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ABSTRACT

The multigroup P, and S.mplified PN equations are shown to be a family of asymptotic approximation to the
multigroup transport equation with anisotropic scattering. The physical assumptions are that the material system
is optically thick, the probability of absorption is small, and the mean scattering argle fio is not close to unity.

L. INTRODUCTION

The Simplified Pnx (SPN) equaiions were originally proposed by Gelbard in the early 1960’s as a relatively easy way
toinclude additionai transport physics into the P, model without resorting to the more complicated Py equations.!=3
During the succeeding 30 years, other researchers*=!3 have experimented computationally with the SPn equagions
and have usually concluded that SPN solutions are significantly more transport-like thin diffusion solutions. For
example, Gamino'»!3 has reported that low-order SPy solutions often capture “greater than 80%” of the transport
corrections to diffusion theory.

One ‘of the reasons for this success is that in planar geometry, the SPN equations exactly reduce tc the Py
(and hence Sn41) equations. However, recent tleoretical work!4=2! has explained other reasons for these successful
computational results: SPN theory is an asymptotic correction to P, theory for problems in which P, theory is an
asymptotic approximation to transport theory. /.lso, the SPN equations have been derived variationally in certain
cases. These asymptotic and variational derivations have mostly been limited to one-group transport problems
with isotropic scattering. However, Larsen nas recently sketched a derivation of the SPN equations for multigroup
transpoert problems with isotropic scattering.!®

In this paper, we extend the analysis in Ref. 19 and derive the SPN equations as an asymptotic limit of the fully
general 3-D multigroup transport equation with arbitrary anisotropic scattering. Our physical assumptions are that
the system is optically thick, that scattering dominates absorption, and that the mean scattering angle i is not close
to unity. In such circumstances, we show that multigroup P, theory is the leading-order asymptotic expansion of the
transport equation, that multigroup SP3 theory is the first asymptotic correction to P, theory, and that multigroup
SP3 theory is the second asymptotic correction to P, theory. Our analysis can be continued for N > 3, but we will
not do so here.

The remainder of this paper is organized as follows. In Sec. 11 we establish notation and derive, by the conventional
method, the multigroup SP; and SP3 equations. In Sec. 11l we asymptotically derive the multigroup P,, SP,, and
SP; equations. We conclude with numerical results in Sec. IV and a brief discussion in Sec. V.

II. CONVENTIONAL DERIVATION OF THE SPy EQUATIONS

We shall consider the multigroup transport equation

Ui D+ @D = [ L@l avemdr+ 98 zev =1 o



defined in a physical region V. The notation in Eq. (1) is standard: z = (,,z2,z3) is the spatial variable;
Q = (,N0,903) with |Q] = 1 is the angular variable; ¥(z,Q) is a Gx1 vector whose g-th component is the
angular flux of neutrons in group g at the point z travelling in the direction Q; X;(z) is the total cross section (a
GxG diagonal matrix), X,(z, uo) is the differential scattering cross section (a GxG matrix); Q(z) is the interior
source (a Gx1) vector; and we use the summation convention: repeated subscr.pts are summed from 1 to 3. The
boundary condition is

¥Wz,Q) =v*(z,Q) , z€dV , Q.n<0 , (2)

where ¢’ is the prescribed incideut angular flux and n is the unit outer normal. "’he differential scattering cross

section has t“~ expansion
o 2n+1

n=0 4r

Ti(z po) = Y Zon(2)Palo) (3)

where P,(p) . the Legendre polynomial or order n.
‘The standard derivation of the SPN equations is partly motivated by the follos'ag observation. If we write the
planar-geometry P, equations that correspond to Eq. (1),

£41(2) + [E(#) = £ o(@)] bo(2) = Qa) (@

%:—z'ﬁx(z)+[Ea(r)—2n(3)]¢x(3) =0, (5)

and we formally
1. replace the scalar derivative 3‘1'; by the gradient operator 32—,,
2. replace all odd-order moments ¢,(z) by én i(z),
3. replace all even-order moments ¢,(z) by dn(z),
then we obtain P
£¢1,i(£) + [Ze(2) - Zso(2)]40(2) = Q(z) (6)
3 5 b0(@) + Bu(e) - Tal@#rs@ =0, i=123 . (7)

