Title: The Role of Nuclear Energy in Mitigating Greenhouse Warming

Author(s): R. A. Krakowski

Submitted to: International Conference on Environment and Nuclear Energy

October 27-29, 1997
THE ROLE OF NUCLEAR ENERGY IN MITIGATING GREENHOUSE WARMING

R. A. Krakowski
Systems Engineering and Integration Group
Technology and Safety Assessment Division
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

ABSTRACT

A behavioral, top-down, forced-equilibrium market model of long-term (~2100) global energy-economics interactions has been modified with a “bottom-up” nuclear energy model and used to construct consistent scenarios describing future impacts of civil nuclear materials flows in an expanding, multi-regional (13) world economy. The relative measures and tradeoffs between economic (GNP, tax impacts, productivity, etc.), environmental (greenhouse gas accumulations, waste accumulation, proliferation risk), and energy (resources, energy mixes, supply-side versus demand-side attributes) interactions that emerge from these analyses are focused herein on advancing understanding of the role that nuclear energy (and other non-carbon energy sources) might play in mitigating greenhouse warming. Two ostensibly opposing scenario drivers are investigated: a) demand-side improvements in (non-price-induced) autonomous energy efficiency improvements; and b) supply-side carbon-tax inducements to shift energy mixes towards reduced- or non-carbon forms. In terms of stemming greenhouse warming for minimal cost of greenhouse-gas abatement, and within the limitations of the simplified taxing schedule used, a symbiotic combination of these two approaches may offer advantages not found if each is applied separately.

INTRODUCTION

The Los Alamos Nuclear Vision Project1,2 is investigating a range of possible futures for nuclear energy using the construct of scenario building3,4 and an established, relatively transparent global energy model.5 Both nuclear energy demand and the flow of nuclear materials are examined over a ~100-yr time horizon that is characterized by a range of scenario descriptors or attributes [e.g., population growth, work-force productivity (GDP), autonomous energy efficiency improvements (AEEI, or non-price improvements in transforming primary and secondary energy to energy services), energy resource constraints, carbon taxation schedules, capital- and operating-cost constraints imposed on a range of nuclear energy technologies, etc.]. While the focus of past analytical support of the Nuclear Vision Project6-10 has been on issues and concerns related to global implementation of an expanding nuclear fuel cycle, the “top-down” behavioral model of an

* The sampling of results presented herein is elaborated in Los Alamos National Laboratory document LA-UR-97-4380 (October 29, 1997) of the same authorship, title, and textual material.
equilibrium (e.g., market-clearing, supply = demand) energy market embodied in the ERB (Edmonds, Reilly, Barns)5 model adopted and modified for this study also delivers estimates of greenhouse-gas (GHG) emissions. Hence, coupled with the “bottom-up” nuclear energy model6,7 that has been matched to the recursive, “top-down” formalism of the ERB model, with this nuclear model providing regional and temporal tracking of plutonium inventories and forms and a relative measures of nuclear proliferation risk10 based on earlier work,11-14 top-level energy/economic/environmental (E3) trade-offs become possible.7,9 Furthermore, by implementing (into ERB) integral-response functions15 that have been calibrated against a global atmospheric-ocean climate-change model,16 the GHG emission rates reported by ERB for an array of scenario attributes can be expressed in terms of atmospheric CO\textsubscript{2} accumulations, W(GtonneC), and increases in average global surface temperature, ΔT(K). Within the limitations of the modified ERB model and with little additional effort, the role of nuclear energy in mitigating greenhouse warming can be examined under the above-mentioned scenario construct, with all three of the Es in E3 being touched at some level.

Nuclear energy, like solar and (equilibrated) biomass energies, is a non-carbon (NC) energy source that has clear GHG-mitigating potential. The role played by non-nuclear NC energy sources is limited to the economic constraints that form the basis of the original ERB model,5 although recent studies of the GHG-mitigating potential of (equilibrated) biomass energy sources has been reported.17 The present study focuses on the nuclear-energy option, and efforts to consider other NC energy sources in the context of the present effort remain as future work. This present focus on a “bottom-up” nuclear model without comparable examinations of other NC options is a serious limitation. Furthermore, only electricity generation is considered for the nuclear options being considered; since ≥ 60% of all primary energy presently serves fossil-based non-electric applications, this too is a serious limitation of the present study. Lastly, mitigation of greenhouse warming through the implementation of NC energy sources attacks the problem only from the supply side. Increased demand-side energy efficiencies represent the other main facet of the problem.17-20 This (demand-side) approach to GHG mitigation is examined herein through the aforementioned AEEI parameter; in the context of the ERB model, AEEI is changed parametrically (exogenously). More elaborate (long-term) models reflect endogenous increases in either AEEI,21 if that concept is used, or induced reallocations of resources among key sectors of the world economies as non-energy sectors adjust to increased energy prices.22 The ERB model is capable only of exogenous changes in the AEEI-like parameter, ε\textsubscript{k}. A fourth limitation of this analysis centers on the merits of economy-based “top-down” models versus technology-base “bottom-up” models;23 the former generally reflects market penalties associated with GHG mitigation schemes, whereas the latter solution-oriented (and generally market-free) approach suggests cost benefits for changing to reduced- or non-carbon fuels and using those fuels more efficiently.

With these four limitations in mind (i.e., nuclear-energy-focus; application only to electricity generation; exogenous AEEI; “top-down” approach), the results summarized in Refs. 8 and 24, along with the associated technical support document,9 are directed at understanding better the role nuclear energy might play in abating greenhouse warming. After giving a synoptic narrative describing the ERB model, results are presented according to the following four
subsections: a) description of the Basis Scenario; b) impacts on global warming by exogenously varying AEEI (e.g., demand-side impacts); c) the impacts of increased nuclear-energy share fractions induced by imposing a range of carbon-tax schedules (e.g., supply-side impacts); and d) the composite impact on global warming of simultaneous demand-side (increases in AEEI) and supply-side (imposition of carbon taxes) forces. On the basis of these parametric results, a nuclear-energy scenario that mitigates greenhouse warming is suggested. This “strawman” scenario combines both supply-side (carbon-tax induced increase in nuclear-energy demand) and demand-side (AEEI increases) approaches. An interim summary and conclusions follows.

MODEL

Four basic approaches to modeling energy planning have evolved over the years: a) simulations of the technical system per se; b) econometric estimates of price-demand relationships; c) sectoral descriptions of whole economies, with energy being one of a number of interconnected sectors; d) optimization models that combine elements of the others into a Linear Programming (LP) or a Mixed Integer Programming (MIP) formulation. The ERB model uses a recursive approach to describe a behavioral market equilibrium that internally balances energy production and usage. As such, the simplified ERB formulation models energy from within using econometric price-demand relationships. While simplified compared to the sectoral and/or LP optimizing models, the ERB model adequately targets the needs of the present study, is available to the public, is adaptable to modification, and is generally transparent and well documented. While presenting a “top-down” economist's (market) view of E3 interactions, an approximate “bottom-up” technology view of nuclear energy has been added.

