for the
temporal centering, This is illustrated below for a model one-dim~nsional
problem, and then applied to our two-dimensional problem.

4,1 Vim Leer monotonic interpolation scheme

Consider a onc-dimenslonitl strip OL’zones with index i, and a set of zone
averages {C]i}as in Fig, 2, Second-order ticc.urate interpolation functions q(x)
result from assuming a piecewise linear distribution of q within zones qi(~) = qi
+ dqi~, - l/2$zSl/2, where ~, is the normalized distance frcm the zone’s center.
I:rom this definition, it is clew that ~i is a zone average, since ~qi(~)d~=q. Vun
I.cer’s ( 1977) monotc nic intcrpolahon scheme chooses the largest (in uksolutc
m~gnitude) dq such that qi(- 1/2) tmd ql( 1/2) do not exceed the neighboring zone
averages qi:~l!‘ln the event that qi is a Ioctd extrcmurn, dqi=O. Mathematically,
Ictting A~ll~qi-(lil, then

(0, (34)

,11+’/2~,tlt.l/2J’qi = q*i(v-v8)l , , (.35)



qi+~

qi
. . . . . . . . . . .-

. . . . . . . ..-

qi-f .........m....... ..........
q. ..-- . . . .1-2

Xi-1 Xi Xi+l

Fig. 2 Van Leer monotonic hterpolation scheme. Zone interfaces are at xi, and
zone averages qi are at zone centers. Piecewise-linear interpolation function (solid
Iirws) is constructed such that the interface values do not exceed the neighboring
zo’le averages (dashed lines), Zone differences dqi are given by eq. (34).

where Xin+‘n is the time-centered area of the zone fiice, and q*i is the upstream
interpolated value of q given by (Fig. 2)

q*i =

{

qi.l + (Axi.l-~i)dqi-l/(2Axi-1)} ~i~ 0}

qi - (Axi +8i)dqi /(2Axi), tii <0, (36)

where ~i = (v-vg)in+l~2(bt/2), and Axi s Xi+l-xi.

The physical picture behind this prescription is illustrated in Fig. 3. TO first
order, the value of q on the interface at the half time-level is that obtained by
passive advection of qn for half a timestep, The relative streamline has slope
Dx/Dt-dx/dt s v-v , hence eq, (36), Since q*i appears in eq. (33) through ii
centered difference, !he method is formally second-order accurate.

I

,,, ,., ....,,,

1?
t

tmv Q
2

4 /
x,(t)

tn+l

tn+l /2

tn

Fig. 3 Upwind procedure for computing time-ccntcred value q* in the flux ~i.
The relative streamline is tracked upstrcitm from the hulf time-level a distance
bi=(v-v )8t/2. q*, is then computed using ihc intcrpolution function of Fig, 2 via
Cq, (34!!



4.2 Continuity equation

Mting q=p in eq. (33), we have the finite difference form to eq. (7), where
the fluxes are given by

)n+l12, (37)~p~~ = p*~(uqkJ-u~,k)( Rj+l/2ARj+l/2

GpkJ= p*J(VqkJ-\r~ k) R*kJAz “+1’2k+1/~. (38)

Here, p*k and p*j are the interpolated values of density, wi*5 the index denoting
the direction (i.e., Z or R) of interpolation. The time-centered coordinates are
given by

Rn+l12
j+l12 = Rnj+ 1,2 + (5tf4)(vgj+~+vgJ), (39)

ARn+lnj+l/2 = ARnj+ln + (~t/2)(VgJ+1_VgJ), (49)

AZn+~t2k+1,2= AZn
k+l/2 + @t’2)(ug,k+l-ug, k))

(41)

and

R*kJ=Rnj _ (?t/2)(Vq~J-VgJ)> (42)

the mean radius of ~headvected fluid element.

The new density is then simply

‘n(+l)kJ = (Rj+l/2ARj+l/2Azk+ l/2)n(+1)- (44)

4,3 Consistent advection and the local conservati~n of angular momentum

In principle, the procedure just described for transporting the mass density
could be applied to all the other densities in the problem - E, S, T and A - with
out any further thought, remembering only tli~t we must define appropriate
control volumes for the linear momentum components S and T. In the case of
angular momentum transport, however, such an approach is far from optimul,
and in some circumstances, has disastrous results on the local conservation of
angular momentum (see Fig. 4). The concern about local wnservation of angular
momentum in rotating protostitr collapse calculations led to the notion of
conshcnr udvecrion (Norman, Wilsorl and Barton 1980), in which the angular
momentum flux is cidcul~ted by multiplying the mass flux with a best quess for
the specific angular momentum of the wjvected fluid element. Thus, angular
momentum is triinsported consistently with the mass. The physical rationale for
this is that KaA/p is conserved along a fluid streamline in tixiul symmewy in the
absence of viscous torques, and therefore the spatial intcrpoltition should be
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Fig. 4 Numerical diagnostic of the local conservation of angular momentum in a
gravitationally co~lapsing rotating protostellar cloud showing the importance of
consistent advection. Local conservation of angular momentum is monitored
through changes in the specific angular momentum spectrum, defined as
M(K)= /KdM(k), where K=f2R2 and dM(k) is the mass at specific angular
momentum k, M(K) is a consttint of the motion for inviscid axisymmetric flow,
therefore any ch~nges in the spectrum show numerical red!st.ribution of angular
molmentum, a) Significant evolution of the specific angular momentum spectrum
results from using the highly inrmcurate donor-cell procedure, Various symbols
correspond to the indicated times, meusurcd in initiid free~di times, b) Same
collapse problem computed using second-order accurate consistent udvection
procedure described in SeC, 4,3 showing improved local conservation of angular
moinentum, From Norman, Wilson imd Barton (1980),



performed on K rather than A, since K is the physically more relevant quantity.

