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1. Introduction
Scaling laws have always had a3 place in the study of fluid motion.

Fluid motions which are scale-invariant are self-sirmila;: motions. The
\

first self.sisilar motions were studied iy Tavior,' Sedov,® Guderley,’
and Landau and Stanvukovich.' Self-similar motions ir one dimcnsion
satisfy ordinary diffcrential equations in scale-invariant variables
rather than partial differential equations ir space and time. They are
physically important because they represent asymptotic states of motior,
which occur when the fluid is no longer strongly influenced by its inj-
tial conditions.’

The scale transformations which deterzine self-cisilar motions are
Lie group operations. Birkhoff® in 1950 first applied grour theory to
get invariant soluticne of Euler's equations. Subsequently several
others -- for exarrie Ovsiannibov,’ Michal,' and MGller and Matschat® -.
have refined Lie's original method!® of integration of differential egua-
tions by group theoretical techniques. Many have applied it to study
grour invariant sotions of an ideal gas.’!

Isentropic fluid motion is governed by Euler's cguations. Euler's
equations contair three independent Jdimensions: mass, length, and time.
50 at most the: carn adeit three independent scale tranctformations. Self-
similar shock motions utilize al) three inlependent cheices of scale.
One choice is fined by the 1nitial density ahead of the shock. Aqother
it deternined by the numerical sclution for the similarity exponent.
This alsc determines the shocl tratector in srace-tipe and the shape of
the flow behind the shock. The remairing cnnice of scale can be uced to



determine by a scale transformation the profile of the flow at a2 later
time from its profile at an earlier time. Thus the naae self-similar.

Self-similar motions are not admitied for an arbitriary equation of
state. Generally the bulk modulus relation, lstﬁ,v), which appears in
Euler's equations removes soxe scale freedom by connecting pressure, p,
with specific volume, v. Initial and boundary conditions als> tend to
remove 3cale freedor by introducing characteristic dimensions.

Non-jdeal fluid motions are studied here. Spherical self-similar
convergence is calculated for a strong shock in a non-ideal medimm. Group
theory is used to place a symmetry condition on the adiabatic bulk modulus,
B (P.V), for which three independent scale transformations of Euler's
equations will be adrmitted. The types of non-idea] media which satisfy
the bulk Brdulus 3VERSITy condition indlude equations of state of Mie-
Gruneisen type. Thus the theory applies to a wide class of materials. In
particuiar it applies to non-degenerate scolids at shoos pressures well
above the vield stress,

In section [ we siate the problex and describe the method of approach.
In section 3 we sumpavize results fror invariance analvsis of Fuler’s equa-
tions. Then in section 4 we use these results to determine equations of
state for which self-similar solutions are ad=mitted. Two such egquations
of state are those of Tait-Kirdlwood-Murnaghan’' and walsh’® whick Rave
beer. used before as espirical interpelation functions mithout the real;-
sat:on that self-samalar solutions exist for thee.

In section 5 we describe the numerica. methold we uste to solve t.e
self-sirilar protier for the Walsh equation of state. In section & we
interpret the nuwerical sclutions and study their 2tadilaty, It turns
out that self-sis:lar shochk comvergence is stahle 1n rad:ial sie but net
ir sphericity. The same result was obtained by Butler:? for a~ ide.: gas,
but by an~ther aethod. Als: ir section €6 we descrite how self-cimilar
aralysis may be aprlied 7c finite strength shocks.

2. _Statesent of Frotier and Grumetric Approacht to Its Selution

Consider the protles of the spherical convergence of a shock wave

to the center 0¢ » urmifore., stat:onary materizl. Ahead of the shock the

initial conditions are
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conditions, with D the shock velocity and E the specific internal energy,
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For a strong shock the terss in P, 2re to be ighored.
The pressure-volume response of the matercal is descrihed dy the
adiatatic buld modulus,
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In the ahsence of viscosity and heat trancfer. the octior of the shockh
front and the flow »ehind the shoch are poverned by Fuler's eauations.

These are the continuity egquztions,
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the BmiCT equation,
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and the energy or entropy eguation,

at stp..; (Ql *; ) =t 0 T

wvhere x 1s the spatial cocrdinate (radius} and g? is the material deriva-
tive with respect to time.

