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NUMBER THEORY OF THE CONGRUENTIAL RANDOM NUMBER GENERATORS

by

C. J. Everett

ABSTRACT

The number theory underlying the “random
number” generators gxn s ~+1 and gxn+c ~ Xn+l

mod m is developed in greater detail than is

“.7
customary, with the practical application to
random number generation in mind. The arithmetic

eo!~m}.xheory of the mixed generator does not appear in
~~”k- the standard texts,-— and the treatment here is

;Sg?believed ‘o be ‘ew” In any cases it involves
<~m~ many features of interest which are not as well
‘=8 ~ known as the classical theory of primitive roots~~
3~m~..~e’qulied for the multiplicative generator. Even

9‘a% t- the latter theory, as presented below, displays
~~).
~m’

some unorthodox aspects of importance for the
~ ,— construction of generators. An Appendix con-

1. tains a summary of the classical theoretical
background.

I. THE MULTIPLICATIVE GENERATOR

The recursion formula

gxn ~ Xn+l nod m

defines a sequence of integers X = )xO, xl,

possible period A(m) (cf. the Appendix) for

is the subject of the present section.

‘2’”””I
which has the greatest

properly chosen XO and g. This

Lemma l. If ki=pd(gimodm) , i= 1,...,~, and if k = pd(llgimod m), then



k=lTki (2)

provided the k. are co-prime.
IIk.

Proof. ;Iearly kill ki, since (H gi) 1 ~ 1 mod m. To prove IIki Ik,

it suffices to prove each ki Ik. For example, kl Ik since 1 ~ (IIgi)k ‘2”””k!?
kk2...

‘k mod m impll: gl “es kl \k k2...kL, and hence kl Ik.

Note 1. The relation pd(IIgi modm) = [kl,....kA] need not hold. Thus

form= 61, one has pd(2 mod 61)=60, and mod 61, pd(26)=60/(6,60)=10, pd(210)

= 60/(10,60) = 6, but pd(216) = 60/(16,60) = 15+ [10,6] = 30.

Lemma 2. If p is an odd prime, the group G(p) of $(p) =p-1 integers

G(p)={1,2 ,...,1}l} mod p is cyclic, i.e., there exists an integer g of period

pd(g modp) = P-1, and hence G(p) ={g,g2, . . ..g1-1 ~ 1} modp. The set

of residues of those @(p-l) powers g’ with (j,p-1) = 1 consists of all inte-

gers gi for which

pd(gi mod p) = p-1, I<g<p .

Proof. Writing p-1 = IIqb in standard form, it suffices by Lemma 1 to

exhibit, for each prime q Ip-1, an integer g of period qb mod p, for then
q

their product

g =llgqmodp

will have period IIqb = p-1 mod p. For each such q, we may take

()@lhb mod p,

‘q = ‘q

()(p-l)/q ~ 1 modp, since this impliesprovided x
q
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(%)q’“(’,)‘-1 3 1 mod p,

()
b-1
,-

()
(P-l)/q ; I mod p.whereas g, =

‘,
Such an x, exists, since the con-

gruence x@-l)/q ~ 1 modp has only (p-l)/q<p-l roots.

Note 2. Following the above method for p=31, p-1 = 2“3”5, we find that,

mod 31,

‘2=3
x~s3

‘5
=2

10g2 E 315 z ..1 g3=3 ~ -6 g5=2 652

g ~ g2g3g5 = 12> pd(g nod 31) = 2°3”5 = 30.

Note 3. It is clear that pd(g mod m) = k iff gk ~ 1 mod m and gklq ~ ~

mod m for every prime q Ik. Thus the least g>l of period p-1 mod p is the
(P-l)/q~ 1 ~odp for every qip-1.first integer g for which g

knows ~(P-1)/2 _

(For q=2, one

= fl ~ (g/p) mod p, and may use the short cut of quadratic

residue theory.) For the prime p =31 (Note 2) one finds the least such g is
15 ~ _l ~1(1=g=3, since 3 , - -6, 36 ~ 16 mod 31, whereas 215 ~ ~ mod 31

. Using

the generator g= 3, we find mod 31:

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3j 3 9 27 19 26 16 17 20 29 25 13 8 24 10 30 = -1

j 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

3j 28 22 4 12 5 15 1411 2 6 18 23 7 21 1.

Note that 315+j ~ - 3j mod 31.
()

The integers<31 of period 30 are the $(30)=8 residues of those powers

3j with (j,30)=1, namely
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j 1 7 11 13 17 19 23 29

Sj 3 17 13 24 22 12 11 21

Note that 12 = 31’ mod 31 in accord with Note 2.

In a similar way one may verify that g = 2 is the least integer of period

60 mod 61, since

(Cf. Note 1.)

Lemma 3. If p is an odd prime, then an integer g is a “universal gen-

erator” (for p), in the sense that

k ❑ pd(gmodpa) = p
a-1

(p-l) = @(Pa)

for every azl, iff g has the two properties:

(i) pd(gmod p) = p-l and

(ii) g‘-1 z 1 mod p2.