The ERB model is comprised of four main parts: supply, demand, energy balance, and GHG emissions (a postprocessor). Appropriate carbon coefficients (Gtonne/EJ) are applied at points in the energy flow where carbon is oxidized and released to the atmosphere; carbon flows where oxidation does not occur are also taken into account. Supply and demand are determined for six primary energy categories: oil (conventional and nonconventional); gas (conventional and nonconventional); solids (coal and biomass); resource-constrained renewables (hydroelectric and geothermal); nuclear (fission, with fusion being included as a form of solar energy); and solar (excluding biomass; includes solar electric, wind, tidal, ocean thermal, fusion, and advance renewables; solar thermal is included as a form of energy conservation). The energy balance in ERB assures that supply equals demand in each global region, with primary electrical energy assumed not to be traded (e.g., assumed to be generated and used within a given global region).

Figure 1 gives the structure of the ERB model, as modified for the purposes of the present study. The energy and economic (market-clearing) balances indicated on Fig. 1 are performed for 13 global regions depicted schematically on Fig. 2 (increased from the nine used in the original ERB model) and for nine times separated by 15-year intervals that start in the base year 1975 and moves out to 2095. Energy balance across regions is established by a set of rules for choosing the respective prices that are required for supply to equal demand in each of three energy-service groups for each fuel. The specific test of convergence requires that the difference in regional sums of demand and supply for each of the three fossil primary fuels (oil, gas, and solids) be less than a specified value.
Figure 1. Structural layout of ERB global E³ model⁵ as adapted and modified for the present study. Four main components comprise the ERB economic-equilibrium model: energy demand; energy supply; energy balance; and greenhouse-gas (GHG) emissions. The relationships between inputs and iterated outputs, as well as the addition of a (higher fidelity) nuclear energy model (resources, costs, nuclear-materials flows and inventories, and proliferation risk) are also shown.

The demand for energy is determined separately for each of the above-mentioned six primary fuels, for each of 13 global regions, and for each of nine times. Five exogenous inputs (including taxes and tariffs) determine the local energy demand. The base (exogenous) GNP (labor-force productivity × population) is used as an indicator of both (regional) economic activity and as an index of regional income. The base GNP is modified through price elasticities to model energy-economy interactions, with GNP ∝ price for energy-rich regions and GNP ∝ 1/price for global regions that must import energy. More specifically, the demand for energy services (e.g., residential/commercial, industrial, and transportation) for each of thirteen global regions is determined in ERB by: a) the cost of providing these services; b) the level of income (~GNP); and c) the regional population. Energy services are provided by an array of four secondary fuels (liquids, gases, solids, and electricity). The mix of these secondary fuels used to provide a given energy service is determined by a cost-based market-share algorithm, as is the demand for fuels used to produce electricity and the share of oil and gas transformed from coal and biomass. The four secondary energy sources are generated from the six primary fuels, with nuclear, hydroelectric, and solar providing only electrical secondary energy; non-electric solar is treated in ERB as a conservation technology to reduce the demand for the three marketed fuels (e.g., oil, gas, and solids). Modeling of the PE → SE → ES transformation uses a Leontief-type formulation.³²
As is elaborated in Ref. 6, the nuclear energy module added to ERB, for purposes of the present study, replaces the Leontief equation for nuclear, which originally was based only on a scaled cost of uranium extraction (treated in ERB in this regard like a fossil fuel), with one based on capital, operating and maintenance (O&M), and decontamination and decommissioning (D&D) costs. The resulting nuclear energy cost is then fed back to the ERB demand module to determine the respective market-share fraction as a function of time and region. The uranium resource model originally used in ERB, for purposes of the present study, has been replaced with that suggested in Ref. 33, as interpreted in Ref. 34.

Figure 2. Schematic map of thirteen-region ERB model, with area of each stylized rectangular region reflected the respective land masses. The following regional identifiers are used: 1) USA = United States of America; 2) CAN = Canada; 3) OECD-E = OECD-Europe; 4) OECD-P = OECD-Pacific; 5) EEU = Eastern Europe; 6) FSU = Former Soviet Union; 7) CHINA+ = China plus centrally planned neighboring countries; 8) ME = Middle East; 9) NAFR = North Africa; 10) SAFR = Southern Africa; 11) LA = Latin America; 12) IND = India; and 13) SEA = South and East Asia.

Non-price-induced improvements in end-use energy efficiency are expressed as a time-dependent index of energy productivity that is independent of energy prices and real income. This parameter is similar to the Autonomous Energy Efficiency Improvement (AEEI) used in other more elaborate (inter-temporal) “top-down” models. This approach allows scenarios to be examined that span the range from continued improvement to technological stagnation, irrespective of world energy prices and real income; the limitations of this approach are discussed in Refs. 23 and 35. World energy prices for all fossil fuels are established through energy balance, with regional (fossil) fuel prices being determined by local taxes, tariffs, and transport charges. Interregional trade, however, does not occur for solar, nuclear, or hydroelectric power. In modeling the GHG-mitigating potential of nuclear energy, the AEEI-like parameter ξ_k is varied to express the impacts of demand-side solutions, and carbon taxes are applied as a means to allow NC energy sources to assume a larger market share and to reflect supply-side approaches to abating global warming.
While the AEEI parameter is used to examine demand-side impacts, imposition of carbon taxes (C-TAX) at a linear rate ($/tonne/15 yr) starts in the year 2005 (first “future” after the first times 1975 and 1990) to examine supply-side impacts. Within the context of the version of the ERB model used, these taxes increase the price of fossil-fuel-based energy sources (in proportion to the respective carbon coefficient, kgC/GJ), diminish demand for these energy sources, and diminish economic productivity according to the ERB algorithms \([\text{e.g., } \text{GNP} \propto 1/(\text{price})^\beta]\). The carbon taxes \textit{per se} are “removed” from the respective economies, and in this respect the related impact on primarily-energy demand \([\propto (\text{GNP})^\beta]\) and associated decrease in GHG emission are overestimated; inclusion of both endogenous impacts on AEEI and C-TAX economy coupling/feedback represent important areas of future work.

RESULTS

A range of long-term energy scenarios have been generated based on varying an ensemble of scenario attributes. Nine of the key scenario attributes varied in the Ref.-9 study are summarized on Table I, along with respective ranges of variations. The Ref.-9 study adopted a point-of-departure “Basis Scenario” to which these attribute variations were referenced. The nuclear-energy part of that Basis Scenario invoked a once-through LWR operation, a uranium

Table I. Primary Variables Examined in Ref-9 Study

<table>
<thead>
<tr>
<th>Variable/Attribute</th>
<th>Basis-Case Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population growth</td>
<td>UN projections (Fig. 3)(a)</td>
</tr>
<tr>
<td>Work-force productivity (1/yr)</td>
<td>(0.017,0.025) (\rightarrow) (0.009,0.022)(a)</td>
</tr>
<tr>
<td>AEEI parameter, (\varepsilon_k) (1/yr)</td>
<td>0.0100(b)</td>
</tr>
<tr>
<td>Carbon tax rate ($/tonneC/15yr)</td>
<td>0 (c)</td>
</tr>
<tr>
<td>Uranium resource category</td>
<td>CR, KR, or TR(d)</td>
</tr>
<tr>
<td>NE capital cost, UTC_LWR ($/We)</td>
<td>2.4 (2095 asymptote)(e)</td>
</tr>
<tr>
<td>MOX core volume fraction, (f_{\text{MOX}})</td>
<td>0.0(f)</td>
</tr>
<tr>
<td>LMR introduction constraints</td>
<td>(g)</td>
</tr>
<tr>
<td>FSB introduction constraints</td>
<td>(h)</td>
</tr>
</tbody>
</table>

