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PREFACE

This version is a subset of work originally published Novem-

ber 1984, with some deletions/reformatting, but no modifications

in the selected original equations. Added notes at the end will

comment on some of these equations.

September 1995
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Hydrodynamically Driven Two- Phase Flow,

A Theory of Hydrodynamically Driven Dynamic Mix

by

I Judith Binstock

~
ABSTRACT

We write the dynamic equations describing
the intermixing of two materials, starting from
the conservation laws. The result is a set of
equations for mixing driven by the Rayleigh-
Taylor buoyancy force, and amplified by terms
which incorporate the Richtmyer-Meshkov and
Kelvin-Helmholtz instabilities. Making the
assumption of pressure equilibration, we arrive
at equations which vredict that mixing will be-
gin, -even in the limit of small initi~l ~ertur-—— .— —— —
bations, and even in a l-d calculation, when an
interface goes Rayleigh-Taylor unstable, unless
the drag or material strength forces are suffi-
ciently large to prevent this. The equations
given here may be incorporated into l-d, 2-d, or
3-d codes, for either Lagrangian or Eulerian
formulation. They have the nice feature for
Lagrangian codes of keeping the zone mass fixed,
thus eliminating the need for rezoning.

I. INTRODUCTION

How does one describe the interpenetration of two materials? To

approach this problem, we go back to first principles and examine the way

we describe the motion of one material. The latter is done by assuming a

single velocity field and writing the conservation laws for mass,

momentum, and energy. Namely,
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~P= - Vipvi , (1.la)

(1.lb)

(1.lc)

where E is the internal energy per unit mass, and P~j is the pressure

tensor.

For a reference frame moving with the velocity field ~, the

Lagrangian time derivative is

da++
dt—=K+V”V

Therefore, using (1.2),

●

d
~P+p$”;”o , (from (1.la)),

Pgj + v~pq = o , (from (1.lb) - Vj c (1.la)),

P%+pijvivj=o $

from (1.lc) - Vj “ (1.lb) - (E - v2/2) ● (1.la). Because

+ + 1 dv
‘“V-TX s

(1.2)

(1.3a)

(1.3b)

(1.3C)

(1.4)

(1.3a) gives

dm

x-”

2
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for a Lagrangian reference frame. No mass points cross a cell boundary.

If we set

‘Ij ‘Phij ‘

we get

dv
-&P~j”pj

from (1.3b),

dE dV
‘== -Px

(1.6)

(1.5b)

(1.5c)

from (1.3c) and (1.6), all familiar results.

These equations (1.5a,b,c) are used to calculate the hydrodynamic

motion with a Lagrangian code.

II. DERIVATION OF EQUATIONS OF MOTION FOR TWO-PHASE FLOW

Now, to describe the interpenetration of two materials, we shall

assume two velocity fields, one associated with each material. We shall

then write two sets of conservation laws, one for each material.

A. Mass Conservation

We define new variables as follows. The density of materials 1 and 2

are

pl, p29

where

P1= ml/V, pz = m2/V, m = ml + m2? p = pl + pz . (IIA.1)



The associated velocity fields are

+ +
V+; l, v + &

+
where v is the veloclty of the Lagrangian reference frame.

or,

get

Then conservation of mass requires

a
~ P1 = - Vipl(v+vl)l ,

a
~ P2 = - v@v+v2)i 9

rearranging terms and using (1.2),

d
+ viPlvll + Plvivi- o 9~ P1 (IIA.3.1)

(IIA.2.1)

(IIA.2.2)

d
(IIA.3.2)+ viP2v2~ + P2vivi = o ●~ P2

Then by taking (IIA.3.1) + (IIA.3.2) - (1.3a), and using (IIA.1), we

6 ● (1+1+ F&) = o ,

which is satisfied if the velocity ; of the Lagrangian frame is the

center-of-mass velocity and

pl;l + ps;z = o .

Now define a drift momentum

i~ (PlP2/P)(ll - T2)

= pl;l = - pz;s , (by (IIA.4)).

