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EFFICIENTMETHODS FOR TIME ABSORPTION (u) EIGENVALUECALCULATIONS

by

Thomas R. Hill

ABSTRACT

The time-absorptioneigenvaluecalculationrepresents
one of the options found in most discrete-ordinatestrans-
port codes. This report describes several methods develop-
ed at Los Alamos to improve the efficiencyof this calcula-
tion. Two procedures,based on coarse mesh rebalance,to
acceleratethe a eigenvalueiterationsare derived. Some
simple modificationsto the iterationconvergenceprecision
and the iterationstrategy reduce the number of unnecessary
calculationsin the early stages of the problem. A proce-
dure to prevent code failureson rYsearchs for subcritical
systems is detailed. For the test problems examined,these
methods resulted in convergencewith one-fifth the number
of iterationsrequired for the standard eigenvaluesearch
procedure.

1. INTRODUCTION

The time-absorption(u) eigenvalueis one of the implicit eigenvaluesearch
1-5

options found in most current transport codes. Because these codes are de-

signed to treat a variety of impliciteigenvalueproblems (criticalsize search,

concentrationsearch), their generalizedsearch methods are less than optimal
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for a specific type of eigenvaluecalculation. Due to the explicit nature of

the a eigenvalueproblem and the types of nuclear systems of interestat Los

Alamos, a number of methods have been developed to considerablyimprove the

efficiencyof these codes for this eigenvaluesearch. This report describes

these methods.

We will start with the homogeneous,time- and energy-dependent,transport

equation

; # + V*@ + Zt(;,E) *(;,E,fi,t)=
JJ
dE’ dfi’Z#,E’+E,&&) &E’,fi’,t)

+ x(E)JJdE’ dfi’V~f(;,E’) *(;,E’,fi’,t) , (1)

where

$(~,E,fi,t)= angular flux as a functionOf the indePendentvariables time

(t), energy (E) or velocity (v), angle (3), and space (~),

Zt(;,E) = macroscopictotal cross section,

2s(;,E’+E,fiofi’)= macroscopicscatteringfunction,

x(E) = fission spectrum,and

vZf(:,E) = macroscopicprompt fissionneutron production cross section.

By making the time separabilityansatz

Eq. (1) is transformedto a time-independenteigenvalueproblem

(2)

2
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where

L = leakage operator,

s = scatteringoperator,

F= fission operator,and

qa and ciare the time-absorptioneigenfunctionsand eigenvalues,respectively.

There is a very rich literature
6-11

on the eigenvaluespectrumof Eq. (3).

Duderstadtand Martin
11

give a particularlygood discussionof this problem,

with abundant references. The Larsen and Zweifelg article is probably the most

complete and general of the recent papers.

Of particular interest is the eigensolutionof Eq. (3) with the largest

real part, aO, the so-called“dominant”eigenvalue.
10

This solution corresponds

to the asymptotic (as t-) solution of the original initial value problem, Eq. (l).

This dominant eigenvalue is the physical quantitymeasured in the laboratoryby

pulsed neutron (die-away)and Rossi-a’experiments. Physical considerationwould

obviously require

Im(ao) = O

and

(4a)

(4b)

Also of importanceis the sign of a.

[

>0 supercritical

‘O
=0 critical

1

.

<0 subcritical

It should be noted that the a eigenfunctionsof Eq. (3) differ from the

A (or keff) eigenfunctions,6*A9 which satisfy

(5)



except for the exactly critical case (A = 1 and a = O). The soluti& of Eq. (5),

the keff problem, is the calculationmost commonlydone with steady-state

transportcodes. Because the a eigenvalueappears in Eq. (3) as a I/v absorber

(hence the name time absorption),the energy spectra of $U and #A can differ

greatly for systems far from exactly critical. Furthermore,the spatial dis-

tributionscan also differ greatly. For systems far subcritical,the ya

eigenfunctioncan have a convex, downward spatial distribution,contraryto

physical intuition.

For this report, 6,12
it is sufficientto proceed directly to the multigroup

form of Eq. (3), written as

L++ (Zt + c@) $(;,fi) = (S + &) + , (6)

where $(;,fi)is a vector of multigroupangular fluxes,$g(;,~), g = 1 to IGM, and

L, It, S, and F are the multigroupapproximationsto the correspondingoperators

in Eq. (3). The intermediateeigenvalueA has been introducedand the solution,

a and *, of Eq. (6) is sought such that A = 1. The angular variablefiwill be

treatedwith the standard discrete-ordinatesapproximation.12 For the schemes

to be described in this report, the actual geometry and the spatial approxi-

mation used are immaterial, although the testingwas done for two-dimensional

geometrywith a finite difference (diamonddifference12’14)approximationof

the spatialvariable ;.

The existenceof a dominant eigenvalue,ao, for the multigroup transport

Eq. (6), for finitemedia, under very general conditions,has been shown by

Larsen.’”

This report is organized in the followingmanner. Part II briefly describes

the methods currentlyused in most current transportcodes. Part III and IV

outline the applicationof coarse mesh rebalance (CMR)3accelerationto the a

eigenvaluesearch. Part V details some modificationsto the iterationstrategy

that can improve computationalefficiency. Part VI presents some numerical re-

sults for typical test problems to demonstratethe efficiencieseffectedby these

improvedmethods. Finally, Part VII summarizesthe mathematicalliteraturefor

the a eigenvalueproblem and

value search for subcritical

4
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II. STANDARDMETHODS

The standard iterativemethods for solving the multigroupdiscrete-ordinates

transportequation are detailed in the appropriatecode manuals1-3 12and elsewhere.

The inner iterationsfor a single energy group are performed on the within-group

scatter source. The outer iterationsare performed on the fission source, yielding

upon convergence,the intermediateeigenvalueA of Eq. (6). For ~ = O, this A is

merely keff for the system.

The a eigenvalueproblem is solved as a sequenceof A eigenvalueproblems

until an a for which A = 1 is obtained. This a iterationoverlying the outer—
and inner iterationscan be written as

L+k+ (Z+#V-l) @k= (S+~F) ok ,
Ak

k+”where k is the a’iterationindex. The procedureby which the next c!

‘, Ak,
kselected,based on a and $ , constitutesthe a eigenvaluesearch—

cedure, the subject of this report.

The standard eigenvaluesearch procedure is roughly as follows:

1.

2.

3.

4.

[

5.

6.

7.

(7)

is

pro-

Make an initial guess of eigenvalueci”,usually = O.

Solve the transportEq. (7), performing inner and outer iterations

until convergence,for AO.

Obtain the second guess a~ by adjustinga“ with the eigenvaluemodifier

EVM

~I=aO+Ew .

Solve the transportEq. (7) for Al.

Using the points (Ak,ak)and (Ak-l,ak-l),perform a linear extra-
k+lpolation of A(a) to that a for which A‘+l(Qk+l)= 1. Or, alter-

natively,using the points (Ak,CYk),(Ak-l,ak-l),and (Ak-2,ak-2),per-
form a quadraticextrapolationof A(a) to that ak+l for which
Ak+l

((rk+l)= 1.
k+lSolve the transportEq. (7) for A .

Repeat until Ak+l =1.
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The code user is required to provide an initial eigenvalueguess d’ and an

eigenvaluemodifier EVM. In many cases, particularlyif the neutronicsare coupled

to a hydrodynamicscalculation,the user has little idea of the value, or even

the sign, of cf”. The eigenvaluemodifier is seldom more than a wild guess. A

poor choice of EVM, either in magnitude or sign, can significantlyslow the search

procedure, if not, in the case of subcriticalsystems, cause it to fail. In the

early a iterations,the root-findingprocedure of step 5 can sometimescause the

a search to flounderabout.

Further details of the eigenvaluesearch procedure are describedin the code

manuals.’-3 Additional input parametersare availableto make the eigenvalue

search proceed more efficiently. However, seldom is enough known about a problem

to permit an a priori selectionof these parameters,— even by the most intelligent

code users.

Because of these deficienciesin

to devise an alternateprocedure,one

problem, that will produce

meters from the code user.

III. GROUP-COLLAPSECOARSE

more rapid

the a search procedure, it is desirable

preferablybased on the physics of the

convergenceand require fewer input para-

MESH REBALANCE

The coarse mesh rebalanceCMR method1,3,12has been found to be an ef-

ficientmeans of acceleratingthe inner and outer iterationsof the transport

equation solution. This method is based on integratingthe transportequation

over various coarse mesh spatial regions to obtain a (usually)small system of

equations for rebalancefactors; factorswhich, when used to multiply the fluxes,

at the end of each iterationforce the rebalancedfluxes to satisfyparticle

conservationover each coarse mesh zone. This procedurehas been found to effect

a sometimes substantialaccelerationof the iterations. For most problems, the

coarse mesh used for the rebalanceaccelerationis simply chosen to be the

material mesh.