(a) 1975 \(\rightarrow\) 2095, dependent on region; varied \(\pm 17\%\) relative to basis case.
(b) reduction in secondary energy required to provide given energy service, independent of region and time (except where noted); varied over range (0.0,0.015) 1/yr.
(c) starting from 2005, rate varied over the range (0.50) $/tonneC/15$ yr.
(d) CR = Conventional Resources; KR = Known Resources; TR = Total Resources, per Ref.-33 categorizations; varied over full range; KR adopted as base-case category.
(e) varied over range (2.0,3.0) $/We$.
(f) final achieved value, starting in 1995 and increased according to time constant \(T_{\text{MOX}}\); independent of region; for \(T_{\text{MOX}} = 10\) yr, varied over the range (0.0,0.3).
(g) primarily \(UTC_{\text{LMR}}/UTC_{\text{LWR}} = 1.5\), KR uranium resources, and no carbon tax; for these base-case conditions, LMRs were too costly for introduction.
(h) primarily minimum conversion ratio allowed and the ratio of \(UTC_{\text{LMR}}/UTC_{\text{LWR}} = 1.5\) for IFR/LMR fast spectrum burner; the ratio \(UTC_{\text{LMR}}/UTC_{\text{LWR}} \) was varied over the range (1.2,1.5).
resource and cost scaling described by a Known Resource (KR) category, and a breeder reactor capital cost that is 50% more than that for LWRs. Without a strong carbon tax to stimulate increased demand for nuclear energy (as well as other reduced- or non-carbon energy sources), these conditions were sufficient to push the economic introduction of breeder reactors to beyond the time frame of this computation (~2100). For the purposes of the present investigation of the role that nuclear energy might play in reducing the emission of GHGs, the Ref.-9 Basis Scenario with plutonium (mixed plutonium-uranium oxide, MOX) recycle in LWRs is adopted as the Basis Scenario. As for the Ref.-9 study, other (non-nuclear) attributes remain as given in the original version of the ERB model. In this study, implementation of carbon taxes is adopted as the main market force for increasing NC energy supplies while mitigating GHG emission. On the demand side of the equation, increased AEEI is used as a means to examine the relative effectiveness of non-price drivers in reducing GHG emissions. These two supply-side versus demand-side approaches to reducing greenhouse warming are then compared. From this comparison, a “nuclear energy scenario” for reduced greenhouse warming is suggested.

Figure 3. Key base-case aggregated drivers and related first responses: time dependencies of populations, POP (exogenous); GWP (price-adjusted basis case); GWP/POP (price-adjusted basis case); primary-energy intensity, EI = PE/GWP(endogenous), and per-capita primary energy, PE/POP(endogenous).

Basis Scenario

The Basis Scenario adopted for this study is largely that used in Ref. 9, but with plutonium recycle in \(f_{MOX} = 0.3 \) of the LWR reactor core volume. Figures 3-9 describe the essential elements of this MOX/LWR Basis Scenario. As for a majority of results presented herein, these results are an aggregate of the 13 global regions described by ERB. The population and GWP drivers behind this scenario are given in Fig. 3, which also includes per-capita GWP, per-capita primary energy (PE) demand, and the evolution of the global energy intensity, EI(MJ/$) = PE/GWP. Population growth is exogenously inputed from U.N. projections, whereas the
The rate of CO₂ emission, \(R_{\text{CO}_2} \) (GtonneC/yr), for this no-carbon-tax Basis Scenario is shown on Fig. 7. The impact of this carbon-dioxide emission rate on integrated emissions, \(W_0 \) (GtonneC), accumulated atmospheric CO₂ (carbon), \(W \) (GtonneC), and average global temperature rise, \(\Delta T \) (K), is also shown on Fig. 7. The integrated emissions, \(W_0 \), is referenced to atmospheric CO₂ inventories since the dawn of the industrial revolution, which is taken as\(^{15} \) \(t_{\text{IRV}} = 1800 \), when the atmospheric CO₂ inventory was \(W_{\text{IRV}} = 594 \) GtonneC (2.13 GtonneC/ppmv). The relatively slow increase of the ratio \(\Delta T/(W/W_{\text{IRV}}) \), as determined from the linear integral-response model used,\(^{15} \) is also included on Fig. 7. Carbon dioxide emissions from each of the 13 regions tracked by the ERB model is shown in Fig. 8; the CHINA+ region becomes the dominant contributor of GHGs by the year 2025 for this Basis Scenario.
The evolution of plutonium inventories by region is used in a multi-attribute utility (MAU) analysis,10 that has been synthesized from earlier work11-14 for use in the ERB nuclear model, to yield relative measures of a utility for proliferation, u, and a proliferation risk index, PRI. These relative (and highly subjective) measures of proliferation risk are adopted as the primary non-economic “cost” for nuclear energy against which any benefit of reduced GHG emission is measured. The PRI is a time-discounted sum of regionally weighted utilities evaluated from the viewpoint of a proliferator, which in turn is a weighted average of subutility functions that in turn reflect proliferator-oriented attributes that measure cost, technological difficulty, detection risk, and material availability;10 the PRI indicates a value-based potential for proliferation rather than a probability for proliferation, is measured on a scale from zero to unity, and is subjectively evaluated from the perspective of a given region (e.g., the U.S.).

The buildup of global plutonium inventories correlates with the relative CO$_2$ (carbon) accumulation, W/W_{IRV}, or the average global temperature rise, $\Delta T(K)$, that results. The latter is computed from the year t_{IRV}. These correlations are central to subsequent correlations of global climate change (GCC), nuclear-proliferation, and economic impacts. Specifically, the risks associated with increased global inventories of plutonium and GHGs are expressed in terms of the PRI and ΔT parameters and are correlated in terms of a reduced “operating curve” for the Basis Scenario on Fig. 9. As important as is the need to translate both PRI and ΔT into economic and social consequences, the present study does not advance beyond the correlation shown given in Fig. 9. This “operating curve” per se is not as important to understanding proliferation-risk/GCC/GWP connectivities as are relative shifts in the slopes and magnitudes at a given time as key scenario drivers (e.g., carbon tax rates or exogenously driven AEEI trajectories) are changed. Figure 9 also compares the PRI impacts (for the no-carbon-tax case) of plutonium recycle ($f_{MOX_{r}} = 0.30$) and the use of the once-through (LWR) fuel cycle. Plutonium recycle increases the PRI by $\sim 10\%$ while having little impact on reducing GCC impacts (e.g., ΔT). Actually, the lines of constant time (an isochrone for 2095 is shown on Fig. 9) are almost vertical, with a slight

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure5.png}
\caption{Evolution of aggregated total primary energy for Basis Scenario: OECD = US + CAN + OECD-E + OECD-P; REF + FSU + EEU; and DEV = CHINA$^+$ + ME + NAFR + SAFR + LA + IND + SEA.}
\end{figure}
off-vertical orientation indicating that the small added cost associated with the $f_{\text{MOX}} = 0.0 \rightarrow 0.3$ transition, which increases the cost of nuclear energy slightly and reduces (slightly) demand, results in a small increase in fossil-fuel use, and leads to somewhat larger values of $\Delta T (< 0.05 \, \text{K})$ for the $f_{\text{MOX}} = 0.30$ case. Significantly larger impacts are computed for enhanced use of nuclear energy (and other reduced- or non-carbon energy sources) forced by imposing carbon taxes, however. Before results of implementing this supply-side driver are reported, however, the impact of variations in the demand-side parameter AEEI are first reported.
Figure 7. Time dependence of total CO$_2$ (carbon) emission, integrated emissions, atmospheric accumulation of emissions, and corresponding global average temperature rise, as determined from the linear integral-response model15,16 results applied to the zero carbon-tax basis case24.