The equation of state influences the egquations of motion through the
adiabatic bulk modulus in the last equaticn, Wher «ritter in terms of 3
general adiahatic buld medulus, iInvariance analvsis Jeads to the con-

structior. of self-similar solutions and other types of invariant scht;one



for shocks in media other than an ideal gas. We seek functional forms of
the adiabatic bulk modulus for which Euler's equations admit the maximal
group of point transformations.

3. Invariance Principles for Euler's Equations

Euler's equations (2-4) to (2-6) admit a three parameter subgroup
of scale transformations generated by the operator,

Qcp {‘31 * '3} x 3x * (al * .2) o ¢ 4%

+ (32 - 23,)‘93£ + a, (p + pe)ar (3-1)
provided the adiabatic bulk modulus satisfies the condition,
. 385 BBS s
a, (p* Fo! Ty . (a: - 3313 2 rad a:Bs = 0 13-2)

where Pe is an arbitrary constant with units of pressure. In the last

tw0 equations the arbiirary constants a,, a,, and ag correspond to choices

10
of three direction coe ficients in the group space. The general soluticn

of (3-2) for the adiabatic bulk modulus ig
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where f is ar arbitrary funetion of its argument. When the bulk modulus
has this form, three independent scale transformations are admitted by
Euler's equations.

Euler's equations are alsc invariant under time transiations, sincc
the independent variahble t does not appear explicitly in the svstem. Sc
the zero-value of time 13y be chosen arbitrarily. In planar geometry,
invariance under spatial Jisplacements and Galilean transformations
would sl:0 occur. In mcre spatial dimensions rigid rotations of all
vectors would be admitted, as well.

For the initial condition of uniform density ahead of the shock to

be invariant, a relation mu:st be imposed in Qop'
a,- 2a, =0 . (3-4)

Thus the buik modulus for self-similar shoch propagation into a uniform

medium adopts the separable form,



B (p,p) = (p + p,) f(r) (3-5)

where again f(;) is an arpitrary function. Such equations for the bulk
modulus have been used before as interpolation functions in shock wave
physics. Two choices for f(p) are well-known; the TKM equation,!®

1
f{p) = consiant = — (3-€)
Aﬁo
and the Walsh equation,’'®
f(p) = S0t . (3-7)

The Walish equation has the added advantage that it is consistent
with the experimentally observed linear relation between shock speed, D,
and particle speed, u, behind the shock,

D=c+ su (3-8)
true for plate-impact cvxperiments with shock pressure greater than about
fifty kilobars. 1In terms of this relation the constants A,pe, in the

Walsh equation are

2

Yo 1 Po¢
e 2 2 2. 3.0
A I 7c  Pe * e . (2-9)

Typically for metals s is about 1.25 and ¢ is roughly equal to the sound
speed. In what Jollows we specialize to the Walsh equation. Comparison
with shock wave data of the Mie-Griineisen equations of state implied by
the Walsh and TKM equations for the adiabatic bulk modulus will be pub-

lished elsewhere.}’

4. _Construction of Similarity Variables as Group Invariants
Euler's equations can be reduced to a system of three nonlinear
ordinary differential equations by transformation of variables to the in-

variant coordinates of Q0p' the operator in (3-1) with condition (3-4),
Qopf(x,t,u,o.pi =0, (4-1)

In general the solution of such a first order partial differential
equation involves arbitrary functions of the functionally independent

integrals of the characteristic equations., In our cssc the arbitrary



functions are the new dependent variables in Euler's equations, whose
solutions are restricted to the invariant surface. Thus the flow vari-
ables are resolved from the independent group invariants to be,

x x A : x ¥ .
A= F y U= ;!t- Us(l) s P= Do Rsn&) » (p+ Pe) bd (?}z po Ps ) (4-2)

where the exponent a is,

3
ae 1'%
a; *ag

(4-3)

and the value of time is taken to be negative before collapse and to van-
ish when the shock reaches the center.