Typically, for the outer iterationacceleration, a grow-collapse rebalance,

obtained by summing over all energy groups, is used to obtain a matrix eigenvalue

equation for the intermediateeigenvalueA. Because the eigenvaluea appears as

an explicit scalar variable in Eq (6), similar to A, the CMRprocedure f- also

be applied to acceleratethe a iterationsof Eq. (7).

6



To obtain the group-collapsecoarse mesh rebalance (GCCMR)equations the

solutionof Eq. (6) is sought for the eigenvaluea with A= 1. Multiplyingthe

fluxes in Eq. (6) by coarse mesh dependent rebalancefactors, fk, and integra-

ting over all angles, all energy groups (group collapse),and all mesh cells

in coarse mesh zone K yields a matrix eigenvalueequation

[FL + AB - FS] f = - a FV f , (8)

of size equal to the number of coarse mesh zones I@f,for the eigenvalue~ and

eigenvectorof rebalancefactors f.

The diagonalmatrices AB, FS, and FV are

JJABK = dV dE Za@ = absorption ,

K

MFSK = dV dE Vzf($)= fission neutron production,and

K

HFVK = dV dE :+ = total neutrons.

K

(9a)

(9b)

(9C)

Here, ~ is the spatial and energy-dependentscalar flux and 2 is the macroscopic
1,3

a
effective absorptioncross section

Za (E) = Zt(E) -
JJ

dE’ dpO ZS(E+E’,pO) ‘ (lo)

where p. = fiofi’= scatteringangle. In practice, the integrals of Eq. (9) are

carried out by sums over spatial mesh cells and energy groups in the discretized

space.

The coarse mesh flow matrix, FL, consists of the group-summedoutflows from

zone K on the diagonal and negative inflows from zone I into zone J on the

off-diagonalelements:

7



FL =

-IF OF2 I
,1+2 \
I \\ I

I
\ \ I

\

L-IF1+KM OFKM

(11)

For one-dimensionalgeometries,this flow matrix will be tridiagonal. In general,

for multidimensional,orthogonaland nonorthogonalmeshes, it will be a full,

nonsymmetric,diagonallydominantmatrix. It canbe noted that

KM

OFK >-x IFK+I
1=1
I#K

(12)

with the equality holding when coarse mesh zone K has no surfaceson the outer

boundary. This implies the LI norm IIFLII> 0.

In general,Eq. (8) permits the existenceof complex eigenvalues,necessitat-

ing the use of a generalizedeigenvalue-eigenvectorroutine for its solution

if all the eigenvaluesare to be obtained. Experienceon a variety of problems

has shown the eigenvaluespectrum of Eq. (8) to range from negative eigenvalues,

large in magnitude, occasionallyin complex conjugatepairs, to a most positive,

dominant eigenvaluecorrespondingto CYoof Eq. (4). It can,
15

in fact, be shown

that there exists a dominanteigenvalueof Eq. (8), with zero imaginarycom-

ponent, which correspondsto an eigenvectorwith entirely positive components.

Because of the large negative eigenvalues,the simple power iterationlwhich

is used to solve the outer CMR equations for A cannot be used for Eq. (8) inas-

much as it convergesto the largest eigenvaluein magnitude,not the most positive

one. However, the inversepower iteration16 (Wielandt’smethod of fractional

iteration)can be applied to ob~ain the dominant eigenvalueof Eq. (8). This

method involveschoosing some estimate of an eigenvalueand this modified power

method then convergesto the eigenvaluenearest that guess. By choosingan initial

guess of the dominant eigenvaluesufficientlylarge, this inversepower iteration

8



will converge to that desired,most positive eigenvalue. In typical problems,

this inversepower iterationis found to converge quite rapidly,usually in from

3 to 8 iterations.

The GCCMR is performed as follows: During the inner iterationsfor each

group, when the angular flux is being calculated,the flows between each region

IF~+J and the outflows for each region OFK are computed. At the completion

of the inners for that group, these flows are accumulated (group-summed)into

the flow array, FL. Upon convergenceof the outer iterations (for a particular

a guess), the three flux integralsof Eq. (9) are computed for each coarse mesh

zone. The matrix Eq. (8) is then solved for a dominant eigenvalue,which will

then be used as the next a guess. The rebalance factors, f, of Eq. (8) are

applied to the scalar flux and moments and the next a iterationis then begun.

This GCCMR a search procedure eliminatesthe need for the eigenvaluemodi-

fier and the root-findingprocedure of the standardmethod. In fact, the inter-

mediate eigenvalueA plays no role in this search procedure. In practice, it

has been found that GCCMR gives remarkablygood estimates of a for the early a

iterations,but that it convergesmuch more slowly than the root-findingpro-

cedure in the later stages. Thus, the recommendedprocedure is to use GCCMR for

the first few (threeor four) CYestimates,then switch over to a root-finding

procedure for the final convergence.

A simple whole system variant of the a CMR can be derived. Integrating

Eq. (7) over all energy groups and all space points yields the balance equation

~Lk+ A~k+a%k = $ FSk , (13)

for the k’th a iteration,where NL is the total net leakage of neutrons from the

system. We would like the k+l’st iterationto satisfy the balance equationwith

A=I:

NLk+l
+ ABk+l + ctk+lFVk+l= FVk+l . (14)

SubtractingEq. (14) from Eq. (13) and assuming $k+l ~ ok (so that NLk+l ~ NLk,
ABk+l

‘ ABk,— etc.) yield

9



J+l = LYk+ (1 - ~
FSk

~k) ~

as the next estimate for the eigenvalue. Equation (8) for the case of a

material region can be shown equivalentto Eq. (15).

The GCCMR Eq. (8) yields not only the next guess for the eigenvalue

(15)

one-

ci,but

also the vector of rebalancefactors f which are applied to all the fluxes in

each coarse mesh zone. Since the magnitudeof this eigenvectoris arbitrary,

normalizationis typicallychosen to maintain a total fission neutron source of

unity

KM

FT = x FSk = 1 .

kl=

(16)

At the completionof the first ciiteration,the rebalancefactors for the

outer rebalanceequation

IFLO + AB”] f~uter = ~ FSOf~uter*o (17)

will be identicallyunity (u” = O is assumed),where AO = keff. The rebalance

factors from the first a rebalanceequation

IFLO + ABO - FSO] f: = - al FVOf~ (18)

will be those coarse mesh rebalancefactors that convert the spatial distribution

of the k solution fluxes to the approximatespatial distributionof the con-
eff

verged CYeigenvaluefluxes. Clearly, these rebalancefactorswill differ the

most from unity (and,hence, provicie the most acceleration)for problems in which

the a spatial distributiondiffers greatly from the keff spatial distribution.

10



This will occur for problems far removed from critical (a = O) and with much

spatial inhomogeneity. For spatiallyhomogeneousproblems (whereKM = 1), there

is no accelerationfrom the rebalance factor (f: = 1), only from the improved

estimate of ctl. In practice, only a modest amount of the accelerationfrom

GCCMR comes from the rebalancefactors; most of the accelerationcomes from

the improved estimatesof U. For a typical test problem (#4) described in

Part VI, which contains considerablespatial structure,these rebalancefactors

for f: ranged from 1.43 in the innermostmaterial zone, to 0.25 in the outer-

most zone.

Iv. WHOLE SYSTEM GROUPWISEREBALANCE

The a eigenvalueappears in Eq. (3) as a I/v absorber. For problems with

many energy groups and a broad range of neutron speeds, the a eigenvaluecan

greatly change the spectral distributionfrom the keff solution. This suggests

a rebalancethat does not integrateout the energy dependence (no group collapse),

but that maintains a groupwisedependence, might provide an effectivea accelera-

tion.

One such procedure would be to eliminate the integrationover all energies

in deriving the CMR equations in Part III. This would yield a matrix equation

of size KM*IGM, the number of coarse mesh regions times the number of energy

groups. For many problems, this can be of size 50 to 100 or larger, resultingin

a rather large rebalanceequation to be solved, and greatly increasingthe usually

negligibleoverhead to perform the rebalanceacceleration.

A second,more feasible,procedure to obtain rebalanceequationswould be

to eliminate the integrationover all energy groups, but integrateover all space,

rather than each coarse mesh zone. This whole system groupwise rebalance (WSGR)

matrix equationwill be only of size IGM, the number of energy groups.

To obtain the WSGR equations,we start with the transportequation,Eq. (6)

for one energy group g with the conditionof A = 1

g’ = 1 g’ = 1



In Eq. (19) we have assumed no upscattering,although the method can just as

easily treat problems with upscatter. Multiplyingthe fluxes in Eq. (19) by

groupwisedependent rebalancefactors, f and integratingover all angles and
g’

all mesh cells yields the WSGR matrix eigenvalueequation

[NL + c - s - FS] f = - a FV f , (20)

of size equal to the number of energy groups IGM, for the eigenvaluea and the

eigenvectorof rebalancefactors f.