4
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Note that this is the reduced mass times the relative velocity, per unit

volume, for the two materials.

Using (1.4),(IIA.5) in (IIA3.1),(IIA3.2) we get, in the limit of

small volume,

where the latter integral is over the surface enclosing the volume that

contains ml, m2. So

gives the rate at which the mass of either material crosses the area

element d~. Note that

*=_ dml+A!!!2=o
dt dt dt 9

so that the net mass crossing any area is zero.

B. Momentum Conservation
.-.

(IIA.7)

Before proceeding to write the full set of conservation laws, we

define a new, primed set of variables.

m = ml + m.2

u● V=V1+V2
ml ● m2

● P1’ = ml/Vl, pz’ = m2/V2
VI “ V2

P1’(pl’,el), P2’(P2’ 992) s

(IIB.1)

where pi’,p2’ are the densities each material would have if it existed as

5
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small chunks or bubbles, occupying a partial volume. We will write the

conservation laws then for two separate regions: the set for material 1 is

valid only in the part of the volume occupied by material 1, similarly for

material 2. P1’(pl’,O1) represents the pressure in the chunk of material

1, in its own rest frame. p2’(p2’,e2 ) represents material 2, in its own

rest frame.

The simplest physical assumption to make relating the two pressures

is that of equilibrium, namely,

91=92=9 (IIB.2)

at the same point in space, and the pressures isotropic In each rest

frame,

P1’(P1’991) = P2’(P2’ ,92) = p , (IIB.3)

with the fraction Vi/V determined by this pressure equality. Note that

there is no real need for either of these assumptions, and some other

model could be used to relate 91, 92, pi’, p2’.

Writing the mass and ❑omentum conservation laws for material 1, valid

in the partial volume associated with material 1,

a
~ P1’ = - Vipl’(v+vl)i (IIB.4a)

~ pl’(v + Vl)
j

= -Vi[pl’(v+vl)i(v+vl)jl - Vlqtij

+ flz /vl ,
j

(IIB.4b)

where flz /V1 is the force per unit volume exerted on material 1 by
j

material 2. From (Vi/V) x [(IIB.4b) - (v + Vl)j ● (IIB.4a)], and

using(I.2), (IIA.1), (IIA.5), and (IIB.1),

dv~
Pl+j +Pl~j +givi(v+vl)j +7‘1 viPJ’ij = f12j/v . (IIB.5.1)
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Similarly, by interchanging the labels 1 and 2, and noting that the drift

momentum gi is antisymmetric under this interchange, we write

1* viP2’ijP2g~ + P2~~ - givi(v+v2)j + “ = f*lj/v . (IIB.5.2)

Note that

(flz + f*l)j = o (IIB.6)

because the forces exerted on matertal 1 by 2 and on 2 by 1 must be equal

and opposite.

Taking (IIB.5.1) + (IIB.5.2) - (1.3b), with (IIB.6),

dvl + dv2
Pl@ P2~ j + givi(vlj- V*j)

xl viP1’ij
‘v

++2 viP&j
= ‘ipij “

Defining

‘w”ij = (P1/pl’) viP1’ij+(1 - pl/pl’) v~P2’~j ,

(IIB.7)

(IIB.8)

and using (IIA.4)S and (IIB,l)S (IIB.7) becomes

- Vlj + P1 - v2j + P* + givikj- V*j) + Vip’ij = Vipij . (IIB.9)

Adding (IIB.9) + Vlje (IIA.3.1) + V2j0 (IIA3.2), and using (IIA.5),

= VI(P’ -L) .
‘ipij ij + ‘igj plP2

(IIB.1O)
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So (1.3b) becomes

dv &)=() .p -@ + Viqj + gigj plpz (IIB.11)

Note that the extra term gigjP/Plp2 corresponds to a Reynolds stress

2 is the contribution totensor. Its trace is (P1v12 + P2V22), where PIV1

the pvivj tensor from material 1 moving at velocity vl relative to

the Lagrangian center-of-mass frame, and similarly for material 2.