Letting q=A in eq. (33), we have the fini~-differenc~ form of

C1./dt~ Adz = - ~ A (v-vJdX, (45)

de~lcribing co~lservation of aI-Igula.r momentum, where the fluxes are given by

FAk j = K*k Fpk j> (46)

GAkj = K**j GPkj> (47)

with K*k being the inte~ >lated value of specific angul~ momentum in the axial
direction, and K**.

d
is computed by interpolating on the flattest of three angular

quantities. Definin

K k,j = ‘k,j / pk,j~ (48)

Wkj= R. + R2j)], (49)‘k,j [3R~+1/2 / (R2j+1 + ‘]+1 j

Qkj = & , [? ,’ @2j+1 + K2j)], (50)
.

that is, the values of K, W aild Q assuming they are uniform in a zone, then we
take

{

Q*j(R*k,j)2 if I d~j / ~koj I SmillleSt,

**
K j= W*j (R*k,j) if 1dwj / WkJ I smalle~t, (51)

K*j if I dKj / K~,j I smallest.

lIere, the single asterisk mt?ans values determined by monotonic interpolation as
described in Sec. 4.1,

An equation ans!oguus to eq. (43) is then solved to find A’l+l.

Likewise are temperature and velocity intrinsic properties of fluid eleme~ts,
and therefore it makes physical sense to construct Iluxes of energy and
momentum density by multiplying the mass flux by the appropritite interpolated
values of E, U tind V, even thol~gh these quantities are not conserved. We follow
this procedure here, .4 numerical Justifictition is thtit a product of monotonic
functions is monotonic; e.g., E*=p*&*, while the same is not true of the quotient
of monotonic functions; ,g., &*=E*/p*, which could lead to difficulties if, for
example, the physical model contained a source term with a strong nonlinear
dependence cm e. As we shall see in the next section, consistent advection of
momentum is manditory in the vicinitv of fluid inwrf~ces, where the momentum
density may jump by orders of magni~ude but the normal velocity component is
continuous.

Letting q=~ in cq. (33), wc h~vc the finite-difference form of eq. (9), where



the fluxes are given by

FEkJ = E*k Fpkj,

~EkJ = ~*j GP~J,

(52)

(53)

where &*~and &*jare computed in the same fashion as the interpolated densities.
An equauol, analogous to eq, (43) is then sGlved to find En+’.

4.4 Momentum transport

Letting q=S and T in eq. (33), we have the finite-difference approximation to
eq. (8), where now S and T are interpreted as zone avemges over their respective
control volumes. Since S and T are face-centered quantities, their contro!
vol:mes are offset by a half zone-width in the Z and R directions, respectively,
f~om the control volume centered on p. The situation is illustrated in Fig. 5. The
momentum fluxes are computed by multiplying an appropriate average of the
m:l~s flux by the appropriate velocity component interpolated to the zone face.
Thus, to transport S, we have (cf. Fig. j~)

Fs k+l J = (FpkJ + ‘k.l,j ) u*i:+, / 2,

Gs k,,j+l = <~pk.],j+l + ~pk,j.:.l) ‘*j+l i z.

(54)

(55)

An additional ste[~is involvnci in tt,e rddial momentum transport calculation.
Specifically, because the cc :i[r~l volume for T is cffset in the raditil direction
from the mass control ‘~ol.ume(cf. Fig 5b), the radial area f~ctors are removed
from the mass fluxes pl ior to averaping, and then the offset rw!ia! area fiictor%;we
multiplied back in, Thus, we have

FTk+l j = [(Fp/~ )k+lJ + (Fp/~ )k+~,j.l] ~’rjv*k+l / 2,

CT~,j;l = l(Gp/R*)kJ+l + (Gp/R*’ ~J 1 R*~J+lnV*j+[ / 2, (57)

(56)

where

X’rj= (Rj AR,)n+l/2, [58)

R*~J,,l,2 = Rnji1,2 - @t/4) (VjJ+Vqk ,+1- VMJ-V~,J,l), (59)

with tintilogous expressions to eqs, (39,40) fur Ilw iimc-ccn[crcd quimtitics
tippCilringin Cq (58),

The new momentum dcnsi[im S“+l tind ‘W’ are computed in wmlog:.rto cq
(43) using the ;Ippropriutc momentum cent ml Volumes,

5. 13.UIII lN”t’lXl:ACIH



I
z

k-1

:.

:.:...t.

.m.m:.. ,

:.,. :.

.,:.

I
Zk

—R j+ 1

s k+l,j
--+

u
k&l ,j

‘j

Key: ❑ mass control volurile ❑ Z-momentum control volume

❑ advected tnass ❑ advected Z-momentum

Fig. 5iI Mas!, and n,omcntum control volumes and fluxes for the trmwport of S,
[hc Z-monw.ntum density.

