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NUMBER THEORY OF THE CONGRUENTIAL RANDOM NUMBER GENERATORS

by

C. J. Everett

ABSTRACT

The number theory underlying the "'random
number? generators gXp = Xpe1 and gXp*c E.xn+1
mod m is developed in greater detail than is

"‘——~fzfcustomary, with the practical application to
r random number generation in mind. The arithmetic
==8+ _theory of the mixed generator does not appear in

|

HHIH

=04 and the treatment here is
= —1
==, “““believed to be new. In any case, it involves
g;;;;a,F- many features of interest which are not as well
g=X - known as the classical theory of primitive roots
3§§§§q,rt,?%qu1red for the multiplicative generator. Even
t==3|- the 1 h db di
§==q| the latter theory, as presente elow, displays
EEéE:;P-fsome unorthodox aspects of importance for the
== '~ construction of generators. An Appendix con-

~ ..' tains a summary of the classical theoretical

background.
I. THE MULTIPLICATIVE GENERATOR

gx = X 4 mod m

defines a sequence of integers X = 3x0, xl, x2,...§ which has the greatest
possible period A(m) (cf. the Appendix) for properly chosen Xq and g. This

is the subject of the present section.

Lemma 1. If ki = pd(g; mod m), i = 1,...,%, and if k = pd(Hgi mod m), then



k =1 k, (2)

provided the ki are co-prime. Tk.

Proof. Clearly k |l k., since (I g,) 1

1 mod m. To prove II ki] k,
it suffices to prove each k. ] k. For example, kll k since 1 = (Il gi)k k2"'k2
= glk ka.. -kg mod m implies k ]k k kz, and hence k1 ]k.

Note 1. The relation pd(IIg mod m) = [k .. 2] need not hold. Thus
for m=61, one has pd(2 mod 61)-—60, and mod 61, pd(2 )-—60/(6 60) = 10, pd(2 )

= 60/(10,60) = 6, but pd(2'®) = 60/(16,60) = 15 # [10,6] = 30.

Lemma 2. If p is an odd prime, the group G(p) of ¢(p) =p-1 integers
G(p):=f1,2,...,p—1} mod p is cyclic, i.e., there exists an integer g of period
pd(g mod p) = p-1, and hence G(p) = fg,gz,...,gp_l = 1} mod p. The set

H(P) = igl’ . ’gd)(p_l)g

of residues of those ¢(p-1) powers gJ with (j,p-1) = 1 consists of all inte-

gers g, for which

pd(g; mod p) = p-1, 1<g<p .

Proof. Writing p-1 =1 qb in standard form, it suffices by Lemma 1 to
exhibit, for each prime q] p-1, an integer gq of period qb mod p, for then

their product

=11 mod
g gq p

will have period II qb = p-1 mod p. For each such q, we may take

8q ~ <xq> ©-1/4° poq P,

provided (xq)(p—l)/q Z 1 mod p, since this implies



qb p-1
= (x = 1 mod
(a)" = (%) P

b-1
whereas (gq>q = (xq>(p_1)/q Z 1 mod p. Such an xq exists, since the con-
gruence x®-1/9 = 1 mod p has only (p-1)/q<p-1 roots.

Note 2. Following the above method for p= 31, p-1 = 2+3+5, we find that,
mod 31,

15 10 _

9= 121 30s 621 2%=221
X, =3 X =3 x5 = 2
g,23% 2.1 g, 23056 g =z2%:2

30.

g = 8,885 = 12, pd(g mod 31) = 2-3+5

k iff gk Z 1 mod m and gk/q 21
mod m for every prime q | k. Thus the least g>1 of period p-1 mod p is the

(

Note 3. It is clear that pd(g mod m)

first integer g for which g p-1)/q #Z 1 mod p for every q | p-1. (For q=2, one

knows g(p_l)/2 = +1 = (g/p) mod p, and may use the short cut of quadratic

residue theory.) For the prime p= 31 (Note 2) one finds the least such g is
g=3, since 3% = -1, 310 = _¢, 3% = 16 mod 31, whereas 215

the generator g=3, we find mod 31:

= 1 mod 31. Using

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 3 9 27 19 26 16 17 20 29 25 13 8 24 10 30

-1

j 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
3 28 22 4 12 5 15 14 11 2 6 18 23 7 21 1.

Note that 315+J = —(33) mod 31.

The integers <31 of period 30 zre the ¢(30) = 8 residues of those powers
3) with (3,30) =1, namely



j 1 7 11 13 17 19 23 29
3 3 17 13 24 22 12 11 21

H(31)= g, g, g3 84 85 g¢ g8, gg-

319 mod 31 in accord with Note 2.

Note that 12
In a similar way one may verify that g = 2 is the least integer of period
60 mod 61, since

30 - 20 - 12

2 -1, 2 = 47, 2 = 9 mod 61.

