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ABSTRACT

The multigrcmp PI and Simplified PN equations are shown to be a family of asymptotic approximation to the

multigroup transport equation with anisotropic scattering. The physical assumptions are that the material system

is optically thick, the probability of absorption is small, and the mean scattering angle jio is not close to unity.

I. INTRODUCTION

The Simplified PN (SPN ) equations were originally proposed by Gelbard in the early 1960’s as a relatively easy way

to include additional transport physm into the PI model without resorting to the more complicated PN equations. 1-3

During the succeeding 30 years, other researchers 4-13 have experimented computationally with the SPN equ+ions

and have usually concluded that SPN solutions are significantly more transport-like thim difhsion solutions. For

example, Gamino 12$13has reported that low-order SPN solutions often capture “greater than 80% of the transport

corrections to diffusion theory.

One “of the reasons for this success is that in planar geometry, the SPN equations exactly reduce tc the ?N

(and hence SN+I ) equations. However, recent theoretical work14‘al has explained other reasons for these successful

computational results: SPN theory is an asymptotic correction to PI theory for problems in which P 1 theory is an

asymptotic approximate ion to transport theory. Also, the SPN equations have been derived variat ionally in certain

cases. These asymptotic and variational derivations have mostly been limited to one-group transport problems

with isotropic scat tering. However, Larsen has recently sketched a derivation of the SPN equations for mult igroup

transport problems with isotropic scattering. 19

In this paper, we extend the analysis in Ref. 19 and derive the SPN equations as an asymptotic limit of the fully

general 3-D multigroup transport equation with arbitrary anisotropic scattering. Our physical assumptions are that

the system is optical!y thick, that scattering dominates absorption, and that the mean scattering angle Lo is not c!ose

to unity. In such circumstances, we show that multigroup PI theory is the leading-order asymptotic expansion of the

transport equation, that multigroup SP3 theory is the first asymptotic correction to P1 theory, and that multigroup

SP3 theory is the second asymptotic correction to PI theory. Our analysis can be continued for N >3, but we will

not do so here.

The remainder of this paper is organized as follows. In Sec. 11we establish notation and derive, by the conventional

method, the multigroup SPq and SP3 equations. In Sec. 111 we asymptotically derive the multigroup PI, SP2, and

SP3 equations. We conclude with numerical results in Sec. IV and a brief discussion in Sec. V.

II. CONVENTIONAL DERIVA’.I’ION OF THE SPN EQUATIONS

We shall consider the multigroup transport equation

(1)



defined in a physical region V. The notation in Eq. (1) is standard: z = (z,, 22, ZS) is the spatial variable;

Q = (01, !22, fl~) with [Ql = 1 is the angular variable; V(Z, ~) is a G x 1 vector whose g-th component 1s the

angular flux of neutrons in group g at the point z traveling in the direction Q; Zr(Z) is the total cross section (a

G x G diagonal matrix), Z, (z, PO) is the differential scattering cr= section (a G x G matrix); Q(z) is the interior

source (a G x 1) vector; and we use the summation convention: repeated subscripts are summed from 1 to 3. The

boundary condition is

+(Z!Q)=V*(Z!Q) , 2EOV , Q“n<o , (2)

where @ is the prescribed incidelit angular flux and ~ is the unit outer normal. ‘.’he differential scattering cross

section has t‘ - expansion
m 2n+l

~s(z! Po) = ~“=o ~%(:)pn(~o) } (3)

where Pn(p) !. the Legendre polynomial or order n.

The standard derivation of the SPN equations is partly motivated by the follo~ ng observation. lf we write the

planar-geometry PI equations that correspond to Eq. (l),

:41(4+[2(=) - z m(z)]40(2)= (?(z) , (4)

+(4 + [WZ) – X.1(Z)] 41(2) = o , (5)

and we formally

1. replace the scalar derivative ~ by ths gradient operator ~,
b

2. replace all odd-order moments &(z) by qtn,@,

3. replace all even-order moments 4.(z) by +.(z),

then we obtain

&#l,i(iE) + [G(4 - ~sO(dl 40(Z) = Q(Z) , (6)
i

These are the familiar 3-D multigroup PI equations. By usi~g Eq. (7) to eliminate #1}1from Eq. (6), we obtain the

following system of G coupled diffusion equations in the G unhowns #o(z):

(8)

(Here we have defined the GxG matrices

Also, boundary conditions for Eqs. (6) and (7) [or (8)] cad be obtained formally from planar-geometry boundary

conditions for Eqs. (4) and (5) by simply repl~cing #l by ni~l,~ (where, again, ~ = (nl, nz, ns) is the unit outer

normal).