Rj+l

‘j

/P
k J
---.-

i

I-------



of different material properties in Eulerian hydrodynamics computations. Some
examples of material properties that one might like to dis~inquish using interfaces
are the constitutive properties of the fluid (e.g., equation of state and opacity), the
underlying physical model, or simply density or temperature, Since we are
modeling ideal (i.e., inviscid) gas flow, such boundaries am idealized as contact
discontinuitet, and the function of the interface is to prevent the numerical
diffusion of the adjacent gas elements into one another, Examples of this
technique’s use are given in Sec. 8 on several problems in astrophysics where we
would like to preserve and. track the interface between a hot diffuse medium and a
cold dense medium.

operationally, xeh material in the calculation is labeled. The label ;..,used as
an indicator of material properties. A mixed zone is a zone containing more than
one material. Zones containit~g a single material we called clean zones, which are
advanced ic time as dcscribeci in Sees. 3 and 4. In this section we describe the
algorithms we use to ildvtiilce mixed zones, which were developed by J,M.
LeBlanc of the Lawrence Livermore National L;\boratory. But first, we give
some background on interfwe methods in general,



progress using advanced programming languages (Glimm 1985) may change this
sta!e of affiairs, however,

A seccmd and more approximate approach, first developed by deBar (1974)
and in extensive use today for handling contact discontinuities, is ;~ represent the
global structure of the interface by a function that is defined locally. This function
is the fractional volume occupied by each material in a zone, and is denoted Vn,
where i is the material index, Vi, is a vector of unknowns defined at every zone
k,j satisfying the constraint Z V = 1. in a clean zone containing material with
index j, W = b’], where 511 is the Kronecker delta, In a mixed zone, more than
one fractional volume is nonzero, Fig. 6 illustrates how an interface between two
different fluids would be represented on the computional mesh using fractional
volumes,

In addition to specifying the fractional vclumes of a mixed zone, one also
specifies the composition of the mixed zone through its fractional densities of
mass, energy and any other fluid property (e.g. specific angular momentum) that
may be discontin;’ous at the interface. The basic tasks of this, approac h are 1) to
reconstruct the gi ~bal structure of the interf~ce given V’ ,, and 2) to find

kequtitions of motion for the fractioniil volumes and densities t ‘kt are simplu and
easy to program, and which give a reasoniibly accurate description of the
evolution of ttle interfttce in a variety of circums[wices,

Two basic pnths have been follo~,ved over the past dccude addressing task 1,
The first follows the work of dcBar (1974) as implemented in the KRAKEN
code, in which the position and orientation of the intm-fiice within ii mixed zone is
reconstructed using the distributiol~ of fmcticmal volt mes in alf the ~djticent zones
(e,g,, in a 3 x 3 block of zones in 2-D). The method of LeBlanc is Jn example of
the second approach, whereby the multidimensional problem i:, rcduccd to a
series cf l-dimensional problenls, and only the adjacmt zones in I-D are used to
determine the interface position and orientation, A consequence of this reduction
is that the interstice geometry is no Iongcr unique; that is, its represc.ntation within
a zone is different in the X and Y passes, The disadvantage of the
directional-splitting approach, of which the SLIC rncthod of Noh and Woodward
is another example (see Woodwiud, these procccdings), is a potcnti; tl loss of
accuracy, The ~ldvi~,[lti{geis onc of considertibly simplifying the ulgorithm and
hence the progrilmming tiisk, Surprisingly, the results obtiiincd with splitting
compare quite fiiv~r;ibly to tllc KRAKEN tippr(>il~h(Noh iitld Woodwiird 1976).

5,2 Method of l,Ct]]ilIIC

Wc now describe ihc intc~fiic~ method o!’I,cllltinc as it is implcnwnted in our
c(dc, ‘1’hcfollowing quilntitics ilr~ s[ored for ~il~h nliit~riill i present in ii mixed
zone :

vi -=+ / ‘1, fril(’li(>llill volurnc, (m)

1!/’* D’d, frilctionill i[l[~~tlillcrwrgy dcnsi[y,



Ai=DiKi, fractional angular momentum density,

where T is the volume of the zone, ard Ti, pi, Ei and Ki arc the vclume, density,
specific internal energy, and specific angular momentum of material i(in this and
in subsequent equqtions, we ,will suppress the dependence on zone indices k and
J).The quantities D’, E’ and A’ are therefore the densities material i wollld have if
It occupied the entire volume of the zone, It follows from these definitions that

l=p, (61)

p= ~D’,

E = ; Ei,

A = x Ai,
i

where the summation is over the muterial index i, Only a single set of velocity
and momentum density colnponents arc carried for a mixed zone, as they are
./ector quantities.

5,2.1 source step

I“he pressure in a mixed mne is found by adding the partial pressures:

P = ; (j-l)Ei, (62)

“Nc angular velocity of iI mixed zone is computed its a nmss-weighted iivcragc of
the fructionai angultir vc!{witicsi Tlwreafter, mixed zones tire accclcralcd like ‘t, WI
zones Icf. Cqs, ( 19,20),1

1Icating froni artificitil viscosity and comprcssion;ll work is equally
piwtit i~~ll~dto ~ii~h mutcrial i in a mixed zone:

(03)

where the supcrscrip[s refer to steps 2 iit~d3 O( SW, 3.