(Cf. Note

—
~—

Lemma 3. If p is an odd prime, then an integer g is a "universal gen-
erator" (for p), in the sense that

a_

= pd(g mod p?) = p* L (p-1) = ¢(p%)

P
1

for every a=>1, iff g has the two properties:
(i) pd(g mod p) = p-1 and
(ii) gp_l Z 1 mod p2.
Proof. The necessity of these is obvious, if we consider the cases
a = 1,2. For an integer g satisfying both, we first prove by induction that

P (p-1) _

g 1+ pPu; ptw, b2 1. (1

This holds for b

1 by property (ii). The induction step reads

b
p (p-1) _ (p) b p\ .2b 2 p\ ..pb P _ b+l
& =1y Pyt <2 Pty +"'*'<p) Pruy, = 1P Uy

—

where

Uy Tt (g) pb'lui + .. <g>p(p_1)b_lug # 0 mod p

since b=1, p=3, and p ‘l'ub Thus Eq. (1) is true for all b=>1, and hence




for any fixed a 2 1,

a-1
g (-1 = 1 nod .

Thus the period k ] pa_l(p—l). Now gk = 1 mod pa implies gk = 1 mod p, and

from relation (i) we see that p-1| k. We may therefore write k = pb_l(p—l)

b-1
where 1<b<a. By Eq. (1), we then have 1 + p ub gP (p—l) = =1 + paQ.
Since p‘fub, it follows that pa] p , and hence p (p 1) ]p (p—l) = k.
Lemma 4. If ¢ is any integer for which cp_1 = 1 mod p2 (p prime =2),

then (c*—hp)p_1 Z 1 mod p2 for every h prime to p.
Proof. If (c+hp)p_1 = 1 mod p2 with (h,p) = 1, we should have the

contradiction mod p2
(c+hp) = (c+hp)P = P + (P Pl s (P hppchzcmodpz.
p p 1 P P p

Note 4. It follows from Lemmas 2, 3, and 4 that there exists a universal

generator u for an odd prime p. In particular, if gy is the least 1nteger of
perlod p-1, then g1 (<p) or g1+p(< 2p) is universal according as g §€ 1
mod p or g? 1 1 mod p~ . The latter case does occur, e.g., when p =40487
(g1==5). See references [1,2].

While universality involves the properties (i), (ii) of a positive integer,
the concept of group generator is a property of an integer mod pa. It is easy
to see directly that, for a=2, p an-.odd prime, the set U(pa) of all integers
uﬁipa which are universal coincides with the set H(pa) of generators gsipa of
the group G(pa). For U(pa) C H(pa) by definition, and the implication
<x = 1 mod pt > xpsiil mod pt+s>, proved by an easy induction, shows that
H(pa) C U(pa). For suppose g is a generator. If gp_l = 1 mod p2, we should
have

a-2
(gp_1>p =1 mod p®, whereas pd(g mod p2) = pa_l(p—l).
a-1
. k., = . . kP = a
Moreover if k = pd(g mod p), then (g ) = 1 mod p implies (g) =1 mod p~.

a-1

Hence pa_l(p—l) ]kp s p-1 ]k] p-1 and k = p-1. Thus g has the properties

(1), (ii) of universality.



In Lemmas 5 and 6 the identity U(pa) = H(pa), a » 2, will be proved in a

quite different way, providing two essentially different methods for comput-

ing these generators. Note that U(p) # H(p) for p = 40487.

Lemma 5. Let p be an odd prime, and H(p) = {gl""’g¢(p—1)} the com-
plete set of integers <p of period p-1 mod p, as in Lemma 2. Then the

p¥p-1) distinct integers

855 = & + jp; i=1, ..., ¢ (-1, j=0, 1, ..., p-1

are precisely the integers sépz of period p-1 mod p. Moreover, for each i
there is exactly one j for which gggl = 1 mod p2. If these ¢(p-1) gij be
deleted, the remaining ones comprise the complete set

2
§) = R ., u
(%) = {u (p-1) 6(p-1)f
of integers <p2 which are universal generators. This set U(pz) is identical

with the set H(pz) of ¢[¢(p2)] generators mod p2.
Proof.

wm

(a) Obviously gij p + (p-U)p = p2, and g; * jp = g * Lp implies
g; - 8 = (2-j)p, g; = & i =%k, j =2 The original set of 833 therefore
consists of pd(p-1) distinct integers <§p2, and these are the integers Sépz
of period p-1 mod p.

(b) By Lemma 4, there is for each i at most one j for which
gggl = 1 mod p2. Deletion of these d < ¢(p-1) integers gij leaves a set
U(pz) of pd(p-1)-d integers u which are all of the universal generators =<p2.
Hence if H(pz) denotes the set of all ¢[¢(p2)]generators mod p2, we have by

definition,
2 2
U(p™) < H(™)

so that p¢(p-1) - d < ¢[¢(P2)] = ¢[p(p-1)] = (p-1)¢(p-1). This implies
d 2 ¢(p-1). Hence d = ¢(p-1), and U(pz) = H(pz).



Note 5. For p=5, one has pd(2 mod 5) = 4 = p-1, with
G(5) = {2,22 z 4, 2% = 3, 2% = 1}, and generator set H(5) ={2,3}. The g
2

ij
table for 5° is therefore

g); = 2.7,12,17,22 with only 7* 2 1 mod 52

2

£,; = 5,8,13,18,23 with only 18* = 1 mod 52.