The diagonalmatrices NL, C, and FV are

NLg = net leakage from the system for group g, (21a)

c =
J
dV I ~

tg g
= within-grouptotal collisionrate in group g, and (21b)

g

FV =
J
dV~ ~ = total neutrons in group g.

g ~g
(21C)

Again, in practice, the integralsover all space in Eq. (21) are carried out as

sums over spatial-meshcells in the discretizedspace. The lower triangular

(for downscatteronly) matrix S of group-to-groupscatteringrates is of the

form

[s] =

or

o
J‘vzl+I(#l Jdv=z+mf42 J‘VZIGM+IGM$IG1

[Sgg,] = [~dVZg,+g@g,1 “

12

(21d)

(21d)



The full matrix FS of fissionproduction rates is of the form

[FS] =

or

.
$

X2 o....01“● x~~~
.

J[FSgg,] = [Xg dVvZfg,$g,]

.

Jdvvzfl’Jdv:zf2”2“ ““Jdvv2fIGM”IG. .
. .

,
. 4

.

.
.

.. ... ..

For one-groupproblems,Eq.

, (21e)

(21e)

(20) can be shown identicalto Eq. (15). As in

GCCMR, the nonsymmetryof Eq. (20) admits complex eigenvalues. Test calculations

have shown the eigenvaluespectrum ranges from negative eigenvalues,large in

magnitude,occasionallyin complex conjugatepairs, to the most positive) dominant
15

eigenvalue,correspondingto ao. By the same proof as for GCCMR , the existence

of a dominant eigenvalue,with zero imaginarycomponent,correspondingto a eigen-

vector with entirelypositive components,can be shown. Implementationof the

WSGR is done exactly as the GCCMR, with the inverse power iterationbeing used

to solve Eq. (20) for the dominant eigenvalue.

For a typical test problem (#4) described in Part VI, with 12 energy

groups, the rebalancefactors of Eq. (20)

down to 1.56 x 10-5 for the bottom group,

is, in fact, present.

Between the two a rebalance schemes,

range from 2.27 for the first group

indicatingthat a large spectral effect

GCCMR or WSGR, it is not clear, a—

~, which is the better. In practice, the scheme of choice is found to be

problem dependent. Since most code users would seldom have the knowledge to cor-

rectly choose between the two schemes, this suggests that a hybrid rebalance

scheme, using first GCCMR and then WSGR, might have some merit. Since conver-

gence of the an+ao is often monotonic in the early a iterations,the next a guess

can be chosen (frombetween the two different rebalancea’s) to produce the larg-

est change from the current a guess. However, both sets of rebalancefactors,

from GCCMR and WSGR, canbe applied to the scalar flux and moments. By using both

13



sets of rebalancefactors, it is hoped that a serendipitousaccelerationof

the a iterationsis achieved. In practice, this does not occur and the hybrid

rebalancemerely results

matically used.

v. VARIABLE CONVERGENCE

In this section,we

in the most effectiverebalancescheme being auto-

PRECISIONAND ITERATIONSTRATEGIES

discuss some of the modificationsto the iteration

strategy that can be made to improve the overall efficiencyof the calculation.

The standardmethod for a eigenvalueproblems consists of a set of A (or

keff) eigenvalueproblems and use of a root-findingprocedure, linear or

quadratic,to estimate, usually by an extrapolation,the next a guess. Because

the root-findingprocedure can often lead to wild extrapolations,especially

for subcriticalsystems, it is importantthat each A calculationbe fully

converged.

If a rebalancemethod, as opposed to a root-findingmethod, is utilized to

provide the next a estimate, it may be possible to converge rather loosely the

early A calculations, when the estimate of a is poor, inasmuchas the rebalance

is a functiononly of the fluxes.

One scheme for permittinga loose convergenceearly in the ~ calculation

is termed “variableconvergenceprecision”. In typical discrete-ordinates

transportcodes, there are several different convergence

the start of the calculation,that are used to determine

various iterations. Two of these convergenceprecision

iterations,&., so that
1

max L0:.-0::1
ij I < &. ,

$fjg - ‘

precision, fixed at

convergenceof the

are on the inner

(22a)

where .Q= inner iterationindex, ij = spatial mesh index; and on the outer itera-

tions, co, so that

I)Ln- An-ll ~ &.

14
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where n = outer iterationindex. The o!calculationis continueduntil the final

convergencetest is satisfied.

I~k 11S ‘final $ (22C)

where k is the a iterationindex and &final is the user-specifiedoverall

convergenceprecision.

The “variable convergenceprecision scheme consists of allowing the two

intermediateconvergenceprecision to vary through the course of the a calcula-

tion, making them relativelylarge at the start of the problem,when u is poorly

known (and, therefore,A far from unity), and tighteningthem up as the calcula-

tion approachesconvergence. One simple, ad hoc scheme to do this is to choose——

Sk = k
‘o

= 0.1 11 - Akl + A&final .
i (23)

By this prescription,the early inner and outer iterationsare converged to a

precision of the order 0.1 and, as A + 1, the two iterationsare eventually

convergedto the desired precision,z
final”

For many typical a eigenvalueproblems, the first few Q’iterations,where

the changes in CYare the greatest, require the most outer iterationson the

eigenvalueA, despite the looser convergenceprecision allowedby Eq. (23).

Another method for avoidingwasted iterationsin the early part of the a calcu-

lation is to impose an outer iteration limit on each a iteration. By allowing

only a few outer iterationsbefore making a new a guess, many of these wasted

early outers can be eliminated. In practice, an outer iterationlimit per a

iterationof 4 or 5 has been found to be near optimal. Fewer than that does

not permit a great enough change in the flux to produce a very large change in

a except for the very early iterations.

Furthermore,since the a rebalanceaccelerationrequires only the scalar

flux (but not A) and is quite inexpensiveto perform, it is possible to do an

a rebalanceat the completionof each outer iteration.

are found to give surprisinglygood estimatesof a even

rate fluxes.

The rebalanceschemes

with these very inaccu-

15



The most effective iterationstrategy is thus found

steps:

1. Perform two a iterations,doing only one outer

tion, and using rebalanceto estimate the nexL

to be the following

iterationper a itera-

CY.

2. Increasethe outer iterationlimit to five, perform the outer itera-

tions to obtain an estimate of A, and then use the fluxes from this a

iterationfor one last rebalanceestimate of a.

3. Maintainingan outer iterationlimit of five, perform outer iterations,

and use the linear (or quadratic)root-findingprocedure for subse-

quent estimatesof a.

It should be pointed out that these proceduresof allowing a very loose

convergenceearly in the calculation, when coupled to the root-findingCYsearch

procedure from the start (as is done in present transportcodes), can reduce the

robustnessof the iterationprocess. For fast supercriticalassemblies,highly

absorbingand fission dominated,this is generallynot a problem. It is more

likely to occur for thermal reactor systems where scatteringdominates,in the

bottom energy group and convergenceis typicallyslow. But, when done in con-

junctionwith the rebalancea search method, the loose convergenceprocedurehas

not appeared to reduce the robustnessof the iterations.

Vr.

five

mesh

TEST PROBLEMSAND RESULTS

In this section,we will apply the schemes developed in Parts III-V to

different test problems to demonstratethe efficienciesachieved.

The schemeswere developedand implementedin the arbitraryLagrangian

transportcode LaMEDOC,
14

although the test problems used were entirely

one-dimensional. The coding for the rebalanceschemes is detailed in the Ap-

pendix. It was found that the overhead for performingboth the a’rebalance

accelerationswas negligible. Thus, the comparisonof the schemes is based

merely on the total number of inner iterationsrequired for convergence,the

actual computationtime being proportionalto that figure. All calculations

were performed in the S2P0 approximation.

The various computationalschemes used are describedas follows:

Scheme STD: This is the standard search procedureused in typical transport

codes, as described in Part II, includingthe root-finding

cisearch. Convergenceprecision on inner and outer iterations
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“4
is the code default, 10 . An inner iterationlimit of 25 is

includedbut no limit on the outer iterations. The overall
-4

problem is consideredconvergedwhen [l-Xnl~ 10 . By an appropriate

choice of the eigenvaluemodifier,EVM, the standardprocedure

can be made to look as good or as bad as desired. In these

problems, the code default of EVM = 0.01 gen/shake (1 shake =

10-8 s) is used.

Scheme VCP: This is the yariable ~onvergenceprecision

in Part V. The u eigenvaluesearch procedure

STD scheme. The inner iteration limit of 25,

limit, is maintained.

scheme, as described

is the same as in the

with no outer iteration

Scheme GCCMR: This is the group-~ollapse~oarse ~esh Xebalance scheme, de-

scribed in Part III, which is applied to the a eigenvaluesearch. The

GCCMR is used only for the first three a guesses, after which the linear

root-findingprocedure of the STD scheme is used. The VCP scheme is

also included.

Scheme WSGR: This is the yhole ~ystem ~roupwise–rebalancescheme, described

in Part IV, which is applied to the a eigenvaluesearch. Implementation

is exactly as in the GCCMR scheme.