Figure 8. Atmospheric carbon emission rates as a function of time and region for Basis Scenario.

Demand-Side Impacts: AEEI

The parameter $\varepsilon_{jk}(1/yr)$ represents a non-price-induced reduction in the amount of secondary energy j ($j = \text{liquids, gases, solids, and electricity}$5 needed to provide an energy service k ($k = \text{residential/commercial, industrial, and transportation}$). For the Basic Scenario, ε_k (the j subscript is not used) after the second time period (1990) is 0.0100 1/yr for all regions and all
times. As noted in Ref. 35, the parameter AEEI is not well named; as a measure of non-price induced changes in EI, it may neither be autonomous nor deal solely with energy efficiency. The AEEI parameter attempts to account for the impacts of technological developments, (economy) structural changes, and policy-driven inducements in the move towards increased energy efficiency. Many of these forces reflected in AEEI-like effects are endogenous to the economic-energy evolutionary process, and cannot be specified as an external driver. Reference 22, in fact, reported AEEI-like effects from a sectoral model of the economy without explicitly introducing the AEEI parameter.

The scenarios considered under “AEEI variations” (Table I) examine impacts over the range $\epsilon_k = (0.0, 0.015)$, where again ϵ_k is regionally and temporally (after 1990) constant at the designated value. One case, $\epsilon_k = 0.015$ (RAMP), linearly ramps ϵ_k down from 0.015 (in 1990) to 0.0 in 2095. These impacts are summarized on Figs. 10-13. Specifically, the impact on primary- and nuclear-energy demand is depicted on Figs. 10 and 11. The reflection of these changes in end-use efficiency on the energy intensity (again, starting in 1990) indicates that ϵ_k values much below ~0.0050 1/yr, in a globally aggregated sense, freeze any improvement (e.g., decrease) in the global energy intensity, EI(MJ/$)$.

The range of ϵ_k values considered not only has a significant impact on primary-energy demand (Fig. 10), but relatedly leads to wide swings in carbon-dioxide emissions, as is shown on Fig. 12. The average global temperature rises that result are depicted on Fig. 13. That decreases in ϵ_k below the 0.0100 1/yr basis-scenario value make an already serious problem more serious comes as no surprise; that 50% increases in ϵ_k have such relatively weak impact on mitigating global warming is. Essentially, across-the-board increases in AEEI result in needed, but insufficient, decreases in GHG emissions; this parameter alone cannot induce changes in the primary-energy mix needed to move aggressively to NC energy sources. The implementation of the supply-side forces embodied in energy taxes based on carbon content can cause such a shift.

![Figure 9. Correlation of proliferation-risk index with average global temperature rise for case without carbon tax imposed; a comparison of PRI impacts of plutonium recycle (e.g., $f_{MOX} = 0.0$ versus 0.30) is shown.](image-url)
Unfortunately, if applied regressively, the increased prices that result can drive decreased productivity. These issues are examined, within the limitations of the ERB model, in the following section.

Figure 10. Primary energy demand as a function of time and AEEI; the $\varepsilon_k = 0.015$(RAMP) case starts ramping from the indicated value in 2005 and linearly decreases to zero by 2095.

Figure 11. Nuclear energy demand as a function of time and AEEI; the $\varepsilon_k = 0.015$(RAMP) case starts ramping from the indicated value in 2005 and linearly decreases to zero by 2095.
Figure 12. Carbon-dioxide (carbon) emission rate as a function of time and AEEI; the \(\epsilon_k = 0.015 \) (RAMP) case starts ramping from the indicated value in 2005 and linearly decreases to zero by 2095.

Figure 13. Average global temperature rise as a function of time and AEEI; the \(\epsilon_k = 0.015 \) (RAMP) case starts ramping from the indicated value in 2005 and linearly decreases to zero by 2095.

Supply-side Impacts: Carbon Taxes

Energy Demand and Mix. A carbon tax is applied to fossil fuels in proportion to carbon content per unit of released energy. Beginning in 2005, this carbon tax is applied for linearly increasing rates ranging from 0 to 50 \$/tonneC/15yr; hence, for a rate of 40 \$/tonneC/15yr, the carbon tax at the last time considered (2095) would be 240 \$/tonneC. This carbon tax schedule
puts the heaviest penalty on coal (23.8 kgC/GJ) and the least penalty on natural gas (13.7 kgC/GJ), with oil being intermediate (19.2 kgC/GJ). According to the ERB algorithms, carbon taxes increase the price of the affected energy source, decrease the market share for that energy source, and reduce the price-based adjustments to the (exogenous) base GNPs. The relationship between energy prices and GNP used in the ERB model derive from the oil shocks of the 1970s, and, as a result, the GNP losses reported by ERB “are unreliable and excessive.” In spite of a warning against use of the GNP figures generated by ERB, GNP decrements, ΔGNP, are reported here, along with total cost (tax) figures.

In its present form, collected carbon taxes are not returned to the GNP, but are simply allowed to “disappear”. An algorithm was added to ERB to monitor both actual and present-valued carbon taxes and GNP decrements related thereto; these are reported here as a first step towards developing a more sophisticated (e.g., revenue-neutral, import tariffs based on carbon content, etc.) carbon tax schedule. For the purposes of the present study, the imposition of carbon taxes is used primarily as a means to increase the price of fossil fuels and to increase the market share of NC energy sources.

The impact of carbon taxes on primary energy use is shown on Fig. 14; at the highest rate of carbon taxation, primary energy use in 2095 could be reduced by ~25% relative to the Basis Scenario. The shift in market shares for the six primary energy sources from the Basis Scenario (no carbon tax) to the case of maximum carbon tax rate (50 $/tonneC/15yr) is as follows; coal loses the greatest market share (~65% → 22% in 2095), nuclear and solar (electric) energies show a strong increase in market share (~19% → 46% and ~5-6% → 13% in 2095, respectively), resource-limited hydroelectric shows only a moderate increase, and gas, while diminishing somewhat in time, shows relatively little change from the Basis Scenario. The shift towards more solar and nuclear energy infers an increase in the use of electricity; the fraction of primary energy that is used to generate electricity increases from ~16% to 22% in 2095 for the maximum carbon tax rate.