Deletion of 7,18 leaves the set
U(52) =1{2,12,17,22;3,8,13,23}

of 4 ¢(4) = 8 integers =<52 which are universal (for p=35).
The same set may be obtained as H(SZ) as follows. Since pd(2 mod 5) = 4,
and 24 Z 1 mod 52, 2 is universal. In particular pd(2 mod 52) = ¢(52) =5+4

= 20, and its powers 23, j =1,...,20 give all the ¢(52) integers prime to 5.
Thus

j 1 2 3 4 5 6 7 8 9 10
27 2 4 8 16 7 14 3 6 12 24 = -1 mod 52

j. 11 1z 13 14 15 16 17 18 19 20
22 23 21 17 9 18 11 22 19 13 1 mod 52

The ¢[¢(52)] = 8 generators of period ¢(52) = 20 are the residues of those
27 with (§,20) = 1, namely

i 1 3 7 9 11 13 17 19
22 {2 8 3 12 23 17 22 13} =H(Y = usd).

This illustrates two different methods for obtaining the generators mod p2.

Similarly, the generators H(pa), a 2 3 may be found in two ways, as indicated
in Note 6.




Lemma 6. If p is an odd prime, and U(pz) = ful,..

.,u } the
5 (p-1)¢(p-1)
set of universal generators <p~ of Lemma 5, then for each a = 3, the set U

1
of integers
.2 . . a-2
gij =u, + jp7; i = 1,...,(p-D)¢(p-1),j = 0,1,...,p -1
satisfies the relation U(pa) = U1 = G(pa), i.e., the g;; are at once the com-

plete set U(pa) of universal generators Sipa, and the set H(pa) of all gener-

ators of the group G(pa).

Proof.
(a) 85 <p 2, (pa_2 —l)p = p?, and uy -+Jp -uk-+2p implies
u; -uy = (2- j)pz, us §, i=k, j=2. Thus U1 is a set of p - (p -1)¢(p-1)
a-

= A D00-1) = 6% L(p-1] = ¢[¢(p )] distinct integers <p°.
(b) Since gij = uy mod p , gij is a universal generator, so
U € UMY € HEP.
(c) But by part (a), #U; = ¢[6(p™)] = #H(p"), so U] = U™ = H(p?).

Note 6. Using the set U(52) of Note 5 for p=>5, we obtain for the
group G(SS) of ¢(53) = 100 integers prime to 5 mod 53, the set of ¢(100) =

integers =<53 which are universal for p=35, namely the integers

g.. = 2 27 52 77 102
3 28 53 78 103

8 33 58 83 108

12 37 62 87 112

13 38 63 88 113

17 42 67 92 117

22 47 72 97 122

23 48 73 98 123

This is also the set of residues mod 53 of those 40 powers 23,11<j-<100, for
which (j,100) =1, that is, the set H(SS) of generators of the group G(SS).

Lemma 7. If p is an odd prime, and a 2 1, then
(a) xk(pa) 1 mod pa for all x prime to p, where by definition
A% = 6™ = p* -1,
8



(b) There exists a g with pd(g mod pa) = k(pa). Specifically: if
a=1, every g = g; mod p has period p-1 mod p, where g; belongs to the set
H(p) of Lemma 2; if a 2 2, every g = u, mod p2 has period pa_l(p—l) mod pa,
where us belongs to the set U(pz) of Lemma 5.

Proof.

(a) is a special case of Euler's theorem (Appendix) and also fol-
lows from (b).

(b) g = g; mod p implies g has the same period p-1 mod p as does
g5 8 = u, mod p2 implies g has the universal properties (i), (ii) of

Lemma 3, and therefore g has period pa_l(p—l) mod pa.

v

Lemma 8. For the prime p=2 and a 2 3, one has
T - a

(a) x}\(2 ) = 1 mod 2% for all x prime to 2, where we define
2

(2% = (1/2)9(2%) = 2%7°,
(b) There exists a g with k = pd(g mod Za) = X(Za). Specifically,
this is true for every g = *5 mod 8. For a 2 4, the latter condition is

necessary. However, for a=3, one also has pd(7 mod 8) = k(23)= 2.

Proof.
(2) For every odd x=1+2h, we see that x2= 1+4h(l1+h) = 1-+2323,
and an easy induction shows that x2372 _ 1+2aza = 1 mod 22 for a 2 3.
(b) Every g = *5 mod 8 may be written in the form g= %1+ 22u2,
2 ¢ U,s where obviously g # 1 mod 2% for a 2 3. Hence the perioa
k=pd(g mod 2%) 2 2. We show by induction that
202 b
g =1l+2u; 2tuy,b23. (2)
For b = 3, we have g2 = (%1 + 22u2)2= 1+ Zs(iu24-2u§) =1 + 23u3, where
2 +‘u3. The induction step is
2P-1 a1+ 2b+1( + oP-1 2) = 1Pl h 2 ¢
& = Y% Y’ T Upep WHOTE Upe1
2372 a 2
From Eq. (2) we obtain g = 1 mod 2° for given a 2 3, so the period k | 2277,