Proof. The necessity of these is obvious, if we consider the cases

a = 1,2. For an integer g satisfying both, we first prove by induction that

(1)

This holds for b = 1 by property (ii). The induction step reads

~Pb(P-l) =1+
(); ~“b + (;) ‘b< ‘o‘-+ (;) ‘pbu~ = ‘ + ‘+1%+1’

where

~+l=~+(;)pb-l~+ ... +(;)p(p-l)b-l &Omodp

since b>l, p~3, and p +%. Thus Eq. (1) is true for all b~l, and hence
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for any fixed a ~ 1,

~P
a-l(p-l) - ~ ~odpa

= .

Thus the period k \ pa-l(p-l). Now g
k-
= 1 mod pa implies gk ~ 1 mod p, and

from relation (i) we see that p-1 Ik. We may therefore write k = p
b-1

(p-l)
b-l(p-l) = ~k = 1 + paQ.

where l<b~a. By Eq. (l.),we then have 1 + pb~ = gP

Since pt~, it follows that pa 1pb, and hence pa-l(p_l) lpb-l(p-l) = k.

P-l s 1 mod P2 (p prime ~2),Lemma 4. If c is any integer for which c

then (c+hp) ‘-1 # 1 mod p2 for every h prime to p.

Proof. If (c+hp)p-~ = 1 mod p2 with (h,p) = 1, we should have the

contradictionmod p2

()(c+hp) ~ (c+hp)p =Cp+ ‘~ cp-lhp+ ... + ~ hppp~ cp~ cmodp2.
()

Note 4. It follows from Lemmas 2, 3, and 4 that there exists a universal

generator u for an odd prime p. In particular, if gl is the least integer of

period p-1, then gl(<p) or g1+p(<2p) is universal according as gl‘-1 ~ 1

mod p2 or g‘-1 ~ 1 mod p20
1

The latter case does occur, e.g., when p=40487

(gl= 5). See references [1,2].

While universality involves the properties (i), (ii) of a positive integer,

the concept of group generator is a property of an integer mod pa. It is easy

to see directly that, for a>2, p an.odd prime, the set U(pa) of all integers

U<p a
a which are universal coincides with the set H(pa) of generators g<p of

the group G(pa), For U(pa) CH(pa) by definition, and the implication

(
t+s

)
x~lmodpt+xps~l modp , proved by an easy induction, shows that

H(pa) I=U(pa). For suppose g is a generator. If gP-l ~ 1 mod p2, we should

have

a-2

()
gp-l p

31 mod pa, whereas pd(g mod pa) = pa-l(p-l).

a-1
kp

Moreover if k = pd(g mod p), then (gk) = 1 mod p implies (g ) =1 mod pa.

Hence pa-l(p-l) lkpa-l, p-llkl p-1 andk =p-1. Thus g has the properties

(i), (ii) of universality.
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In Lemmas 5 and 6 the identity U(pa) = H(pa), a > 2, will be proved in a

quite different way, providing two essentially different methods for comput-

ing these generators. Note that U(p) #H(p) for p = 40487.

Lemma 5. Let p be an odd prime, and H(p) = {gl,...}g
@(P-l)}

the com-

plete set of integers <p of period p-1 mod p, as in Lemma 2. Then the

p$(p-1) distinct integers

g. . = gi +jp; i=lj .... @(p-l), j=O, 1, ....p-l
1]

2
are precisely the integers <p of period p-1 mod p. Moreover, for each i

‘-1 ~ 1 modp2,there is exactly one j for which g.. If these @(p-l) gij be
1]

deleted, the remaining ones comprise the complete set

u(p2) =\ul> ....
‘(P-l)O(P-1)1

2
of integers <p which are universal generators. This set U(p2) is identical

with the set H(p2) of @[@(p2)] generators mod p2.

Proof.

(a) Obviously gij $ p + (p-l)p = p2, and gi

gi - gk = (R-j)p, gi = gk, i = k, j = 1. The original

consists of p$(p-1) distinct integers <p2, and these

of period p-1 mod p.

(b) By Lemma 4, there is for each i at most——

+ jp = gk + Ip implies

set of g.. therefore
1]

are the integers ~p2

one j for which

mod pz. Deletion of these d S @(p-l) integers g.. leaves a set
1]

p+(p-1)-d integers u which are Qof the universal generators ~P2.

H(p2) denotes the set of all @[$(p2)]generators mod P2, we have by

definition,

U(p2) I=H(p2)

so that po(p-1) - d ~ @[@(p2)] = @[p(p-l)] = (p-l)@(p-l). This implies

d z $(p-1). Hence d = @(p-l), and U(p2) = H(p2).
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Note 5. Forp,=5, one has pd(2 mod 5) = 4 = p-1, with

G(5) ={2,22 s 4, 23 ~ 3; 24 ❑ 1}, and generator set H(5) ={2,3}. Thegij

table for 52 is therefore

g~j = 2,7,12,17,22 with only 74~lmod52

gzj
= 3,8,13,18,23 with only 184 E 1 mod 52.

Deletion of 7,18 leaves the set

U(52) ={ 2,12$17,22;3,8,13,23}

of 4 +(4) = 8 integers <5 2 which are universal (for p=5).