Figure 14. Primary energy demand as a function of time and carbon tax rate, starting in 2005.
Focusing on nuclear energy, Fig. 15 gives the dependence of annual nuclear energy demand on carbon tax rate. For the 50 $/tonneC/15yr carbon tax rate, nuclear energy demand increases in 2095 by ~43% relative to the basis scenario. The required deployment rate for this case increases from ~75 GWe/yr to ~85 GWe/yr (for an 80% plant availability factor). Similar deployment rates are required in the out years for the no-carbon-tax case. Figure 16 gives the (same basis) fraction of primary energy demand satisfied by nuclear energy, which in the out years increases from ~18% for the Basis Scenario to ~45% for the most aggressive carbon tax rate considered.

Under these circumstances, nuclear energy becomes a major player in the world energy mix. The reduction in atmospheric CO$_2$ (carbon) emissions that accompanies this carbon-tax-induced increase in nuclear (and solar) energy demand is illustrated in Fig. 17, which also gives per-capita and per-primary-energy carbon emission for the Basis Scenario. For the latter, while carbon release per unit of primary energy decreases somewhat, more of this reduced-carbon energy is being used on a per-capita basis as prosperity drives a global per-capita appetite for energy.

Figure 18 gives a composite curve of fractional reduction of CO$_2$ emissions ($\Delta R_C/R_C$, relative to the zero-carbon-tax Basis Scenario) as a function of the carbon tax, $U_{CTX}(\$/tonneC)$, as assembled from the five carbon tax rates being considered. Shown also on this figure is the result of a regression fit to seven econometric, optimization, and hybrid models, as is reported in Ref. 38. Using the integral-response formulation reported in Ref. 15, and adopting $t_{IRV} = 1800$ as the beginning of the industrial revolution and the beginning of anthropogenically driven global warming ($W_{IRV} = 594$ GtonneC, $\Delta T = 0$), the CO$_2$ emission rates given on Fig. 17 are used to estimate atmospheric carbon accumulations and related global temperature rises, $\Delta T(K)$. Figure 19 gives $\Delta T(K)$ as a function of time and carbon tax rate. In the out years, the application to a strong carbon tax reduces $\Delta T(K)$ from 2.4 K to 1.4 K; these temperature rises are referenced to $t_{IRV} = 1800$ and, based on the model used, has already reached ~0.4 K by the start of this computation (1975).

E3-Trilemma Trade Offs. Whatever “benefits” accrue from the mitigation of global temperature rise (through carbon taxation), these benefits must be compared to “costs” associated with the drivers of this reduced global warming. In the present context, some of these costs are economic [e.g., reduced GNP (note caveats given previously35) and an (as yet) unallocated tax stream], some are environmental (e.g., waste streams associated with the increased use of NC energy sources, which are primarily solar and nuclear), and some are social-political (e.g., increased risks and altered social structures associated with the need to reduce risks related to nuclear-weapons proliferation). The following discussions deal first with trade off associated with proliferation risk that accompany increased use of nuclear energy, and then is followed by a discussion of some aspects of adverse economic impacts of imposing unallocated carbon taxes.

Proliferation versus GCC Risks. At the level of this analysis, the culmination of the comparative risk assessment is the PRI versus ΔT relationship (Fig. 9) for this special set of carbon-tax-driven (supply-side) scenarios. In the context of the present study, the evolution of the PRI versus ΔT “operating curves” depicted on Fig. 20 represents the final result. As discussed above, with or without a GHC-abating carbon tax, both PRI and ΔT will increase with time as populations in number and living standard develop. The first frame of Fig. 20 gives this PRI versus ΔT evolution with increasing carbon tax rates, whereas the second frame stresses more the increased nuclear-energy share under imposition of carbon taxation by giving the fractional increase in PRI relative to the zero-tax case as a function of ΔT. The added sensitivity of plotting
ΔPRI/PRI₀ reveals that, for a given taxation rate ($/tonneC/15yr), the fractional increase in PRI shows a maximum at ~2065 that is independent of the rate at which the carbon tax is applied. Generally, increased use of nuclear energy through the imposition of a carbon tax slows the rate of global warming while increasing proliferation risk a few percent relative to the zero-carbon-tax Basis Scenario.

Figure 15. Nuclear energy demand as a function of time and carbon tax rate, starting in 2005.

Figure 16. Nuclear energy as a fraction of total primary energy as a function of time and carbon tax rate, starting in 2005.
Economic versus GCC Risks. Resolution of the economic costs of this particular set of drivers, as monitored through GNP impacts and unallocated carbon taxes, remains as future work that must ultimately relate abatement costs to achieve a given reduction in ΔT to damage costs associated with accommodation to GCC impacts; these costs are sometimes expressed as percentages of GNP. For present purposes, a unit cost of CO$_2$ abatement, UC$_A$($/\text{tonneC}$), is defined as the ratio of reduced CO$_2$ emissions relative to the Basis Scenario, $\Delta R_{\text{CO}_2} = R_{\text{CO}_2} (\text{No C-TAX}) - R_{\text{CO}_2} (\text{C-TAX})$, to either the total carbon taxes collected for that year, TAX, or the sum...
TAX + ΔGWP, where ΔGWP = GWP(No C-TAX) – GWP(C-TAX). Figure 21 gives the time dependence of ΔT, TAX, ΔGWP, and these two ways of calculating UC_A. Also shown is the ratio TAX/ΔGWP varying from 2.4 in 2020 to 0.6 in 2095. Attempts to correlate both measures of abatement unit cost with the unit carbon tax, UX_TX, are reported on Fig. 22 for the range of carbon tax rates being considered. Based on UC_A,TAX = TAX/ΔR_CO2, high tax rates favor lower “abatement costs” by a factor of ~2. On the other hand, for UC_A,TAX + ΔGWP = (TAX + ΔGWP)/ΔR_CO2, higher carbon taxes result in ~15% higher “abatement costs”. If a “revenue-neutral” carbon tax scheme could be devised and implemented, then TAX + ΔGWP could be reduced in magnitude (and possibly sign).

Some would argue that both TAX(t) and ΔGWP(t) should be discounted at a rate DR(1/yr) to a reference year, summed over the computational period, and expressed in present-value form. Figure 23 gives the decrease in world GNP as a function of the rate of carbon taxation. These GWP percentage decreases are expressed in two forms: a) the percent decrease in the last-year (2095) GWP with and without a carbon tax imposed at a given rate; and b) the percent decrease in the present value of all GWPs over the study period, using a constant pure discount rate of DR = 0.04 1/yr; the former gives (ΔGWP/GWP)_{2095} = 4%, and the latter gives (ΔGWP/GWP)_{PV} = ~0.7%. The ratio of the present value of incremental GWP to the present value of all carbon taxes collected over the computation period, again using DR = 0.04 1/yr, is nominally constant in the range 0.6-0.7; the present value of all carbon taxes collected over the computation period is about twice the present value of the GWP decrement. Again, the previously stated caution about using price-adjusted GNP values from ERB should be kept in mind. Also shown on Fig. 22 is the decrease in atmospheric CO2 accumulation (again, W_{IRV} = 594 Gtonne is the atmospheric carbon inventory for t_{IRV} = 1800). This reduction in global warming might be considered a benefit against which the decreased GWP could balance, albeit, a more careful and consistent accounting of the collected carbon taxes, as well as a weaker price-GNP scaling, 35 could reduce or reverse the GWP decrements computed from the present model. The percentage increase in proliferation risk evaluated in the last year, (ΔPRI/PRI)_{2095}, associated with the increased implementation of nuclear energy is also shown on Fig. 23. While ΔPRI is small relative to PRI, no quantitative statement can be made with respect to this increased proliferation risk attendant to increased use of nuclear energy to abatement GHG accumulation until the consequences of PRI without carbon taxes are fully assessed.

