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EFFICIENT METHODS FOR TIME ABSORPTION (o) EIGENVALUE CALCULATIONS

by

Thomas R. Hill

ABSTRACT

The time-absorption eigenvalue calculation represents
one of the options found in most discrete-ordinates trans-
port codes. This report describes several methods develop-
ed at Los Alamos to improve the efficiency of this calcula-
tion. Two procedures, based on coarse mesh rebalance, to
accelerate the o eigenvalue iterations are derived. Some
simple modifications to the iteration convergence precisions
and the iteration strategy reduce the number of unnecessary
calculations in the early stages of the problem. A proce-
dure to prevent code failures on o searchs for subcritical
systems is detailed. For the test problems examined, these
methods resulted in convergence with one-fifth the number
of iterations required for the standard eigenvalue search
procedure.

I. INTRODUCTION

The time-absorption (o) eigenvalue is one of the implicit eigenvalue search
options found in most current transport codes.lq5 Because these codes are de-
signed to treat a variety of implicit eigenvalue problems (critical size search,

concentration search), their generalized search methods are less than optimal



for a specific type of eigenvalue calculation. Due to the explicit nature of
the o eigenvalue problem and the types of nuclear systems of interest at Los
Alamos, a number of methods have been developed to considerably improve the
efficiency of these codes for this eigenvalue search. This report describes

these methods.

We will start with the homogeneous, time- and energy-dependent, transport

equation

g% + V'ad’ + zt(;,E) d’(—r),Eyayt) = de'f da’ zs(})’E'aE’a.a') d’(—r)’E”a”t)

1
v
+ x(E)de' fdﬁ' VEL(FE) W(r,ELA e, (1)

where

¢(;,E,§,t) = angular flux as a function of the independent variables time
(t), energy (E) or velocity (v), angle (6), and space (;),

Zt(;,E) = macroscopic total cross section,

ZS(;,E’+E,§'§’) = macroscopic scattering function,

X(E) = fission spectrum, and

vZf(;,E) = macroscopic prompt fission neutron production cross section.

By making the time separability ansatz

$(7,E,8,0) = "y (FLED (2)

Eq. (1) is transformed to a time-independent eigenvalue problem

Ly, + (B, + ) ¥y = S+F) g (3)



where

L = leakage operator,
= scattering operator,
F = fission operator, and

Y and o are the time-absorption eigenfunctions and eigenvalues, respectively.

¢ 6-11
There is a very rich literature

on the eigenvalue spectrum of Eq. (3).
Duderstadt and Martin11 give a particularly good discussion of this problem,
with abundant references. The Larsen and Zweifel9 article is probably the most
complete and general of the recent papers.

Of particular interest is the eigensolution of Eq. (3) with the largest

real part, o,, the so-called "dominant" eigenvalue.10 This solution corresponds

O’
to the asymptotic (as t»®) solution of the original initial value problem, Eq. (1).

This dominant eigenvalue is the physical quantity measured in the laboratory by
pulsed neutron (die-away) and Rossi-a experiments. Physical consideration would

obviously require

Im(ao) =0 (4a)

and

¥, (r,E,8) >0 for all ¥, E, & . (4b)
0

Also of importance is the sign of a

0
> 0 supercritical
ao = 0 critical
< 0 subcritical

It should be noted that the o eigenfunctions of Eq. (3) differ from the
. . 6 . .
A (or keff) eigenfunctions, ¢A, which satisfy

Ly + I = (S+ 2Py (5)



except for the exactly critical case (A = 1 and @ = 0). The solution of Eq. (5),
the keff problem, is the calculation most commonly done with steady-state
transport codes. Because the o eigenvalue appears in Eq. (3) as a 1/v absorber
(hence the name time absorption), the energy spectra of ¢a and ¢A can differ
greatly for systems far from exactly critical. Furthermore, the spatial dis-
tributions can also differ greatly. For systems far subcritical, the ¢a
eigenfunction can have a convex, downward spatial distribution, contrary to
physical intuition.

For this report, it is sufficient to proceed directly to the multigroup6’12

form of Eq. (3), written as

W+ Gt ) YEDH =6y, (6)

where w(;,ﬁ) is a vector of multigroup angular fluxes, Y (?,6), g =1 to IGM, and
L, Zt, S, and F are the multigroup approximations to thegcorresponding operators
in Eq. (3). The intermediate eigenvalue A has been introduced and the solution,
o and §, of Eq. (6) is sought such that A = 1. The angular variable & will be
treated with the standard discrete-ordinates approximation.12 For the schemes
to be described in this report, the actual geometry and the spatial approxi-
mation used are immaterial, although the testing was done for two-dimensional
geometry with a finite difference (diamond differencelz’la) approximation of
the spatial variable r.

The existence of a dominant eigenvalue, ¥y for the multigroup transport
Eq. (6), for finite media, under very general conditions, has been shown by
Larsen.10

This report is organized in the following manner. Part II briefly describes
the methods currently used in most current transport codes. Part III and IV
outline the application of coarse mesh rebalance (CMR)3 acceleration to the a
eigenvalue search. Part V details some modifications to the iteration strategy
that can improve computational efficiency. Part VI presents some numerical re-
sults for typical test problems to demonstrate the efficiencies effected by these
improved methods. Finally, Part VII summarizes the mathematical literature for
the o eigenvalue problem and describes a procedure to make more robust the eigen-

value search for subcritical systems, a particularly difficult calculation.



IT. STANDARD METHODS

The standard iterative methods for solving the multigroup discrete-ordinates
transport equation are detailed in the appropriate code manualsl_3 and elsewhere.12
The inner iterations for a single energy group are performed on the within-group
scatter source. The outer iterations are performed on the fission source, yielding
upon convergence, the intermediate eigenvalue A of Eq. (6). For o = 0, this A is
merely keff for the system.

The o eigenvalue problem is solved as a sequence of A eigenvalue problems
until an a for which A = 1 is obtained. This & iteration overlying the outer

and inner iterations can be written as

e A L AN CR e S @
A

+
where k is the o iteration index. The procedure by which the next ak 1 is

selected, based on uk, Ak, and ¢k, constitutes the o eigenvalue search pro-

cedure, the subject of this report.

The standard eigenvalue search procedure is roughly as follows:

1. Make an initial guess of eigenvalue a°, usually = 0.

2. Solve the transport Eq. (7), performing inner and outer iterations
until convergence, for A°.

3. Obtain the second guess o' by adjusting a¢° with the eigenvalue modifier
EVM

al = a® + EVM
4. Solve the transport Eq. (7) for Al.

k_l,ak_l), perform a linear extra-

~pp5. Using the points ()\k,ak) and (A

polation of A(a) to that ak+1 for which Ak+1(ak+1) = 1. Or, alter-
natively, using the points (Ak,ak), (Ak_l,ak_l), and (Ak_z,ak_z), per-
form a quadratic extrapolation of A(a) to that ak+1 for which

k+1 k+1
A (o ) = 1.

6. Solve the transport Eq. (7) for Ak+1.
— Repeat until Ak+1 =1.




The code user is required to provide an initial eigenvalue guess a° and an
eigenvalue modifier EVM. In many cases, particularly if the neutronics are coupled
to a hydrodynamics calculation, the user has little idea of the value, or even
the sign, of a°. The eigenvalue modifier is seldom more than a wild guess. A
poor choice of EVM, either in magnitude or sign, can significantly slow the search
procedure, if not, in the case of subcritical systems, cause it to fail. In the
early o iterations, the root-finding procedure of step 5 can sometimes cause the
o search to flounder about.

Further details of the eigenvalue search procedure are described in the code
manuals.l_3 Additional input parameters are available to make the eigenvalue
search proceed more efficiently. However, seldom is enough known about a problem
to permit an a priori selection of these paramaters, even by the most intelligent
code users.

Because of these deficiencies in the o search procedure, it is desirable
to devise an alternate procedure, one preferably based on the physics of the
problem, that will produce more rapid convergence and require fewer input para-

meters from the code user.

III. GROUP-COLLAPSE COARSE MESH REBALANCE

1,3,12 has been found to be an ef-

The coarse mesh rebalance CMR method
ficient means of accelerating the inner and outer iterations of the transport
equation solution. This method is based on integrating the transport equation
over various coarse mesh spatial regions to obtain a (usually) small system of
equations for rebalance factors; factors which, when used to multiply the fluxes,
at the end of each iteration force the rebalanced fluxes to satisfy particle
conservation over each coarse mesh zone. This procedure has been found to effect
a sometimes substantial acceleration of the iterations. For most problems, the
coarse mesh used for the rebalance acceleration is simply chosen to be the
material mesh.