Scheme HYB: This is the @rid scheme, also described in Part IV, in which both

GCCMR and WSGR are performed for the a search, with both sets of rebalance

factors being applied to the scalar flux and moments.

Scheme HYBNOF: This is the same as the above HYB scheme, except with no rebalance—

~actors being applied to the fluxes. This scheme indicateshow much of

the accelerationis due to the improveda guess and how much accelera-

tion is due to the rebalance factors themselves.

Scheme MXOUT5: This is identicalto the HYB scheme, except that a m~im~ wer

iterationlimit of 5 outers for any one a guess is imposed,with one—

outer per a iterationfor the first two a guesses, as described in

Part V.

If all of the accelerationschemes provide a reductionin computationaleffort

and have no interactionwith the other methods, we would expect the last scheme,

MXOUT5, to provide the greatest overall improvements.

Problem Xl

This is a very small, hypothetical,one-group,two-material,sphericaltest

problem. The ❑aterial mesh and spatial mesh are shown in Fig. 1.
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O.O 2.0 4.0

Fig. 1. Problem #l material mesh and spatialmesh.

The macroscopiccross sections (cm‘1) for each material are

Mat z Vz
a f

Xt X1+l

1 2.0 4.0 3.0 1.0

2 I 0.1 0 2.1 2.0

cm.

xl = 1.0”
‘1

= 10.0 cm/sh
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The results for this problem are

Scheme Total Inners

STD 678

VCP 234

GCCMR 157 (best rebalance)

WSGR 174

HYB 157

HYBNOF 157 (rebalancefactors have no effect)

MXOUT5 123

At the completionof the first u iteration (for which keff = 1.835), the

two rebalanceestimatesof a are

Rebalance al

GCCMR 16.79

J

Ct = 18.32
WSGR 8.42

0

For the GCCMR at the end of the first a iteration,the complete eigenvalue

spectrum and eigenvectorsof rebalancefactors are

1
a.

=16.79

1
al

=-3.23

(1.738,0.2615)

(-0.1838,2.1830)



At the completionof the third a iteration,the two GCCMR

vectors are

Rebalance factors
Eigenvalues by material region

3
a.

= 18.32 (1.0004, 0.9996)

3
al

= -53.69 (-0.0076, 2.0076)

From the above table of total inner iterations,we

a. the variable

two-thirds.

b. the GCCMR is

eigenvaluesand eigen-

conclude

convergenceprecision reduces the total innersby

the more effective rebalance,which one would expect

for a one-groupproblem.

c. no accelerationis coming from the rebalancefactors.

d. the best overall improvement(MXOUT5scheme) results in 1/5 the com-

putationaleffort of the standard scheme.

Problem //2

This

problem.

two group

is another small, hypothetical,two-group, two-material> spherical test

The material and spatialmeshes are the same as for Problem #l. The

macroscopiccross sections (cm‘1) are

Mat Group Za Vzf Zt .Z~

1 1 2.0 4.0 3.0 1.0 I1+2 = o

2 1.0 2.0 1.5 0.5
(no downscatter)

2 1 0.10 0 2.1 2.0

2 0.20 0 4.2 4.0

x = (0.7, 0.3) v= (10.0,0.1) cm/sh
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The results for this problem are

Scheme

STD

VCP

GCCMR

WSGR

HYB

HYBNOF

MXOUT5

Total Inner

No convergence

773

714

531 (best rebalance)

534

557 (rebalancefactors accelerate)

266

At the completionof the first a iteration (for which keff = 1.816), the

two rebalanceestimatesof a are

Rebalance al

GCCMR 0.276

I ‘O
= 6.367

WSGR 3.284

For the GCCMR at the end of the first a iteration,the complete eigenvalue

spectrum and eigenvectorsof rebalancefactors are

GCCMR

Rebalance factors

Eigenvalues by material region

1
a.

= 0.276 (1.648, 0.3520)

1
‘1

= -0.105 (-0.459, 2.459)



For the WSGR at the

and eigenvectorsof

From the above

end of the first a iteration,the completeeigenvaluespectrum

rebalancefactors are

~
WSGR

Rebalance factors
Eigenvalues by group
1

‘o = 3.284 (1.955, 0.0450)

1
%

= -0.150 (5.267,-0.267)

table of total inners,we conclude

a. the WSGR is the more effective rebalance,which one might evect

because of the strong spectral skewingbetween the two material regions.

b. less than 5% of the accelerationis due to the rebalancefactors.

c. the best overall improvementresults from the MXOUT5 scheme, in one-

third the computationaleffort of the worst case (VCP scheme).

Problem #3

This is a more realisticproblem of a small

of HO surroundedby a sphere of pure 235u (R =
2’

central sphere (R = 5 cm)

20 cm). All materials are at

nominal density. A mesh spacing is used of 40 cells in the azimuthaldirection

and 20 cells in the radial direction (5 in the H20, 15 in the 235U), as shown

in Fig. 2.

Fig. 2. Problem #3 material and spatial❑eshes.
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A twelve-group,fast neutron cross-sectionset is used, with velocities ranging

fromvl= 51.93 cm/sh down to V12 = 0.00333 cm/sh.

The results for this problem are

Scheme

STD

VCP

GCCMR

WSGR

HYT3NOF

MXOUT5

Total Inners

3511

1175

1147

984 (best rebalance)

983

1127 (rebalancefactors accelerate)

847

At the completionof the first a iteration (for which keff = 1.706), the two

rebalanceestimatesof a are

Rebalance cil

GCCMR 0.479

a.
= 0.844

WSGR 0.792

For the GCCMR at the end of the first a iteration,the complete eigenvalue

spectrum and eigenvectorsof rebalance factors are

Eigenvalues

1
a.

= 0.479

1
%

= -0.0028

GCCMR

Rebalance factors

by material region

(1.9893 , 0.01071)

(-0.1982 , 2.1982)
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For the WSGR at the complete convergenceof the problem, the eigenvaluespectrum

for all 12 groups is shown in Fig. 3.

From the above table of total inners,we conclude

a.

b.

c.

d.

the variable convergenceprecision reduces the total inners by

two-thirds.

the WSGR is the more effective,which one would expect from the strong

spectraleffect of the water.

about 15% of the accelerationis coming from the rebalancefactors.

the best overall improvement(MXOUT5scheme) results in 1/4 the

computationaleffort of the standard scheme.

B PROB 3 WSGR ALPHA SPECTRUM

i
a ~d-
“X-n 0
Q
X.
<6. am

u
!2-
$ 0

=
? , , , r r ,

-9.0 -a.o -7,0 -6.0 -5.0 -2.0 -1.0 0.0 1.0
2“iL(ALPiij

F

Fig. 3. Problem #3 WSGR a spectrumat convergence.
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Problem #4

This is a five-materialproblem with a great

consistingof concentricspheres of Al (R = 2 cm],

deal of spatial inhomogeneity,
235u (R = 16 cm), Fe (R = 17 cm),

238u (R = 22 cm), and C (R = 26 cm), all at nominal density.
The material and

spatialmesh is shown in Fig. 4.

Fig. 4. Problem //4material and spatial meshes.
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The same 12-groupcross-sectionset is used.

The result for this problem are

Scheme

STD

VCP

GCCMR

WSGR

HYBNOF

MXOUT5

Total Imers

5075

1536

1287 (best rebalance)

1427

1273

1315 (rebalancefactors accelerate)

1013

At the completionof the first a iteration (for which keff = 1.726), the

two rebalanceestimatesof a are

Rebalance cl’

GCCMR 0.620

I
‘o

= 0.826
WSGR 0.538

For the GCCMR at the end of the first a iteration,the completeeigenvalue

spectrumand eigenvectorsof rebalancefactors are

GCCMR

Rebalance factors

Eigenvalues by material region

1
a.

= 0.620 (1.427 1.652 1.142 0.529 0.247)

1 = -0.258 (0.119 0.112 -0.419 -2.85)
%

-1.50

1
‘2

= -0.803 (-0.092 -0.074 0.480 1.41 -2.94)

1
a3

= -3.97 (-4.93 0.012 0.046 -0.008 0.001)

1
a4

= -4.82 (0.638 -0.138 3.64 -0.515 -0.005)
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For the WSGR at the complete convergenceof the problem, the eigenvaluespectrum

for all 12 groups is shown in Fig. 5.

The rebalancefactors at the end of the first a iterationsare those factors

required to convert the k solution fluxes to the convergeda solution fluxes.
eff

By performinga keff (a = O) calculation,then performing the full a calculation,

and then integratingboth sets of fluxes over all groups and each coarse mesh

zone, it is possible to calculatethe exact rebalancefactors that are required

to convert the keff solution to the convergeda solution. These exact rebalance

factors are compared to the approximaterebalancefactors at the end of the

first a iterationbelow.