Let k = Zb_2 where we know 3<b<a. If a=3, we already have k= 2a—2- For

an a = 4, we see from Eq. (2) that



b-2
1+ 2bub = g2 = gk =1+2%; 21 u -

Hence 2% | 2°, a<b<a, b=a, and k=222, a3

Finally, if a2 4, and x = #1 mod 8, induction shows that x2 = 14-2aua,
so pd(x mod 2%) | 2873 ¢ 2372
be = +5 mod 8.

b

Thus for a=4, an integer of period 2272 nust

Lemma 9. For the prime p=2, and a 2 3:
(1) The ¢(2a) 2a—1 odd integers <22 fall into two classes, the
class C of 2a—2 integers = 1 mod 4, half of which are = 1 and half = 5 mod 8,
and the class D of 2a—2 integers = 3 mod 4, half = 3 and half = 7 mod 8. The
a-2

powers 59 mod 2a, j=1l,...,2 have the set C as residues, while their nega-

tives have the set D as residues. Thus

a-2
c={1,5,...,2a "{ 2 52 El}modZa

-3%=< 5,5%, ...,
a-2
D ={3,7,...,2a-}s {-5,-(52),...,-(52 )z -}mod 22

2h+1’ 52h+2’ _(52h+1)’
2h

-(5 +2) are respectively all the integers <22 which are congruent to 5, 1,
3, 7 mod 8.
a-2 . 2
(3) Thus the 2 integers * (5

(2) The residues of the powers of form 5

h+1), equivalently the integers

Z 5 or 3 mod 8, all have period X(Za) = 2a—2 mod 2a, and for a 2 4 there are
no others.

(4) A number = 5j for odd j, i.e., a number = 5 mod 8, generates
the group C, whereas a number = —(Sj) for odd j, i.e., a number = 3 mod 8,

has powers with residues lying alternately in D and C, and running over all
integers = 3 and 1 mod 8.

Proof. Aside from some details left to the reader, the Lemma is an
obvious consequence of Lemma 8, and the fact that pd(5j mod Za) = Za_z/(j,za_z)
= 2272 iff 5 is odd.

Note 7. For 26 = 64, one finds the residues mod 64:

10



c

j 1.2 3 45 6 7 8 9 10 11 12 13 14 15
57 5 25 61 49 53 9 45 33 37 57 29 17 21 41 13

D—(SJ)59 39 315 11 5519 31 27 7 35 47 43 23 51

57

53,...,13 congruent to 5 mod 8.

Lemma 10. For the prime power 2%, a2 1, one has

a
(a) x>‘(2 ) = 1 mod 22 for every X prime to 2, where

16 = 2%

1
63.

generates the group C for j=1,3,5,...,15, these are the integers 5, 61,

by definition

A(2) = 9(2) = 1, A(2D) = 9(2%) = 2, A(2}) = (1/2)6(2%) = 222 for a 2 3.
(b) There exists a g with pd(g mod 22) = X(Za). Specifically: if
a=1, every g=1 mod 2 has pd(g mod Za) = A(2); if a=2, every g= 3 mod 22

has pd(g mod 22) = X(ZZ); if a2 3, every g = *5 mod 8, or equivalently,
every g = i(SJ) mod Za, with j odd, has pd(g mod Za) = X(Za).

Proof. The lemma is by way cof summary, being obvious for a=1,2,

and a consequence of Lemmas 8, 9 for a 2 3.

Lemma 11. Ifm = Py --:Py and for each i
k—d( dai)
i T pa\g mod p.7/,
then k =

m, and k

pd(g mod m) = [k],...,kz] = M.
Proof. Since each ki] M, we know gM
| M. But gk

a.
1 mod m implies gk = 1 mod pi1 and ki]

Hence M | k and k=M.

a a

Lemma 12. If m = pl1 . pzz, we have

a; M _
1 mod P, hence g = 1 mod

k for each i.

(a) xk(m) =1 mod m for every x prime to m, where A(m) =1.c.m.

a a
[k(pll),...,k(pzzj]. Thus A(m) is the greatest possible period mod m.

(b) There exists a g with period pd(g mod m) = A(m).

this is true for any g satisfying the system of congruences

= i
g = ¢ mod P;

constructed as follows:

Specifically,

(S)

1]



1. For each odd prime p. ]m with a, =1, system (S) includes a
p P; 5

congruence g:=g mod P> where g, is an element of the set H(pi)of Lemma 2.
2. For each odd P, ]m with a; =2, system (S) includes a congruence
g = uy mod p , where us is any element of the set U(p% ) of Lemma 5.

3. If 2] m with exponent a= 1, the system (S) includes a congruence

1 mod 2 if a 1,
3 mod 4 if a 2,
5 mod 8 if a = 3

For any particular choice of the c;, one for each pi] m, there exists a unique
positive solution g < the product P of the moduli in system (S), and all posi-

tive solutions are then of form g = go-fhP, h=0,1,2,

Proof.
(a) Since X(pll)] A(m) for each P; in m, it follows from part (a)
a,
of Lemmas 7, 10 that x A (m) = 1 mod pi1 and hence mod m, for every x prime to

m,

(b) By part (b) of Lemmas 7 and 10, we See that any g satisfying the
system (S) as constructed has pd(g mod P, 1) k(p 1) for all i. Hence by
Lemma 11, pd(g mod m) = [k(p1 ) I k(pzz)] k(m). The final statement is

a consequence of the Chinese Remainder Theorem (Appendix).