The same set may be obtained as H(52) as follows. Since pd(2 mod 5) = 4,

and 24 Z 1 mod 52, 2 is universal. In particular pd(2 mod 52) = $(52) = 5°4

= 20, and its powers 2’, j = 1,...,2o give all the $(52) integers prime to 5.

Thus

j12~45 678910
Zj z d g 16 7 14 ~ 6 12 24 = -1 mod 52

j 11 12 13 14 15 16 17 18 19 20
zj 23 21 17 ~ 18 ~1 22 19 13 ~ 2

mod 5 .

The $[$(52)] = 8 generators of period $(52) = 20 are the residues of those

2j with (j,20) = 1, namely

j 1 3 7 9 11 13 17 19

2j {2 8 3 12 23 17 22 13} = H(52) = U(52).

This illustrates two different methods for obtaining the generators

Similarly, the generators H(pa), a a 3 may be found in two ways, as

in Note 6.

mod p2.

indicated
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Lemma 6. If p is an odd prime, and U(p2) = {U1, ....U
2

(p-l)$(p-1)~ ‘he
set of universal generators <p of Lemma 5, then for each a > 3, the set U1
of integers

2
g.- =U i+jp; i=l,... ,

a-2
(p-l)$(p-l),j= 0,1,...,p -1

1]

satisfies the relation U(pa) = U1 = G(pa), i.e., the gij are at once the com-

plete set U(pa) of universal generators <pa, and the set H(pa) of all gener-

ators of the group G(pa).

Proof.

(a) g.. ~p2 + (pa-2-l)p2 = pa, and ui+jp2=uk+Lp2 implies
211

U.-u = (JZ-j)p, Ui=u, i=k, j=!?.. Thus U1 is a set of pa-2(p-l)$(p-1)
1

WJ%l@-1) = (#)[pa-
1= (p-l)]= @[@(pa)]distinct integers <pa.

(b) Since gij ~ Ui mod p2, gij is a universal generator, so

U1 C U(pa) I=H(Pa).

(c) But by part (a), #Ul = @[@(pa)] = #H(pa), SO U1 = U(pa) = H(pa).

Note 6. Using the set U(52) of Note 5 for p=5, we obtain for the

group G(53) of @(53) = 100 integers prime to 5 mod 53, the set of $(100) = 40
5

integers GS which are universal for p= 5, namely the integers

g..= 2 27 52 77 102
1]

3 28 53 78 103

8 33 58 83 108

12 37 62 87 112

13 38 63 88 113

17 42 67 92 117

22 47 72 97 122

23 48 73 98 123

This is also the set of residues mod 53 of those 40 powers 2’, l~j~100, for

which (j,100)= 1, that is, the set H(53) of generators of the group G(53).

Lemma 7. If p is an odd prime, and a > 1, then

(a) XA‘pa) s 1 mod pa for all x prime to p, where by definition

A(pa) = $(pa) = pa-l(p-l).

8



(b) There exists a g with pd(g mod pa) = A(pa). Specifically: if

a=l, every g ~ gi mod p has period p-1 mod p, where gi belongs to the set

H(p) of Lemma 2; if a ~ 2, every g ~ Ui mod p2 has period pa-l(p-l) mod pa,

where Ui belongs to the set U(p2) of Lemma 5.

Proof.

(a) is a special case of Euler’s theorem (Appendix) and also fol-

lows from (b).

(b) g ~ gi mod p implies g has the same period p-1 modp as does

gi; g ~ ui mod P2 implies g has the universal properties (i), (ii) of

Lemma 3, and therefore g has period pa-l(p-l) mod pa.

Lemma 8. For the prime p =2 and a ~ 3, one has
A(2a) _

(a) x = 1 mod 2a for all x prime to 2, where we define

A(2a) =(1/2)@(2a) = 2a-2.

(b) There exists a g with k ~ pd(g mod 2a) = A(2a). Specifically,

this is true for every g = t5 mod 8. For a ? 4, the latter condition is

necessary. However, fora=3, one also has pd(7mod 8)= A(23)=2.

Proof.

(a) For every odd x=l+2h, we see that x2=l+4h(l+h)

and an easy inductionshowsthat x2
a-2 =l+2aza E 1 mod 2a for a ~

(b) Every g ~ *5 mod 8 may be written in the form g=kl

2 + U*, where obviously g Z 1 mod 2a for a Z 3. Hence the period

k=pd(g mod 2a) ~ 2. We show by induction that

2b-2

g =l+2b ~;z+~,b?s.

For b = 3, we have g2 = (tl + 2%2)% + 23(fu2+2u;) = 1 + 23U
3’

2 +U3. The induction step is

Zb-l

g = I + 2b+1(~ + 2b-l@ = 1 + 2b+1~+1 where 2 t ~+l.

From Eq. (2)

Lex k = 2b-2

anaa4, we

a-2

E 1+2323,

3.
2

+2U,
2

(2)

where

we obtain g~ ~ 1 mod 2a for given a ? 3, so the period k I2a-2.

where we know 3<b<a. If a=3, we already have k=2a-2. For

see from Eq. (2) that



1 + 2b% . ~2b-2 . ~k =l+2aQ;2t~.