Composite Demand-Side/Supply-Side Impacts

The relative impacts on stemming greenhouse warming through demand-side (increased AEEI, ε_k = 0.0100 → 0.0150 1/yr), supply-side (carbon tax rates, 0 → 50 $/tonneC/15yr), and a combination of both are given a cursory examination in this section. Along with the Basis Scenario (ε_k = 0.0100 1/yr, no carbon tax), the four cases listed in Table II are compared. Figures 24 and 25 give the time dependence of primary-energy and nuclear-energy demand, respectively, for these four case. For a given unit carbon tax, the 25% increase in ε_k results in ~10% additional decrease in the relative CO2 emission rate. The average global temperature rise for all four cases are summarized on Fig. 26. The bulk of the ~45% decrease in ΔT comes from the supply-side carbon tax, with AEEI contributions being relatively minor. The impact of AEEI on the approximate measures of abatement cost, UC_A($/tonneC, Fig. 22), however, can amount to ~33% reductions for the case of UC_A based only on TAX. For the case of UC_A based on TAX + ΔGWP, the cost reduction for superposing the demand-side abatement solution onto the supply-side solution
amounts to ~23%. Hence, while the latter has only a minor impact on reducing ΔT per se, a strong economic symbiosis in combining the two may exist. Lastly, a direct comparison of increased proliferation risk (PRI) that accompanies the decreased GCC risk (ΔT) is given in Fig. 27; the combined C-TAX + AEEI attack on global warming reduces somewhat PRI relative to a purely supply-side (carbon tax) strategy, while giving an added (slight) reduction in global warming. A central question, however, is the abatement cost associated with demand-side approaches to reducing GHG emissions.18,40

SUMMARY AND CONCLUSIONS

A range of long-term futures for nuclear energy have been examined in Ref. 9 by building “surprise-free” scenarios using a consistent, but simplified, modeling tool.5 Defining scenario attributes are placed in a hierarchy that divides determinants of nuclear energy futures into external forces and forces that originate from within nuclear energy per se. By varying the former upper-level scenario attributes (e.g., population, workforce productivity, energy intensity or end-use transformation efficiency, global taxes, top-level nuclear energy economics), a wide range of nuclear energy demand scenarios can be generated. Although these scenarios represent only possibilities, and are not predictions, they nevertheless provide a quantitative basis and connectivity for examining impacts of the lower-level internal drivers that influence directly the economic and operational character of nuclear power. The OT/LWR Basis Scenario adopted in Ref. 9 as a point-of-departure case was modified to include MOX recycle and provided the Basis Scenario for the present study of the impacts of nuclear energy on greenhouse warming. Carbon taxes where used as a supply-side “forcing function” to increase market share of key NC energy sources (mainly solar and nuclear energies). Top-level economic and proliferation-risk implications of this demand-side approach to reducing GHG emissions were examined. As a representative demand-side driver of GHG abatement, the AEEI-like parameter used to define the no-carbon-tax...
MOX/LWR Basis Scenario ($\varepsilon_k = 0.0100 \text{ l/yr}$) was varied. It was found that while (exogenously) increased AEEI has only moderate impacts on greenhouse warming *per se* (Table II), when used in conjunction with carbon taxes, important decreases in (the highly approximate) measures of unit abatement costs, UC_A result. Similar symbiotic effects may also come into play through attempts to mitigate proliferation risks along with GCC risks (Fig. 27).

Figure 20A. Direct comparison of proliferation-risk-index *versus* atmospheric temperature-rise “operating curves” as the rate of carbon taxation is varied: direct comparison of PRI *versus* ΔT, showing isochrones.

Figure 20B. Direct comparison of proliferation-risk-index *versus* atmospheric temperature-rise “operating curves” as the rate of carbon taxation is varied: change in PRI relative to the no-carbon-tax case, showing isochrones.
Figure 21. Time dependence of total carbon taxes, decreased GWP, tax-to-GWP ratio, percent decrease in atmospheric carbon emission rate, unit cost of CO\textsubscript{2} abatement, and average global temperature rise for a carbon tax rate of 40 $/tonneC/15yr.

Figure 22. Dependencies of two measures of unit cost of abatement, UC\textsubscript{A}($/tonneC), as a function of unit carbon tax, UC\textsubscript{TX}($/tonneC), for a range of carbon tax rates ($/tonneC/15yr).

A central theme of this study is embodied in the relationship between economic (e.g., ΔGWP, TAX, UC\textsubscript{A}, etc.), environmental (e.g., GCC, proliferation), and energy (e.g., AEEI, PE mixes, EI, etc.) elements of the E3 equation. While the relationships demonstrated quantitatively herein are generally based on relative metrics (e.g., PRI, ΔT, UC\textsubscript{A}, etc.) and are far from being comprehensive, this investigation represents a beginning. Specifically, using the proliferation risk
index (PRI) and the estimate of global warming generated from a linear integral-response model15 that relates GHG emission rates to global temperature rise, ΔT, a range of carbon-tax-driven scenarios was created to examine tradeoffs between increased PRI that accompanies increased use of nuclear energy, decreased global warming, and reduced GWP caused by increased (fossil) energy prices (Figs. 20 and 21). It was found that while strong carbon taxes rates (40-50 $/\text{tonneC}/15\text{yr}$, beginning in 2005) can return CO$_2$ emission rates in \sim2100 to present levels, the rate of global temperature rise, while significantly diminished, remains positive (\sim0.5 K/yr, compared to 2.8 K/100yr for the case of no carbon taxes). In the 2100 time frame, GWP would be reduced by 3-4% (\sim0.8% on an integrated present-value basis using a 4%/yr pure discount rate), primary energy used would be reduced by 20-25%, and nuclear energy would experience a \sim80% increase (necessitating a deployment rate of \sim80 GWe/yr in the out years around 2100). The ratio of present value of all carbon taxes to present value of lost GWP (again, using a 4%/yr pure discount rate) amounts to \sim1.3 over most of the computational period. The PRI is increased by only 5-6% for the maximum nuclear-energy implementation (e.g., strongest carbon tax rate) in \sim2100. Specifically, the explicit relationship between these relative measures of (increased) proliferation risk and (decreased) global temperature rise (Fig. 20) indicates that for this 5-6% increase in PRI, ΔT in 2100 is reduced from 2.4 K for the no-carbon-tax case to 1.4-1.5 K, but, again, global temperature continues to rise at a rate of 0.5 K/100yr in 2100 for the strong carbon tax rates. These correlative results between proliferation risk and GCC impacts, however, project only relative trends; the “real” implications of the base (e.g., for no carbon tax) PRI growing to \sim0.14, \pm 5-6% with or without carbon-tax-induced growths in nuclear energy, along with the assessment of “actual” impacts of decreasing the global temperature rise by \sim 1 K over \sim100 years needs resolution.