Typically, for the outer iteration acceleration, a group-collapse rebalance,
obtained by summing over all energy groups, is used to obtain a matrix eigenvalue
equation for the intermediate eigenvalue A. Because the eigenvalue a appears as
an explicit scalar variable in Eq (6), similar to A, the CMR procedure can also

be applied to accelerate the a iterations of Eq. 7.



To obtain the group-collapse coarse mesh rebalance (GCCMR) equations the
solution of Eq. (6) is sought for the eigenvalue a with A = 1. Multiplying the
fluxes in Eq. (6) by coarse mesh dependent rebalance factors, fk’ and integra-
ting over all angles, all energy groups (group collapse), and all mesh cells

in coarse mesh zone K yields a matrix eigenvalue equation

[FL + AB - FS] f=-a FV £ , (8)

of size equal to the number of coarse mesh zones KM, for the eigenvalue a and
eigenvector of rebalance factors f.

The diagonal matrices AB, FS, and FV are

ABK = j dv JdE za¢ = absorption , (9a)
K

FSK = J. av J. dE v2f¢ = fission neutron production, and (9b)
K

FV, = J de dE % ¢ = total neutrons. (9¢)
K

Here, ¢ is the spatial and energy-dependent scalar flux and Za is the macroscopic

effective absorption cross section’

3, (B) = 3, (E) - def dug I (BE' 1) (10)

where By = 3-8 = scattering angle. In practice, the'integrals of Eq. (9) are
carried out by sums over spatial mesh cells and energy groups in the discretized
space.

The coarse mesh flow matrix, FL, consists of the group-summed outflows from
zone K on the diagonal and negative inflows from zone I into zone J on the

off-diagonal elements:



OF1 _IF2+1 IfKM+1
_IlFl"’z OF, - :
~
FL = ! ~< | (11)
] ~
-1F > OF
| 1oKM KMo

For one-dimensional geometries, this flow matrix will be tridiagonal. In general,
for multidimensional, orthogonal and nonorthogonal meshes, it will be a full,

nonsymmetric, diagonally dominant matrix. It can be noted that

KM
>
OF, > E IFp,; (12)

1
K

=
ol

with the equality holding when coarse mesh zone K has no surfaces on the outer
boundary. This implies the L1 norm ||FL|]| > O.

In general, Eq. (8) permits the existence of complex eigenvalues, necessitat-
ing the use of a generalized eigenvalue-eigenvector routine for its solution
if all the eigenvalues are to be obtained. Experience on a variety of problems
has shown the eigenvalue spectrum of Eq. (8) to range from negative eigenvalues,
large in magnitude, occasionally in complex conjugate pairs, to a most positive,
dominant eigenvalue corresponding to % of Eq. (4). It can, in fact, be shown15
that there exists a dominant eigenvalue of Eq. (8), with zero imaginary com-
ponent, which corresponds to an eigenvector with entirely positive components.

Because of the large negative eigenvalues, the simple power iteration1 which
is used to solve the outer CMR equations for A cannot be used for Eq. (8) inas-
much as it converges to the largest eigenvalue in magnitude, not the most positive
one. However, the inverse power iteration16 (Wielandt's method of fractional
iteration) can be applied to obtain the dominant eigenvalue of Eq. (8). This
method involves choosing some estimate of an eigenvalue and this modified power
method then converges to the eigenvalue nearest that guess. By choosing an initial

guess of the dominant eigenvalue sufficiently large, this inverse power iteration

8



will converge to that desired, most positive eigenvalue. In typical problems,
this inverse power iteration is found to converge quite rapidly, usually in from
3 to 8 iterations.

The GCCMR is performed as follows: During the inner iterations for each
group, when the angular flux is being calculated, the flows between each region
IFI_>J and the outflows for each region OFK are computed. At the completion
of the inners for that group, these flows are accumulated (group-summed) into
the flow array, FL. Upon convergence of the outer iterations (for a particular
a guess), the three flux integrals of Eq. (9) are computed for each coarse mesh
zone. The matrix Eq. (8) is then solved for a dominant eigenvalue, which will
then be used as the next o guess. The rebalance factors, f, of Eq. (8) are
applied to the scalar flux and moments and the next o iteration is then begun.

This GCCMR o search procedure eliminates the need for the eigenvalue modi-
fier and the root-finding procedure of the standard method. In fact, the inter-
mediate eigenvalue A plays no role in this search procedure. In practice, it
has been found that GCCMR gives remarkably good estimates of a for the early «
iterations, but that it converges much more slowly than the root-finding pro-
cedure in the later stages. Thus, the recommended procedure is to use GCCMR for
the first few (three or four) o estimates, then switch over to a root-finding
procedure for the final convergence.

A simple whole system variant of the a CMR can be derived. Integrating

Eq. (7) over all energy groups and all space points yields the balance equation

NLK + aB¥ + ofEVE = lE sk (13)

A

for the k'th o iteration, where NL is the total net leakage of neutrons from the

system. We would like the k+1'st iteration to satisfy the balance equation with
A=1:

NLKFD 4 apk¥l . oRFIpyk+l _ poktl (14)

+
Subtracting Eq. (14) from Eq. (13) and assuming ¢k+1 > ¢k (so that NLk 1 z NLk,

ABE*! = ABX. etc.) yield



ak+1 = ak + (1 - lE ng (15)
A FV

as the next estimate for the eigenvalue. Equation (8) for the case of a one-
material region can be shown equivalent to Eq. (15).

The GCCMR Eq. (8) yields not only the next guess for the eigenvalue a, but
also the vector of rebalance factors f which are applied to all the fluxes in
each coarse mesh zone. Since the magnitude of this eigenvector is arbitrary,

normalization is typically chosen to maintain a total fission neutron source of

unity

FT = ZE: Fs, =1 . (16)

At the completion of the first a iteration, the rebalance factors for the

outer rebalance equation

0 0, 0 _ 1 0.0
[FL™ + AB"] fouter B AO Fs fouter (17)
will be identically unity (ao = 0 is assumed), where AO = keff' The rebalance
factors from the first o rebalance equation
(FL® + a8 - ¥s%1 £ = - o 050 (18)

will be those coarse mesh rebalance factors that convert the spatial distribution
of the keff solution fluxes to the approximate spatial distribution of the con-
verged o eigenvalue fluxes. Clearly, these rebalance factors will differ the
most from unity (and, hence, provide the most acceleration) for problems in which

the o spatial distribution differs greatly from the keff spatial distribution.

10



This will occur for problems far removed from critical (o = 0) and with much
spatial inhomogeneity. For spatially homogeneous problems (where KM = 1), there
is no acceleration from the rebalance factor (fg = 1), only from the improved
estimate of al. In practice, only a modest amount of the acceleration from
GCCMR comes from the rebalance factors; most of the acceleration comes from

the improved estimates of a. For a typical test problem (#4) described in

Part VI, which contains considerable spatial structure, these rebalance factors
for fg ranged from 1.43 in the innermost material zone, to 0.25 in the outer-

most zone.
IV. WHOLE SYSTEM GROUPWISE REBALANCE

The o eigenvalue appears in Eq. (3) as a 1/v absorber. For problems with
many energy groups and a broad range of neutron speeds, the o eigenvalue can
greatly change the spectral distribution from the keff solution. This suggests
a rebalance that does not integrate out the energy dependence (no group collapse),
but that maintains a groupwise dependence, might provide an effective o accelera-
tion.

One such procedure would be to eliminate the integration over all energies
in deriving the CMR equations in Part III. This would yield a matrix equation
of size KM*IGM, the number of coarse mesh regions times the number of energy
groups. For many problems, this can be of size 50 to 100 or larger, resulting in
a rather large rebalance equation to be solved, and greatly increasing the usually
negligible overhead to perform the rebalance acceleration.

A second, more feasible, procedure to obtain rebalance equations would be
to eliminate the integration over all energy groups, but integrate over all space,
rather than each coarse mesh zone. This whole system groupwise rebalance (WSGR)
matrix equation will be only of size IGM, the number of energy groups.