PROB 4 WSGR ALPHA SPECTRUM
i

R~rs.
-’~
!%

c)=4 d. -0 a.
‘z o
tl-
:“ =

f’ , , , , , , ,m -9.0 -s.0 -7.D -6.0 -5.0 -2.0 -1.0 000
i&iL(ALPii~

w

P

Fig. 5. problem #4 WSGR a spectrum at convergence.
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Rebalance factors

by group

Rebalance factors

by material zone

Exact

1.581

1.481

0.911

0.634

0.394

GCCMR

1.429

1.653

1.142

0.529

0.247

Exact

2.519

2.438

2.272

1.999

1.377

0.723

0.375

0.187

0.108

3.37 E-4

2.39 E-6

9.84 E-10

W8GR

2.265

2.220

2.121

1.936

1.470

0.904

0.549

0.326

0.199

1.16 E-2

1.19 E-4

1.56 E-5

From

a.

b.

c.

d.

the abovetables, we conclude

the variable convergenceprecision

by 2/3.

the GCCMRis more effective,which

reducesthe totalinnersrequired

onemightexpectfromthe con-

siderablespatialstructureof thisproblem.

onlyabout3% of the accelerationis comingfromthe rebalance

factors.

the best overallimprovement(MXOUT5scheme)resultsin 1/5 the

computationaleffortof the standardscheme.

Problem#5

This is a simple,homogeneous,three-group,spherical

radiusof 4.0 cm. The problemwas run as a 90° segmentof

64 mesh cellsin the azimuthaldirectionand 64 mesh cells

directionas shownin Fig. 6.

testproblemwith a

the sphere,using

in the radial
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fast

Fig. 6. Problem//5finespatialmesh (64 x 64).

The hypotheticalthree-groupmacroscopiccrosssections,representingtwo

groupsand a thermalgroupare

1 0.25 0.75 0.80 0.25 -- .-

2 0.20 0.60 0.70 0.30 0.20 --

3 0.10 0.30 10.0 9.90 0.20 0.10

x = (0.75,0.2, 0.05)

v= (10.0,0.1,0.001) cm/sh

One of the defectsof coarsemesh rebalanceis its instabilityas the

rebalancemesh approachesthe finemesh,for someproblems. Thisproblemis

designedto see if thatdefectoccursfor the a CMR equations.The spatial

rebalancemesh is obtainedby repeatedlydividingthe spatialdomainin both

the radialand azimuthaldirections.Thus,the problemis runwith 1 (4096

cells/coarsemesh zone:meshA), 4 (1024cells/coarsemesh zone:Mesh B)$ 16

(256cells/coarsemesh zone:Mesh C), and 64 (64cells/coarsemesh zone:MeshD)

coarsemesh rebalancezones. In addition,the problemis run with a coarse

8 x 8 spatialmesh and 64 (1 cell/coarsemesh zone:Mesh D@ rebalancezones;

thus,finemesh rebalance.
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The resultsfor thisproblemare

Scheme

STD

VCP

GCCMR

WSGR

HYBNOF

MXOUT5

a Fine mesh
b Firstset

TotalInners

A B c 1) DCMa

1196 729 452 374 b

218 201 178 137 b

285 244 222 170 b

225 110 83 52 b

225 110 95 61 b

233 141 97 64 b

162 111 78 71 114

rebalance:8 x 8 coarsespatialmesh.

of outeriterationsfailsto converge.

At the Comletion of the firsta iteration(forwhichkeff= 1.948)$Me two

rebalanceestimatesof a for eachmesh are

Rebalance A B c D DCMa

GCCMR 0.00041 0.00041 0.00041 0.00040 0.00040

WSGR 0.425 0.456 0.475 0.476 0.382

~

‘O ‘ ‘o
= 0.491

For the finemesh rebalancecase (MeshDCM), the firstset of outeritera-

tionsfailsto converge,fallingintoa two-cycleoscillating❑ode,whichpre-

ventsthe convergenceof A, exceptfor theMXOUT5schemein whichthe outer

iterationlimitterminatesthe outers. With the outeriterationlimitimposed,

both a rebalanceschemes,GCCMRand WSGR,performwell and giveno indication

of a stabilityproblemfor finemesh rebalance.The GCCMRgivesparticularly

poor estimatesof a for thisproblem. Thismightbe expected,sincethe spatial

distributionfor the keff problemand the a problemdo not differgreatlyfor

homogeneoussystems.

For the GCCMRat the completeconvergenceof the problem,the eigenvalue

spectrafor thevariousrebalancemeshesare shownin Fig. 7.
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PROB 51)CM GCCMR ALPHA SPECTRUM

A’=!!-x0-
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E
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PROB 5C GCCMR ALPHA SPECTRUM

Iil

[

““?~
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Fig. 7. Problem #5 GCCMR a spectra at convergence.



PROB 5D GCCMR ALPHA SPECTRUM

1:~~~~~=-~~:~d
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<& 000
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?
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PROB 5B GCCMR ALPHA SPECTRUM

k
-6.8 4.s -6.4 -&2
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Fig. 7. Continued.
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For thisproblem,we conclude

VII.

a. the variableconvergenceprecisionreducesthe totalinnersrequired

by 4/5 to nearly2/3.

b. the WSGR is more effective,whichone mightexpectfromthe strong

spectraleffectdue to the bottomgroup.

c. neitherthe GCCMRor WSGR appearsto have stabilityproblemswhen the

rebalancemesh and finemesh are identical.

d. only a fewper centof the accelerationis coming from the rebalance

factors.

e. the best overallimprovement

1/5the computationaleffort

SUBCRITICALSEARCHES

(MXOIJT5)scheme

of the standard

Alphaeigenvaluesearchesfor subcriticalsystems

resultsin 1/8 to

scheme.

are notoriouslydifficult

to converge. For highlysubcriticalsystems,a codecrash(referredto as a

“dramaticfailure”in the codemanuals1-3)is the usualresult. In this section,

we examinethe causesfor the code‘ffailureitand describea remedyfor thisde-

ficiency.

Thereare many elegantmathematicalpapers6-10writtenon the a eigenvalue

spectrumof Eq. (3). Thesecanbe summarized,for the most interestingcaseof

a finitemedia,as follows:9 For the continuousvelocityvariable,v & IO,@),

includingthe limitv = O, thereexistsa continuumof eigenvaluesto the left

of o@, where

d = - max (24)
+
r

and there~ exista discretespectrumof pointsand,possibly,curvesto the

rightof ~, as

spectrumis not

been shown’8)’g

a. > c@, and $Q

illustratedin Fig. 8. The existenceof a discrete-eigenvalue

guaranteed.~ a discrete-eigenvaluespectrumexists,it has

thereexistsa dominanteigenvalue,ao, with Im U. = O,

>0.
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Ire(a)

*

Fig. 8. Generaleigenvaluespectrum.

For velocityspaceboundedawayfromzero,v E (VO~*)tvO > 0> the

spectrumin Fig. 8 becomesa discretespectrumof pointsand,possibly,

In the formercasein whichVO ~ O, for sufficientlysmallbodies,

continuum

curves.

the point

spectrumto the rightof c# in Fig. 8 can disappear. In this situation,the

time-dependentfluxdecayis dominatedby thev+O limit,by neutronsthatare

movingvery slowlythroughthe medium. Therehas been considerablemathematical

discussionon this ‘disappearanceof the pointspectrumintothe continuumti

and the existenceof pointeigenvalueswithinthe continuum.Larsenand Zweifelg

arguethatthis continuumpart of the spectrumis a creatureof the mathematics

and doesnot correspondto physicalreality;thatat velocitiesv+O, quantuum

mechanicaleffectsprobablyrenderthe transportequationinvalid. At these

very lowvelocities,the neutronpopulationdensityis undoubtedlyso low as

to make the transportequationinapplicable.

The caseof the transportequationin the multigroupapproximationhas been
10analyzedby Larsen and theseesotericmathematicalambiguitiesdo not exist.
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Undersimpleconditionson the crosssectionsthatare virtuallyalwaysmet in

practice(namely,thata neutronor itsprogenyin any one groupcan eventually

transferto any othergroup),he provedthe exiatenceof a dominanteigen-

valueCYOand a correspondingpositiveeigenfunction$a . Thus,the failureof

transportcodes(whichsolvethe multigrouptransportequation)to calculatean

a eigenvaluefor a subcriticalsystemis not due to the eigenvalue!snonexistence

but due to somedeficiencyin the computationalprocedure.

For supercriticalsystems,a* (>0) correspondsto a physicallymeasurable

quantity$the exponentialgrowthof the fluxat longtimesafterany early

transients(withai < O) have diedout. The possibilityof drivinga nuclear

systemsufficientlysupercriticalto be supercriticalin a highereigenmode

apparentlyhas not been examined.