5,2,2 trimsport step

(lmsidcr the triild of ~~NI~S~ot][ilitlillg ilt l~ilst OtI~ mixed ~on~ ils, Shi)WII in
Pig, 7il, ilnd suppose WCwish to U@i\tC the middle ZWICIIlcfinc 911 ~ us Ihc
frilCtiOllill flUXCSof lllilt~l’iill i 011lhC lCftillld right, rcspcctivcly, of Ibis ibtl(!, illld



/

Interfacc

(1) (2) (3)

(b] Clam to mixed

(c) Mixad to clemI

(d) Mixed to mlxd

(2) (3)

I:ig 7 Aclvcction proccciurc in ii tri~ld o! xoncs cont:llning :It Ieilst onc mixed
ZOIW,it) ItltCd’ilC~ geometry is inferred from the distribution of fri~ction;il volumes
(~f, l:ig, 6), ‘i”t~~frtic[ioniil fl(]xcs ~i :Irc derived :Iccorclir,g to th~ following thmc
sit[]ilt ions. t))Advcct ion from ii cl~iln ZOIIC10 ii mi XCd~(~tl~,C) Advcct ion from :1
mixed, nmc 10 ii ~’l~iill Z(>IW. d) Acivcction (K) III ii mi XL*dY,(IIWto :1mixed Y.OIIP‘.’
iind (X1 ii~C IhC i{]~Ctof(ltt iis dcfinwf in w], (70),



XL~ as the areas of the left and right zone faces, rcspectively,The difference
eqtiations for the transport of the fracticmal densities and fractional volumes are
then

and similurly for Ei and Ai, Here, the mass flux is defined

3iL,R= Ai~,~ (Di/V)~, (66)

\vherc the subscript d st:mds for the donor cell values and the Ai~~ are co]llputed
according to the following thrtx CUSCS.

WA: ~le~lnto mixed

Referring to Fig, 7b, in the case of flow from a clean zone containing
material 1to a mixed zone, we htiv~ simply

Ai = (U-U# bil . (67)

The donor CCIIrt;muins chxm and the acceptor CCI1rctniiins mixed,

todsiul

Rcf’cmin to Fig, 7c, we sce thut mi~tcrial I may become negiltivc in the donor
iCCIIif lU-Ugl t > (VIAx)~. ‘rhcrcforc

Ai = sign (U-lJg) mini lU-lJKl& , (VIAx),~ l~ii , (68)

[f lU-lJgl& > (VIAx)~, then wc ti~kcthe next miitcriul in Iinc uccording to

A’ = sign (U-Ug) min[ 1[1-Ug18t-A], (V1’Ax),i ]bi” , (69)

and so on until everything IIJ-LIRIM behind the Now hiis been tukcn. in this CUSC,
the donor CCIInu~ybccomc clcun ~mdthe ucccptor ccl! m:ty bcconw mixed,

Referring to l:ig, 7d, wc dctinc :Iixmturcs (X1through which lNiitCriill i lllil~
[lilSS ilS lsO1lt)WS:

(70)ai . (vi,, 1 v*R)/2,

‘I”hcnwc h;ivc simply

Ai = ai (U-U~)& , (7!)

Notice thilt Y (XiJ 1, s() thilt thC schcmc is CollsCrviitivC.



Total densities for the zone are found by summing the fractional densities. If
the interface is in a region of the flow with a velocity gradient normal to its
surface, then in general ZVi~P+l# 1, in which case the fractional volumes are
renormalized so that they sum to unity. Finally, integrated mass fluxes are
computed for use in the linear momentum transpo~t’calculation (cf. Sec. 4.4):

FP = (~ ~@/&
i

5,3 Properties of the interface

(72)

method

“i’he interface method just described works best on, and in f~ct was
developed for, isolated contact discontinuities in flows with little velocity shear
both normal and tangential to the discontinuity’s surftice. This will not be the case
if the discontinuity is interacting with a strong shock or riirefdction wave, nor if
it is a sfi~ discontinuity,This can be seen by noticing that only one set of ~elocity
components are used to dtscribe both mixed zones and clean zones alike, Indeed,
incorporating “fractional velocities” into a such a technique would be difficult
because the orientation of the interf~ce is only loosely defined, and one would
naturally want to work in terms of discontinuities In the normal and tangential
velocity components, By definition, the normal component of velocity is
continuous at a contact discontinuity, and therefore in such prob!~ .ms as material
boundaries moving normal to their surface, as arise in Rayleigh-Taylor
instabilities, one velocit’~ pm zone is adwjcote to give tin accurutc representation
of the intcrf~,ce’s motion, In problems with a lwge amount of slip across the
discontinuity, as arise in K~lvin Helmholtz instabilities, the interface dyn;!rnics is
driven by the mean flow in which it is embedded, In both cases, the primary
function of the fluid interfiice is to act as a m(ltcrial ,ycP(Jrc/tor , M they \ m-e
termed originally, preventing numerical diffusion from artitlci;~lly broadening the
discontinuity into scveriil zone-widths,

Udt

A

I:Ig, 8 Onc-climctlsirmul intcrfiicc advcction in ii uniform velocity field (),
[Iiscontiiluity bclwccn p=p, and p=), ) initi.~lly coincides with the
scct)t]d-fr(~tn-tl~c-left zone bound~iry, Consistclt mt)mcntum advcction (cf. Sec.
4,4) it~s(lrcs thiit [J tCt]~ilit~s C(,nstiiilt clcspite ii Iiirgc jlln~p in mtls~ iltld momentum
d~.nsitics.



We shall now demonstrate that the LeBlanc interface method is ex~ct when
applied to the uniform advection in 1-D of a discontinuity norrnai to its surface.
Consider three zones as shown in Fig. 8 with a density fliscontinuity initially
coinciding with the zone boundary second from the left. Let the density to the left
and right of the discontinuity be p and p2, respectively, and let there be a

huniform velocity field U pointing to t e right. In time &, the interface will move
to the right a distance U&, and the new fractional volumes in the middle zone will
be V1=1- U6t/Ax and V2= U&/Ax. This is precisely what eqs. (64) and (67)
yield if we set Ug=G, Z= 1 and ~=Ax.