To obtain the WSGR equations, we start with the transport equation, Eq. (6)

for one energy group g with the condition of A =1

g IGM
o >
+ + — = , 1 2. s ' . 19
g+ Gy ) BB = D T 0 T Xy D VLG, (19)
g' =1 g' =1

11



In Eq. (19) we have assumed no upscattering, although the method can just as
easily treat problems with upscatter. Multiplying the fluxes in Eq. (19) by
groupwise dependent rebalance factors, fg’ and integrating over all angles and

all mesh cells yields the WSGR matrix eigenvalue equation

[NL+C-S-FS] f=-aqFVE , (20)

of size equal to the number of energy groups IGM, for the eigenvalue & and the

eigenvector of rebalance factors f.

The diagonal matrices NL, C, and FV are

NLg = net leakage from the system for group g, (21a)

Cg = -[dV ztg¢g = within-group total collision rate in group g, and (21b)

FVg = -[dV %— ¢g = total neutrons in group g. (21¢)
g

Again, in practice, the integrals over all space in Eq. (21) are carried out as
sums over spatial-mesh cells in the discretized space. The lower triangular

(for downscatter only) matrix S of group-to-group scattering rates is of the

form
- ~
Javz 0,
~ r~
] V215000 vz, .9, (21d)
[s] =
( [
JV21am®1 JV20010m %2 fdszGMﬂGMq)IGM
or
S = [ |avs . 21d)
(S,,0] [f praglyr] (

12



The full matrix FS of fission production rates is of the form

-
% - JdVv2f1¢ J’dv?zfzzpz . .devszGMtbmm
X2 (::> ’ . :
[FS] = ' ‘ ' » (21e)
O nef |
or
FS ' = dV\)Z + [} . 21
[FS .. ] [xgj £g' ¥gr ] (21e)

For one-group problems, Eq. (20) can be shown identical to Eq. (15). As in
GCCMR, the nonsymmetry of Eq. (20) admits complex eigenvalues. Test calculations
have shown the eigenvalue spectrum ranges from negative eigenvalues, large in
magnitude, occasionally in complex conjugate pairs, to the most positive, dominant

eigenvalue, corresponding to « By the same proof as for GCCMR15

0 , the existence
of a dominant eigenvalue, with zero imaginary component, corresponding to a eigen-
vector with entirely positive components, can be shown. Implementation of the
WSGR is done exactly as the GCCMR, with the inverse power iteration being used

to solve Eq. (20) for the dominant eigenvalue.

For a typical test problem (#4) described in Part VI, with 12 energy
groups, the rebalance factors of Eq. (20) range from 2.27 for the first group
down to 1.56 x 10_5 for the bottom group, indicating that a large spectral effect
is, in fact, present.

Between the two o rebalance schemes, GCCMR or WSGR, it is not clear, a
priori, which is the better. In practice, the scheme of choice is found to be
problem dependent. Since most code users would seldom have the knowledge to cor-
rectly choose between the two schemes, this suggests that a hybrid rebalance
scheme, using first GCCMR and then WSGR, might have some merit. Since conver-
gence of the an+do is often monotonic in the early o iterations, the next « guess
can be chosen (from between the two different rebalance a's) to produce the larg-

est change from the current o guess. However, both sets of rebalance factors,

from GCCMR and WSGR, can be applied to the scalar flux and moments. By using both

13



sets of rebalance factors, it is hoped that a serendipitous acceleration of
the o iterations is achieved. 1In practice, this does not occur and the hybrid
rebalance merely results in the most effective rebalance scheme being auto-

matically used.
V. VARIABLE CONVERGENCE PRECISION AND ITERATION STRATEGIES

In this section, we discuss some of the modifications to the iteration
strategy that can be made to improve the overall efficiency of the calculation.

The standard method for a eigenvalue problems consists of a set of A (or
keff) eigenvalue problems and use of a root-finding procedure, linear or
quadratic, to estimate, usually by an extrapolation, the next « guess. Because
the root-finding procedure can often lead to wild extrapolations, especially
for subcritical systems, it is important that each A calculation be fully
converged.

If a rebalance method, as opposed to a root-finding method, is utilized to
provide the next o estimate, it may be possible to converge rather loosely the
early A calculations, when the estimate of o is poor, inasmuch as the rebalance
is a function only of the fluxes.

One scheme for permitting a loose convergence early in the a calculation
is termed "variable convergence precision'". In typical discrete-ordinates
transport codes, there are several different convergence precisions, fixed at
the start of the calculation, that are used to determine convergence of the
various iterations. Two of these convergence precisions are on the inner

iterations, ei’ so that

max ¢%. - ¢%Tl (22a)
;i Lije  Tije l o
i ri <El
%jg

where £ = inner iteration index, ij = spatial mesh index; and on the outer itera-

tions, €,» 80 that

| <¢ (22b)

14



where n = outer iteration index. The o calculation is continued until the final

convergence test is satisfied.

IAk - 1| < €final ° (22¢)

where k is the o iteration index and €einal is the user-specified overall
convergence precision.

The "variable convergence precision" scheme consists of allowing the two
intermediate convergence precisions to vary through the course of the o calcula-
tion, making them relatively large at the start of the problem, when a is poorly
known (and, therefore, A far from unity), and tightening them up as the calcula-

tion approaches convergence. One simple, ad hoc scheme to do this is to choose

X oekoo - Ak +ae

i 0 (23)

final

By this prescription, the early inner and outer iterations are converged to a
precision of the order 0.1 and, as A > 1, the two iterations are eventually
converged to the desired precision, efinal'

For many typical o eigenvalue problems, the first few o iterations, where
the changes in o are the greatest, require the most outer iterations on the
eigenvalue A, despite the looser convergence precision allowed by Eq. (23).
Another method for avoiding wasted iterations in the early part of the & calcu-
lation is to impose an outer iteration limit on each a iteration. By allowing
only a few outer iterations before making a new o guess, many of these wasted
early outers can be eliminated. In practice, an outer iteration limit per «
iteration of 4 or 5 has been found to be near optimal. Fewer than that does
not permit a great enough change in the flux to produce a very large change in
o except for the very early iterations.

Furthermore, since the o rebalance acceleration requires only the scalar
flux (but not A) and is quite inexpensive to perform, it is possible to do an
o rebalance at the completion of each outer iteration. The rebalance schemes
are found to give surprisingly good estimates of & even with these very inaccu-

rate fluxes.

15



The most effective iteration strategy is thus found to be the following

steps:

1. Perform two o iterations, doing only one outer iteration per o itera-
tion, and using rebalance to estimate the next a.

2. Increase the outer iteration limit to five, perform the outer itera-
tions to obtain an estimate of A, and then use the fluxes from this «
iteration for one last rebalance estimate of «.

3. Maintaining an outer iteration limit of five, perform outer iterationms,

and use the linear (or quadratic) root-finding procedure for subse-
quent estimates of «.
It should be pointed out that these procedures of allowing a very loose
convergence early in the calculation, when coupled to the root-finding o search
procedure from the start (as is done in present transport codes), can reduce the

robustness of the iteration process. For fast supercritical assemblies, highly

absorbing and fission dominated, this is generally not a problem. It is more
likely to occur for thermal reactor systems where scattering dominates, in the
bottom energy group and convergence is typically slow. But, when done in con-
junction with the rebalance o search method, the loose convergence procedure has

not appeared to reduce the robustness of the iterations.

VI. TEST PROBLEMS AND RESULTS

In this section, we will apply the schemes developed in Parts III-V to
five different test problems to demonstrate the efficiencies achieved.

The schemes were developed and implemented in the arbitrary Lagrangian
mesh transport code LaMEDOC,14 although the test problems used were entirely
one-dimensional. The coding for the rebalance schemes is detailed in the Ap-
pendix. It was found that the overhead for performing both the o rebalance
accelerations was negligible. Thus, the comparison of the schemes is based
merely on the total number of inner iterations required for convergence, the
actual computation time being proportional to that figure. All calculations
were performed in the SZPO approximation.

The various computational schemes used are described as follows:

Scheme STD: This is the standard search procedure used in typical transport
codes, as described in Part II, including the root-finding

o search. Convergence precision on inner and outer iterations

16



is the code default, 10‘4. An inner iteration limit of 25 is
included but no limit on the outer iterations. The overall
problem is considered converged when ll-Anl < 10_4. By an appropriate
choice of the eigenvalue modifier, EVM, the standard procedure
can be made to look as good or as bad as desired. In these
problems, the code default of EVM = 0.01 gen/shake (1 shake =
10_8 s) is used.

Scheme VCP: This is the variable convergence precision scheme, as described
in Part V. The o eigenvalue search procedure is the same as in the
STD scheme. The inner iteration limit of 25, with no outer iteration
limit, is maintained.