Hence 2a I 2b, a<b<a, b=a, and k=2a-2. a-3
Finally, if a~4, and x ~ ~1 mod 8, induction shows that x2 = l+2%Ja,

so pd(x mod 2a) I2a-3< 2a-2. Thus for a~4, an integer of period 2
a-2

must

be S AS mod 8.

Lemma 9. For the prime p=2, and a 2 3:

(1) The 41(2a)= 2a-1 odd integers ~ 2a fall into two classes, the

class C of 2a-2 integers ~ 1 mod 4, half of which are ~ 1 and half s 5 mod 8,
a-2

and the class D of 2 integers ~ 3 mod 4, half ~ 3 and half ~ 7 mod 8. The
a-2

powers 5’ mod 2a, j=l, ...,2 have the set C as residues, while their nega-

tives have the set D as residues. Thus

{ }{

a-2
C = 1,5,...,23-3 ❑ 5,52, ... ,52

}
=1 mod 2a

D=$,7,...,2~=f5 fl(52),)fl(52a(2)=-2)= -I}mod 2a.

(2) The residues of the powers of form 52h+1, 52h+2, -(S2h+1),

-(52h+2) are respectively all the integers <2a which are congruent to 5, 1,

3, 7 mod 8.

(3) Thus the 2a-2
+ ~2h+l

integers – ( ), equivalently the integers

~ 5 or 3 mod 8, all have period A(2a) = 2a-2 mod 2a, and for a ? 4 there are

no others.

j for odd j, i.e.,(4) A nUmber ~ 5 a number ~ 5 mod 8, generates

the group C, whereas a number ~ -(5’) for odd j, i.e., a number ~ 3 mod 8,

has powers with residues lying alternately in D and C, and running over all

integers ❑ 3 and 1 mod 8.

Proof. Aside from some details left to the

obvious consequence of Lemma 8, and the fact that
2a-2= iff j is odd.

reader, the Lemma is an

pd(5j mod 2a) = 2a-2/(j,2a-2)

Note 7. For 26 = 64, one finds the residues mod 64:
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j 1234567891011 1213141516=24

C5j 5256149539453337 5729172141131

D-(5j)5939 3 15 11 55 19 31 27 7 35 47 43 23 51 63.

5J generates the group C for j=l,3,5,. ...15, these are the integers 5, 61,

53,...,13 congruent to 5 mod 8.

Lemma 10. For the prime power 2a, a~l, one has

[a) <(2a)~ 1 mod 2a for every x prime to 2, where by definition

A(2) = $(2) = 1, A(22) = $(22) = 2, a(2a)= (1/2)@(2a)s # for a 2 3.

(b) There exists a g with pd(g mod 2a) = A(2a). Specifically: if

a=l, every g~l mod 2 has pd(g mod 2a) = A(2); if a=2, every gE3 mod 22

has pd(g mod 22) = A(22); if az3, every g E t5 mod 8, or equivalently,

every g S f(5j) mod 2a, with j

Proof. The lemma is

and a consequence of Lemmas 8,

odd, has pd(g mod 2a) = A(2a).

by way cf summary, being obvious for a=l,2,

9fora?3.

al
Lemma 11. Ifm=pl ...p~~ and for each i

)ki = pd~g mod p~i ,

then k ~ pd(g mod m) = [k],...,kk] ~M.

Proof. M_Since each ki IM, we know g = 1 mod p~i, M-
hence g = 1 mod

m, and k 1 M. But gk = 1 mod m implies gk z 1 mod pai and k Ik for each i,
i i

Hence Mlk and k=M.

Lemma 12. Ifm=p~l ,.. a2pL , we have
~al XA(m) -= 1 mod m for every x prime to m, where A(m) =1.c.m.

[i(p:l),...,A(p~)]. Thus A(m) is the greatest possible period mod m.

(b) There exists a g with period pd(g mod m) = A(m). Specifically,

this is true for any g satisfying the system of congruences

g ~ Ci mod p~i (s)

constructed as follows:



1. For each odd prime pi Im with ai=l, system (S) includes a

congruence g= gi mod pi, where gi is an element of the set H(pi)of Lemma 2.

2. For each odd pi Im with ai>2, system (S) includes a congruence

g E Ui mod p? where u1’ i is any element of the set U(p~) of Lemma 5.

3. If 2 Im with exponent a~l, the system (S) includes a congruence

g~lmod2ifa=l,

g=3mod4ifa=2,

gEf5mod8ifa>3.

For any particular choice of the Ci, one for each pi Im, there exists a unique

positive solution go < the product P of the moduli in system (S), and all posi-

tive solutions are then of form g = go+hP, h = 0,1,2,...

Proof.

(a) Since A$~~):A(m) fo; each pi in m, it follows from part (a)

of Lemmas 7, 10 that x = 1 mod pii and hence mod m, for every x prime to

m.

(b) By part (b) of Lemmas 7and 10, we see that any g satisfying the

system (S) as constructed has pd(g mod p~i) = A(p~i) for all i. Hence by

Lemma 11, pd(g modm) = [A(p~l),....A(p~R)] = A(m). The final statement is

a consequence of the Chinese Remainder Theorem (Appendix).