Note 8. In contrast to the analogous result in Part II there is here
no simple characterization of the integers of maximal period. According to
Lemma él an integer g has maximal period A(m) mod m-— Hpal iff [ky,.. kz]

A D,... A(pg")] = A(m), where k, = pd(g mod p,1). This may be obtained in
a variety of ways. As an example, we note that for m = 217 = 7+ 31, one has
k1 = pd(69 mod 7) = 2, k2 = pd(69 mod 31) = 15, [kl’kz] = 30 = A(m), so

pd(69 mod 217) = A(m), although 69 does not have maximal period for either

7 or 31. Clearly the construction of Lemma 12 need not produce all integers

of period A(m). The least g of period A(217) mod 217 is g = 3. This is in-

6, pd(3 mod 31) = 30.
A very simple instance of the above behavior is provided by the case

m = 12. Here G(12) =1{1,5,7,11}, the integers 5,7, and 11 all having maximal

period A(12) = 2. One finds that

deed produced by the method of Lemma 12, since pd(3 mod 7)

12



d(5 mod 4) =1 pd(7 mod 4) = 2 pd(11 mod 4) = 2

P

pd(5 mod 3) = 2 pd(7 mod 3) =1 pd(11 mod 3) = 2
[1,2] = 2 [2,1] = 2 . [2,2] = 2

Solution of the system g = 3 mod 4
g = 2mod 3
produces only g = 11 mod 12.

Note 9. The least g of period A(m) mod m is the first g prime to m
such that gk(m)/q 2 1 mcd m for every prime q|A(m). (C£. Note 3.) It is of

course possible to produce all g of period A(m) in such a way.

a a

Theorem 1. If m = pll cee pzz, and (xo,m) = 1, then the sequence
X = {xo,xl,...} of positive integers < m defined recursively by

gx, % X mod m

is pure periodic of the greatest possible period A(m) iff pd(g mod m) = A(m).

Such integers may be constructed as in Lemma 12, and all such g may be obtained

by the method of Note 9.
Proof. The result is immediate, since the sequence X=={xo,gxo,g2xo,...
mod m, with (xo,m) = 1, is obviously pure periodic with sequential period

k =pd(g mod m).

Note 10. A(m) | ¢(m), and A(m) = ¢(m) iff m = 1,2,4,p%, or 2p% (p odd
prime) (Appendix).

Corollary 1. For m = Za, az24, X, odd, the sequence X defined by
gX, =X 4 mod 2% has maximal period 2a—2 iff g = %5 mod 8, or equivalently,
g = +5) mod 22 where j is odd.

Proof. See Lemma 9 and Theorem 1.

Corollary 2. For m==pa, azl, pf’xo, p odd prime, the sequence X de-
fined by g EX g mod pa has maximal period pa_l(p—l) iff g is chosen as in

Lemma 7.

13



Corollary 3. For m==10a, a=4, (x0,10)= 1, the greatest possible

period for the sequence X defined by gx = X 41 mod 102 is A(m) = 5 -10a_2,
3

and is attained for any g of form g==go4-200 h, h=0,1,...,5 . 10277 - 1 where
g, is one of the integers g,= 3,13,27,37,53,67,77,83,117,123,133,147,163,173,

187,197.

Proof. Since a>4, A(10%) = [A(2Y), A(H] = [2272,527L - 4] = 2272 527!
=5- 10a—2- The list of g, values results from solving the 16 systems of form
g = %5 mod 8 (5)
0
= u, mod 52
8o = Yy ’

where u, runs through the set
ues?) ={2,12,17,22; 3,8,13,23}.

(See Lemma 12 and Note 5.)

We do not attempt to give a computer algorithm for solution of systems

of form (S). It may be noted however that if Zpe -+s2p aTE solutions of the
% basic systems
z. = 1 mod pb1 cen z, = 0 mod pb1
1 1 L 1
- b2 b2
z, Z 0 mod P, zg = 0 mod P,
él = 0 mod pzz £2 = 1 mod pzz
b.
then g = clﬁbf... +CgZg mod Hpi1 is obviously a solution of the system
g = s mod pil-; i=1,...,2 This method may be used to advantage in obtain-

ing the 16 values of g, listed above.
Note 11. In the case of Corollary 3, with a=4, we find that

pd(629 mod 2% 22 = a2h

P
1}

pd(5 mod 16)

pd(629 mod 5%) = pd(4 mod 5% = 2+ 5%< a(sh.

P
1}
1}
1
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Nevertheless, pd(629 mod 24' 54) = [kl’kz] = 22° 53 = k(24° 54). Thus 629

has maximal period, but is not obtainable from Corollary 3. (See Note 8.)
II. THE MIXED CONGRUENTIAL GENERATOR
The recursion formula

X +¢cZx mod m
g n n+1

defines a sequence of integers X = {xo,xl,x ...} which is pure periodic of

s
full period m provided g and ¢ are suitablyzchosen with respect to the modu-
lus m. The present part establishes necessary and sufficient conditions,
after a careful analysis of the underlying number theory, which does not
appear in existing texts, and is of considerable interest in itself. The

full statement of the final Theorem 2 is believed to be new.
Lemma 13. An integer g=2 with (g,2) = 1 has period
k = pd[g mod 2(g-1)] = 2.