Scheme GCCMR: This is the group-collapse coarse mesh rebalance scheme, de-

scribed in Part III, which is applied to the o eigenvalue search. The
GCCMR is used only for the first three o guesses, after which the linear
root-finding procedure of the STD scheme is used. The VCP scheme is
also included.

Scheme WSGR: This is the whole system groupwise rebalance scheme, described
in Part IV, which is applied to the o eigenvalue search. Implementation
is exactly as in the GCCMR scheme.

Scheme HYB: This is the hybrid scheme, also described in Part IV, in which both
GCCMR and WSGR are performed for the & search, with both sets of rebalance
factors being applied to the scalar flux and moments.

Scheme HYBNOF: This is the same as the above HYB scheme, except with no rebalance

factors being applied to the fluxes. This scheme indicates how much of
the acceleration is due to the improved a guess and how much accelera-
tion is due to the rebalance factors themselves.

Scheme MXOUTS: This is identical to the HYB scheme, except that a maximum outer

iteration limit of 5 outers for any one o guess is imposed, with one
outer per o iteration for the first two a guesses, as described in
Part V.

If all of the acceleration schemes provide a reduction in computational effort
and have no interaction with the other methods, we would expect the last scheme,
MXOUT5, to provide the greatest overall improvements.

Problem #1
This is a very small, hypothetical, one-group, two-material, spherical test

problem. The material mesh and spatial mesh are shown in Fig. 1.
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Fig. 1.

Problem #1 material mesh and spatial mesh.

. . -1 .
The macroscopic cross sections (cm ) for each material are

Mat Za vZf Zt 21+1
1 2.0 4.0 3.0 1.0
2 0.1 0 2.1 2.0
X, = 1.0 v, = 10.0 cm/sh

18



The results for this problem are

Scheme Total Inners

STD 678

VCP 234

GCCMR 157 (best rebalance)

WSGR 174

HYB 157

HYBNOF 157 (rebalance factors have no effect)
MXO0UT5 123

At the completion of the first o iteration (for which keff = 1.835), the

two rebalance estimates of o are

Rebalance al
GCCMR 16.79

ao = 18.32
WSGR 8.42

For the GCCMR at the end of the first o iteration, the complete eigenvalue

spectrum and eigenvectors of rebalance factors are

GCCMR
Rebalance factors
Eigenvalues by material region
o) = 16.79 (1.738, 0.2615)
a} = -3.23 (-0.1838, 2.1830)
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At the completion of the third « iteration, the two GCCMR eigenvalues and eigen-

vectors are

Rebalance factors
Eigenvalues by material region
o) = 18.32 (1.0004, 0.9996)
a? = -53.69 (-0.0076, 2.0076)

From the above table of total inner iterations, we conclude

a. the variable convergence precision reduces the total inners by
two-thirds.
b. the GCCMR is the more effective rebalance, which one would expect

for a one-group problem.

no acceleration is coming from the rebalance factors.

the best overall improvement (MXOUT5 scheme) results in 1/5 the com-

putational effort of the standard scheme.

Problem #2

This is another small, hypothetical, two-group, two-material, spherical test

problem.

The material and spatial meshes are the same as for Problem #1.

The

. . -1
two group macroscopic cross sections (cm ") are

Mat Group Za v Zt zg*gﬁ
1 1 2.0 4.0 3.0 1.0 2192 =0
2 1.0 2.0 1.5 0.5 (no downscatter)
2 1 0.10 0 2.1 2.0
2 0.20 0 4.2 4.0
x = (0.7, 0.3) v = (10.0, 0.1) cm/sh
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The results for this problem are

Scheme Total Inner

STD No convergence

VCP 773

GCCMR 714

WSGR 531 (best rebalance)

HYB 534

HYBNOF 557 (rebalance factors accelerate)
MXOUT5 266

At the completion of the first o iteration (for which keff = 1.816), the

two rebalance estimates of & are

Rebalance al
GCCMR 0.276

ay = 6.367
WSGR 3.284

For the GCCMR at the end of the first o iteration, the complete eigenvalue

spectrum and eigenvectors of rebalance factors are

GCCMR
Rebalance factors
Eigenvalues by material region
aé = 0.276 (1.648, 0.3520)
a} = -0.105 (-0.459, 2.459)
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For the WSGR at the end of the first o iteration, the complete eigenvalue spectrum

and eigenvectors of rebalance factors are

WSGR
Rebalance factors
Eigenvalues by group
aé = 3.284 (1.955, 0.0450)
ai = -0.150 (5.267, -0.267)

From the above table of total inmers, we conclude

a. the WSGR is the more effective rebalance, which one might expect
because of the strong spectral skewing between the two material regions.

b. less than 5% of the acceleration is due to the rebalance factors.

c. the best overall improvement results from the MXOUT5 scheme, in one-

third the computational effort of the worst case (VCP scheme).

Problem #3

This is a more realistic problem of a small central sphere (R = 5 cm)
of HZO’ surrounded by a sphere of pure 235y (R = 20 cm). All materials are at
nominal density. A mesh spacing is used of 40 cells in the azimuthal direction
and 20 cells in the radial direction (5 in the H,0, 15 in the 235y), as shown
in Fig. 2.

Fig. 2. Problem #3 material and spatial meshes.
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A twelve-group, fast neutron cross-section set is used, with velocities ranging

from v. = 51.93 cm/sh down to v = 0.00333 cm/sh.

T;e results for this problii are
Scheme Total Inners
STD 3511
VCP 1175
GCCMR 1147
WSGR 984 (best rebalance)
HYB 983
HYBNOF 1127 (rebalance factors accelerate)
MXOUTS 847

At the completion of the first a iteration (for which keff = 1.706), the two

rebalance estimates of o are

Rebalance al
GCCMR 0.479

ao = 0.844
WSGR 0.792

For the GCCMR at the end of the first a iteration, the complete eigenvalue

spectrum and eigenvectors of rebalance factors are

GCCMR
Rebalance factors
Eigenvalues by material region
@ = 0.479 (1.9893 , 0.01071)
o] = -0.0028 (-0.1982 , 2.1982)
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For the WSGR at the complete convergence of the problem, the eigenvalue spectrum

for all 12 groups is shown in Fig. 3.

24

From

the above table of total inners, we conclude

a. the variable convergence precision reduces the total inners by
two-thirds.
b. the WSGR is the more effective, which one would expect from the strong
spectral effect of the water.
about 15% of the acceleration is coming from the rebalance factors.
d. the best overall improvement (MXOUT5 scheme) results in 1/4 the
computational effort of the standard scheme.
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Fig. 3. Problem #3 WSGR o spectrum at convergence.



Problem #4
This is a five-material problem with a great deal of spatial inhomogeneity,
consisting of concentric spheres of Al (R = 2 cm), 235U (R = 16 cm), Fe (R = 17 cm),

238y (R = 22 cm), and C (R = 26 cm), all at nominal density. The material and
spatial mesh is shown in Fig. 4.

Fig. 4. Problem #4 material and spatial meshes.
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The same 12-group cross-section set is used.

The result for this problem are

Scheme

Total Inners

STD
VCP
GCCMR
WSGR
HYB
HYBNOF
MXOUTS

5075
1536
1287
1427
1273
1315
1013

(best rebalance)

(rebalance factors accelerate)

At the completion of the first a iteration (for which keff =

two rebalance estimates of o are

Rebalance al
GCCMR 0.620
WSGR 0.538

\ ag = 0.826

1.726), the

For the GCCMR at the end of the first o iteration, the complete eigenvalue

spectrum and eigenvectors of rebalance factors are

26

GCCMR
Rebalance factors

Eigenvalues by material region

aé = 0.620 (1.427  1.652 1.142 0.529 0.247)
ai = -0.258 (0.119  0.112  -0.419  -1.50 -2.85)
aé = -0.803 (-0.092 -0.074 0.480 1.41 -2.94)
a; = -3.97 (-4.93 0.012 0.046  -0.008 0.001)
az = -4.82 (0.638 -0.138 3.64 -0.515  -0.005)




For the WSGR at the complete convergence of the problem, the eigenvalue spectrum
for all 12 groups is shown in Fig. 5.
The rebalance factors at the end of the first a iterations are those factors

required to convert the k solution fluxes to the converged o solution fluxes.

eff
By performing a keff (o0 = 0) calculation, then performing the full o calculation,
and then integrating both sets of fluxes over all groups and each coarse mesh
zone, it is possible to calculate the exact rebalance factors that are required

to convert the ke solution to the converged o solution. These exact rebalance

ff
factors are compared to the approximate rebalance factors at the end of the

first a iteration below.