Note 8. In contrast to the analogous result in Part II there is here

no simple characterizationof the integers of maximal period. According to

Lemma 11, an integer g has maximal period ~(m) mod m= ~p~i iff [kl,.. .,kll
= [A(p~l),..., A(p~)] ~A(m), where k. = pd(g mod p~i). This maybe obtained in

1
a variety of ways. As an example, we note that for m = 217 = 7“ 31, one has

kl = pd(69 mod 7) = 2, k2 =pd(69 mod 31) = 15, [k1,k2] = 30 = A(m), so

pd(69 mod 217) = A(m), although 69 does not have maximal period for either

7 or 31. Clearly the construction of Lemma 12 need not produce all integers

of period A(m). The least g of period A(217) mod 217 is g = 3. This is in-

deed produced by the method of Lemma 12, since pd(3 mod 7) = 6, pd(3 mod 31)=30.

A very simple instance of the above behavior is provided by the case

m = 12. Here G(12) = {1,5,7,11}, the integers 5,7, and 11 all having maximal

period A(12) = 2. One finds that

12



pd(5 mod 4) = 1 pd(7 mod 4) = 2

pd(5 mod 3) = 2 pd(7 mod 3) = 1

[1,2] = 2 [2,1] = 2

pd(ll mod 4) = 2

pd(ll mod 3) = 2

[2,2] = 2

Solution of the system g ~ 3 mod 4

g~2mod3

produces only g ~ 11 mod 12.

Note 9. The least g of period A(m) mod m is the first g prime to m

‘(m)/q ~ 1 mcd m for every prime ql~(m).(Cf. Note 3.)such that g It is of

course possible to produce all g of period A(m) in such a way.

al
a%

Theorem 1. Ifm=pl ..*P&9 and (xo,m) = 1, then the sequence

x ={XO,X1 ,...} of positive integers<m defined recursively by

gxn ~ Xn+l mod m

is pure periodic of the greatest possible period A(m) iff pd(g mod m) = ~(m).

Such integers may be constructed as in Lemma 12, and all such g may be obtained

by the method of Note 9.

Proof. The result is immediate, 2
since the sequence X={xo,gxo,g Xo,...}

mod m, with (xo,m) = 1, is obviously pure periodic with sequential period

k=pd(g mod m).

Note 10, ~(m) I@(m), and~(m) =+(m) iffm = l,2,4,pa, or 2pa (p odd

prime) (Appendix).

Corollary 1. Form= 2a, aZ4, x odd, the sequence X defined by

gxn E :n+l a?2mod 2a has maximal period 2 iff g ❑ *5 mod 8, or equivalently,

g ~ tsJ mod 2a where j is odd.

Proof. See Lemma 9 and Theorem 1.

Corollary 2. Form=pa, a~l, ptxo, p odd prime, the sequence X de-

fined by gxn~xn+l mod pa has maximal period pa-1(p-1) iff g is chosen as in

Lemma 7.



Corollary 3. For m=lOa, a>4, (XO,lO)=l, the greatest possible

period for the sequence X defined by gxn~ Xn+l mod 10a is X(m) = 5 ● lea-2,
a-3

and is attained for any g of form g=go +200 h, h= O,l,...,5 ●1O -1 where

go is one of the integers go = 3,13,27,37,53,67,77,83,117,123,133,147,163,173,

187,197.

Proof. Since a>4, ~(lOa) = [~(2a), ~(5a)] = [2a-2,5a-1 “4] = 2a-2 “5a-1
a-2

=5”10 . The list of go values resulzs from solving the 16 systems of form

go ~ *5 mod 8 (5)

go E Ui mod 52,

where ui runs through the set

U(52) = {2,12,17,22; 3,8,13,23}.

(See Lemma 12 and Note 5.)

We do not attempt to give a computer algorithm for solution of systems

of form (S). It may be noted howeverthat if Zl,...,zL are solutions of the

f+ basic systems

bl
= lmodpl . . .

‘l-

b2
~ O mod p2

b2
‘1

= O mod p2Zg -
. .
. .
. b% .

= O mod pg
b~

‘1 -
ZL ~ 1 mod pfl

b.

‘hen g ❑ cl%+
...+cLzL mod IIpilis obviously a

‘i;i=lCi mod pi >...>k. This method may be

the 16 values of go listed above.

solution of the system

used to advantage in obtain-

Note 11. In the case of Corollary 3, with a= 4, we find that

‘1
= pd(629 mod 24) = pd(5 mod 16) = 22 = A(24)

‘2
= pd(629 mod 54) = pd(4 mod 54) = 2 “53< A(54).

14



Nevertheless, pd(629 mod 24= 54) = [kl,k2] = 22~ 53 = ~(24054). ThUS 629

has maximal period, but is not obtainable from Corollary 3. (See Note 8.)

II. THE

The

gxn

defines a

MIXED CONGRUENTIAL

recursion formula

+C:x mod mn+1

GENERATOR

sequence of integers X = {xo,x1,x2,...} which is pure periodic of

full period m provided g and c are suitably chosen with respect to the modu-

lus m. The present part establishes necessary and sufficient conditions,

after a careful analysis of the underlying number theory, which does not

appear in existing texts, and is of considerable interest in itself. The

full statement of the final Theorem 2 is believed to be new.