These are the familiar 3-D multigroup P, equations. By usiug Eq. (7) to eliminate ¢, ; from Eq. (6), we obtain the
following system of G coupled diffusion equations in the G unanowns ¢o(z):

0 1._,\ 0 _
-a—n(32,1)5;¢o+2a0¢0—0 . (8)
(Here we have defined the GxG matrices
Zan=Li-E,, , n>0 .) 9)

Also, boundary conditions for Eqs. (€) and (7) [or (8)] can be obtained formally from planar-geometry boundary
conditions for Eqs. (4) and (5) by simply replacing ¢, by n;¢,; (where, again, n = (n,,nz, n3} is the unit outer
normal).
Applying this same formal procedure to the planar-geometry P; equations, one obtains the following SP; equa-
tions: 8
5z, i@ + Zoo(Z)do(z) = Q@) (10)

3%[%¢o(£)+§¢z(z)]+2ax(z)¢x,e(z)=o , i=1,2,3 (11)



5% [%dn.s(i)] + Xa2(z)02(2z) =0 . (12)

By rsing Egs. (11) and (12) to eliminate ¢, ; and ¢; from Eqs. (10), one reduces these equatinas to the following G
coupled diffusion equaticns in the G unknowns ¢(z):

a (1 o [ 4__
- 5-:—. (iz:ll) g [¢0 + Ezazl (EGOOO - Q)] + S¢0¢0 = Q . (13)

In contrast, the full P; equations have 9G equations and unknowns. Boundary conditions for Egs. (10)-(12) [or (13)]
can be obtained from planar-geometry conditions using the same formal procedure as with the P, equations.

Also, applying the same formal procedure to the planar geoinetry P3 equations, one obtains the following SP3
equations:

o 1.(2) + Zaol2)o(z) = Q2) (14)

3% [%vo(£)+ %'ﬁz(g)] +Za(z)dri(z) =0 , 1=1,2,3 , (15)
75 391400+ 240u(a)] + Ba@na@) =0 | (15)

o |32 + Ea@dait@) =0 . i=1.2,3 . -

By using Eqs. (15) and (17) to eliminate ¢, ; and ¢3; from Eqs. (14) and (16), and slightly rearranging, one obtains
the following 2G coupled diffusion equations in the 2G unknowns ¢o(z) and ¢2(z):

o [1__ F,)
™ (5&.1‘) 3z (60 + 2¢2) + Zaodo = Q , (18)
7] 9 ...,\ 0 3 2 _
T oz, (gzaa) 3_2:.'¢2 + Zaz¢2 = 5 (Taoto — Q) - (19)

In contrast, the full P3 equations have 16G eqnations and unknowns. Boundary conditions for Eqs. (14)-(17) can be
obtained from planar-geometry conditions using the same formal procedure as with the P, equations.

Of course, the above derivations of the SP; and SP3 equations are ad-hoc. This apparant lack of a solid tkeoretical
basis has likely contributed to the historical neglect of the SPN equations, even though the computational experience
with these equations has been quite favorable.

III. ASYMPTOTIC DERIVATION OF THE P, AND SPx EQUATIONS

We consider Eq. (1) for optically thick systems that are dominated by scattering, for which scattering is not
extremely forward-peaked, and for which the solution 1 is O(1). Such a situation occurs if %, ¥,, and Q satisfy:

Z(a) = ;oua) (20)
Ein(2) = tom(z) , n20 (21)
Qz) = eq(z2) , (22)
al_fOE? , n=0 ,
 Jorm oo = {567 W37 =

where o1, 0,, and q are O(1) and ¢ is a small, positive dimensionless parameter. Eq. (20) implies that the mean free
path is small, of O(¢), so the system V is O(¢~') mean free paths thick. It can be shown that Eq. (23) for n = 0



holds if the probability of absorption is small, of O(£?), and for n > 1 holds if scattering is not highly forward-peaked.
(These results are independent of the kind of group-to-group coupling that exists due to scattering; these coupling

terms can be O(1), or they can be small.) Eqs. (20)-(23) imply that the infinite-medium solution