PROB 4 WSGR ALPHA SPECTRUM

<A

LT

2
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go — < — - Vﬁe%ﬂ—&
'T;. 1 Ll 1 T L] 1 1 L o
-9.0 -8.0 -7.0 -6.0 -5.0 —4.0 -3.0 -2.0 -1.0 0.0 L0

REAL(ALPHA)

Fig. 5. Problem #4 WSGR o spectrum at convergence.

27



Rebalance factors

by group
Exact WSGR
Rebalance factors
by material zone 2.519 2.265
2.438 2.220
Exact GCCMR 2.272 2.121
1.581 1.429 1.999 1.936
1.481 1.653 1.377 1.470
0.911 1.142 0.723 0.904
0.634 0.529 0.375 0.549
0.394 0.247 0.187 0.326
0.108 0.199
3.37 E-4 1.16 E-2
2.39 E-6 1.19 E-4
9.84 E-10 1.56 E-5
From the above tables, we conclude
a. the variable convergence precision reduces the total inners required

by 2/3.

b. the GCCMR is more effective, which one might expect from the con-
siderable spatial structure of this problem.

c. only about 3% of the acceleration is coming from the rebalance
factors.

d. the best overall improvement (MXOUT5 scheme) results in 1/5 the

computational effort of the standard scheme.

Problem #5

This is a simple, homogeneous, three-group, spherical test problem with a
radius of 4.0 cm. The problem was run as a 90° segment of the sphere, using
64 mesh cells in the azimuthal direction and 64 mesh cells in the radial

direction as shown in Fig. 6.
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Fig. 6. Problem #5 fine spatial mesh (64 x 64).

The hypothetical three-group macroscopic cross sections, representing two

fast groups and a thermal group are

Group Za vZf Zt %g:g z -1 z -2+
1 0.25 0.75 0.80 0.25 - -
0.20 0.60 0.70 0.30 0.20 -
0.10 0.30 10.0 9.90 0.20 0.10
¥ = (0.75, 0.2, 0.05)

= (10.0, 0.1, 0.001) cm/sh

<
I

One of the defects of coarse mesh rebalance is its instability as the
rebalance mesh approaches the fine mesh, for some problems. This problem is
designed to see if that defect occurs for the o CMR equations. The spatial
rebalance mesh is obtained by repeatedly dividing the spatial domain in both
the radial and azimuthal directions. Thus, the problem is run with 1 (4096
cells/coarse mesh zone: mesh A), 4 (1024 cells/coarse mesh zone: Mesh B), 16
(256 cells/coarse mesh zone: Mesh C), and 64 (64 cells/coarse mesh zone: Mesh D)
coarse mesh rebalance zones. In addition, the problem is run with a coarse
8 x 8 spatial mesh and 64 (1 cell/coarse mesh zone: Mesh DCM) rebalance zones;

thus, fine mesh rebalance.
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The results for this problem are

Total Innpers
Scheme A B c D DcM®
STD 1196 729 452 374 b
vCP 218 201 178 137 b
GCCMR 285 244 222 170 b
WSGR 225 110 83 52 b
HYB 225 110 95 61 b
HYBNOF 233 141 97 64 b
MXOUT5 162 111 78 71 114

2 Fine mesh rebalance: 8 x 8 coarse spatial mesh.

b First set of outer iterations fails to converge.

At the completion of the first a iteration (for which keff = 1.948), the two

rebalance estimates of o for each mesh are

Rebalance A B c D pcy?
GCCMR 0.00041  0.00041 0.00041 ©0.00040 | 0.00040
WSGR 0.425 0.456 0.475 0.476 0.382
L . P, tt— ——
B
a. = 0.485 a. = 0.491

0

For the fine mesh rebalance case (Mesh DCM), the first set of outer itera-
tions fails to converge, falling into a two-cycle oscillating mode, which pre-
vents the convergence of A, except for the MXOUT5 scheme in which the outer
iteration limit terminates the outers. With the outer iteration limit imposed,
both a rebalance schemes, GCCMR and WSGR, perform well and give no indication
of s stability problem for fine mesh rebalance. The GCCMR gives particularly
poor estimates of a for this problem. This might be expected, since the spatial
distribution for the keff problem and the o problem do not differ greatly for
homogeneous systems.

For the GCCMR at the complete convergence of the problem, the eigenvalue

spectra for the various rebalance meshes are shown in Fig. 7.
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For this problem, we conclude

a. the variable convergence precision reduces the total inmers required
by 4/5 to nearly 2/3.

b. the WSGR is more effective, which one might expect from the strong
spectral effect due to the bottom group.

c. neither the GCCMR or WSGR appears to have stability problems when the
rebalance mesh and fine mesh are identical.

d. only a few per cent of the acceleration is coming from the rebalance
factors.

e. the best overall improvement (MXOUT5) scheme results in 1/8 to
1/5 the computational effort of the standard scheme.

VII. SUBCRITICAL SEARCHES

Alpha eigenvalue searches for subcritical systems are notoriously difficult
to converge. For highly subcritical systems, a code crash (referred to as a
"dramatic failure'" in the code manualsl-3) is the usual result. In this section,
we examine the causes for the code "failure" and describe a remedy for this de-
ficiency.

There are many elegant mathematical papers6-10 written on the a eigenvalue
spectrum of Eq. (3). These can be summarized, for the most interesting case of
a finite media, as follows:9 For the continuous velocity variable, v £ [0,®),
including the limit v = 0, there exists a continuum of eigenvalues to the left

of o, where

ok = - max lim vI (V) (24)
2 v0

and there may exist a discrete spectrum of points and, possibly, curves to the
right of a*, as illustrated in Fig. 8. The existence of a discrete-eigenvalue
spectrum is not guaranteed. If a discrete-eigenvalue spectrum exists, it has

18,19

been shown there exists a dominant eigenvalue, Ugs with Im oy = o,

a > o*, and "’a > 0.
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Fig. 8. General eigenvalue spectrum.

For velocity space bounded away from zero, v € (vo,m), Yo > 0, the continuum
spectrum in Fig. 8 becomes a discrete spectrum of points and, possibly, curves.

In the former case in which Yo > 0, for sufficiently small bodies, the point
spectrum to the right of o* in Fig. 8 can disappear. In this situation, the
time-dependent flux decay is dominated by the v»0 limit, by neutrons that are
moving very slowly through the medium. There has been considerable mathematical
discussion on this "disappearance of the point spectrum into the continuum'
and the existence of point eigenvalues within the continuum. Larsen and Zweifel9
argue that this continuum part of the spectrum is a creature of the mathematics
and does not correspond to physical reality; that at velocities v»0, quantuum
mechanical effects probably render the transport equation invalid. At these
very low velocities, the neutron population density is undoubtedly so low as
to make the transport equation inapplicable.

The case of the transport equation in the multigroup approximation has been

analyzed by Larsenlo and these esoteric mathematical ambiguities do not exist.
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Under simple conditions on the cross sections that are virtually always met in
practice (namely, that a neutron or its progeny in any one group can eventually
transfer to any other group), he proved the existence of a dominant eigen-

value o, and a corresponding positive eigenfunction wa . Thus, the failure of
transport codes (which solve the multigroup transport equation) to calculate an
a eigenvalue for a subcritical system is not due to the eigenvalue's nonexistence
but due to some deficiency in the computational procedure.

For supercritical systems, o (>0) corresponds to a physically measurable
quantity, the exponential growth of the flux at long times after any early
transients (with o < 0) have died out. The possibility of driving a nuclear
system sufficiently supercritical to be supercritical in a higher eigenmode
apparently has not been examined.

For subcritical systems (ao < 0), the physical interpretation of the domin:nt
eigenvalue o has been subject to some debate. There are some strong arguments
that no valid physical interpretation of the negative dominant eigenvalue (guaran-
teed by the multigroup transport equation) can be made, no matter how close to

critical is the system. For some physical systems, experimenters have actually

8,t
17,¥%

been unable to measure any pulsed neutron experiment die-away constants.
However, exponential die-away constants for subcritical GODIVA assemblies

13 and Rossi-a17 constants

for water assemblies,8 and for natural uranium systems
for various systems17 have been measured and, in some cases,13 have been found in
good agreement with calculations.