Proof. Writing g = 1 + 2h, we see that (1+2h)2 =1+4h(1+h) Z 1 mod 4h
whereas (1+2h) Z 1 mod 4h.

Lemma 14. If g22, (g,2%) =1, a22, and
k = pd[g mod 2%(g-1)]

1 mod 4, whereas k| 2271 for g = -1 mod 4.

then k=22 for g
Proof. If g = 1+ 4h, induction on b shows that

2P b
g- =1+2(g-Duy, zﬁ-ub, b 2 0. (3)

This is clear for b=0 with u, =1, while the induction step reads

2b+1

b+1
g =1+ 20 " (g-Dy >

15



where Ul = Yy + Zb—l(g—l)ug = up + 2b+1hu§ is odd for b=>0. Setting b=a
in Eq. (3) shows that k] 22, and hence k=2b, 0<b<a. Then by Eq. (3),

b 2b a
1+ 2 (g-Du =g" =g =1+27(g-1)Q.

Since Zﬁ‘ub, we have 2a] 2b =k, so k = 22,

However, if g = -1 + 4h, a similar induction shows that

2b—l

g

1+ Zb(g—l)hvb, zﬁ-vb, b2 2.

In fact, g2

b
2 - b+1 - =
gc =1+2 (g l)hvb+f where Vil vb-+2

1 + 4(4h-2)h = 1 + 2%(g-1)hv,, with v, =1, and by induction,

b_l(g—l)hvi is odd since b=>2. Hence

for b=az2 2 we see that k] 2a-1 (The parity of vy is irrelevant for the lemma.)

Note 12. pd[7 mod 23(7-1)] = 2| 2% 23, pd[11 mod 25(11-1)7 = 27 | 25,

Lemma 15. If p is an odd prime, g=2, (g,pa) =1, a2l and

k = pd[g mod p®(g-1)]
then k==pa for g = 1 mod p. Otherwise k =pd(g mod pa)] ¢(pa)< pa.

Proof. If g=1+ph, induction on b shows that

b

g =1+ pb(g—l)wb, ptw, b>0, (4)
the induction step being

gpb+1 =1+ (?) pb(g—l)wb + (g) pr(g—l)Zwi + .. F (g) ppb(g—l)pwg

=1 + pb+1(g—1)wb+1, where
Wl T Wt <g>pb_1(g—1)w§ + ...+ (g) p(p_l)b_l(g—l)p_lwg
=W ¥ (g) pbhwi + ... * (g)§p—1)b+p—2hp-lwg
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is prime to p since b=0, p= 3, and p+w With b=a=1 in Eq. (4), we see
that k ]p , SO k-p for some b=0. Thus by Eq. (4) we have

b pb k a
1 +p(g-1w =g =g =1+p(g-1)Q.

Since p'fwb, we infer that pa ]pb = k, and k==pa.
1

Now suppose g Z 1 mod p has period k =pd[g mod pa(g—l)]. Then gk
mod pa(g—l), and hence also mod pa. Consequently the period % = pd(g mod pa)
divides k. But then also

1 mod pa

1 mod g-1,
Since p+4g-1 by assumption, we know (p%,g-1) = 1, so that
gz = 1 mod pa(g—l)
whence k | 2. Thus k = £ = pd(g mod ) | & (p?) = pa_l(p—1)< p2.

2 2

Note 13. pd[4 mod 3%(4-1)] = 3%, pd[5 mod 3%(5-1)] = 6 = ¢(3%)< 3°.

.21 ag o> -
Lemma 16. If m=p;” ... Py g=z2, (g,m) =1, and
_ a.
k; = pd[g mod p.*(g-1)]

M.

then k = pd[g mod m(g-1)] = [k 10" 2]

a,
Proof Since each k | M, we have g = 1 mod pil(g—l). Thus each
1] (g -1)/(g-1), and so does m, whence

gM = 1 mod m(g-1)

a.
and kl M. But gk = 1 mod m(g-1) implies gk = 1 mod pil(g—l) for every i.

Therefore each ki] k and so does their l.c.m. M. Hence k =

Note 14. pd[5 mod 22(5—1)] = 22, pd [5 mod 32(5—1)] =
pd[5 mod 22+ 3%(5-1)] = 12 = [2%,6].

17



Lemma 17. Ifm = p?l ce pzz, g22, (g,m) =1, and
k = pd[g mod m(g-1)]
then k = m provided g satisfies condition
(C) g=1mod P for every odd prime P; ]m, and g = 1 mod 4 if 4 ]m.

For any g not satisfying (C), one has a period k< m.
Proof. By Lemma 16 we know that

k = [kl""’kl]’

where ki = pd[g mog p?i(g—l)]. If condition (C) holdsé then bg Lemmgs 13, ;4,
15, we have k; = pii for every i = 1,...,%, and k = [pll,...,p22]==p11..£ p22=rn.
However, if condig%on (C) fails, we know from the same Lemmas that kisipi1 for
all i, with k.< p.? gpr at least one i. In such a case, k = [kl""kl]

a1 L _
lklp..,kz <p1 .. Pp7 =M.