In addition, we can show that consistent advection of momentum [cf. Sec.
4,4 and eq. (72)] insures that the uniform velocity field willl be unaltered by tbe
interface trei ‘merit. Summing eq, (65) over material index, we fi’,ld

~))+1 = (1-@p, + CJp?* (73)

where ~U&/Ax, Updating the average momentum in the zone centererd about S
in Fig. 8, we have from eq, (54)

(Sn+l-(p)U)/~t = -(( P)-P2)U2/AX> (74)

or

S“+l = [,(1-(3)(P)+ CTP2]U, (75)

whew <p) = (PI+ P2YZ It k then easy to show from eqs. (73,74) thtit

U’+1 = 2s”’V(p”i+ p2) =U, (76)

Thus, we huve passive tidvcction of the intcrfacc with no modifictitim-r of the
btickground velocity field,

6, SELF-GRAVII’Y

Sections 3-5 describe the hydrodyntimic part of the calcl]l;iticm whereby the
fluid variables tire advanced from timclcvcl n to n+ 1, In problems where the
self-grtivitati .~nal forces of the fluid irrc important, v~e must also SOIVCthe
Poisson c[~uution (4) subicct to appropriate botlndar-y conditions in order to
dctcrminc (Iw gravittitionai potcnt~u] :.it the ncw timclcvcl W1+l~J which enters in
Cqst (19,20).

@l) = -(3; Pl(pi,) rl) (“’)A4,,

where the multipolc moments arc given by

(77)

(7/?)



Here r is the position vector from the center of the self-gravitating structure,
usually at 2=0, R=O; r=lrl; ~ is the cosine of ihe angle between the rotation axis
and r; and P1are the Legendre polynomials. The subscript B means that these
quantities are to be evaluated on the boundwy of the computational domain. With
assumed equatorial symmetry, the odd momenls vanish, and the boundary value
at 2=0 becomes WWdZ=tl In practice only rhe 1=0, 2. and 4 ttxrns are used,
which has proven to be adequate if the outer bcundary is sufficiently removed
from the structure. The boundary value at the axis is, of course, WM)R=O.

As we generally deal with nonuniform meshes in both coordinate directions
which are not spatially periodic, Fourier transform methods to solve eq. (4) are
ruled out, Also, direct methods such as Gal,ssiail eliminati. ~ would be too
time-consuming, and hence we must consider iterative tecll..iques. The solulion
technique for the Poisson equation we use has been described by Black and
Bodenheimer (197.5), but will be repeated here. The plan is to find the
steady-state solution to the diffusion equatio~,

aafat = v% - 47c@n+l , (79)

using the ADI method (Peaceman and Rachford 1955) for a series of lter~tive
“timesteps”. The time appearing in eq. (79) bears no relation to the physical time
of the evolution; the timesteps are chosen to spcwdconvergence.

Let OP be the p’h estimate f~( the gravit:itionitl potentiiil, and &P be the
timestep for the pthiterittiom IXining

‘Z”kJ = ‘kJ “- ‘k-l,] ‘ (130)

‘RmkJ = ‘k,j - ‘kJ-l ‘ (81)

then @’ is advimced to W+’ by the following two-step AD1 praccdure:

(cDP+kDP)kJ/&P = (Az@pk+l ,jtAzk ~I - Az@’kJiAzk)IA%+ 112

p+li2
+ (Rj+IARO k,j+l’ARj+l -fljARIDP ‘li2kJ/ARj)/(RAR)j +i,2- 4~~pn+lkJ ,

(82)

followud by

+ (Rj,l@ p+l12
kJ+l’ARjd -RjAR@~+ ’’2k,jlL\Rj)l(RAR)j .l/2 -4nGpn’lkj ,

(83)

The ilnplicit sweeps gctlcriltc il set of [ridiilgol*ill illiltrix ~(l[liltiotl w!lich iir~
solved directly using lhc well-known technique of “forwurd swucp, b;lck~i~rd



,,

substitution” described by Richtmyer and Morton (1967).

l?as. (82,83) a= SOIVed for OSp~- 1, where the iterative timesteps &P form
a georr;etric series

&P= aU3tmUX; p=O,l, .....P- 1,
with

atmax= ‘“(zrn~2JRmn~ 2)/4,
and

a = (8ttin/&J WI),

a ~in = min(AZ,tin2,ARmin2 )/4 .

(84)

(85)

(86)

(87)

The new potential is given by @+l=@p. This timestep prescription is constructed
in analog to a treatment by Peaceman and Rachford (1955), who solved diffusion
in a square, rectangular mesh. The timesteps are chosen to reduce the
amplification factors of eqs. (82,83) for modes of wavelength comparable to
(&p)ll

Convergence is checked by monitoring

which should be S 10-5 to achieve a potential gradient accuracy of about i~

percent. We find typically that 10-GCXC10-10if P is approximately half the
number of zones h one dimension.