For highly absorbing and for subcritical systems, the long-time or asymptotic
distribution is dominated by very slowly moving neutrons. In this regime, the
multigroup assumption may be a very poor approximation. The neutron population
densities may be so low and neutron wave and other quantum effects so large
that the results from a multigroup transport calculation have little re-

lation to physical reality. Thus, code users should exercise considerable

caution in physical interpretations of the calculated o for far subcritical

systems. This is demonstrated in the example problem to follow.

’ﬁ. P. Whalen, Los Alamos National Laboratory Group X-DO, provided this
information (1982).

*G. E. Hansen, Los Alamos National Laboratory, Group Q-2, provided this
information (1982).
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We will assume that the code user, for whatever reason, has a genuine need
to calculate an o eigenvalue for a subcritical system. It is then necessary to
understand why the present eigenvalue search algorithm fails, in order to devise
a remedy.

If, at some point during the search, the a eigenvalue guess becomes suf~

ficently large and negative, then the effective total cross section,

b3 . o+ L
v

t,eff = “t,g g ’
may become negative for some energy groups and mesh cells. Such negative total
cross sections obviously have no meaning for the transport equation and the
solution algorithms will assuredly fail. Thus, if one constrains the o search
procedure to maintain

%

a>a = -max min v Zt ’

(25)
which will usually occur in the bottom energy group (g = IGM), then negative
effective total cross sections will not occur.

Unfortunately, this constraint is insufficient to insure convergence of
the a eigenvalue search algorithm. Convergence failure will also occur when an

o guess becomes sufficiently small so that the system becomes supercritical in

one of the groups. Neglecting leakage, this will occur when

5ogt =< 5 .g (26)
4

for some energy group g. When o becomes sufficiently large and negative so that,
with leakage, some group becomes supercritical, the inner iterations will fail
to converge for that group and, with subsequent additional outer or inner
iterations, the flux will diverge until machine overflow occurs, the so-called
"dramatic code failure."

To illustrate this situation, consider a homogeneous uranium sphere of
radius 8.74 cm, composed of 75% 238U and 25% 235U, at normal density. For a
five-group cross-section set and an S,P. approximation, a plot of A versus a

2°0
is shown in Fig. 9.
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Fig. 9. A(a) for subcritical uranium sphere.

For this problem, the system becomes supercritical in the bottom group whenever
o < - 0.18 generations/shake (1 shake = 10_8 s).

From this curve in Fig. 9, it is obvious why a conventional o eigenvalue
search technique will fail. The linear extrapolation from the first two A(a)
points will yield a guess of o << - 0.18 gen/sh, far into the region of itera-
tion divergence (a < amin)' This is illustrated in Fig. 10.

It should be pointed out that a* = -1.018 gen/sh for this cross-section
set, so that the region of iteration divergence (a < amin) is bounded well to
the right of the theoretical minimum.

The solution to the failure of o eigenvalue searches for subcritical systems

is straightforward. We wish to
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Fig. 10. Failure of o search procedure.

1. attempt to determine o in SO that any extrapolation will not enter
the region of iteration divergence, and

2. restart the o search whenever it extrapolates into this region of
iteration divergence.

The modifications to the search procedure are relatively minor:

® Set the inner iteration limit to a moderately large number (say 50).
o Monitor the inner iterations for divergence.
1. If the inner iteration limit is reached in any group, then the

current o (n = o iteration index) is too far negative. Abort

. . n .
the current outer iteration. Store the current o into amin

. n
if ¢ > current a . .
min



+
2. Choose a new o 1 midway between this current o (for which the

inners diverged) and the last an_l for which the outers converged

0ln+1 - (an + 0ln-l)/2
3. Start a new set of outer iterations.
® Constrain the o guesses so that an+1 > o i
1. If the linear or quadratic extrapolation or the rebalance pro-
cedure gives an an+1 < o 5o then choose the next an+1 =0 +

6n’ where 8 is some small arbitrary number that changes with a
iteration index n (say 6 = 0.01/n).

The success of this procedure is illustrated for the subcritical uranium
sphere in Fig. 11, where the A's for the various o guesses are plotted. 1In
this case, the GCCMR scheme was utilized for the first two a iterations (namely
o and as), rather than an eigenvalue modifier and a linear extrapolation.

Once an o for which A > 1 is found, the eigenvalue iterations converge very

rapidly.

MODIFIED ALPHA EIGENVALUE SEARCH

V// 777"
§ ION OF ITERATION DIVERGENCE )
.

‘.1l 1.2467
[(54

VER 8.2

4]
3-
-~ 2 7 PO
Jéffz:i///
B
™~
54
gL o
j}
D
=
. <o
~8
S
(-3
"
bz ]
K. .
[=2
4
~
-3
o
2.
& 4
LN L T 1 ] T T T T 0
-0.500 -0445  -0.390 -0.335 -0.280 -0.225 ~0.470 —0.115 ~0.080 —0.005 0.05d
ALPHA

Fig. 11. Modified search procedure.
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It should be noted that all current discrete-ordinates transport codes cannot
calculate o eigenvalues for systems without any fissile material, since the A
eigenvalue is not defined for such systems. To modify these codes whose eigen-
value search procedure is based on roots of the A(a) curve requires rather major
surgery to the code. However, a code whose eigenvalue search is based entirely
on a rebalance scheme, which does not require the A eigenvalue, can be modified
with little effort to calculate such eigenvalues.

The o search procedure described above is sufficiently robust to yield the
0° -0.178, for this

problem and this multigroup structure. One might ask if this computed «

dominant eigenvalue of the multigroup transport equation, «

OlS

a physically meaningful quantity; if this &, corresponds to an exponential die-

0
away constant for this system. In this case, the answer is probably no.

By changing the cross-section multigroup structure, one finds that the
o for this problem is extremely sensitive to changes in the bottom energy group.
By changing the lowest group velocity by a factor of 2 (v5 = 1.444 cm/sh >

2.888 cm/sh), then ay = -0.178 gen/sh » -0.351 gen/sh, or also changes by a factor
of 2, with no change in keff' Conversely, if one increases the group 1 vZf
by a factor of 2, one noticeably increases keff’ but there is virtually no change

in - Thus, for this problem, the calculated A

of the multigroup structure and, in particular, the bottom neutron energy group

is virtually a function only

speed. In this case, it is highly suspect that the calculated o has any
meaningful relation to physical reality.

One can continue to increase the vZf in the cross sections until the point
is reached that the o, is sensitive to these changes in the cross section. Once

0

this point is reached, one finds that the computed o, is now relatively insensi-

0
tive to changes in the bottom energy group. For example, if the group 3 vZf is
off = 0.940). By
changing the lowest group velocity by a factor of 2 (v5 = 1.444 cm/sh >

2.888 cm/sh), then a,

This behavior of the eigenvalues for this problem leads to the following

multiplied by 2.5, the system is only slightly subcritical (k
= -0.087 gen/sh » -0.090 gen/sh, or o only changes by 3%.

conjecture. The A(a) curve, as shown in Fig. 9, may be, perhaps, the superposi-
tion of two separate curves, as shown in Fig. 12. Curve 1 and its eigenvalue o
may be associated with some composite properties of the system, while curve 2

and its eigenvalue a, (= LY the dominant eigenvalue, in this case) are associa-
ted with the behavior of the most slowly moving neutrons in the bottom energy
group. In this situation, the calculated dominant eigenvalue, %g» has no relation

to a physically measurable die-away constant.
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Fig. 12. Possile A(a) curve.

As the system is driven towards criticality, curve 1 is moved upward until

eventually its associated eigenvalue, o, becomes the dominant eigenvalue, Uy»

’
a quantity insensitive to the behavior if the neutrons in the bottom group.
At this point, the dominant eigenvalue of the multigroup transport may correspond
to a physical die-away constant. Whether the curve 1 eigenvalue, ay, as ori-
ginally shown in Fig. 12, corresponds to a "discrete eigenvalue buried in the
continuum,' one can only guess.

One can summarize the discussion in this section of subcritical o eigen-
values as follows:

® A robust eigenvalue search procedure has been developed to obtain the

dominant eigenvalue of the multigroup transport equation, a quantity

whose existence is guaranteed under the most general conditions.
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The code user must be extremely careful in his interpretation of this
dominant eigenvalue as a physically meaningful exponential die-away
constant. If his computed eigenvalue is sensitive to the bottom
energy group velocity, it is highly suspect. That is to say, if his
system is sufficiently subcritical so that the improved search pro-
cedure is invoked by the code, the computed dominant eigenvalue most
likely has little relation to physical reality. Stated another way,
a "dramatic code failure" is nature's way of saying the user is

calculating nonsense.