Applying thi8 same formal procedure to the planar-geometry P2 equations, one obtains the following SPZ equa-

tions:

&#l,i(iE) + ~.O(Z)#O(Z) = Q(Z) , (lo)
i

[ 1+ ~do(d + ~fh(il) + Gl(iE)#l,i(iE) = 0 , i = 1,2,3 ,
i

(11)
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[1-& :I#l,i(z) +%’(442(Z) = o . (12)

By rsing Eqs. (11) a,~d (12) to eliminate #l,i and & from Zqs. (10), one reduces these equations to the following G

coupled diffusion equaticns in the G unknowns d~,(~):

(13)

In contrast, the full P2 equations have 9G equationa and unknowns. Boundary conditions for Eqs. ( 10)-( 12) [or ( 13)]

can be obtained from planar-geometry conditions using the same formal procedure as with t he PI equat ions.

Also, applying the same formal procedure to the planar geometry P3 equations, one obtains the following SP3

equations:

~C$I,i(d + GO(ZMJO(Z) = Q(4 , (14)
i

[

1

1:Vo(d+~f$2(d + ~al(dh,i(itj = o , a = 1,2,3 , (15)

(16)

[1& ~42(Z) + ‘.3(443,i(Z) = 0 , j = 1,2,3 . (17)

By using Eqs. (15) and (17) to eliminate 41 ,i and @3,ifrom Eqs. (14) and (16), and slightly rearranging, one ob}ains

the following 2G coupled diffusion equationa in the 2G unknowns I$O(Z)and 42(z):

(18)

(19)

In contrmt, the full P3 equations have 16G equations and unknowns. Boundary conditions for Eqs. (14)-(17) can be

obtained from planar-geometry conditions using the same formal procedure as with the P 1 equations.

Of course, the above derivations of the SP2 and SP3 equations are ad-hoc. This apparant lack of a solid theoretical

basis has likely contributed to the historical neglect of the SPN equations, eveu though the computational experience

with these equationa has been quite favorable.

111. ASYMPTOTIC DE~ATION OF THE PI AND SPN EQUATIONS

We consider Eq. (1) for optically thick systems tnat are dominated by scattering, for which scattering is not

extremely forward-peaked, and for which the solution @ is 0(1). Such a situation occurs if ~t, E,, and Q satisfy:

x&) =
1
;U$(2) , (20)

~,.(~) = ~u~~(~) , n~o , (21)

Q(z) = ME) , (22)

II{0(.z-2) , n = O ,
sup (cr, - d,n)-l u = ~(1)

Ilul[=l , n~l ,
(23)

where Ut, u,, and q are 0(1) and c is a small, positive dimensionless parameter. Eq. (20) implies that the mean free

path is small, of O(c), so the system V is O(c- 1) mean free paths thick, lt can be shown that Eq, (23) for n = O
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holds if the probability of absorption ia small, of 0(e2), and for n 21 holds if scattering is not highly forward-peaked.

(These results are independent oft he kind of group-to-group coupling that exists due to scattering; these coupling

terms can be 0(1), or they can be small. ) Eqs. (20)-(23) imply that the infinite-medium solution

v= -&, - E,,)-’Q = :[:(”’-a~”)l-’’’=:u$”)u””)-”” (24)

is O(l). If we define

U,(Z, p“; = ~z,(~, p“) = ~:=o ~u,n(dPn(po) , (25)

then Eq. (1) may be written as

(26)

Now, let us dtiine

d“(q) = J+(Z,Q’jd2fl’ , (27)
4U

Al(z) = / Q’?% Q’)d2Q’ , (28)
4*

Operating on Eq. (26) by P and (Z - P), we obtain the balance equation &

(29)