Lemma 18. For a given m 2 2, the integers g 2 2, and prime to m, for
which pd[g mod m(g-1)] = m are given by the following forms, where the p; are

odd primes, and h 2 1 is arbitrary:

m = 2 g=1+2h
m=2% a22 g =1+ 4h
a,
m = 1 pi1 g=1+ (I pi)h
a.
m= 2l p.1 g=1+ (2Ip.)h
i i
a. a.
m = 2 Hpil, a=?2 g=1+ (4Hpi)h

Proof. This is an immediate consequence of Lemma 17.

18



Note 15. For m= 10 = 2*5 and g = 1 + 2¢5 = 11, one has pd(11 mod 100)

= 10; indeed we find for the powers of 11 mod 100 the residues

11,21,31,41,51,61,71,81,91,1 .
a a
Theorem 2. Let m = pll p22>2, (g,m) = 1, and 1<g,c,xo<m. Then
(1) the sequence X = fxo,xl,...} of positive integers <m defined
recursively by gx +c = X 1 mod m is pure periodic of sequential period
K<m;
(2) for g=1, K=m/(c,m), and K = m iff (c,m) = 1;
(3) for g=2, K = pd[g mod ml(g—l)], where m, = m/d, and d is the
g.c.d. of (g—l)x0 + ¢ and m;
(4) for g

two conditions

14

2, regardless of Xy K=m iff g and ¢ satisfy the

(C) g=1 mod P; for every odd prime 1 ]m, and g = 1 mod 4 if
4 | m,
(D) (c,m) = 1.
In such a case, the sequence {xo""’xm—l} is a permutation of the integers
{1,2,...,m}.
Proof.

(1) The sequence {xo, X ..,xm} of m+ 1 positive integers <m

1’
must contain a repetition, and hence a first X =X with i< k. Since (g,m) =1,

we must have i=0, otherwise the recursion implies x But then

k-1" *i-1°

X, =X implies X =Xpn for all n=0,1,2,... and X is pure periodic of sequen-

k k+
tial period -

= i M = <
K = min { k; X, xo} m.
(2) If g=1, then X = {xo,xo+c, xo+2c,...} mod m, its period K be-
ing the first k 2 1 for which xo+kc = X, mod m, or equivalently k = 0 mod m
/(c,m), i.e., K = m/(c,m).

(3) If g 2 2, the recursion shows that, for every k=1,
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x Sgx,+g ‘c+ + gc + C
k
= k (g '1>
=gx,* o1 c mod m.

Hence the sequential period K of X is the first k=1 for which

k
_8_'_1_)_ =
( o1 [(g 1)x0+c] = 0 mod m,
this being equivalent to the equality X = X Now if d is the g.c.d. of
[(g—l)xo+c] and m, we infer that K is the first integer k=1 for which
(gk—l)/(g—l) = 0 mod m;, = m/d, i.e., gk = 1 mod ml(g—l). Hence the sequential

1
period is

K = pd[g mod m;(g-1)]- (5)

(4) Now suppose conditions (C) and (D) both hold. Then (g—l)xo+c must
be prime to m. For, if 2| m, then g is odd since (g,m) = 1, and 2] g-1
whereas 2+ c, which is prime to m. Also, any odd prime in m divides g-1 by
condition (C), but not c¢ which is prime to m. Hence m has no prime in common
with (g—l)xo+c, and d=1, m, =m, K=pd[g mod m(g-1)] in Eq. (5) and the latter

is m by Lemma 17.

Finally, suppose condition (C) or (D) fails. If (C) fails, we know from
Lemma 17 that gk = 1 mod m(g-1) for a k< m, and hence also

gk = 1 mod ml(g—l); k< m.

It then follows from Eq. (5) that K] k, and K<€k< m. If condition (C) holds
but (D) fails, then there is a prime p2 2 common to ¢ and m. If this p is
odd, it divides g-1 by condition (C), and hence (g-1)xg +c also. If p=2,
20



then m and c are even, while (g,m) = 1 implies g-1 even, and p=2 divides
(g—l)xo+c. In either case we must have the g.c.d. d>1 and m1< m. Now if
m = 1, then by relation (5), K = pd[g mod (g-1)] = 1< m. If m1>2, then by

relation (5) and Lemma 17 (with mlfor m), we have K<m <m (actually K= ml).

1

Note 16. For m=10, g=3, c=2, X, = 1, one obtains the sequence
Xx=1{1,5,7,3; 1,5,7,3;...} of period K=4. Here, (g—l)xo+c =4, d= (4,10) =2,
m1=5, and K=pd[3 mod 5(3-1)] =4, as in Eq. (5). Note that Kim.

Note 17. Since the recursion is defined mod m, the only relevant values
of g are <m. Reference to Lemma 18 shows that moduli of form m= 2,4, Hpi’
2Hp.1, 4Hpi’ with their associated g=1+mh, admit no recursive sequences X

of period m other than the trivial one with g=1, namely X={xo,xo+c,xo+2c,. ..}

X mod 2a,
n+1

a=3, g odd 2 3, X, arbitrary, has period 2% iff ¢ is odd and g = 1 mod 4.