For subcriticalsystems(&O< ()),the physicalinte~retationof the dominant

eigenvaluea. has been subjectto somedebate. Thereare some strongarguments*

that~ validphysicalinterpretationof the negativedominanteigenvalue(guaran-

teedby the multigrouptransportequation)canbe made,no matterhow closeto

criticalis the system. For somephysicalsystems,experimentershave actually

been unableto measure~ pulsedneutronexperimentdie-awayconstants.8,?

However,exponentialdie-awayconstantsfor subcriticalGODIVAassemblies17,?

for waterassemblies,8 13 17and for naturaluraniumsystems and Rossi-a constants

forvarioussystems17 havebeenmeasuredand,in somecases,13 havebeen foundin

goodagreementwith calculations.

For highlyabsorbingand for subcriticalsystems,the long-timeor asymptotic

distributionis dominatedby very slowlymovingneutrons. In thisregime,the

multigroupassumptionmay be a verypoor approximation.The neutronpopulation

densitiesmay be so low and neutronwave and otherquantumeffectsso large

thatthe resultsfroma multigrouptransportcalculationhave littlere-

lationto physicalreality. Thus,codeusersshouldexerciseconsiderable

cautionin physicalinterpretationsof the calculateda. for far subcritical

systems. This is demonstratedin the exampleproblemto follow.

%. P. Whalen,Los AlamosNationalLaboratoryGroupX-DO,providedthis
information(1982).

?G. E. Hansen,Los AlamosNationalLaboratory,GroupQ-2,providedthis
information(1982).
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We will assumethatthe codeuser,for whateverreason,has a genuineneed

to calculatean a eigenvaluefor a subcriticalsystem. It is thennecessaryto

understandwhy the presenteigenvaluesearchalgorithmfails,in orderto devise

a remedy.

If, at somepointduringthe search,the a eigenvalueguessbecomessuf-

ficientlylargeand negative,thenthe effectivetotalcrosssection,

zt,eff“ztg+ ~ ,
P 8

may becomenegativefor someenergygroupsand mesh cells. Suchnegativetotal

crosssectionsobviouslyhave no meaningfor the transportequationand the

solutionalgorithmswill assuredlyfail. Thus,if one constrainsthe a search

procedureto maintain

*
ty>a= - max min v 2

ij % gt,% ‘

whichwillusuallyoccurin the bottomenergygroup(g = IGH),

effectivetotalcrosssectionswill not occur.

Unfortunately,this constraintis insufficientto insure

(25)

thennegative

convergenceof

the a eigenvaluesearchalgorithm.Convergencefailurewill alsooccurwhen an

a guessbecomessufficientlysmallso thatthe systembecomessupercriticalin

one of the groups. Neglectingleakage,thiswill occurwhen

z +~<x
t,g

‘%
S,g (26)

for someenergygroupg. Whena becomessufficientlylargeand negativeso that,

with leakage,somegroupbecomessupercritical,the inneriterationswill fail

to convergefor thatgroupand,with subsequentadditionalouteror inner

iterations,the fluxwill divergeuntil❑achineoverflowoccurs,the so-called

“dramaticcodefailure.”

To illustratethis situation,considera homogeneousuraniumsphereof

radius8.74cm, composed

five-groupcross-section

is shownin Fig. 9.
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Fig. 9. A(a) for subcriticaluranium sphere.

For this problem, the system becomes supercriticalin the bottom group whenever

a<- -8
0.18 generations/shake(1 shake = 10 s).

From this curve in Fig. 9, it is obvious why a conventionala eigenvalue

search techniquewill fail. The linear extrapolationfrom the first two A(a)

points will yield a guess of a << - 0.18 gen/sh, far into the region of itera-

tion divergence (a < amin). This is illustratedin Fig. 10.

It should be pointed out that c@ = -1.018 gen/sh for this cross-section

set, so that the region of iterationdivergence (a < amin) is bounded well to

the right of the theoreticalminimum.

The solution to the failure of a eigenvaluesearches for subcriticalsystems

is straightforward. We wish to
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Fig. 10. Failure of a search procedure.

1. attempt to determine a~in so that any extrapolation will not enter

the region of iteration divergence, and

2. restart the a search whenever it extrapolatesinto this region of

iterationdivergence.

The modificationsto the search procedure are relativelyminor:

● Set the inner iterationlimit to a moderately large number (say 50).

● Monitor the imer iterationsfor divergence.

1. If the inner iterationlimit is reached in any group, then the

currentan (n = a iterationindex) is too far negative. Abort

the current outer iteration. Store the currentc? into amin
if an > current ~min.
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2. Choose a new a
n+l

midway between this current cin (for which the
n-1

inners diverged)and the last a for which the outers converged

cl
n+l = (an + #-j/2

3. Start a new set of outer iterations.

●
n+l

Constrain the a guesses so that a > arein”
1. If the linear or quadraticextrapolationor the rebalancepro-

n+l
cedure gives an a <a then choose the next a

n+l =
a +

mi.n’ min
~n, where 6 is some small arbitrarynumber that changeswith a

iterationindex n (say 6 = O.01/n).

The success of this procedure is illustratedfor the subcriticaluranium

sphere in Fig. 11, where the A’s for the various o’guesses are plotted. In

this case, the GCCMR scheme was utilized for the first two a iterations (namely
~2

and U5), rather than an eigenvaluemodifier and a linear extrapolation.

Once an an for which A > 1 is found, the eigenvalueiterationsconvergevery

rapidly.

X=i

~
1

, 0.0!

Fig. 11. Modified search procedure.
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It should be noted that all current discrete-ordinatestransportcodes cannot

calculatea eigenvaluesfor systemswithout any fissilematerial, since the A

eigenvalueis not defined for such systems. To modify these codes whose eigen-

value search procedure is based on roots of the A(a) curve requiresrather major

surgery to the code. However, a code whose eigenvaluesearch is based entirely

on a rebalancescheme, which does not require the A eigenvalue,can be modified

with little effort to calculatesuch eigenvalues.

The a search procedure describedabove is sufficientlyrobust to yield the

dominant eigenvalueof the multigroup transportequation,(YO= -0.178, for this

problem and this multigroupstructure. One might ask if this computed(iOis

a physicallymeaningfulquantity; if this a. correspondsto an exponentialdie-

away constant for this system. In this case, the answer is probably no.

By changing the cross-sectionmultigroupstructure,one finds that the

(YOfor this problem is extremely sensitiveto changes in the bottom energy group.

By changing the lowest group velocity by a factor of 2 (V5 = 1.444 cm/sh+

2.888 cm/sh), then a. = -0.178 gen/sh + -0.351 gen/sh, or also changes by a factor

of 2, with no change in k Conversely, if one increasesthe group 1 V2f
eff”

by a factor of 2, one noticeablyincreaseskeff, but there is virtually no change

in a
o“

Thus, for this problem, the calculatedU. is virtually a function~

of the multigroup structureand, in particular,the bottom neutron energy group

speed. In this case, it is highly suspect that the calculateda. has any

meaningful relationto physical reality.

One can continue to increase the VZf in the cross sectionsuntil the point

is reached that the ao is sensitiveto these changes in the cross section. Once

this point is reached,one finds that the computedCYois now relativelyinsensi-

tive to changes in the bottom energy group. For example, if the group 3 VZr is

multipliedby 2.5, the system is only slightly

changing the lowest group velocity by a factor

2.888 cm/sh), then a. = -0.087 gen/sh + -0.090

This behavior of the eigenvaluesfor this

J.

subcritical(keff = 0.940). By

of2 (V5= 1.444 cm/sh +

gen/sh, or a. only changesby 3%.

problem leads to the following

conjecture. The A(a) curve, as shown in Fig. 9, may be, perhaps, the superposi-

tion of two separate curves, as shown in Fig. 12. Curve 1 and its eigenvalueal

may be associatedwith some compositeproperties of the system,while curve 2

and its eigenvaluea2 (= ao, the dominant eigenvalue,in this case) are associa-

ted with the behavior of the most slowly moving neutrons in the bottom energy

group. In this situation,the calculateddominant eigenvalue,ao, has no relation

to a physicallymeasurabledie-away constant.
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Fig. 12. Possile A(a) curve.

As the system is driven towards criticality,curve 1 is moved upward until

eventually its associated eigenvalue, CYl, becomes the dominant eigenvalue~Qo>

a quantity insensitiveto the behavior of the neutrons in the bottom group.

At this point, the dominant eigenvalueof the multigroup transport~ correspond

to a physical die-away constant. Whether the curve 1 eigenvalue,al, as ori-

ginally shown in Fig. 12, correspondsto a ‘discreteeigenvalueburied in the

continuum,”one can only guess.

One can summarize the discussionin this section of subcriticalu eigen-

values as follows:

● A robust eigenvaluesearch procedurehas been developedto obtain the

dominant eigenvalueof the multigrouptransportequation,a quantity

whose existence is guaranteedunder the most general conditions.