7, TIMESTEP CONTROL

The final operation in the problem cycle is the calculation of ii new timestep
to be used in the next cycle, Explicit hydrodynamics requires the timestep to
stitisfy the Couriint condition for stability, which for a one-dimensional problem
is

6t s min Ax/(C+lUl), (89)

wh~~ C find U are the l~al sound speed and flow speed, and the minimum i$
ttiken over the entire domain, A simple und effective prescription for
multidirnimsional calculations which we use is

(90)

where b k the silfcty fuctor, usutilly = 0,5, and [hs &, arc defined for each zone
kj i.isfollows:

&l = min (AZ,AJ’.)/L, (91)



6$ = fwlv-vgl. (93)

The artificial viscosity also limits the timestcqp,since ~ and @R are used to
form a momentum diffusion problem. For an explicit diffusion scheme the
timestep is limited by

& S Ax:?14V (94)

where \$ is the kinematic viscosity. A comparison of eqs. (21,22,24 & 25) with
CI=O to the Navier-Stokes equation shows the numerical kinematic viscosity to
be

v= = LZ(C2Q%p)1n = C2[AUIAZ , (95)

VRR= AR(c2QRR/p) 1’2= C21AVIAR , (96)

thus we defi~e a fourth timestep for zones with nonzero Q,

&A= min (LW4C21AUI) AW4C21AVI) . (97)

Finally, the timestcp is limited to a 30 percent increase per cycle to maintain
accuracy when the system makes abrupt dynamical changes, yet may decrease by
an arbitrzry amount in order to maintain numerical stability.

8. NUMERICAL EXAMPLES

In this section we illustrate the use of 01’r numerical techniques on a nur Iber
of pfobiems of astrophysical interest involving static and dynumic fluid
interfaces.

8.1 Self-gravitating isothermal clouds

The picture of a cold, dense isothermal cloud in pressure equilibrium with ii
hot intercloud medium is a pwddigm for the interstellar medium that is often used
as initial conditions for calculr.tions of gravitational collapse and star formation.
Unlike self-gravitating equilibria with polytropic equations of state, isothermal
quilibria are infinite in spatial extent unless truncated at some finite radius with a
fiilite boundwy pressure, such as would be provided by a hot interclocd medium.
Such [runc~ted self-gravitating isothermal equilibria possessing zero ungular
momentum are culled I.lonner-Ebcrt spheres, named after the men who first
determined their stmch.m (Bonncr 1956; Ebcrt 1955), The roiating analogs to the
Bonner-Ebcrt spheres were first investigated by Norman (i980) uning the
hyrirodyntimic techniques described tibove, and subsequently by Stabler ( 1983)
i.mdHachisu and Eriguchi (1984) using hydrostatic cedes.

In the hydiodyntirnic tipprotich, u fluid intcrf~ce was used to delinetitc the
cloud-intercloud boundary, which is a %x boundary, As initkd conditions for the
calculation, Norman assumed a consttint density imd temperature sphere with a
specified rotution IJW embedded in a constant pressure background. The initiid
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conditions were then evolved to equilibrium hydrodynamically with a
velocity-dependent damping term added to the momentum equation in order to
hasten the approach to equilibrium. Once equilibrium was reached, the cloud
temperature was slcwly decreased, generating a “cooling sequence” of
quasi-static isothermal spher~ids of constant mass, angular momentum and its
distribution. During the initial relaxation phase and cooling phases, the intercloud
medium was not evolved hydrodynamically, but rather was kept at constant
density and pressure.

Fig. 9 shows four equilibria from a cooling sequence initiated wtin a sphere
“~hose angular velocity was ten times higher at its center than at its edge. The
fluid interface is indicated by the outermost solid line. A consequence of this
angular momentum distribution is toroidal equilibria for ac 1, where a is the ratio
of the clouds internal energy to its gravitational self-energy. As the temperature
is further decreased, the minimum a for stable equilibrium a is encountered.
Below a the cloud is dynamically unstable to gravitational colfapse. Collapse is
compute~ numerically at constant cloud temperature without the damping term in
the equation of motion. Fig, 10 shows the cloud structure well into the collapse
phase when the peak density on the toroidal axis exceeds 103 times the edge
value. For a complete discussion of the collapse dynamics and its dependence on
angulai momentum distribution, the reader is referred to Norman (1980).

8.2 Supersonic jets

Calculations of supersonic jets of the sort displayed in Plate i have been
performed in connection with radio galaxy studies and their associated radio jets
(Norman et al. 1982; Norman, Winkler and Smarr 1983,1985; Norman, Smarr
and Winkler 1984; Smarr, Neiman and Winkler 1984; Smith et al. 1985). The
calculations are performed ill 2-D axisymmetry neglecting self-gravity and
rotation. Initially, the computational domain is filled with a unifom, static
background gas which is to represent the intergalactic medium surrounding the
radio galaxy. Subsequently, a perfectly collimated supersonic beam of gas is
continuously injected through an area on the domain boundary, and its interaction
with the ambient gas is computed, The beam’s incident pressure is chosen to
match the undisturbed ambient pressure, whereas its incident density and velocity
are varied from evolution to evolution. A fluid interface (shown in bla;k) is USCL
to track the contact discontinuity se~rating the jet gas from the ambient gas.

Plate 1a shows the estxblishrnent of a Mach 3 jet with an input density of
10% the background density. A characteristic of low density jets is that M they
propag~tc, they enshroud themselves in a cocoon of gas thut has “splashed back”
from the leading end of the jet, The cocoon is generally less dense imd hotter than
the beam gas because of shock-heating at the terminal shock front. Tliis can tie
seen as a difference in colors between the centml km (green) and cocoon (blue)
in Plate 1, where different densities have been assigned different colors according
to the scale accompanying Plate 2. As can bee seen in Plates 1b-d, the jet
boundary is subject tGKelvin-Helmholtz insttibilitie~ which lead to turnover and
mixing of the jet and ambient gases, The fluid interfdcc allows one to follow
these interf~cial insttibilities into the nonlinear regime wi:h a minimum of
numericul diffusion, A weidth of hydrodynamictil detail can be cxtrwdrcd from
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the calculations using the color imaging techniques described by Winkler and
Norman in these proceedings. A comprehensive overview of the key physicpl
results is given in Smarr, Norman and Winkler ( 1984).