Corollary 4. The sequence X={xo,x1,. ..} defined by gx_+c

Note 18. The recursion 5x_+ 3 = x mod 16, x =1, gives
—_— n n+l 0

x={1,8,11,10,5,12,15,14,9,16,3,2,13,4,7,6; 1,...}.

Corollary 5. The sequence X = fxo,x ..} defined by gx +c = x mod p?,

1’ n+1
p prime =3, a=2, g=2, (g,p) =1, X, arbitrary, has period pa iff p‘f‘c and

g = 1 mod p.
Note 19. The recursion 6xn+ 1= X 41 mod 25, X, = 5, gives
X ={5,6,12,23,14,10,11,17,3,19,15,16,22,8,24,20,21,2,13,4,25,1,7,18,9;5,...}

Corollary 6. The sequence X = {xo,x ..} defined by gx, +¢ = X mod 10a,

1°° +1
a22, g=2, (g,10) =1, 'xo arbitrary, has period 10% iff (c,10) =1, and g=1+ 20h.

Note 20. The recursion 81xn+ 11 = X 41 mod 100 generates a permutation

of the integers 1,2,...,100.
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APPENDIX

SUMMARY OF THE CLASSICAL THEORETICAL BACKGROUND
I. EULER'S ¢-FUNCTION AND THE GROUP G(m)

The function ¢(m) counts the number of integers x, 1<x<m, which are
prime to m, i.e., with g.c.d. (x,m) =1. The set of all such x forms a group
G(m) of order ¢(m) under multiplication mod m, and Euler's theorem asserts that
x¢(m) = 1 mod m for (x,m) =1. It can be shown that ¢(1) =1, ¢(pa)==pa_1(p—1),
and ¢ (T p?) = No(p?), p prime >2.

II. THE PERIOD k OF x mod m

The period k=pd(x mod m) is the least k=1 for which xkE 1 mod m.

Important properties of k are:

2 k

A. x,x“,...,x Z1 are distinct mod m, and form a cyclic subgroup { x} of
G(m).
L .
B. X =1 mod m iff k| L.
C. pd(x? mod m) = k/(5,k).
D. pd(xJ mod m) = k iff (j,k) = 1. Thus there are ¢(k) of the x? which

generate the group {x} mod m.
III. THE GROUPS G(p?)

In the special case m==pa, p an odd prime, G(pa) is itself a cyclic

group, i.e., there exists an integer g such that
a 2 o (p) a
Gp?) =1{g,g% g P’ = 1} mod p2.

The set H(pa) of all its generators therefore contains ¢[¢(pa)] elements.
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This is also true for m==20,21, and 22. However, for m==2a, az3, G(Za)

is not cyclic, but consists of a cyclic subgroup C of order(1/2)¢(2a) =2a—2’

and a single coset D = -C mod 22,
IV. THE A-FUNCTION
Motivated by this anomaly, a function A(m) is defined by A(l) =1, and
X(pjl ... pzl) = 1.c.m.[k(pil),...,x(pzl)],
where A(p?) = ¢(pa) = pa_l(p—l), p odd prime;
a-2

A2 = 6(2) = 1; 22D = 92D = 2; A2} = (W/2)62%) = 2272,

a 2 3. The A-function has the properties:
A. xk(m) = 1 mod m for all x of G(m).

B. There exists a g with pd(g mod m) = A(m). Thus A(m) is the greatest
period possessed by any element of the group G(m), and all such periods divide
A(m).

C. G(m) is itself cyclic iff A(m) = ¢(m), i.e., m has one of the simple forms
m= 1,2,22,pa, or Zpa, p odd prime. This is easily inferred from the relations
a a
A(p%) = Loe.m (] [T A% [T6(p™) = ¢(Mp%).
V. THE CHINESE REMAINDER THEOREM
This is a very general theorem which implies that a system of congruences

b.
= 1. =
g = ¢ mod P i=1,...,2

(pi distinct primesé>2) has a unique solution g, modIIpii, all solutions being

offam1g=go+hﬂpiy

23



VI.  STRUCTURE OF THE GROUP G (m)
a,
For a composite modulus m==IIpi1, the system of congruences
a.
x 2 x, mod p,1; i=1,...,2
i i
induces a multiplicative isomorphism
x*-*(xl,...,xgp
between the group G(m) of ¢(m) integers x prime to m, and the direct product
a a.
of % groups, the i'thbeing the group G(pii) of the ¢(pi1) integers prime to

P;- Hence one has the relations

a
6m = G(p,1) x ... x Glp,H),

a ay
o) = ¢(p, 1) ... (p, Y.
a,.
For odd P;> G(pil) is cyclic. If 2| m, the corresponding group G(Za) of
¢(2a) = 2a—1 odd integers is cyclic iff a=1 or 2. Otherwise it has the struc-
ture C YU D referred to in part (III) above. Thus A(m) is the l.c.m. of the
a

maximal periods obtaining in the groups G(pii).
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