To derive the equation of motion for the drift momentum g
j’

writ e

dqh+pl~vlj ‘
& gj = ‘lj dt. (from (IIA.5),

= - (Vigi+ Plvivi) Vlj - 13ivivlj - givivj

‘1 viP1’ij p+ fj/v -~ +&l Vi(pl L)
ij+ ‘Igj P1P2

(from (IIA.3.1), (IIB.5.1), (IIA05), (I03b))

= - (plp2/p) ( *
1

viP1’1
r?

viP2’ij)- gjvivi- giqvj

+ (Pi/p) vi(g@j/P2) - (P2/P) vi(13i13j/Pl)+fj/v $ (IIB.12)

where we have dropped the subscript 12 on the drag force f .
j

c. Energy Conservation

Now we write the energy conservation equation for material 1, valid

in the partial volume associated with material 1.

&P1’[El++($+:l)21 = -viP1’[El++@+:l)21 (J+$l)i

- viP1’ij(v+vl)j + (V+vl)j fj/vl, (IICO1)
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where El is the internal energy per unit mass for material 1. Taking

(IICel)_ (V + VI), ● (IIBo4b) - [El - (~ + ~1)2/2] . (IIBe4a), we

get, in the limit of small volume V,

dE 1
‘1 ZF = - vlpl’ij Vi(V+Vl)j - V giViEl ●

But

from (IIA.6), so that (IIC.2) + El x (IIC.3) gives

$(mlEl) = - VIP1’ij Vi(V+Vl)j . v

To derive the analogous energy conservation

interchange the labels 1 and 2, and utilize

‘ommtum ‘i’ ‘0 arrive at

(IIC.2)

(IIC.3)

vigiEl ● (IIC.4.1)

equation for material 2, we

the antisymmetry of the drift

~ (m2E2) = - V2P2’ij Vi(V+ v2), + V VigiE2 ● (IIC.4.2)

Now the total internal energy present in a volume containing mass m is

m E = mlE1 + m2E2 . (IIC.5)

Therefore, taking (IIC.4.1) + (IIC.4.2) and utilizing (1.5a), (IIB.1), and

(IIC.5), we get

dE
- vlP1’ijvi(v+q)j - v2P2’ijvf(v+ v2)j

‘x=
(IIC.6)

+V vigi(E2 - El) .

9



III. SUMMARY OF LAGRANGIAN EQUATIONS DESCRIBING THE

INTERPENETRATION OF TWO MATERIALS

We summarize the equations, making the approximation of (IIB.3),

namely the pressures equal and isotropic in their rest frames.

m = ml + mz = zone mass P1 = ml/v9 P2 = m2/V

Fl V = VI + V2 = zone volume p = m/V

u

ml ● m2

● P1’ = ml/Vl, pz’ = m2/V2

vl ● V2

P1’(pl’$el) = Pz’(pz’?ez) = p

El = El(pl’ ,61), E2 = E2(P2’ ,02) (111.1)

dm
x-”

(11102)

p gj = - vi(P a + qjP/PlP2) (111.3)
ij

dE
- P~+V V1gi(E2- El)-‘x= Pv (~ltv ~i - Q2 v ~i)

pl i pl pz’ f pz
(111.4)

dm1 .’- $2
x

= - v Vigi (111.5)

*j .
dt - (plp2/p) (&- *) vjP

- gjvivi - givivj

‘2 vi(gigj/Pl)+;l vi(gi13j/P2) - p

+ fjlv (111.6)
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Iv. DISCUSSION

From (111.2)

of a hydrodynamic

OF RESULTS

we see that no rezoning is necessary during the course

run. The total mass of any zone is unchanged by the

hydrodynamics. The movement of masses of materials 1 and 2 across zone

boundaries is described by (111.5), and the amount of material 1 moving

across a boundary is compensated by the movement of material 2 in the

opposite direction. In (111.4) we see the term v vigi(E2 - El),

which represents the transport of the internal energy carried by the

masses moving across the zone boundaries. The movement of material 1 at

velocity VI relative to the Lagrangian center-of-mass frame, and of

material 2 at its relative velocity V2, result in (111.3) having a

Reynolds stress tensor term whose trace is (plvl2 + p#).