Upon substitution of the self-similar flow variables into Euler's
equations, a coupled set of three nonlinear ordinary differential equa-
tions in A remains to be integrated. The boundary and initial conditions

for this system will be invariant if the shock trajectory follows a path,
o]
xs(t) = (const) t (4-)
and if also the initial density distribution is uniform,

p(x,0) = o (4-5)

§. Evaluation of the Similarity Variables

The numerical evaluations of the similarity variables requires solv-

ing a system of nonlinear ordirary differential equations obtained by
entering the group invariants into the conservation relations. This sys-

tem can be expressed in the following matrix form:

U, - o R 0 L [ - 3UR,
0 U -a RI vl =]u -u?.2pr !
S S S S S S S
0 IP (Ug - @) R _PSJ - 3MUP_ - 2P R (U - 1)
(5-1)

where T = (pOA).1 and primes are derivatives with respect to log A. Solv-
ing equation (5-1) explicitly for the derivatives by Cramer's rule produces
R® = .A_l U’ = P’ = . (~-2)

s A s “

b2
A s A



in which the determinants are defined as follows:

[ 2 rp g2
A= (U - a)Rs (Us -a)” - SR J

s s

2 -1
8, = RS {2(1 -a) PR - U (U, -a) [3(U, -a)+1- us]}
(5-3}
, -2
&y = (U, - Q)R {33‘USPSRS

-

s U (1 - U)W, - a) -2 - a)psre;‘}

. g - ar -1 - ' - - T - -
Ly = (U, uws{hpsns ¢ R (1 - U, - a) - FU[3(U, - a)e ] us}.

DPivision among equations (5-2) gives,
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The similarity expcnent a which appears in equations (5-4) can not be
determined from an int-gral energyv balance as is the case for diverging
shock waves driven by the release of energy at a point. The procedure for
finding the numerical values of the similarity exponent for varjous values
of T entails suiving eguations (5-4) numerically, and iterating on assumed
values for the similarity exponent. 1In this procedure the Rankine-Hugoniot

relations, which for this problem are
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must be satisfied. In the strong shock limit these generzl forms of the
Rankine-Hugoniot relations simplify to
>
Us(AH) * %2 ’ Ps(xH) * %2; ’ Rs(ln) roT o (5-6)
When the correct value of the similarity exjonent has been chosen, the

numerical integration of (5-4) subject to the initial conditions (5-6)



results in single-valued nonsingular functions. The test for convergence
resides in the fact that only two of the four determinants in equations
(5-3) are linearly independent. When any two of these four detcrminants
vanish simultansously at the same value of a, the correct value for the
similarity exponent has been selected.

6. Numerical Results, Stability, and Finite-Strength Shocks
The solution to equations (5-1) can be visualized as sketched in

Figure 1 in the space with coordinates (t,x,u). 1In Figure 1 g7oup trans-
formations generated by Qop produce a vector field tangential to the solu-
tion surface along lines X = const. The group-reduced Euler equations
produce a tangential vector field which crosses lines ) = const. More
quantitatively, for I = 5 numerical results are graphed in Figure 2 for
the reduced variablecs US(F} Ps(l), and Rs(3). The functions Us(l) and
PS(A) are decreasing functions, while Rs(l) is an increasing function
just behind the shock position at } =1,

In Figure 3 is shk>wn the d=pendence of the similarity exponert, a,

had

on the material parameter 7 = Ké" with specific materials labeled.
~

Superimposed as a dotted line inDFigure 3 is the similarity exponent, a,
as a function of vy = cp/cv for an ideal gas. The two curves disagree by
about ten percent near the middle of the range shown.

The stability of these solutions has also been examined. The major
conclusion is that an angular perturbation will grow and oscillate as the
shock converges, as though the shock had surface tension. The perturha-
tion is stable in size but not in shape as the shock converges to the
origin. The physical interpretation of this stability behavior: near
the origin the shock becomes non-radially coupled to itself and ceases
to converge to a single point. Details of the stabilitv analvsis will be
published elsewhere.'®

The invariance analysis presented here mav be extende! to finite
shock strengths essentially without change, except for a parametric de-
pendence of the similarity exponent on the value of the time before
collapse. The group analysis and numerical procedure described here
still apply for finite-strength shock collapse, but the numerical itera-
tion for the similarity exponent must be done as a function of time.
Details for finite-strength shocks will be published elsewhere.'®
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Fig. 1. The solution surface in the space (t,x,u).
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