(30)

then Eq. (31) may be written more compactly as

(32)

(33)

L is very similar to the collision operator [the O(c- 1)] terms in Eq. (26), but L doea not contain the n = O part

of the scattering operator. Thus, if scattering is isotropic, L reduces to a simple multiplicative operator. Also, from

the assumptions (23), L-1 exists and is 0(1), Thus, Eq. (33) may be written

and introducing this into Eq, (28), we obtain

(34)

(35)

(36)
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Eqs. (30) and (36) are an exactsystem of :quations for the scalar flux do and the current dl ,i. However, Eq. (36)

ia too complicated to be of immediate use, so we shall approximate it by expanding it for c << 1. The result is:

where the operators Li,n are defined by:

(37)

(38)

The first few operatms Li,n can edy be evaluated using the following facts, which we state without proof.

i. For exh i, the quantity
WI E Qi (39)

ia a linear combination of sphericrd harmonic functions of order 1.

2. For each i and j, the quantity

Wi~ g fliflj - ~6iJ

is a tinear combination of spherical harmonic functions of order 2.

3. For cd i, j, and k, the quantity

(40)

‘(41)

ia a linear combination of spherical harmonic functions of orde.. 3.

4. FOYeaci i, j, k, and i, the qu~klty

+ ~ (dijdki + dikdji + dil~jk) (42)

is a linear combination of spherical harmonic functiom of order 4.

Therefore, with L defined by Eq. (32), one hrM

L-lwd = (u, -U, J-l W, ,

L- lwij = (U~ - U,~)-lWij ,

L-’wijk = (U, - U#g)-’Uijk t

L-’wijkl = (UI - U#~)-l Wijkl .

We will now explicit! y calculate Li,o and L{, 1. For n = 0,

becalm the integrand ia m odd function of Q. For n = 1,

(43)

(44)

(45)

(46)

(47)

(48)
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The efore, if we define

u~~ =ut—c?,n=r~ .Q~~ , n>O ,

then, using Eq. (40)

(49)

(50)

Proceeding in this manner, using Eqs. (39)-(46), we obtain

Li,3~ = O for n even , (51)

because for n even, the integral defining Li,n has an integrand which is an odd function of Q. For n odd, Lheoperators

Li,W do not vanish and are quite complicated. However, for homogeneous-medium problems, or for heterogeneous-

medium probkxns in which the solution behaves nearly on~dimensionally near interfac= (i.e. tangential directional

derivatives at interfaces can be ignored), these operators simplify. If for n ~ i we define

(52)

then we obtain

,(53)

(54)

(55)

introducing this into the balance equation (30), we obtain

This is a sixth-mder partiai differential cquatlm for 4. It is asymptotically equivalent to the transport equation (X)

with 0(~7) error.

Now we shall show that. the SPN equations asymptotically agreee with Eq. (56) through terms of order C2N+1,

To do this, we first igrmre terms in Eq. (56) of 0(.s3) and obtain

(57)

Using Eqs, (20)-(22) and (49), we see that this is identical to the multigroup P1 equations (8). Thus, the multigroup

Pl equatims are an aayrnptotic approximation to tile transport equation, with an 0(s3 ) error.

Next, we ignore terms in Eq. (36) of O(ts ) and obtain

( ))4~2MIU;; (; Ml. 4 + :c7a04- l+= = .5q+ o(d) ,

or

(58)

(52)
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Hence, dropping the error term,

(60)

(61)

Using Eqs. (20)-(22) and (49), we see ‘hat this is identical to the multigroup SP2 equations ( 13). Thus, the multigroup

SP2 equations are ari asymptotic approximation to the transport equation with an error of O(CS), provided that the

physical system is homogeneous or the solution has sufficiently weak tangential derivatives at material interfaces.

(This proviso is not needed kr the multigroup P: equations.)

