et us examine Riabouchinsky’s paradox a little more carefully

and show how its resolution is related to choosing a system of

units where the “fundamental constants” (such as Planck’s
constant A and the speed of light ¢) can be set equal to unity.

The paradox had to do with whether temperature could be used as
an independent dimensional unit even though it can be defined as the
mean kinetic energy of the molecular motion. Rayleigh had chosen
five physical variables (length /, temperature difference 8, velocity v,
specific heat C, and heat conductivity K) to describe Boussinesq’s
problem and had assumed that there were four independent
dimensions (energy E. length L, time 7, and temperature 6). Thus
the solution for T/Ty necessarily is an arbitrary function of one
dimensionless combination. To see this explicitly, let us examine the
dimensions of the five physical variables:

(= L.[8]=6,v]=LT"".[C]=EL*6",
and(K]=EL™'T"'®™".

Clearly the combination chosen by Rayleigh, /vC/K, is dimension-
less. Although other dimensionless combinations can be formed, they
are not independent of the two combinations (WC/K and T/T,)
selected by Rayleigh.

Now suppose, along with Riabouchinsky, we use our knowledge of
the kinetic theory to define temperature “as the mean kinetic energy
of the molecules” so that © is no longer an independent dimension.
This means there are now only three independent dimensions and the
solution will depend on an arbitrary function of two dimensionless
combinations. With © « E, the dimensions of the physical variables
become:

1=L,0)=E,[V]=LT . (C}=L  and [K]=L"'T"".

It is clear that, in addition to Rayleigh’s dimensionless variable, there
is now a new independent combination, C* for example. that is
dimensionless. To reiterate Rayleigh: ‘it would indeed be a paradox
if the fierther knowledge of the nature of heat . . . put us in a worse
position than before . . . it would be well worthy of discussion.”

Like almost all paradoxes, there is a bogus aspect to the argument.
Tt is certainly true that the kinetic theory allows one to express an
energy as a lemperature. However, this is only useful and appropriate
for situations where the physics is dominated by molecular consider-
ations. For macroscopic situations such as Boussinesq’s problem. the
molecular nature of the system is irrelevant; the microscopic
variables have been replaced by macroscopic averages embodied in
phenomenological properties such as the specific heat and conduc-
tivity. To make Riabouchinsky's identification of energy with tem-
perature is to introduce irrelevant physics into the problem.

Exploring this further, we recall that such an energy-temperature
identification implicitly involves the introduction of Boltzmann's
factor k. By its very nature. & will only play an explicit role in a
physical problem that directly involves the molecular nature of the
system; otherwise it will not enter. Thus one could describe the
system from the molecular viewpoint (so that & is involved) and then
take a macroscopic limit. Taking the limit is equivalent to setting
k = 0; the presence of a finite & indicates that explicit effects due to
the kinetic theory are important.

With this in mind. we can return to Boussinesq’s problem and
derive Riabouchinsky’s result in a somewhat more illuminating
fashion. Let us follow Rayleigh and keep E, L, T. and © as the

Each of these variables. including F itself. is
alwavs cxpressible in terms of some standard
sct of independent unmits. which can be
chosen to be mass M. length /.. and time 7.
These arc the hidden scale parameters, Ob-
viously. other combinations could be used.
There could even be other independent
units. such as temperature (but remember
Riabouchinsky!). or more than on¢ inde-
pendent length (sayv. transverse and long-
itudinal). In this discussion. we shall simply
use the conventional M. .. and 7. Any
genecrahization is straightforward.

In terms of this standard sct of units. the
magnitude of cach v, 15 given by
Xo= AT (15)
The numbers a,. 8,. and y, will be recognized
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as “the dimensions™ of v,. Now supposc we
change the system of units by some scale
transformation of the form

M =M =kyM.

[ «1'= .A.l[ .

and

T -17"=x7T. (16)
Each variable then responds as follows:

X, e xS =M, . 7

where

. TR T
ZAR) = R ApAT (18)

and A is shorthand for Ay, &, . and 4;. Since
Fasatself a dimensional phvsical quantity, it
transtorms 1n an identical tashion under this
scale change:

Fos b =00 v (VR (191
where
Z) =5 AN Ay (20)

Here . 1. and y arve the dimensions ot /.