-1
- 1 -
= —(zt-z.o) 'Q= —[ (Ut—ﬂ.o)] €q= = (01— 0:0) ' €%
is O(1). If we define

o 2n+1

0u(z, poy = L, p0) = ), =

———0n(Z)Pn(po)
then Eq. (1) may be written as

Qié‘ax“_'l’(ly Q)+ éﬂt(l)w(iyﬂ) = é _/i' o,(z, Q- 9’)¢(£‘21)d29, + ‘:g‘g{%—)‘

Now, let us define

soz) = [ va e
4
8,(z) = 9"1’(1 Q)4
Py(z,Q) = —/ v(z, Q)d*Q
Operating on Eq. (26) by P and (I — P), we obtain the balance equation

4] 1
a—nm,i + z (0 —0s0) b0 =€q ,

(1-pPiuv+ 2 (v- o) =1 [ (0 2o rg o))vemen

[ n=1

If we define the operator L ty

Ly(z, Q) = o(z,Q) - ./4 (z:o_l 2"4:1c...P,.(Sl Sl))'l’(z,ﬂ’)d’n’ ,

then Eq. (31) may be written more compactly as

Lw + C(I P)Q. w - -—¢0

(24)

(25)

126)

(27)
(28)

(29)

(30)

(31)

(32)

(33)

L is very similar to the collision operator [the O(¢~!)] terms in Eq. (26), but L does not contain the n = 0 part
of the scattering operator. Thus, if scattering is isotropic, L reduces to a simple multiplicative operator. Also, from

the assumptions (23), L~! exists and is O(1). Thus, Eq. (33) may be written
0 1
-1 -_— i — = r—
[I +eLl™'(I - P)Q 6::.-] ) 4”¢o

Hen-e,

%o

1
¢ = [I+£L (I - P)Q z.-] in

and introducing this into Eq. (28), we cbtain

b= [ ou[14e-a-pal] s@en

(34)

(35)

(36)



Egs. (30) and (36) are an exact system of zquations for the scalar flux ¢o and the current ¢, ;. However, Eq. (36)
is too complicated to be of immediate use, so we shall approximate it by expanding it for ¢ << 1. The result is:

é1,i(z) = Z:—.-o €"Lind(Z)

where the operators L;, are defined by:

Lind(2) = (%'}: /‘ (LTI P)R v)" do(2)d?Q .

(37)

(38)

The first few operators L; , can easily be evaluated using the following facts, which we state without proof.

i. For e.ch i, the quantity
wi =

is a linear combination of spherical harmonic functions of order 1.

2. For each i and j, the quantity |
wij = Q.'Q,' - 56.",'
is a linear combinaticn of spherical harmonic functions of order 2.

3. Foreach i, j, and &, the quantity
1
wijn = M€l — 5 (Qubje + Qjbei + Medij)
is a linear combination of spherical harmonic functions of order 3.

4. For eaca 4, j, k, and I, the quanuty

1
wijm = Qi - 7 (%60 + byt + QiUb;u + Qi Qubar + Q) Qubin + S fUbij)

1
+ 35 (8i5 01 + bie it + 6ub5e)
i a linear combination of spherical harmonic functions of order 4.
Therefore, witk L defined by Eq. (32), one has

L'wi=(oy—an) wi
L 'wij = (00 - u,;)'lu‘,- )

L 'wiji = (03 — 043) " wie
L~ wiju = (01 — 043) ™  wigm

We will now explicit!y calculate L; o and L;,. For n = 0,

Lio¢ = ;l; , Q¢d’Q = (Zl— /‘ Q.-d’n) $=0 ,

x

because the integrand is an odd function of . Forn =1,

- - d - (o] - 0
LN = P)R-Yé= L7 wy5d = (01— 0n) 'w;a—q¢=(_rra—rru) ‘9,5,7» :