VIII. CONCLUSIONS

The two rebalance schemes are found to accelerate the o eigenvalue calcula-
tion by anywhere from a small amount to as much as 50% and more, as compared
with the variable convergence precision scheme. Nearly all of the acceleration
comes from the improved estimates of a, with very little, in most cases, coming
from the rebalance factors themselves.

More importantly, the rebalance scheme makes the iterative solution of the
a eigenvalue problem considerably more robust, relieves the code user of much
of the burden of providing intelligent input required by the standard search
procedure, and permits modifications to the iteration strategy that eliminates
many of the umnecessary calculations. By utilizing all the schemes and pro-
cedures described in this report, we can usually solve the a eigenvalue problem

in one-fifth the time required for the present search procedure.
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APPENDIX

IMPLEMENTATION OF 0. REBALANCE ACCELERATION

The two o rebalance schemes (GCCMR and WSGR) were implemented and tested in
the Lagrangian mesh discrete-ordinates code LaMEDOClh. In this appendix, we
will give the coding details for their implementation in LaMEDOC. We will first
describe the important variable names. The actual code listing will then
be given, broken down into numbered segments. Finally, the purpose of each
numbered segment of coding will be described.

The SUBROUTINE AREBAL (ALFAN), the mnemonic for o rebalance, provides the
new o guess (ALFAN), using the fluxes stored in common at the completion of the
current set of outer iterationms.

The important integer variables are

NMAT: number of materials in the problem. The coarse mesh rebalance is

performed on the material mesh, so that NMAT is actually the
number of coarse mesh regions.

IGM: number of energy group (= IGMD).

IM,KM: number of mesh cells in the two dimensions of the Lagrangian mesh.

The important arrays are

FLUX(NM,KMIM,IGM): the scalar flux and moments (NM moments total) for
each of the KMIM (= KM*LM) Lagrangian mesh cells and for each of
IGM energy groups.

FLGS(k,2): the group~-summed negative inflows from material zome k to
material zone £, with FLGS (k,k) being the total outflow from
material zone k. This is the matrix of Eq. (11), used in the
GCCMR.

F(k): the GCCMR rebalance factors, for NMAT material zonmes.

NL(g): the groupwise net leakage from the system, used in the WSGR.

FSS(k): the volume-integrated fission source for the k'th material mesh
zone. This is Eq. (9b), used in the GCCMR.

ABSP(k): the volume-integrated absorption for the k'th material mesh zone.

This is Eq. (9a), used in the GCCMR.
FV(k): the total neutrons for the k'th material mesh zone. This is Eq.

(9¢), used in the GCCMR.
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RA(k,2): the FL+AB-FS array on the left-hand side of Eq. (8) of the GCCMR.

Q(k): the FV*f vector on the right-hand side of Eq. (8) of the GCCMR.

WSRC(g): the C8 diagonal matrix of Eq. (21b) for the WSGR.

WSRFV(g): the FV8 diagonal matrix of Eq. (21c) for the WSGR.

WSRS(g,g'): the Sgg' array of Eq. (21d) for the WSGR.

WSRFS(g,g'): the Fsgg' array of Eq. (21e) for the WSGR.

WSFSS(g): the whole system fission source for each group g. Used in the
WSGR to maintain the total fission source normalization of unity.

WSF(g): the rebalance factors for group g of the WSGR.

WSRA(g,g'): the NL+C-S-FS array on the left-hand side of Eq. (20), for
the WSGR.

WSQ(g): the FVXf vector on the right-hand side of Eq. (20), for the
WSGR.

The following two pages contain the listing of the AREBAL routine.



[eXeXKe]

SUBROUTINE AREBAL(ALFAN)
PERFORM MATERIAL MESH REBALANCE ACCELERATION OF ALFA

OPTIMIZE

MACRO PARAMC (CLCHFILE) $ USE PARAMC (CLCHFILE)

MACRO CONSTC (CLCHFILE) $ USE CONSTC (CLCHFILE)

MACRO FLUXSC (CLCHFILE) $ USE FLUXSC (CLCHFILE)

MACRO XSECC (CLCHFILE) $ USE XSECC (CLCHFILE)

MACRO SETLC (CLCHFILE) $ USE SETLC (CLCHFILE)

MACRC MESHC (CLCHFILE) $ USE MESHC (CLCHFILE)

DIMENSION WSRC(IGMD),WSRS(IGMD, IGMD).WSRFS(IGMD,IGMD) , WSRFV(IGMD),
WSRA(IGMD,IGMD),WSO(IGMD) ,WSF(IGMD) ,WSFSS(IGMD)

EQUIVALENCE (WSF(1),WSQ(1))

INTEGER GP

INTEGER G

DIMENSION VELI(IGMD)

COMMON/CONVG/ EPSL.EPSO.EPSI

Code
Rlock

i8

19

20

25

27
28

30

SCALE FLOWS BY LAST OUTER REBALANCE (OREBAL) FACTOR
DO 18 L=1.NMAT $ DO 18 K=1,NMAT
FLGS{K,L)=F(K)*FLGS(K L)

LAST OUTER REBAL FACTOR = 1/ALA , SCALE NET LEAKGE
DO 19 G=1.IGM
NL{G)=NL(G)/ALA

SOURCE ON MATERTAL MESH
CALL CLEAR(O.0O,FSS.NMAT)
DO 20 L=1,LM ¢§ DO 20 K=1,KM $ MAT=IM(K,L)+1
FSS(MAT)=FSS(MAT)+FISSA(K.L)*VOL(K,L)

ATERTAL MESH
CALL CLEAR(O.O.ABSP,NMAT) $ CALL CLEAR(O.O.FV,NMAT)
DD 25 G=1,IGM
VELI(G)=1./VEL(G)
00 30 L=1.LM ¢ DO 30 K=1,KM $ KL=(L-1)*KM+K ¢ MAT=IM(K,L)+1
DO 28 IPOS=1,18 $ IF(FR(IPDS.K,L)) .28
IX=MATIX(IPOS.MAT) $ ATOMS=ANO(K,L)»FR(IPDS.K.L)
DO 27 G=1,IGM
ABSP(MAT)=ABSP(MAT)+ATOMS*SIGA(G, IX)*FLUX(1,KL,G)
CONTINUE
DO 30 G=1,IGM
FV(MAT)=FV(MAT)+VELI(G)*FLUX(4 KL, G)*VOL(K,L)

IF(NMAT.EQ.1) THEN
ONE MATERIAL, DO NOT ITERATE
AXLA=(FSS(1)-FLGS(1.1)-ABSP{1))/FV(1) $ F(1)=1.0
GO TO 155
END IF

S0

(o
~p» 100
102

104

110

BEGIN INVERSt POWER ITERATION FOR ALFA EIGENVALUE
XLA=10.0 $ T=0.0

DO 90 K=1,NMAT

T=T+FSS(K) $ CALL CLEAR(T.F,NMAT)

CONTIAYIE
DO 104 L=1.NMAT $ DO 102 K=1,NMAT
RA(K.L)=FLGS(K,L)

Q(L)=FV(L)*F(L)
RA(L,L)=RA(L,L)+ABSP(L)-FSS(L)+XLA*FV(L)
CALL LSS(NMAT, 1. NMAT.RA,Q ,DUMY DET)
TP=T $& T=0.0

00 110 L=1.NMAT

T=T+FSS(L)*F(L)

TA=1./T $ XLAR=XLA $ XLA=XLAR-TA

DO 112 L=1,NMAT

F(L)=TA=*F(L)

IF(ABS (1. -XLA/XLAR).GT.EPSO) GO _TO 300

Oﬂq

155

DO WHOLE-SYSTEM GROUP-WISE REBALANCE

GENERATE WSR MATRICES

CALL CLEAR(0O.0,WSRC,IGM) $ CALL CLEAR(O.O.WSRS.IGM=*IGM)
CALL CLEAR(O.O,WSRFV,IGM) & CALL CLEAR(O.O.WSRFS,IGM~IGM)

160
180

DO 200 T=1,.LM 3§ U0 200 K=1,. R F RL=(L-T)*RNFR § MAT=IM(R.C)+1
DO 180 IP0S=1,18 $ IF(FR(IPOS.K.L)) .180

IX=MATIX(IPOS.MAT) $ ATOMS=ANO(K,L)=FR(IPOS.K,L)