Plate 2 illustrates a second application of our numerical techniques to the
propagation of supersonic gas jets. In this calculation, 2-D ctutesian geometry is
assumed so that nonaxisymmctric “kink” instabilities con be studied. The
numcncal procedure is idcndical tl~the axisymmctric jet calculations described
above, except now the jet is admittt-clwith a transverse velocity component which
varies sinusoidally in time according to

vY(t)= 0.05 vxsinolrt,

where w satisfies Woodwurd’s rcsonuncc condition (V.’cmclwarcl, these
proccedin~s) for lhe F~stcst-growing unstable mode

O+= KVX(M2-l)-’%’W

where v is the beam velocity, M is its internal Much number and W is the slab
width, I&tes 2a-d show the riipid growth of the kink instability and its dismptive
effect on !hc directed bulk flow,

8,3 131tistwiwcsin exponential atmcwplwrcs

A strong point cx~losicm in a plimc-stratified ex~ncntial atmosphere
prcsen[s some intcrcstlng phcnomcnu not found in the Tuylor-Scdov type
bltis[wavcs proctuccd in u ut(iforrn utmosphcrc. Pltitc 3 illustr;ltcs [hww
phcnorncnu, At t.-(l, [hc huckground gils is distributed m-cording to

p(a = p“cxp(-7Ma)

‘1”(~) .. ‘I”o,

und in hydrosti.iticquilibrium wi[h IIWgrtivitiltinnill potcntiill given by

11(X) II(XC)I il(Z-Z,,),
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Plate 3a shows the color-coded entropy distribution shortly after the
explosion begins. The distribution of colors in the atmosphere indicates a stable
entropy stratification. The red circular region is the high entropy explosion gas
that has been shocked by the expanding blastwave. As the blastwave barely
extends over one atmospheric scale-height at this time, it is still circular. Plate 3b
shows how the blastwave distorts and becomes egg-shaped as it samples
different regions of the stratified pressure distribution. The upper apex of the
blastwave propagates the fastest since it is following the steepest pressure
gradient. Plate 3C and 3d show blastwave “breakout” as first predicted by
Kompaneets (1960), and the subsequent buoyant rise of the hot bubble. Note the
growth of Rayleigh-Taylor instabilities on the leading edge of the bubble,
indicating the necessity of using a fluid interface in this calculation.

8.4 Twin-exhaust jets

As a final example, wc consider the production of jets via the
Blandford-Rees (1974) Twin-Exhaust mechankm. “rhis mechanism was first
propxed to account for the production of twin jets in the nuclei of radio galaxies,
and is currently being applied to jet production by protostars embedded in
molecular clouds in our own galaxy (Konigl 1982). The model holds that if a
continuous soume of hot, buoyant gas is established in a relatively colder, denser
background gas that is gruvitationully confined, then the buoyant gas will
preferentially erictipealong the path or pdths of least resistance; i.e., parallel to the
steepest pressure gradient, which in u radio ~illiixy nucleus could be taken to be
along the minor iixis of a rotatiormlly-flitttened central gas cloud, According to
this model, the boundary between the cold confining gas and the buoyunt
outflowing gi~swould ntiturully assume the shupe of iI del.aval nozzle, which
would accelerate the outflow to supersonic spm.ds and collimate it into jets, This
is manifestly a two-fluid mblcm requiring a dynamic fluid interstice to study the

fformation and sttibility o the flow channel boundary,

Plutc 4 illustru[cs the nozzle formation process, The conllning iltmosphcrc is
initiuli’ isothermal, @imc-stratified and in hydrostatic cquilibriurn, The density
imd hcncc pressure dlst.ribu[ion is n power-kiw with iJccn[rd plutcuu given by

p(z) ,=p./ [ I +(7Jh)~]

where p. und COarc tk midpliinc density imd spccifk intcrntil energy,
rcspcc[ivcly, I lot giIs is continuously crc:ltcd in u spl~cricill source region ol’
rildius }}/10 with zero velocity tit u Inilss rutc m with specific intcrnill energy F t
I]oth fluids were ussumcd to obey 7-5/3 id~ill $iIs cqllutions of stutc. ‘Ilk
j’ollowingdimensionless quiintitit~ define the cv~dulmn:



This example illustrates an energetic (L=2) source of hot (0=100) g~s, which we
had previously determined to be susceptible to Rayleigh-Taylor instabilities
(Norman et al. 198 1), The conlpu!ational domain spans O < Z S 10h, O S R S
10h,

Plate 4a shows the initial bubble of hot gas inflated by the central source.
Gas temperature is color-coded such that high temperatures are red and low
temperatures are blue. The bubble is elongated in the direction of the pressure
gradient as its size exceeds the plateau scale-length h. Since the inter-face between
the bubble gas and the background gas is Rayleigh-Taylor unstable, any kinks or
ripples on the bubble surfttce will be amplified by the instability, The growth of
these instabilities in subsequent frames is tracked with our numerical fluid
interface, shown in black,