Lemma 13. An integer g>2 with (g,2) = 1 has period

k = pd[gmod 2(g-1)] = 2.

Proof. Writing g = 1 + 2h, we see that (l+2h)2 . l+4h(l+h) = 1 mod 4h

whereas (l+2h) ~ 1 mod 4h.

Lemma 14. If g~2, (g,2a) = 1, a~2, and

k = pd[g mod 2a(g-1)]

then k=2a for g S 1 mod 4, whereas k I2a-1 for g = -1 mod 4.

Proof. Ifg= l+4h, induction on b shows that

Zb

g = 1 + 2b(g-1)~, 2+~, b ~ O.

This is clear for b=O with Ub= 1, while the induction step reads

(3)

15



where ~+1 = ~ + 2b-l(g-1)~ = ~ + 2b+1h~ is odd for bSO. Setting b = a

in Eq. (3) shows that k I2a, and hence k= 2b, O~b~a. Then by Eq. (3),

~b
1 + 2b(g-1)~ = g = gk = 1 + 2a(g-l)Q.

Since 2+%, we have 2a I2b =k>sok= 2a.

However, if g = -1 + 4h, a similar induction shows that

Zb-l

g= 1 + 2b(g-l)hvb, 2+vb, b~2.

In fact, g2 = 1 + 4(4h-2)h = 1 + 22(g-l)hv2, with V2=1, and by induction,

g2b=l+2 b+l(g-l)hvb+~~where ‘b+l=vb+2 b-l(g-l)hv~ is odd since b~2. Hence

for b=a~2 we see that kl 2a-1. (The parity ofvb is irrelevant for the lemma.)

then

Note 12. pd[7mod 23(7-1)] = 2\ 22123, pd[ll mod 23(11-1)] = 22123.

Lemma 15. If p is an odd prime, g~2, (g,pa) = 1, a~l and

k s pd[gmodpa(g-l)]

k=paforg~lmodp. Otherwise k=pd(g mod pa) I$(pa)< pa.

Proof. Ifg=l+ph, induction on b shows that

gPb = 1 + pb(g-l)wb, P twb, b~O, (4)

the induction step being

b+l
gP

()
=l+;

()
pb(g-l)wb + : p2b(g-1)2w: + ““” +

()
; ppb(g-l)pwp

b

=l+p b+l(g-l)wb+l, where

‘b+l = ‘b + () ()
;Pb-l(g-l)w: + ... + : P(p-l)b-l[g-l)p-lw~

=W+
b () (b

p (p-1)b+p-2hp-1p~ pbhw;+ ... + p
‘b

16



is prime to p since b~O, pZ3, and ptwb. With b=a~l in Eq. (4), we see

that k Ipa, so k=pb for some b~O. Thus by Eq. (4) we have

b
1 + pb(g.l)wb = gp ‘ gk = 1 + pa(g-l)Q.

Since pfwb, we infer that pa Ipb = k, and k=pa.

Now suppose g z 1 modp has period k= pd[gmodpa(g-l)]. Then gk ~ 1

mod pa(g-l), and hence also mod pa. Consequently the period JL=pd(g mod pa)

divides k. But then also

!2_
g= 1 mod pa

gg ~ 1 moclg-1.

Since p+g-1 by assumption, we know (pa,g-l) = 1, so that

g! ~ 1 modpa(g-l)

whence k Il.. Thus k = L =pd(g mod pa) I@(pa) =pa-l(p-l)< pa.

Note 13. pd[4mod 32(4-1)] = 32, pd[S mod 32(s-l)j = 6 = +(32)< 32.

al
Lemma 16. Ifm=pl ... P;~, g~z, (g,m) = 1, and

ki ~ pd[g modp~i(g-l)]

then k ~pd[g modm(g-1)] = [kl,...,kg] ~M.

Proof. Since each ki IM, we have gM ~ 1 mod p~i(g-l). Thus each

P~i I (g”-l)/(g-l), and so does m, whence

gM ~ 1 mod m(g-1)

and k IM. But gk =
k-

1 mod m(g-1) implies g = 1 mod p~i(g-l) for every i.

Therefore each ki Ik and so does their l.c.m. M. Hence k = M.

Note 14. pd[5 mod 22(5-1)] = 22, pd[5 mod 32(5-1)] = 6,

pd[5 mod 22*32(5-1)] = 12 = [22,6].

17



Lemma 17. al afiIfm=pl ...PR. g22, (g,m) =1, and

k = pd[g mod m(g-1)]

then k = m provided g satisfies condition

(C) g ❑ 1 mod pi for every odd prime pi Im, and g ~ 1 mod 4 if 4 Im.

For any g not satisfying (C), one has a period k< m.