The codeusermustbe extremelycarefulin his interpretationof this

dominanteigenvalueas a physicallymeaningfulexponentialdie-away

constant. If his computedeigenvalueis sensitiveto the bottom

energygroupvelocity,it is highlysuspect. That is to say,if his

systemis sufficientlysubcriticalso thatthe improvedsearchpro-

cedureis invokedby the code,the computeddominanteigenvaluemost

likelyhas littlerelationto physicalreality. Statedanotherway,
~ t?dramaticcodefai~ure’~is nature’sway of sayingthe user ‘s

calculatingnonsense.

VIII.CONCLUSIONS

The two rebalanceschemesare foundto acceleratethe a eigenvaluecalcula-

tionby anywherefroma smallamountto as much as 50% and more,as compared

with the variableconvergenceprecisionscheme. Nearlyall of the acceleration

comesfromthe improvedestimatesof a, withvery little,in most cases,coming

fromthe rebalancefactorsthemselves.

More importantly,the rebalanceschememakesthe iterativesolutionof the

a eigenvalueproblemconsiderablymore robust, relievesthe codeuser of much

of the burdenof providingintelligentinputrequiredby the standardsearch

procedure,and permitsmodificationsto the iterationstrategythateliminates

many of the unnecessarycalculations.By utilizingall the schemesand pro-

ceduresdescribedin thisreport,we can usuallysolvethe a eigenvalueproblem

in one-fifththe time requiredfor thepresentsearchprocedure.
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APPENDIX

IMPLEMENTATIONOF a REBALANCEACCELERATION

The two a rebalanceschemes(GCCMRand WSGR)were implementedand testedin
14the Lagrangianmesh discrete-ordinatescodeLaMEDOC . In thisappendix,we

will givethe codingdetailsfor theirimplementationin LaMEDOC. We will first

describethe importantvariablenames. The actualcodelistingwill then

be given,brokendown intonumberedsegments. Finally,the purpose of each

numberedsegmentof codingwillbe described.

The SUBROUTINEAREBAL(ALFAN),the mnemonicfor a rebalance,providesthe

new a guess(ALFAN),usingthe fluxesstoredin commonat the completionof the

currentset of outeriterations.

The importantintegervariablesare

NMAT: numberof

performed

numberof

IGM: numberof

LM,KM:numberof

materialsin the problem. The coarsemesh rebalanceis

on thematerialmesh,so thatN?lATis actuallythe

coarsemesh regions.

energygroup (= IGMD).

mesh cellsin the two dimensionsof the Lagrangianmesh.

The importantarraysare

FLUX(NM,KMLM,IGM):the scalarfluxand moments(NMmomentstotal)for

eachof the KMIll(= Kl@LM)Lagrangianmesh cellsand for eachof

IGM energygroups.

FLGS(k,!Z):the group-summednegativeinflowsfrom❑aterialzone k to

materialzone g, with FLGS (k,k)beingthe totaloutflowfrom

materialzonek. This is the matrixof Eq. (11),used in the

GCCMR.

F(k): the GCCMRrebalancefactors,forNMATmaterialzones.

NL(g):the groupwisenet leakagefromthe system,used in the WSGR~

FSS(k):the volume-integratedfissionsourcefor the k’thmaterialmesh

zone. This is Eq. (9b),used in the GCCMR.

ABSP(k):the volume-integratedabsorptionfor the k’thmaterialmesh zone.

This is Eq. (9a),used in the GCCMR.

FV(k): the totalneutronsfor the k’thmaterialmesh zone. This is Eq.

(9c), used in the GCCMR.
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RA(k,2): the FL+AB-FS array on the left-handside of Eq. (8) of the GCCMR.

Q(k): the ~f vectoron the right-handsideof Eq. (8)of the GCCMR.

WSRC(g): the Cg diagonalmatrixof Eq. (21b)for the WSGR.

WSRFV(g):the FVg diagonalmatrixof Eq. (21c)for the WSGR.

WSRS(g,g’): the Sgg, array of Eq. (21d) for the WSCTR.

WSRFS(g,g’):the FSgg, array of Eq. (21e) for the WSGR.

WSFSS(g): the whole system fission source for each group g. Used in the

WSGR to maintain the total fission source normalizationof unity.

WSF(g): the rebalancefactors for group g of the WSGR.

wsRA(g,g’): the NL+C-S-FS array on the left-handside of Eq. (20), for

the WSGR.

WSQ(g): the FV*f vector on the right-handside of Eq. (20), for the

WSGR.

The followingtwo pages contain the listing of the AREBAL routine.
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SUBROUTINE AREBALIALFAN)

PERFORM MATERIAL MESH REBALANCE ACCELERATION OF ALFA

OPTIMIZE
MACRO PARAMC (CLCHFILE) s USE PARAMC (CLCHFILE)
MACRO cONsTc (cLcHFILE) $ USE CONSTC (CLCHFILE)
MACRO FLUXSC (CLCHFILE) $ USE FLUXSC (CLCHFILE)
MACRO XSECC (cLCHFILE) $ USE XSECC (CLCHFILE)
MACRO SETLC (cLcHFILE) $ USE SETLC (CLCHFILE)
MACRO MESHC (CLCHFILE) $ USE MESHC (CLCHFILE)
OIMENSION WSRC(IGMO ),WSRS(IGMO, IGMO),WSRFS(IGMO, IGMO),WSRFV(IGMO) ,

1 WSRA(IGMO, IGMO) ,WSO(IGMO),WSF( IGMO).WSFSS(IGMO)
EQUIVALENCE (WSF(I),WSO(I) )
INTEGER GP
INTEGER G Code
OIMENSION VELI(IGMO)
COMMON/CONVG/ EPSL,EPSO,EPSI

Block
c
s
c SCALE FLOWS BY LAsT OUTER REBALANCE (oREL3AL) FAcTOR

00 18 L=l.NMAT $ 00 18 K=l,NMAT
18 FLGS(K, L)=F(K)*FLGS(K .L)

c LAST OUTER REBAL FACTOR = l/ALA , SCALE NET LEAKGE
1

00 19 G=I,IGM
19 NL(G)=NL(G)/ALA

CALCULATE
CALL CLEAR(O.O, FSS,NMAT)
00 20 L=I.LM $ 00 20 K=I.KM $

2
MAT=IM(K,L)+I

20 FSS(MAT )=FSS(MAT)+FISSA( K,L)*VOL(K,L)
L CALCULATE ABS~ (5AN5 FA/VEL) ND FV ON MATERIAL MESH

CALL CLEAR(O.O,ABSP,NMAT) $ CALL CLEAR(O.O,FV,NMAT)

25

27
2a

00 25 G=I,IGM
VELI(G)=l./VEL(G)
00 30 L=I,LM $ 00 30 K=I,KM $ KL=(L-I)*KM+K $ MAT=IM(K,L)+I 3
00 28 IPOS=I, IB $ IF(FR(IPOS,K,L)) ,28
IX=MATIX(IPOS,MAT) $ ATOMS=ANO(K,L)*FR(IPOS ,K,L)
00 27 G=l,IGM
ABSP(MAT)=ABSP(MAT)+ATOMS*SIGA( G, IX)*FLUX(l,KL,G)
CONTINUE
DO 30 G=I.IGM

30 FV(MAT)=FV(MAT )+VELI (G)*FLUX( I,KL,G)*VOL(K ,L)
t

IF(NMAT.EQ.1) THEN
c ONE MATERIAL, 00 NOT ITERATE

XLA=(FSS( I)-FLGS(I, I )-ABSP(l))/FV(l) $ F(I)=I.O 4
GO TO !55
ENO IF

c BEGIN INVERSE POWER ITERATION FOR ALFA EIGENVALUE

90
c

r

100

102

104

110

XLA=IO.C? $ T=O.O
DO 90 K=I,NMAT
T=T+FSS(K) $ CALL CLEAR(T,F,NMAT)

CONTi~!!JE
00 104 L=I,NMAT $ 00 102 K=I,NMAT
RA(K,L)=FLGS(K,Lj
o(L)=FV(L)*F(L)
RA(L, L)=RA(L,L)+ABSP( L)-FSS( L)+XLA*FV(L)
:;:; L:S(y~:Tbl .NMAT.RA,O ,OUMY,OET)

00 110 L=l,NiAT
T=T+FSS(L)*F(L)
TA=l./T $ XLAR=XLA $ XLA=XLAR-TA
00 112 L=I,NMAT
F(L)=TA*F(L)

5

; 00 WHOLE-SYSTEM GROUP-WISE REBALANCE
c GENERATE WSR MATRICES 6

155 CALL CLEAR(O.O,WSRC, IGM) $ CALL CLEAR(O.O, WSRS.IGM*IGM )
CALL CLEAR(O.O,WSRFV, IGM) $ CALL CLEAR(O.O,WSRFS, IGM= IGM)

00 180 IPoi=l,18 $ F(FR{IPOS,K,L)) ,180
IX=MATIX(IPOS.MAT) $ ATOMS=ANO(K,L)*FR(IPOS ,K,L)