Figure 23. Impact of carbon tax rates on either present value (PV) or last-year (2095) gross productivity ($G = GWP$), comparing GCC parameters ($W/W\text{IRV}$ and ΔT) with proliferation parameters (PRI); all relative changes $\Delta X/X$ are expressed as percentages: direct dependence on carbon tax rate.
Table II. Summary of Cases Used to Compare Demand-Side versus Supply-Side Approaches to Mitigating Greenhouse Warming

<table>
<thead>
<tr>
<th>Scenario Identification</th>
<th>Carbon Tax Rate ($/tonneC/15yr)</th>
<th>AEEI ϵ_k (1/yr)</th>
<th>Percentage Changes in 2095 Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>PE</td>
</tr>
<tr>
<td>Basis</td>
<td>0</td>
<td>0.0100</td>
<td>--</td>
</tr>
<tr>
<td>Carbon Tax</td>
<td>40</td>
<td>0.0100</td>
<td>-20.</td>
</tr>
<tr>
<td>AEEI + C-TAX</td>
<td>40</td>
<td>0.0125</td>
<td>-43.</td>
</tr>
</tbody>
</table>

AEEI autonomous energy efficiency improvement

$\epsilon_k =$ annual rate of increase of SE \rightarrow ES conversion efficiency

SE = secondary energy
ES = energy service
PE = primary energy
NE = nuclear energy
EI = primary energy intensity, PE/GWP(MJ/$)

R_{CO_2} (GtonneC/yr) = CO$_2$ emission rate

ΔT (K) = average global surface temperature rise

Figure 24. Primary energy demand as a function of time for a combination carbon tax rate and AEEI, showing relative impacts of supply-side (carbon tax) and demand-side (AEEI) scenario attributes.
Finally, an emissions scenario base case was synthesized from the Basis Scenario by implementing both supply-side (carbon tax rate increased from 0 to 40 $/tonneC/15yr) and demand-side (AEEI-like parameter ϵ_k increased from 0.0100 1/yr to 0.0125 1/yr) drivers. As indicated in Fig. 28, this 25% increase in (global) AEEI reduces the amount of nuclear energy required for a ~90% reduction in global warming (in 2095) by ~30%.
Throughout the narrative, a number of shortcomings and areas of future work were identified, many of which are related to differences in “top-down” versus “bottom-up” modeling approaches. These shortcomings and areas of future work are summarized as follows:

- **AEEI Parameter:** The simplified, exogenous variation of the parameter e_k only approximates complex, endogenous interactions between technology improvements, (economy) structural (sectoral) interactions, and policy-driven behavioral changes; schemes to endogenize AEEI-like parameters should be investigated.

- **GNP Feedback:** As approximate as the price-GNP feedback in ERB is, the calibration of this feedback is based on responses to the oil crises of the 1970s and, hence, may be overly responsive; re-calibration and parametric sensitivity studies need to be performed.

- **Carbon Taxation:** The impact of carbon taxes on GNP, as modeled in ERB, is only though the above-described price-GNP feedback; no attempt has been made in these computations to enforce revenue-neutral (or better) schemes to return these taxes to the regional GNP streams; higher-fidelity taxation and (carbon) rights-trading schemes must be investigated.

- **Regional Variations:** The results presented herein pertain to a generally uniform globe; no attempt was made to tailor rates of carbon taxation, AEEI improvements, or nuclear-energy deployment on a regional basis to optimize all elements of the E^3 equation on a global basis; region-based growth scenarios have been shown to be important and must be developed further.

![Figure 27](image.png)

Figure 27. Direct comparison of proliferation-risk-index versus atmospheric temperature-rise “operating curves” for a combination carbon tax rate and AEEI, showing relative impacts of supply-side (carbon tax) and demand-side (AEEI) scenario attributes.
Figure 28. Dependence of global temperature rise on carbon-tax-induced (supply-side) nuclear-energy demand, showing impact of demand-side increases in AEEI for the Basis Scenario (no carbon taxes) and for a case where the carbon tax is imposed at a rate of 40 $/tonneC/15yr; also shown is the increase in PRI relative to the Basis Scenario as well as the relative decrease in GNP.

- **Quantitative Metrics:** While the GNP impacts are quantitative, in spite of the limitations listed above, the GCC metric (ΔT) and the proliferation risk metric (PRI) remain qualitative in terms of real economic welfare impacts; attempts must be made to quantify economic impacts of PRI and ΔT.
- **Non-Carbon Energy Sources:** The focus of this study has been on nuclear energy as a NC energy source, and even then only in so far as electricity generation is concerned; improved modeling of both solar and biomass sources in the context of the present version of the ERB model is needed.
- **Nuclear Energy Model:** While attempts were made to introduce a “bottom-up” flavor into the nuclear model used in the “top-down” ERB model, more remains to be done:
 - **Nuclear Costing:** Attempts to fit a “bottom-up” feature in the costing of nuclear energy to the generically “top-down” ERB model need expansion to include more detail in both the fuel cycle and the capital cost inputs to the composite unit cost of energy used in ERB ultimately to determine nuclear energy market shares and related proliferation versus climate-change tradeoffs; central to improving fuel-cycle costing algorithms is the need to select regional and temporal plutonium recycle options based on economics rather than (region-dependent) exogenous drivers.
 - **Nuclear Materials Flows/Inventories:** While resolution into the range of forms (e.g., reactor, spent-fuel, separated, etc., plutonium) with which proliferation risks can be assessed is adequate, a rule-based algorithm for inter-regional transport and accumulations of plutonium based both on costs and sanctions needs to be developed to resolve and optimize local plutonium demand and
supply; as noted below, consideration of both commercial Liquid Metal (Breeder) Reactors (LMRs) and LWR-supportive Fast-Spectrum Burners (FSBs) expands the scope of this issue.

- **Breeder Requirements:** Integration of plutonium requirements of an evolving breeder economy *vis à vis* a coupling of regional and temporal breeding ratios to other parts of the nuclear fuel cycle is needed for any study that seriously evaluates and optimizes the potential and need for breeder reactors; the strong introduction of carbon-tax-induced nuclear energy, depending on which uranium-resource “reality” is adopted, may advance the date for economic introduction of breeder reactors;

- **Fast Spectrum Burners:** Comments made in connection with the last three items as related to improved understanding of the short- and long-term role of FSBs in closing the nuclear fuel cycle apply here also.

- **Neutronics:** The neutronics model used to feed the nuclear materials flow and inventory model represents a highly approximate description of the time-averaged reactor core isotopics; the relationships between the many parameters listed on Fig. 3B and in Table IV of Ref. 9 need a firmer connection with “real” neutronics computations, particularly with regard to the averaged relationships between beginning- and end-of-life plutonium concentrations, overall fuel burnup, MOX core volume fractions, and fissions occurring in bred material.

- **Fuel Cycle:** The impact of innovative/emerging fuel cycles (high-burnup, partial separations, non-aqueous processing, supportive transmutors, reactor integration, *etc.* on cost and proliferation risk needs detailed technological and economic assessment.