DD 160 G=1.IGM

WSRC(G)=WSRC(G)+ATOMS*SIGTOT(G, IX)*FLUX(1,KL,G)
WSRFS(1,G)=WSRFS(1,G)+ATOMS*SIGNU(G,IX)*FLUX(1.KL,G)

DO 160 GP=1,G $ INDXG=(G*(G-1))/2+GP
WSRS(G,GP)=WSRS(G.GP)+ATOMS*SIGDS( 1, INDXG, IX)*FLUX(1.KL,GP)
CONTINUE
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DD 182 G=1,IGM

182 WSRFV(G)=WSRFV(G)+FLUX(1,KL.G)*VOL(K,L)*VELI(G)
200 CONTINUE
T TAVE GROUP-WISE WS FISSIDN SOURCE FOR NORMALS
DO 220 G=1,IGM
220 WSFSS(G)=WSRFS(1.G)
c FILL OUT FISSION MATRIX 8
DO 210 G=2,IGM $ DO 210 GP=1,IGM
210 WSRFS(G,GP)=WSRFS(1.GP)
DO 212 G=1,IGM $ DO 212 GP=1,IGM
212 WSRFS(G.GP)=CHI(G)*WSRFS(G,GP)
XXLA=10.0 $ T=0.0
DD 280 G=1,IGM
290 T=T+WSFSS(G) $ CALL CLEAR(T,WSF.IGM)
T
C START INVERSE POWER ITERATION
g 300 CDNTINUE
DO 320 G=1,IGM $ DO 320 GP=1,IGM
320 WSRA(G,GP)=-WSRS(G,GP)~WSRFS(G,GP)
DD 322 G=1,IGM $ WSQ(G)=WSF(G)*WSRFV(G) 9
322 WSRA(G.G)=WSRA(G,G)+NL(G)+WSRC(G)+XXLA*WSRFV(G)
CALL LSS(IGM,1,IGMD,WSRA,WSQ,DUMY DET)
TP=T $ T=0.0
DO 310 G=1,IGM
310 T=T+WSFSS(G)*WSF(G)
TA=1./T $ XXLAR=XXLA $ XXLA=XXLAR-TA
DO 312 G=1,IGM
312 WSF(G)=TA*WSF(G)
e TF ( ABS (1. ~XXLA/XXLAR).GT.EPSO) GD TO 300

[eXeXe X2

130
150

EIGENVALUE ITERATION CONVERGED. SCALE FLUX MOMENTS

CHOOSE BIGGEST INCREASE IN ALPHA AS BEST NEXT GUESS 10
IF(ABS(XLA-ALFA).GE.ABS(XXLA-ALFA)) ALFAN=XLA

IF(ABS(XXLA-ALFA).GT.ABS(XLA-ALFA)) ALFAN=XXLA

DO 130 L=1.LM $ DO 130 K=1,KM $ KL=(L-1)*KM+K $ MAT=IM(K,L)+1

DO 130 G=1,IGM $ DO 130 N=1 ,NM

FLUX(N,KL,G)=F(MAT)*WSF(G)*FLUX(N.KL,G)

RETURN

END
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The code blocks in the preceding listing perform the following functions:

Block 1:

Block 2:

Block 3:

Block 4:

Block 5:

At the completion of the last outer iteration, the outer rebalance
factors [left over in array F(k)] contain the factor 1/A, in order
to maintain a fission total of unity. Loop 18 scales the group-
summed flow array (FLGS) by the factors to make them compatible
with the already scaled flux (FLUX) and fission source (FISSA) array.
Loop 19 does the same scaling to the groupwise net leakage (NL)
array, using the factor A (ALA).
The volume-integrated fission source on the material mesh is accumu~
lated.
The volume-integrated absorption ABSP (without the Ot/v8 term) and the
total neutrons FV on the material mesh are calculated. Loop 30 cycles
over all KM*LM Lagrangian mesh cells, computing the material I.D.
(MAT) for each cell. Loop 28 cycles over the 18 possible isotopes
for each material. If the isotopic fraction (FR) is nonzero, it
computes the cross-section block I.D. (IX) and the total atoms of
that isotope (ATOMS) in the cell, based on the total atoms of all
isotopes (ANO) in that cell.
If there is only one material zone (whole system rebalance), the
next o guess (XLA) can be computed explicitly without the inverse
power iteration. This equation is equivalent to Eq. (15). The
rebalance factor is automatically unity, from the normalization.
This block is used for multimaterial rebalance, using the inverse
power iteration to solve the rebalance Eq. (8). The o eigenvalue
guess (XLA) is set to a large number (10.0 in this case) so the itera-
tion will converge to the eigenvalue of Eq. (8) nearest this value,
presumably the desired most positive one. The units of a are here
assumed in inverse shakes. If velocities are in cm/s, then this value
should be changed from 10 to 109. Loop 90 computes the system fission
total (T) at the start of the inverse power iteration and the initial
guess of the rebalance factors set to this value. Loop 100 is the
actual inverse power iteration loop.

Following Wachspress,16, the power iteration for the eigenvalue

equation

Mf =a £ (A-1)
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is given by

n

£t - ym1,0 (A-2a)

{

and

o = (1,%0,2 (A-2b)

where n is the power iteration index and (1,f) simply represents the
inner product of the vector f with the vector of ones. This simple
power iteration converges to the o eigenvalue that is largest in
magnitude (positive or negative), which is not the one we desire.

If we have some estimate of the eigenvalue, L Eq. (A-1) may

be written

M - aeI) f= (a - ae) £f. (A-3)

The fractional power iteratioan is then given by

ooy - aeI)'l(a - a )" (A-4a)

and

(@ - a)™ = a,7a,eh . (A-4b)

This fractional power iteration will converge to the eigenvalue closest
to the guess ae. If we choose a, as a large positive number, this will
converge to the desired, most positive, o eigenvalue. This iteration
is the one coded in Loop 100. In Eq. (A-4), the normalization is

(1,f) = 1. 1In the coding of Loop 100, the normalization is (FSS,f) = 1,
in order to maintain a fission total of unity.

Loop 104 constructs the matrix

RA = FL + AB - FS + o"FV (A-5)



of Eq. (8), where in the above notation,

M=FL+AB-FS |, (A-6)
and the vector on the right-hand side of Eq. (8)

Q=FV*F . (A-7)

The call to subroutine LSS solves the inverse matrix equation

™ - aeI)'l(a - )" £

of Eq. (A-4a).

Loop 110 calculates a new fission total (T), saving the previous
fission total (TP), which is, in fact, 1.0, by the normalization.
The next estimate of (a - ae)n+1 in Eq. (A~4b) is then given by

(a - ae)“+1 = TA = TP/T = 1.0/T . (A-8)

The next iteration estimate, a,y is then set to the previous iteration's

eigenvalue
a_ = XLAR ’ (A-9)
and the new iteration's eigenvalue of Eq. (A-4b) is then

o®t1 = a  + TB/T =a_+ 1T . (A-10)

Loop 112 then normalizes the rebalance factors f so the fission total

T is again unity. The iteration is then terminated when (1 - an+1/an)

< 80.
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Block 6:

Block 7:

Block 8:

Block 9:

Block 10:

50

This block initializes the whole-system rebalance (WSGR) arrays to
zero.

This block accumulates the WSGR arrays C (or WSRC), FV (or WSRFV),

S (or WSRS), and the first row of array FS (or WSRFS), as given in

Eq. (21).

Loop 220 stores the groupwise whole system fission source, the first
row of the FS array, into the WSFSS array, to be used later in the
normalization constraint. Loop 210 fills out the remaining rows of
the FS array. Loop 212 then multiplies the FS array by the X diagonal
matrix to obtain the final form of ¥S, as given in Eq. (2le). The
WSGR a estimate (XXLA) is set to a large number (10.0), the fission
total (T) again computed, and the initial guess of the rebalance
factors equated to this value.

Loop 300 is the inverse power iteration for the WSGR equations,
virtually identical to the coding of Loop 100, except the WSGR arrays
are used.

The next guess of the a eigenvalue (ALFAN) is chosen between the GCCMR
estimate {XLA) and the WSGR estimate (XXLA) in order to maximize the
change from the previous a eigenvalue estimate (ALFA). Loop 130 then
applies the GCCMR factors (F) and the WSGR factors (WSF) to the scalar
flux and moments. Both rebalance factors are normalized to maintain

the fission total of unity.
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