160
180

00 160 G=l,IGM
WSRC(G)=WSRC(G)+ATOMS*SIGTOT(G ,IX)*FLUX(l,KL,G) 7
WSRFS(l,G)=WSRFS( I,G)+ATOMS*SIGNU(G, IX) *FLUX(I,KL,G)
00 160 Gp=l,G $ INOXG=(G*(G-l ))/2+GP
WSRS(G, GP)=WSRS(G,GP )+AT0Ms*sIGD5( I, INDxG, Ix)*FLUx(l,KL ,GP)
CONTINUE
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DO 182 G=I,IGM
182 WSRFV(G)=WSRFV(G)+FLUX( I,KL,G)*VOL(K, L)*VELI( G)

220
c

210

212

00 220 G=l,IGM
WSFSS(G)=WSRFS( I,G)
FILL OUT FISSION MATRIX
00 210 G=2,1GM $ 00 210 GP=l,IGM 8
WSRFS(G, GP)=WSRFS(l ,GP)
00 212 G=I,IGM $ 00 212 GP=I,IGM
WSRFS(G.GP)=CHI (G)*WSRFS(G ,GP)
XXLA=IO.O $ T=O.O
00 290 G=I.IGM

290 T=T+WSFSS(G) $ CALL CLEAR(T,WSF,IGM)
-c
c

-300

320

322

310

312
—1F(AB5( l.-XXLA/XXLAR) .GT.EPSO) GO TO 300

START INVERSE POWER ITERATION
CONTINUE
00 320 G=I.IGM $ 00 320 GP=I,IGM
WSRA(G,GP)=-WSRS(G,GP )-WSRFS(G,GP)
00 322 G=l,IGM $ WSQ(G)=WSF(G)*WSRFV(G)
WSRA(G,G)=WSRA(G,G)+NL(G )+WSRC(G)+XXLA*WSRFV(G)
CALL LSS(IGM, I,IGMD,WSRA,WSQ ,OUMY,OET)
TP=T $ T=O.O
00 310 G=I,IGM
T=T+wSFsS(G)*wSF(G)
TA=l./T $ XXLAR=XXLA $ XXLA=XXLAR-TA
00 312 G=i,IGM
WSF(G)=TA*WSF(G)

9

.
b

c EIGENVALUE ITERATION CONVERGEO, SCALE FLUX MOMENTS
c CHOOSE BIGGEST INCREASE IN ALPHA AS BEST NEXT GUESS

IF(ABS(XLA-ALFA) .GE.ABS(XXLA-ALFA )) ALFAN=XLA
10

IF(ABS(XXLA-ALFA) .GT.ABS(XLA-ALFA)) ALFAN=XXLA
00 {30 L=I,LM $ 00 130 K=I,KM $ KL=(L-I)*KM+K $ MAT=IM(K,L)+l
00 130 G=I,IGM $ 00 130 N=I,NM

130 FLUX(N,KL,G)=F(MAT)*WSF(G) *FLUX(N,KL,G)
150 RETURN
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The codeblocksin the precedinglistingperformthe followingfunctions:

Block1: At the coinpletionof the lastouteriteration,the outerrebalance

factors[leftover in array3?(k)] containthe factorI/A,in order

to maintaina fissiontotalof unity. Loop 18 scalesthe group-

summedflowarray(FLGS)by the factorsto make themcompatible

with the alreadyscaledflux (FLUX)and fissionsource(FISSA)array.

Loop 19 does the samescalingto the groupwisenet leakage(NL)

array,usingthe factorA (ALA).

Block2: The volume-integratedfissionsourceon thematerialmesh is accumu-

lated.

Block3: The volume-integratedabsorptionABSP (withoutthe o!/v term)and the
3

totalneutronsFV on the materialmesh are calculated.Loop 30 cycles

over all XMWJlLagrangianmesh cells, computingthe materialI.D.

(MAT)for each cell. Loop 28 cyclesoverthe 18 possibleisotopes

for eachmaterial. If the isotopicfraction(FR)is nonzero,it

computesthe cross-sectionblockI.D. (IX)and the totalatomsof

that isotope(ATOMS)in the cell,basedon the totalatomsof all

isotopes(ANO)in that cell.

Block4: If thereis onlyone materialzone (wholesystemrebalance),the

next a guess (XLA)can be computedexplicitlywithoutthe inverse

power iteration.This equationis equivalentto Eq. (15). The

rebalancefactoris automaticallyunity,fromthe normalization.

Block5: This blockis used for multimaterialrebalance,usingthe inverse

poweriterationto solvethe rebalanceEq. (8). The a eigenvalue

guess(xLA)is set to a largenumber(10.0in this case)so the itera-

tionwill convergeto the eigenvalueof Eq. (8)nearestthisvalue,

presumablythe desiredmostpositiveone. The unitsof a are here

assumedin inverseshakes. If velocitiesare in cm/s,thenthisvalue

shouldbe changedfrom 10 to 109. Loop 90 computesthe syatemfission

total(T)at the startof the inversepower iterationand the initial

guessof the rebalancefactorsset to thisvalue. Loop 100 is the

actualinversepoweriterationloop.
16FollowingWachspress, , the poweriterationfor the eigenvalue

equation

Mf = a f (A-1)
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is givenby

f
n+l = ~-lanfn

and

a
nil

= (l,fn)/(l,fn+l) ,

(A-2a)

(A-2b)

wheren is the poweriterationindexand (I,f)simplyrepresentsthe

innerproductof the vectorf with thevectorof ones. This simple

poweriterationconvergesto the a eigenvaluethat is largestin

magnitude(positiveor negative),whichis not the one we desire.

If we have someestimateof the eigenvalue,ae, Eq. (A-1)may

be written

(M - aeI)

The fractional

f
n+l

= (M

f = (a - (xe) f.

power iteration is then given by

- aeI)-l(a - ae)nfn

(A-3)

(A-4a)

and

(a - ae)n+l= (1,#)/(1,fn+l) ● (A-4b)

This fractionalpoweriterationwill convergeto the eigenvalueclosest

to the guessae. If we chooseae as a largepositivenumber,thiswill

convergeto the desired,mostpositive,a eigenvalue.This iteration

is the one codedin Loop 100. In Eq. (A-4),the normalizationis

(l,f)= 1. In the codingof Loop 100,the normalizationis (FSS,f)= 1,

in orderto maintaina fissiontotalof unity.

Loop 104 constructsthematrix

RA=FL+AB- FS+a%V (A-5)
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of Eq. (8),wherein the abovenotation,

and

The

(A-6)M= FL+W-FS ,

the vectoron the right-handsideof Eq. (8)

Q =FV* F . (A-7)

callto subroutineLSS solvesthe inversematrixequation

(M - aeI)-l(a- ae)n fn

of Eq. (A-4a).

Loop 110 calculatesa new fissiontotal(T),savingthe previous

fissiontotal (TP),whichis, in fact,1.0,by the normalization.

The next estimateof (a - ae)
n+l

inEq. (A-4b)is thengivenby

(a - ffe)n+l= TA = TP/T = l.O/T . (A-8)

The next iterationestimate,&e, is then set to the previousiteration’s

eigenvalue

a =XLAR , (A-9)e

and the new iteration’seigenvalueof Eq. (A-4b)is then

a
n+l = ae + TP/T= ae + l/T . (A-1O)

Loop 112 thennormalizesthe rebalancefactorsf so the fissiontotal

T is againunity. The iterationis thenterminatedwhen (1 - c!n+l/an)

< &o.
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Block6: Thisblockinitializesthe whole-systemrebalance(WSGR)arraysto

zero.

Block7: Thisblockaccumulatesthe WSGRarraysC (orWSRC),FV (or WSRFV),

S (or WSRS),and the firstrow of arrayFS (orWSRFS),as givenin

Eq. (21).

Block8: Loop 220 storesthe groupwisewholesystemfissionsource,the first

row of the FS array,intothe WSFSSarray,to be used laterin the

normalizationconstraint.Loop 210 fillsout the remainingrowsof

the FS array. Loop 212 thenmultipliesthe FS arrayby the x diagonal

matrixto obtainthe finalformof FS, as giveninllq.(21e). The

WSGRa estimate(XXLA)is set to a largenumber(10.0),the fission

total(T)againcomputed,and the initialguessof the rebalance

factorsequatedto thisvalue.

Block9: Loop 300 is the inversepoweriterationfor the WSGR equations,

virtuallyidenticalto the codingof Loop 100,exceptthe WSGR arrays

are used.

Block10:The next guessof the a eigenvalue(ALFAN)is chosenbetweenthe GCCMR

estimate(XLA)and the WSGR estimate(XXLA)in orderto maximizethe

changefromthe previousa eigenvalueestimate(ALFA). Loop 130 then

appliesthe GCCMRfactors(F)and theWSGR factors(WSF)to the scalar

fluxand moments. Both rebalancefactorsare normalizedto maintain

the fissiontotalof unity.
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