Proof. By Lemma 16 we know that

k = [kl,. ..+].

where k. = pd[g mod p~i(g-l)]. If condition (C) holds, then by Lemmas 13, 14,

15, we ;ave ki = p~i for every i = 1,...,R, and k = lP~l,..
at al.>p~ l=P~ ..; P;L=m”

However, if condition (C) fails, we know from the same Lemmas that ki~pii for

all i, with ki< p~i for at least one i. In such a case, k = [kl,...kg]

lkl
afi

,...,kg<p~l ... pk = m.

Lemma 18. For a given m ~ 2, the integers g ~ 2, and prime to m, for

which pd[g mod m(g-1)] = m are given by the following forms, where the pi are

odd primes, and h Z 1 is arbitrary:

m=2 g= 1 + 2h

am=2 ,a22 g= 1 + 4h

a.
m = IIpil g=l+(~pi)h

m= 2rI p:i g= 1 + (211pi)h

m = 2aIIp~i, a~2 g = 1 + (41ipi)h

Proof. This is an immediate consequence of Lemma 17.

18



= 10;
Note 15. Form =10= 2*5andg= 1 + 2*5 = 11, one has pd(ll mod 100)

indeed we find for the powers of 11 mod 100 the residues

11,21,31,41.,51,61,71,81,91,1 .

Theorem 2. alLet m = pl a!2>... pg /2, (g,m) = 1, and l~g,c,xo<m. Then

(1) the sequence X={xo,xl, ...} of positive integers <m defined

recursively by gxn+ c ~ xn+l mod m is pure periodic of sequential period

K<m;

(2) for g = 1, K = m/(c,m), and K = m iff (c,m) = 1;

(3) forga2, K = pd[g mod ml(g-l)], where ml = m/d, and d is the

g.c.d. of (g-l)xo + c andm;

(4) for g ~ 2, regardless ofxo, K = m iff g and c satisfy the

two conditions

(C) g ~ 1 mod pi for every odd prime pi lm, and g = 1 mod 4 if

41m,

(D) (c,m) = 1.

In such a case, the sequence {xo,...,xm_l} is a permutation of the integers

{1,2,O.o,m}.

Proof.

(1) The sequence {xo, xl,...,xm} of m+ 1 positive integers <m

must contain a repetition, and hence a first x =xki
with i< k. Since (g,m)=1,

we must have i = O, otherwise the recursion implies x
k-l= xi-l- ‘Ut ‘hen

Xo=x
k
implies x

n
tial period

K = min

(2) If

ing the first k Z

/(c,m), i.e., K=

(3) If

= ‘k+n for all n= 0,1,2,... and X is pure periodic of sequen-

{k; ~ = xo}~m.

g=l, then X ~{xo,xo+c, XO+2C, ...} mod m, its period K be-

1 for which xo+kc ~ X. mod m, or equivalently k ~ O mod m

m/(c,m).

g ~ 2, the recursion shows that, for every k~l,



‘l=gxo+c

‘2
= gzxo +gc+c

.
k-1

Xk = gkxo + g c+ ... +gc+c

mod m .

Hence the sequential period K of X is the first k~l for which

(-)~ [(g-l)xo+c] ~ O mod m,

this being equivalent to the equality ~ = Xo. NOW if d is the g.c.d. of

[(g-l)xo+c]andm, we infer that K is the first integer kal for which

(gk-l)/(g-l)~ O modml = m/d, i.e., gk ❑ 1 modml(g-l). Hence the sequential

period is

K = pd[g modml(g-l)]. (5)

(4) Now suppose conditions (C) and (D) both hold. Then (g-1)XO+C must

be prime to m. For, if 21m, then g is odd since (g,m) = 1, and 21 g-1

whereas 2t c, which is prime to m. Also, any odd prime in m divides g-1 by

condition (C), but not c which is prime to m. Hence m has no prime in common

with (g-l)xo+c, and d= 1, ml=m, K=pd[g mod m(g-1)] in Eq. (5) and the latter

is m by Lemma 17.

Finally, suppose condition (C) or (D) fails. If (C) fails, we know from

Lemma 17 that g
k-
= 1 mod m(g-1) for a k< m, and hence also

k-
g= 1 mod ml(g-l); k< m.

It then follows from Eq. (5) that Klk, and K~k<m. If condition (C) holds

but (D) fails, then there is a prime p2 2 common to c and m. If this p is

odd, it divides g-1 by condition (C), and hence (g-l)~+c also. Ifp=2,
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then m and c are even, while (g,m) = 1 implies g-1 even, and p= 2 divides

(g-l)xo+c. In either case we must have the g.c.d. dsl and ml< m. Now if

ml=l, then by relation (5), K = pd[g mod (g-l)] = 1< m. If m1z2, then by

relation (5) and Lemma 17 (with mlfor m), we have K<ml<m (actually K= ml),

Note 16. Form=lO, g=3, c=2, Xo= 1, one obtains the sequence

X = {1,5,7,3; 1,5,7,3;...} of period K=4. Here, (g-l)xo+c = 4, d= (4,10)=2,

m1=5, and K=pd[3 mod 5(3-1)]=4, as in Eq. (5). Note that Ktm.

Note 17. Since the recursion is defined mod m, the only relevant values

of g are <m. Reference to Lemma 18 shows that moduli of form m=2,4,11 pi,

211pi, 411pi, with their associated g= l+mh, admit no recursive sequences X

of period m other than the trivial one with g= 1, namely X={xo,xo+c,xo+2c,...}.

