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~ We begin with the reaction–diffusion equation:
%
z au ~ az—= ~u + DV~u + F’(u) 1
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where u is a vector of chemical concentrations and D is the diffusion matrix. Here VI

refers to directions orthogonal to z. Assume that there exists a plane wave solution to Eq.
(I). Denote this solution by U(x-et). Define ~ = z – ct. Then we have

–cUC = DU<< + F(U) .
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Now we ask under what conditions is the plane wave solution stable in multiple dimensions.
To do this we work in the traveling coordinate system and write:

---

3~(t! Y>~) = ~(t) + n(t> Y)~)

where q is a small perturbation to the plane wave solution. We expand q in Fourier modes
in y. (The dimensionalit y of the system is irrelevant. For simplicity I work only in 2 space
dimensions here, ~ and y.) Thus we have: L

4v = ~ a~(O#~(y) exp(~~~)
k
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~-~ where the ~~ are eigenfunctions of Vi.0— Inserting equations (3) and (4) into (1) we find
;~~ ~ the eigenvalue problem for Ak:

!E~ a2ak ~ak
:C ~kak(f) = D ~t2— – D~2Uk(~) + ~(f)ak(c) + c—
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.= ~ In the case that D = DI we have
—
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~k=~o–Dk2 . (3

Equation (6) means that diffusion stabilizes small perturbations of the wave front in the
case of scalar diffusion which is the desired result.
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