Finally, we ignore terms in Eq. (56) of 0(67). The resulting equation may be written

– ;Jfl (d+ 242)+ ;%04 =&q , (62)

where

Dropping the error term, we may rewrite Eq. (63) as b

P--&2u’’(:Ml+kM’)1’2=$””M”
Multiplying by u.2/c, rearranging, and using Eq. (62), we obtain

(63)

(64)

(65)

Using Xqs. (20)-(22) and (49), we see Ltd Eqs. (62) and (65) are identical to the multigrou~ SP3 equations (18)

and (19). Thus, the muitigroup SP3 equations are an asymptotic approximation to the transport equatiori with an

errm of O(c7), provided that the physical system is homogeneous or the solution has sufficient] y weak tangential

derivatives at material interfaces.

IV. NUMERICAL RESULTS

In this section give a computational comparison of the multi,gmup PI, S23, and S4 methods with anisot topic

scat ter’,ng for calculating the k-ei genwdue of a small supercritical sphere of u~anium. The uranium has a density of

2W U23L, and U2”, with atomic fractions of 0.001054, 0.93737, and37.4 g/crn3 and is composed of the isotopes U ,

0.05209, respectively. The sphe{e has a radirs of 6.9355 cm. All calcujationa were performed with NIKE, a 3-D

even-parity unstructured tetrahedral-mesh code which offers options for both the SN and SPN methods. The sphere

was modeled with 2587 nodea and 13,120 tetrahedral. All of the calculations were performed on the massively-parallel

Connection Machine-200 computer at LANL using a 12-group 1’1set of MENDEF-5 cross-sections.23

The computational results are given in Table 1. (We also calculated a Lenchmark result for keff using a 1-D

spherical geometry transport code with an extremely fine spatial mesh and the S1OOquadrature set; the resulting

eigenvalue is keff = 1.3J23, which is very close to the S4 value given in Table 1.) It can be seen that the SP3 eigenvalue

differa from the S4 eigenvalue by about one percent, wherein the P1 eigenvalue differa from the S4 eigenvalue by

about five percent. Comparing CPU times, we find that the SP3 method is about four times faster than the S4



. . ‘,

method. Aithough the PI method appears to be less than twice as fast as the SP3 method, the particular solution

algorithm used in NIKE is not optimal for the P1 method and runs about twice M long as an optimal algorithm

would. Thus, an optima! P1 method would be about thlee times faster than the 5P3 method. overall, our SP;{

results behave as expected. Fur the probl n considered, the SP3 solution is mrch more accurate thax diffusion (PI)

solution, but much less costly that the S4 solution method.

iMethod I k~ CPU Time (s)

P, I 1.328 211

Table 1: PI, SP2, and S4 Eigenvaluea

IV. DISCUSSION

ln this paper, we have shown that if the rrmltigroup neutron transport equation with anisotropic scattering is

considered for problems in which, for &<< 1,

1. the physical system is O(E- 1) mean free paths thick,

2. the probability of absorption ia O(C2),

3. the mean scattering cosine is not close to unity,

then:

1. the PI equations are an asymptotic approximation to the transpurt equation with error 0(~3),

2. the SP2 and SP3 equations are an asymptotic approximation to the transport equation with respectiw errors

0(c5) and 0(67), provided that either (i) the physical system ia homogeneous or (ii) the system is heterogeneous,

and the transport solution has weak tangeritial derivatives at material interfaces.

Therefore, the SPN equations can be understood w asymptotic corrections to P1 theory. Also, for planar geometry

problems, they c~actly reduce to the PN (or, SN+l ) equations. In practice, the SPN solutions are most accurate

for problems that are reasonably close to ones that could be called “diffusive,” or for problems that have transport

regions in which the solution behavea nearly onedimensionally. (This latter caac of course includes all one .limensional

geometries.) For problems that have strong multidimensional transport effects, such as voids, with streaming regions,

or geometrically complex spatial inhomogeneities, the SPN solutions are leas accurate.

In general, if a transport problem is one in which the standard diffusion or PI approximation is nmsonably accurate

(but perhaps not as accurate as desired), then the SPN approximations should be significantly more accurate (i.e.,

transport-like). This is the general observation of researchers who have experimented numerically with the SPN

equations, and it is consistent with our asymptotic theory. Thus, used for the proper kinds of problems, SPN theory

can be an accurate and relatively inexpensive way of including additional transport physics in a conventional diffusion

code.
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