Corollary 4. The sequence X={xo,xl, ...} defined by gxn+c ~ Xn+l mod 2a,

a~3, g odd~ 3, xo arbitrary, has period 2a iff c is odd and g ~ 1 mod 4.

Note 18. The recursion 5xn+3 ~ Xn+l mod 16, Xo= 1, gives

X = {1,8,11,10,5,12,15,14,9,16,3,2,13,4,7,6; 1,...}.

Corollary 5. The sequence X = {xo,xl,...} definedby gxn+c ~ Xn+l mod pa,

p prime ~3, aZ2, ga2, (g,p)=1, x arbitrary, has period pa iff ptc and
o

gslmodp.

Note 19. The recursion 6xn+l ~ Xn+l mod 25, x =5, gives

X = {5,6,12,23,14,10,11,17,3,19,15,16,22,8,24,20,21,2:13,4,25,1,7,18,9;5,...] .

Corollary 6. The sequence X ={ XO,X1,...} defined by gxn+c ~ Xn+l mod 10a,

a~2, g~2, (g,lO)=l, X. arbitrary, has period 10a iff (c,1O)=1, and g=l+20h.

Note 20. The recursion 81xn+ll ~ Xn+l mod 100 generates a permutation

of the integers 1,2,...,100.



APPENDIX

SUMMARY OF THE CLASSICAL THEORETICAL BACKGROUND

I. EULER’S @FUNCTION AND THE GROUP G(m)

The function $(m) counts the number of integers x, l~x~m, which are

prime to m, i.e., with g.c.d. (x,m)=l. The set of all such x forms a group

G(m) of order $(m) under multiplication mod m, and Euler’s theorem asserts that

x$(m) ~ 1 modmfor (x,m)=l. It can be shown that +(1)=1, $(pa)=pa-~(p-l),

and$(IIpa) =ll$(pa), p prime Z2.

II. THE PERIOD k OF x mod m

The period k=pd(x mod m)

Important properties of k are:

is the least kzl for which xk~ 1 mod m.

A. X,X2,...,Xk ~ 1 are distinct mod m, and form a cyclic subgroup {x] of

G(m).

B.
XE

~lmodmiffk\R.

c. pd(xj mod m) = k/(j,k).

D. pd(x’ mod m) = k iff (j,k) = 1. Thus there are $(k) of the xj which

generate the group {x} mod m.

III. THE GROUPS G(pa)

In the special case m=pa, p an odd prime, G(pa) is itself a cyclic

group, i.e., there exists an integer g such that

@(Pa) s 1] mod pa.G(pa) ={g,g2, ...,g

The set H(pa) of all its generators therefore contains @[f#I(pa)]elements.
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This is also true for m=2°,21, and 22. However, for m= 2a, a~3, G(2a)

is not cyclic, but consists of a cyclic subgroup C oforder(l/2)@(2a)=2a”2,

and a single coset D ~ -C mod 2a.

Iv. THE A-F~cTION

Motivated by this anomaly, a function X(m) is defined by A(l) =1, and

al ...~(P1
a~ _PL ) - loc.m.[~(p~l),....~(p~)].

where A(pa) = @(pa) = pa-l(p-l), p odd prime;

A(2) = $(2) = 1; A(22) = $(22) = 2; A(2a) =(1/2)$(2a) = 2a-2,

a~3. The A-function has the properties:

A. X~(m) ~ 1 mod m for all x of G(m).

B. There exists a g with pd(g mod m) = A(m). Thus A(m) is the greatest

period possessed by any element of the group G(m), and all such periods divide

A(m).

c. G(m) is itself cyclic iff A(m) = $(m), i.e., m has one of the simple forms

m=l,2,22,pa, or 2pa, p odd prime. This is easily inferred from the relations

A(lIpa) = l.c.m.[~(pa)]lIIA(pa)111@(pa) = @(IIpa).

v. THE CHINESE REMAINDER THEOREM

This is a very general theorem which implies that a system of congruences

g ~ Ci mod p;i; i=l >...9$3

b.
(pi distinct primesbZ2) has a unique solution go modIlpil, all solutions being

of form g=go+hllpii.
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VI. STRUCTURE OF THE GROUP G(m)

For a composite modulus m= lIp~i, the system of congruences

a.
x~ximodpil; i=l 9...9E

induces a multiplicative isomorphism

X+-+(X1>. ..,Q

between the group G(m) of O(m) integers ; prime to m, and the direct product
a.

of k groups, the i’thbeing the group G(pii) of the $(pil) integers prime to

Pi” Hence one has the relations

al akG(m) ~G(pl) x ... xG(p~),

al a~
$(m) = @(pl) . . . $(pk ).

For odd pi, G(p~i) is cyclic. If 2 Im, the corresponding group G(2a) of

$(2a) = 2a-1 odd integers is cyclic iff a= 1 or 2. Otherwise it has the struc-

ture C U D referred to in part (III) above. l%us A(m) is the l.c.m. of the

maximal periods obtaining in the groups G(p~i).
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