The interesting physics is contained in (111.6), which describes the

generation and transport of drift momentum ~. The last term, ;/V, is the

drag term. Setting it very small, or ignoring it corresponds to having a

very large Reynolds number. Setting it infinitely large gives the

limiting case of no mix. ; is always in the direction opposite that of

the drift momentum ~, being a frictional force.

Since all but the first of

(111.6) are limmr or quadratic

the remaining terms on the right in

in ~, that first term

- (plp2/P) (* .-&Pd (IV.1)

is the driving term. Moreover,
~

for an initially unmixed situation, dt

remains zero until $ ● d~ goes positive, if the area vector & is defined

as pointing from material 1 to material 2. This is because a negative

value of ~ ● ti+ would correspond to material 1 flowing from the region

which conta%ns only material 2 to begin with. But this is simply the

condition for Rayleigh-Taylor instability, since Pi’, P2’ are the actual

densities of the respective materials 1 and 2. Thus the first term on the

right in (111.6) is the Rayleigh-Taylor buoyancy force density. Note that

(111.6) predicts that mixing will begin at a material interface, even in

the limit of small zone size (which corresponds to the limit of small

initial perturbation), and even in a l-d calculation, when this driving

term goes Rayleigh-Taylor unstable at time to. Regardless of how the

11



zoning defining (Plp2/p) is set up, an expansion of the terms of (111.6)

in powers of (t - to) gives, for lowest order in (t - to),

(IV.2)

at t=tO, if the material strength and drag forces are ignored. One way

to interpret this driving term is the following. Suppose that any

interface has some fuzziness to it. So long as the Rayleigh-Taylor

buoyancy force has the stable sign, any relative acceleration of the two

materials is in the direction of keeping them separate. Once the

Raylelgh-Taylor buoyancy force is in the unstable direction, a relative

acceleration of the two materials occurs, causing an intermixing relatfve

velocity to develop. As long as the accelerated material moves through a

Rayleigh-Taylor unstable region, it will continue to be,accelerated, and

so will continue to interpenetrate.

Note also that intermixing as described by these equations (111.1) -

(111.6) should actually stabilize a 2-d or 3-d Lagrangian calculation,

because any initial perturbation at a Rayleigh-Taylor unstable surface

will tend to be smoothed out by the induced mass flow of the two materials

across the interface.

The terms linear in drift momentum,

;$4.;”$;,

In l-d planar geometry become

.Zgg

and correspond to the Richtmyer-Meshkov

geometry, the term

+ldV. ;; . ;. - g--~

instability. Indeed, in any

12



always amplifies the drift momentum when a shock passes through, because

the volume strain rate +$ is always negative for shock passage. For

the special case of spherical geometry, with

+
g = g(r90,@)

where the symbol indicates a unit vector, we have

and the drift momentum g, which was just defined perpendicular to the

Lagrangian velocity ;, is amplified. This corresponds to a

Kelvin-Helmholtz Instability.

The remaining terms on the right in (111.6), which are quadratic in

drift momentum ~, serve to transport the drift momentum associated with

the masses of materials 1 and 2 that are crossing the zone boundaries.

v. CONCLUSION

By making the pressure-equilibration assumption of equation (IIB.3),

we arrive at equations (111.1) to (111.6), which describe the intermixing

of two materials, driven by the Rayleigh-Taylor buoyancy force. The

mixing is amplified by terms which incorporate the features of

Richtmyer-Meshkov and Kelvin-Helmholtz instabilities, and damped by

drag forces which are represented ~y the f/V term. These equations

predict that mixing will begin, even in the limit of small initial—— .— —— —

Perturbations, and wen in a l-d calculation, when Rayleigh-Taylor

instability occurs at an interface, unless the drag or material strength

forces are sufficiently large to prevent this.

Note that this derivation describes a mechanism for mixing which can

be incorporated into l-d, 2-d, or 3-d codes, for ei;her Lagrangian or

Eulerian formulation. It has the nice feature for Lagrangian codes of

keeping the zone mass fixed, thus eliminating the need for rezoning.

