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The compression of

rigid wall is discussed

ABSTRACT

a gas between a uniformly moving piston and a

in the one-dimensional case. Expressions are

derived showing the relation between the density, pressure, temperature

and entropy, respectively, produced behind the initial shock caused by

the piston, and the values of these quantities after any number of

reflections of the

the limiting value

the quantity S=pVy

given by

shock from piston or rigid wall. It is shown that

(as the number of reflections goes to infinity) of

divided by its value behind the initial shock is

where a=2 #/(#-l), ~ is the ratio of specific heats, p is the pressure

and V is the specific volume of the gas.

.
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1. INTRODUCTION

Consider the one-dimensional system consisting of a gas confined

between two plane, parallel walls that are impenetrable to heat. One

wall is considered to be rigid and the other to move toward the first

with constant speed. The moving wall will initiate a shock in the gas.

The shock will reflect at the rigid wall producing a second shock which

will in turn be reflected at the moving wall, and so on. Using the

Hugoniot equations for shocks, it is possible to compute the ratios of

density and pressure behind the shock to their values in front of the

shock after each successive reflection. It is then possible to compute

the values of density and pressure behind the shock, after any number

of reflections, in terms of their values behind the initial shock. Thus,

the corresponding values of such thermodynamic variables as temperature

and entropy

computation

reflections

function of

\

can also be determined. Of particular interest is the

of the limiting value of the entropy as the number of

goes to infinity. This latter quantity is derived as a

the # which characterizes the gas (cf ~).

2. PRESSURE RATIO AND COMPRESSION AFTER EACH SUCCESSIVE REFLECTION

Let P“ be the initial density of the gas and U. the speed of the

moving wall. Behind the initial shock started by the piston the density,

PO, material velocity, u, and pressure, po, are givenby
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(1)

++?, ‘/.= -

U.u
o’

#“l #ou2
Po=— 0’

(initial shock)

where # is the ratio of specific heats of the gas. Let /0<, u<, p.
J. J. J.

be the densit~material velocity and pressure, respectively, behind the

shock after the i’th reflection, and let

(2,a)

(2,b)

The Hugoniot equations

in the present case

(3) (Ui-=

The boundary conditions

(a): If the shock

(b): If the shock

describing conservation of mass and momentum give

‘i)2= (Pi —-4.- Pi-l)(#j-~ ‘i

are such that:

is reflected from the rigid wall, Ui=o) Ui-l=uo;

.
is reflected from the moving wall, Ui=uoj U. =0.1-1
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So in either case the left hand side of (3) is u:, and, substituting

(2), it becomes

Pi-1 2
-~)=~uo.

“i-l)(l ~i i-

Now let

where

(

and the above expression becomes

(-~-1)(1-+) ‘+#i o
i

Assuming a Y-law for the gas; i.e., that the internal energy per unit

mass after the i’th reflection is given by

~ Pi

Ei=~~’

the Hugoniot equation for conservation

y-l + (/+l)~i

vi = ~+1 + (#-l) CY_.“
1

of energy reduces to
●

~us U_i and ~i, for any i, are completely specified by the
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expressions

(4,a)

(4,b)

where

(4,C)

(4,d)

Eliminating

(5)

The physical

(=i-l)(l - A) = (a-2?)&i
Ti

l+(a-l)mi

Ti=
a-1+ -i

vi
~i+l=~~i’ ~7 =1”

~ i from equations (4)

Cnd !
1 2

i
2+(a-l)~i ~

meaningful solution corresponds to a choice of the positive

J.

there results

sign in front of the radical because, for example, with i-l, the other

branch gives ~l=O. The solutions for the + branch are found to be

(6,a) o- i+a=—
i i

(:”:::)

(6,b) i+(a-1)
?i=~ (i=o, 1, 2, ...)
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That (6) is the solution of (4) maybe verified by induction as

follows:

(1) Fora giveni, say i=l, (6,a) gives the correct result for

(2) The equations (k) yield the following relation between cr.
1+1

and &i:

and since (6,a) satisfies this relation it is proved that (6,a) is the

correct expression for cr .
i

(3) It follows that (6,b) is correct since equations (6) satisfy

(4,b)

3. PRESSURE RATIO AND COMPRESSION AFTER n REFLECTIONS

Let ~n and ~n be the pressure ratio and compression, respectively,

after n reflections referred to the pressure p. and density -o behind

the initial shock. Then

(7,a)
P

m=;= ~ ~ = (a+l)(a+2)...(a+n)

o 3=1 i n! 9
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(7,b)

4. SHOCK SPEED AND TIME

, (n=l,2, ...).

Let mn be the magnitude of

across the shock after the n’th

Iu -u
n-1 n

m= I

n &-&

the rate of mass flow per unit area

reflection. Then

Pn

= qn-luo “

Substituting (6,b) this becomes

u
m= ~ (n+l)fln ,
n

or, using (1) and (7,b),

(8)

{

1-1. !0
m=—
n a-2

U. P.
m =—
n a-2

Let Mbe the

and L the initial

a-1
uA”, n=O,

‘=0

(n+l)~n = mo(n+l) ~n, n = 1, 2, ... .

total mass per unit area of

distance between the walls,

the gas in the system,

then
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M=>” L.

The time Ati required for the shock to reach the opposite boundary after

the (i-l)st reflection; i.e., the ti~ interval between the (i-l)st and

i’th reflections is given by

Ati=~=m.
1-1

Substituting (8) and letting

T ~L=—
0

~OL—e—
‘i -1

be the time necessary for the

the above becomes

(9)

The time tn at which the n’th

n

moving wall to traverse the distance L,

7+ (i = 1),

(i =2> 3, ““”).

reflection occurs is then

(lo)

lim ‘n
As a check on the formulation, it will be shown that n+m ~ = 1.
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Substitute (7,b) into (10) and there results

Let n = i-l, and this becomes

n!
a(a+l)...(a+n-l)_

a-2
= ~F(l,l;

(i-l):
a(a+l)...(a+i-2))“

a; 1) ,

where F(-,#; a; z) is the hypergeometric series which converges in

this case for z = 1 since 1 < ~ < m implies co > a > 2, and hence

a+ 4? - a < 0. (cf., Whittaker and Watson, Modern Analysis ,

Chapter XIV). Thus

5. TEMPERATURE

,

Let

Then the ratio of the value of this quantity after n reflections to its

value behind the initial shock is given by

(11)
&n ‘n 40

Tn=—=——=
80 Po#n i~;=~=(a+n)(l+n) .a
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6. ENTROPY

Let

Then the ratio of the value of this quantity

value behind the initial shock is given by

after n reflections to its

(12)

7. LIMITING VALUE OF THE ENTROPY

Let

em(y) = lim Cn .n+ m

Substituting (6) into (12) this becomes

~ (Y) s ~ (i+a)(i+l)”co i(i+a-l)Y
.

i=l

Rearranging, the above may be written

co (1+ :)(1+ *)Y
— J. J.
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The factor on the right is unity since, using (4,c),

~-(a-l)~+a=O.

Introduce Ner’s formula for the ~ -function; namely,

‘r(z’=d(’++)z(l+;)-l})
(cf., Whittaker and Watson, Modern Analysis, p. 237) and there results

or

(13) g (/)=Im.l.3=ti
m a a

The limiting values of ~m(~) are obtained

(a=~;lztizm)

as follows:

2

2a a+l
lim ~ -Zaz

= a-+co
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=Co;

where

fb) s Q-(X+2)): .

Expanding in a power series,

= 2 r’(2) + ““” =2(1-C) + ““* ,

where c = Euler’s constant ~ 0.5’772157.

Thus

)2&%(y) = Li”
~2(1-c)+”””

X--+o x+2

1 42(1-C)=-
2

s 1.16488 .
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A few values of em tabulated as a function of ~ are shown below.

Y 1 1.5 2 3 m

em(y) cm 1.826 1.5 1.333 1.165
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