Plates 4b and 4C show the establishment of the cavity-nozzle-jet structure,
The throut of the nozzle forms as dense Raylcigh-Taylor “fingers” penetrate the
bubble from the side and converge toward the axis. As the throat necks down,
tha cavity inflates with subsonic gas (Plate 4d), and now the top of the cavity
develops the characteristic Rayleigh-Tiiylor “spike and bubble” structure, The
dense spikes merge on tixis in Plate 4e forcing the jet g:~s to flow out in an
annular region, The annular jet breaks through the luyer of dense gas seen in blue
in Plate 4e to form the continuous diverging ]ct of Plate 4f, The jet hm tin
embedded spindle of dense gas along its axis of symmetry, which is slowly
being blown downstream by the jet ram pressure,

Further numerical evol(’tions of this sort are described in Norman et til,
(198 1), and an aiwlytic discussion of the flow stability is given in Smith et al.
(1983). The rclevimce of these cidcultitions to jet formation in uctive galactic
nuclei is discussed in Smith et id, (1981),
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Captions to color plates

Plate 1, The time evolution of an axisymmetric supersonic jet. The phme of the picture
contains the symmetry axis of the jet. Gas is continuously introduced from a circular inlet at
lef~ with an internal Mach number of 3, a density 0.1 times the ambient density, and a pressure
equal to the ambient pressure, Gas density is represerrtedin 73 shades of color, each color
representing an equal logarithmic interval between the maximum and minimum value of the

density, The colors are ordered according to the color scale accornpmyingPlate 2!, Dark blue is
minimum and ruddy red is maximum, The jet is divided into a forward moving wpersonic beam
(green) and a surrounding backward moving cocoon (blue). The boundary between the cocoon

and the ambient medium is subject to nonlinear Kelvin-Helmholtz instabilities, which Ieird to
turnover and mixing of ‘he two gases, The cmnpututioua] hdf-plirne comprises 640 equidistant
zones in the axial direction and 60 equidistirnt zones in the radi’d direction out to 7.5 beam rudii,

with an isdditionitl 15 rirtioectzones out to 15 beam ri]d;i.

Plate 2, Nonlinear kink insttibility irr a 2-dinlensi(jnal “slab” jet. Giss is continuously
introduced from a slit iIt the bottom, with an internal MiIctt number of 3, a density 10 times the

ilmbient density, and o pressure equitlt to the itmbient pr~ssur~. The inst, Jility is excited by
itpplying a time-varying transverse velocity equul to 5% of the longitudinal velocity, with a

frequency corresponding to the fastest-growing Unstihle nmrk, GiLY density is displiryed in color

as described in the cirption to Plitte 1, The instirbility grows to nonlinear amplitude after

convecting a t’ew wavelengths downstream, effectively disrupting the directed bulk flow.
Computation performed in Ctirtesitin geometry, The compu [iltkmitl plsne comprises 300
equidistirnt zones in the I(mgitudinirl direction, 20 equidisttint zonesacrossthe slirbwidth, iild 70
rirtioed zones on either side of the midplirne extending out (o ! 10 slirb widths,

Plate 3, Strong point explosion in ir plitne-stratified exp(mentiirl iltmosphere, Entropy is

displiryed in color irs described in the capti(m to Plate 1, t!) Initiid spherical expimsicm of the
high entropy “driver ~[~s”(red) imd blilstwilve-heilted illtlbicnt gll.. (y~ll~”~), Bli~.twiiveradius = I
Sciileheight, b) N(msphcricirl evolution of blil~twi]ve i)r,ll h:)t bubble M it encompiisses m;my

s~iile heights. ~) “Drcilkout’” of th~ blilstwilvc ilpex its mxxtictcd by Kompimects ( 1960), d)
llouyilnt rise of the hot bubble irnd growth of the Rilyl;igh.1’iiylor in:it;lbiliiy m the Icading
s~rfilcc of the buhbtc, Computiition pcrfomwd in cylindricu! geometry ilssuming iixisymm~try,
with ii)(is running verticiilly through the ccntcr of cilch plot, Computtitionill” hulf.pl:lne

comprises 360 ilxii~l by 120 ri~diill cquidistilllt, sr](lilrc zones.

Plill(! 4, Time cv(~luti(h~ of jet forrmltion \i,, the lllilntlf(~rd.tlc~s ( 1074) Twin-Exhitust
mechimism, Clils~cn)pcriiturc ih displilycd in c(,,‘ ‘r i~s (Icscrihcd in the ~ilptk)tl to Pliite 1, II) A
hIIbblc 01”II(N ~i~sis initiillly intlutcd by (hc t,cntritl s(mrcc, b-c) The n(w,lc forms ah the but ble
rises duc to bot]yilt)~y, d) No/,/,le cwnstti~its Iciiditig k) ititlittit)t) \)l’ IIW subsonic {’iivity
sllrrour~dirl~ the central st)ur~’e, e.f) A ~lohiil R\~ylcigh.’I’ily lor instability introduces dcIIsc

ilt~ibi~tlt flits into the newly.t’ornwd jet, (~onli)ut:lti~w pert’orrncd in cylin(lri(iill geometry
ilss(ltt]itlgi~xisyt]]t))etryiit)d ~q~lilt[)r!iil symnwtry, Cot]\l)(]tilti{)t)(\l cl(mu~incmpriscs 100 x I (N)
rilti(wd /,ot]es in the ril(liid iltld ilxiiil directions spilt~t~itlg tX?XIOti, (FR .I!)h, whh ii l’crrtritl tone
si7.c 0!’ h/ I(X), where h is the pliltCilU SIOillC height.