13



VI . NOTES ADDED SEPTEMBER, 1995

#
1) The subscripts i, j are vector indices, so that VjP is

the jth component of the gradient of P. The Einstein summation

convention is assumed, where an index appearing twice implies

summation over the values of that index, so that Vi Vi is ~ ● ~,

the divergence of the vector ~ .

2) Since equation (IIC.1) is only valid inside material 1,
VI ~

where
T= ‘

the part of the term on the right hand side (RHS)

of (IIC.2) with V1 can as easily be written - v P1’ij
‘X[%vllj

instead of the existing term

is the correct generalization

‘VI P1’ij
‘i ‘Ij”

That the former

for grids too large to resolve the

distinct regions of pure materials, we will now show.

We will consider the case when P’. . = P ~ij .
1-J Note that

Vlvecl represents JJJ‘dV~*G1, the integration of qoijl

over the volume VI of distinct regions of material 1, within the

zone of total volume V. But physically, this term in (IIC.2)

represents the rate at which the volume of material 1 streams

out of the Lagrangian zone whose boundary moves at the center-

JJVI
of-mass velocity G, namely

T
C1.dlit an integral over

AL

the zone surface enclosing the full Lagrangian volume V . Note

that ~1, the velocity of material 1 relative to ~, has to be

VI
multiplied by ~, the fraction of the zone volume that is

14



material 1. By Gauss’s theorem, this integral is

Mdvv“(w t and so we generalize

v

in order to have equations appropriate to the coarse grid, with

cells of volume V . Using the notation in this paper, we get

for the correct generalization of subgrid multifluid

following new (and hence primed) equations:

dE1 =
ml— - VI P~’il Vi Vj - V P~’il

‘i(~vl)j
_V9i ViE1

$7 )
mlE1 =- V1 P1’ijVi Vj

- v ‘~@(+vJ; ‘vi ‘iE1

& (m2E2) = - ‘2 ‘2’ijvi ‘j - v ‘2’ijvi(% ‘2) + v ‘i 9iE2
j

mdE - – VI P1’il Vi Vj - V P~’ij
dt ‘i(%vl)j

- V2 P2’ij ‘i ‘j
- v ‘;ij ‘i(%v2)j

+vvigi(E2-El)
dE

m —=-
‘~+vvi9i(E2-El)

dt -Pvvigi[$-$)

flow, the

(IIC.2)’

(IIC.4.1)’

(IIC.4.2) ‘

(IIC.6) ‘

(111.4)’

Note that for clarity we have numbered these equations in a non-

standard fashion, so that the reader can easily determine which

equations they supercede, namely the corresponding unprimed

equation numbers.

We now show that the last term on the RHS of (111.4) ‘

exactly cancels

-P~ so that
dt ‘

internal energy

out the contribution of transport effects to

only real compression, and actual transport of

[the second term on the RHS, namely

15



VVigi(E2_ El ) ] contribute to the change in internal energy,

as the physics requires. Since

which by Gauss’s theorem

= Jw’-t’)”ti*
which, by definition of the drift momentum ~,

= JJ(VI V.2
Gl+— )G2.d.xv- V

AL

‘[
The rate at which the volume V= VI +V2

1leaves the Lagrangian (constant mass) ,

zone

it follows that VVi .i

(:-*)

is exactly equal, and opposite

in sign, to the contribution to the rate of change of the

dV
Lagrangian zone volume, — due to the exchange of equal masses

dt ‘

(of dissimilar microscopic densities) crossing the cell bound-

aries and causing the Lagrangian interface to move. As a special

case, when neither constituent material is compressible, equa-

M dE
tion (111.4) ‘ limits correctly to VVigi(E2– El) .

z=

3) Note how the drag force ~ has dropped out of equation

(IIC.2), and all subsequent equations involving the time rate of

change of internal energy El, E2 , or E. This is because of the

tacit assumption that there is no turbulence, even on the sub-

grid scale, for this simple model.
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