REFERENCES

NOMENCLATURE

ACC recyclable (to LWRs) accumulated plutonium; also, accelerator
AEEI Autonomous Energy Efficiency Improvement
ATW Accelerator Transmutation of Waste
BAU business as usual
C-TAX carbon tax
CAN Canada
CHINA+ China plus neighboring centrally planned countries
CIS Commonwealth of Independent States (FSU)
COE(mill/kWeh) cost of electricity
CON (EJ/yr) consumption
CR conventional uranium resources
D&D decontamination and decommissioning
DEF deforestation emission source
DEV developing countries (ME + NAFR + SAFR + LA + IND + SEA)
DR(1/yr) discount rate (for proliferation risk discounting, or for estimating present worths of GWP or carbon taxes)
E³ economics/energy/environmental
EEU Eastern Europe
EI(GJ/$) energy intensity, ratio of primary or final energy to GNP
ERB Edmonds, Reilly, Barns model
ES energy services (residential/commercial, transportation, industrial)
FC nuclear fuel cycle
FF nuclear fuel fabrication
FP fission product
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSB</td>
<td>fast spectrum burner (LMR/IFR, ATW)</td>
</tr>
<tr>
<td>FSU</td>
<td>Former Soviet Union</td>
</tr>
<tr>
<td>f_{MOX}</td>
<td>volume fraction of LWR core that is MOX</td>
</tr>
<tr>
<td>f_{MOX}_f</td>
<td>final (asymptotic) volume fraction of LWR core that is MOX</td>
</tr>
<tr>
<td>G(B$/yr)</td>
<td>gross world product, also GWP</td>
</tr>
<tr>
<td>GCC</td>
<td>global climate change</td>
</tr>
<tr>
<td>GDP($/yr)</td>
<td>gross domestic product</td>
</tr>
<tr>
<td>GHG</td>
<td>greenhouse gas</td>
</tr>
<tr>
<td>GNP($/yr)</td>
<td>gross national product</td>
</tr>
<tr>
<td>GWP($/yr)</td>
<td>gross world product</td>
</tr>
<tr>
<td>HV</td>
<td>high (nuclear energy growth) variant</td>
</tr>
<tr>
<td>HYDRO</td>
<td>hydroelectric</td>
</tr>
<tr>
<td>IAEA</td>
<td>International Atomic Energy Agency</td>
</tr>
<tr>
<td>IFR</td>
<td>Integral Fast Reactor</td>
</tr>
<tr>
<td>IIASA</td>
<td>International Institute for Applied Systems Analysis</td>
</tr>
<tr>
<td>IND</td>
<td>India</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>IRV</td>
<td>industrial revolution</td>
</tr>
<tr>
<td>j</td>
<td>ERB index for secondary energy (SE)</td>
</tr>
<tr>
<td>k</td>
<td>ERB index for energy services (ES)</td>
</tr>
<tr>
<td>LA</td>
<td>Latin America</td>
</tr>
<tr>
<td>LMR</td>
<td>liquid metal reactor</td>
</tr>
<tr>
<td>LV</td>
<td>low (nuclear energy growth) variant</td>
</tr>
<tr>
<td>LWR</td>
<td>light water reactor</td>
</tr>
<tr>
<td>KR</td>
<td>known uranium resources</td>
</tr>
<tr>
<td>LWR</td>
<td>light water reactor</td>
</tr>
<tr>
<td>l</td>
<td>ERB index for region</td>
</tr>
<tr>
<td>M_{CO_2} (Gtonne)</td>
<td>accumulated CO₂ emissions</td>
</tr>
<tr>
<td>M_{CO_2} (Gtonne/yr)</td>
<td>rate of CO₂ emissions</td>
</tr>
<tr>
<td>MAU</td>
<td>multi-attribute utility (analysis)</td>
</tr>
<tr>
<td>ME</td>
<td>Middle East</td>
</tr>
<tr>
<td>MM</td>
<td>(uranium) mining and milling</td>
</tr>
<tr>
<td>MIP</td>
<td>mixed integer programming</td>
</tr>
<tr>
<td>MIT</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>MOX</td>
<td>mixed (uranium, plutonium) oxide fuel</td>
</tr>
<tr>
<td>MV</td>
<td>medium (nuclear energy growth) variant</td>
</tr>
<tr>
<td>m</td>
<td>ERB index for time</td>
</tr>
<tr>
<td>N</td>
<td>number of MOX recycles; nonintervention scenario class</td>
</tr>
<tr>
<td>NAFR</td>
<td>Northern Africa</td>
</tr>
<tr>
<td>NE</td>
<td>nuclear energy</td>
</tr>
<tr>
<td>NM</td>
<td>nuclear materials</td>
</tr>
<tr>
<td>NT</td>
<td>no carbon taxes</td>
</tr>
<tr>
<td>NUCL</td>
<td>nuclear</td>
</tr>
<tr>
<td>nl</td>
<td>number of regions modeled in ERB (nl = 13)</td>
</tr>
<tr>
<td>O&M</td>
<td>operation and maintenance</td>
</tr>
</tbody>
</table>
OECD Organization for Economic Co-operation and Development (USA + CAN + OECD-E + OECD-P)
OECD-E OECD-Europe
OECD-P OECD-Pacific
ORNL Oak Ridge National Laboratory
OT once-through (LWR)
P parametric variation scenario class
P_E(MWe) net electric generation capacity
P_ET(MWe) total electric generation capacity
PE primary energy [oil, gas, solids (coal + biomass), nuclear solar, hydroelectric]
POP population
PRI proliferation risk index
PRI_o proliferation risk index without carbon taxes
PV present value computed using discount rate DR
ppmv volume parts per million (2.13 GtonneC/ppmv)
prf plant capacity factor
R_CO_2,l(Gtonne/yr) carbon emission rate from lth region; for world total, (l = nl +1), same as M_CO_2
REA reactor plutonium
REC fully recycle (N recycles to LWRs) plutonium
REF (economically) reforming countries (EEU + FSU); also, reference time (1975)
RP reprocessing
RPU reactor plutonium
RS repository
SAFR Southern Africa
SE secondary energy (liquids, gases, solids, electricity)
SE/PE PE → SE conversion efficiency
SEA South and East Asia
SEP separated plutonium
SF spent fuel
SFT total spent fuel
SPU separated plutonium (RP + FF)
TAX carbon tax case designator
TH thermal → electric conversion
TOT total, world
TR total uranium resources
TX present worth of carbon taxes over period to 2095
t(yr) time
t_IRV time industrial revolution commences, 1800
t_REF reference time or base year for ERB, 1975
USA United States of America
UTC_j($/We) unit total cost of jth nuclear energy system
<u> grand utility function^{10}
W(GtonneC) atmospheric carbon-dioxide (carbon) accumulation
W_o(GtonneC) integrated atmospheric carbon-dioxide (carbon) emissions, since t_IRV = 1800
$W_{IRV}(\text{GtonneC})$ atmospheric carbon-dioxide (carbon) at time $t_{IRV} = 1800$ (594 Gtonne, or 289 ppmv, given 2.13 GtonneC/ppmv)\(^{15}\)

We electrical Watt

Wt thermal Watt

WEC World Energy Council

Z_{lm} population in region l at time interval m

$\Delta T(K)$ average global temperature rise, referenced to time $t_{IRV} = 1800$

$\varepsilon_i(1/\text{yr})$ annual growth rate of entity i (i = POP, EI, PE, NE, etc.)

$\varepsilon_k(1/\text{yr})$ annual growth rate of SE(j) \rightarrow ES(k) transformation efficiencies

η_{TH} thermal-electric conversion efficiency