There is. however. an alternate but equiva-
lent way to transform from /1o F7. namcly .
by transtorming cach ot the varmables v
separately, Explicitly we therefore also have
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Scale and Dimension

Raylei

independent dimensions but add k (with dimensions £67') as a new
physical variable. The solution will now be an arbitrary function of
two independent dimensionless variables: WC/K and kCP. When
Riabouchinsky chose to make CP his other dimensioniess variable,
he, in effect, chose a system of units where k= |. But that was a
terrible thing to do here since the physics dictates that & = 0! Indeed,
if k= O we regain Rayleigh’s original result, that is, we have only one
dimensionless variable. It is somewhat ironic that Rayleigh's remarks
miss the point: “further knowledge of the nature of heat afforded by
molecular theory” does not put one in a better position for solving
the problem—rather, it leads to a microscopic description of K and
C. The important point pertinent to the problem set up by Rayleigh is
that knowledge of the molecular theory is irrelevant and k must not
enter.

The lesson here is an important one because it illustrates the role
played by the fundamental constants. Consider Planck’s constant
h = h/2x: it would be completely inappropriate to introduce it into a
problem of classical dynamics. For example, any solution of the
scattering of two billiard balls will depend on macroscopic variables
such as the masses, velocities, friction coefficients, and so on. Since
billiard balls are made of protons, it might be tempting to the purist
to include as a dependent variable the proton-proton total cross
section, which, of course, involves A. This would clearly be totally
inappropriate but is analogous to what Riabouchinsky did in
Boussinesq’s problem.

Obviously, if the scattering is between two microscopic “atomic
billiard balls” then A must be included. In this case it is not only quite
legitimate but often convenient to choose a system of units where
h = 1. However, having done so one cannot directly recover the

y Paradox

classical limit corresponding to & = 0. With & = |, one is stuck in
quantum mechanics just as, with k = 1, one is stuck in kinetic theory.

A similar situation obviously occurs in relativity: the velocity of
tight ¢ must not occur in the classical Newtonian limit. However, ina
relativistic situation one is quite at liberty to choose units where
¢= . Making that choice, though, presumes the physics involves
relativity.

The core of particle physics, relativistic quantum field theory, is a
synthesis of quantum mechanics and relativity. For this reason,
particle physicists find that a system of units in which A =c=1is
not only convenient but is a manifesto that quantum mechanics and
relativity are the basic physical laws governing their area of physics.
In quantum mechanics, momentum p and wavelength A are related
by the de Broglie relation: p = 2rh/); similarly, energy E and fre-
quency o are related by Planck’s formula: £= ho. In relativity we
have the famous Einstein relation: E = mc?. Obviously if-we choose
h =c = 1, all energies. masses. and momenta have the same units
(for example, electron volts (e})), and these are the same as inverse
lengths and times. Thus larger energies and momenta fnevitably
correspond to shorter times and lengths.

Using this choice of units automatically incorporates the profound
physics of the uncertainty principle: to probe short space-time inter-
vals one needs large energies. A useful number to remember is that
10712 centimeter. or 1 fermi (fm), equals the reciprocat of 200 MeV.
We then find that the electron mass (= 1/2 MeV) corresponds to a
tength of = 400 fm—its Compton wavelength. Or the 20 TeV
(2 X 107 MeV) typically proposed for a possible future facility
corresponds to a length of 107'® centimeter. This is the scale distance
that such a machine will probe! m

F—e b=

F(Z|(}\.).\'|. Zj(l).\'j ..... Z,,(l).\',,) . (2 1)
Equating these two different ways of effecting
a scale changc leads to the identity

FZ(A)x) Zyh)xa. .. ZyA)x,) =

ZO) Flxvy oo . ox) . (22)

Asaconcretc example. consider the equation
E=mc. To change scale one can either
transform £ dircctly or transform m and ¢
scparately and multiply the results ap-
propriatcly—obviously the final result must
be the same.

We now want to ensurc that the resulting
form of the equation does not depend on A.
This is best accomplished using Euler’s trick
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of taking d/dA and then sctting A= 1. For
cxample. if we were 1o consider changes in
the mass scale. we would use d/dAy; and the
chain rule for partial differentiation to arrive
at

<~ 47, 8F _ a7

RV @
When we sct Ay, = 1. differentiation of Egs.
18 and 20 yiclds
(%)
T =4q,.
g A=
(24)

( % )
beusd =a.
dAy A=t

and x,” = x,, so that Eq. 23 reduces to

a aF +a AaF + AaF +
Xy o AR Rt ol ) SR Se e I
|| a.x, A A [{AN

aF
+a,\, —=al.

ax, 23

Obviously this can be repeated with A,
and A to obtain a set of three coupled partial
differential equations cxpressing the funda-
mental scale invariance of physical laws (that
is. the imvariance of the physics 1o the choice
of wnits) implicit in Fourier's original work.
Thesc cquations can be solved without too
much difficulty: their solution 1s. in fact. a
special casc of the solution to the re-
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