(39)

(40)

‘(a1)

42)

(43)

(1)
(45)
(46)

a7

(48)



The efore, if we define

Oan =0t — 0, =X, , n20 , (49)
then, using Eq. (40)
1 -1 (7] ] 1 0.2 -1 4
Li 1¢——4— "QU Y 3 —o¢dQ= (4“_ "Q-Qid Q)”al B.t,~¢
oL T (a4 5, 2] o 2 le gm0 0 o1 19
= - I.'4—' _’4, (U.,‘f' 36,J)d Q] 6 J@— 36lJaal sz‘b 3 O 6 ¢ - (50)

Proceeding in this manner, using Eqs. (39)-(46), we obtain
Lind =0 forneven , (51)

because for n even, the intogral defining L; », has an integrand which is an odd function of Q. For n odd, the operators
L;, do not vanish and are quite complicated. However, for homogeneous-medium problems, or for heterngeneous-
medium problems in which the solution behaves nearly one-dimensionally near interfaces (i.e. tangential directional
derivatives at interfaces can be ignored), these operators simplify. If for n > { we define

5 ] .
Mﬂ = 6 an a Z U ) (52)
then we obtain
Liad = -a-‘iu 201, \ (53)
1,3 al 62: 5 i [
and P 16 \
Lisp=—op! 7z, —a} (675M, + 75/.:3) oMo . (54)
Thus, Eqgs. (37) and (50)-(54) give
bri = .154.52 = )¢+e‘a-‘ 18 e 2 Ma) oM ¢]+0(57) (55)
b oa a 45 My a2 \€75 ' T 1757 %) Taa M19) '
Introducing this into the balance equation (30), we obtain
1
- -M,¢ - M,a 'M¢ — Mo, \675M1 + 5M3) o Mo+ s(oi—0w0)é=cq+ oE™) . (56)

This is a sixth-order partial differential ¢quation for ¢. It is asymptotically equivalent to the transport equation (2€)
with O{e") error.

Now we shall show that the SPn equations asymptotically agreee with Eq. (56) through terms of order €2V+1!.
To do this, we first iguore terms in E3. (56) of O(¢3) and obtain

(7] 7] 1
iy (%U;]l) g% + -va0bo = £¢ . (57)

Using Eqs. {20)-(22) and (49), we see that this is identical to the multigroup P, equations (8). Thus, the multigroup
P, equations are an asymptotic approximation to tie transport equation, with an O(¢e®) error.
Next, we ignore terms in Eq. (36) of O(¢®) and obtain
4¢? _ € 1
- (I + *1—5"M10’a2l) (§Ml) o+ Eﬂao¢ =eq+ O(ES) , (58)
or

-1
—\1-—m o) (5Mi)6+ tews=ea+ Ol (59)



Hence, dropping the vrror term,

€., 1 N\ _
- 5;\n¢+ (1 - —I-E-Mlﬂ ) (Eﬂao'P - 6(1) =0 , (60)
or 4 1 1
£ L
- §M1 [¢+ '5“’:.2] (;vaw - 50)] + Eﬂaod’ =e€q . (61)

Using Eqs. (20)-(22) and (49), we see *hat this is identical to the multigroup SP; equations (13). Thus, the multigroup
SP2 equations are ar asymptotic approximation to the transport equation with an error of O(¢%), provided that the
physical system is homogeneous or the solution has sufficiently weak tangential derivatives at material interfaces.
(This proviso is rot nieded icr the multigroup P; equations.)

Finally, we ignore terms in Eq. (56) of O(¢”). The resulting equation may be written

1
— M8 +262) + Zoa0b = eq (62)
where
= [T+ %03 M+ gw) 2, 2 M1 + O(°)
a2 1T 3578 )] 15 %az M
9 -t 2¢?
[ -ela} ( M + 5 Ma)] T y Mg + O(e®) . (63)
Dropping the error term, we may rewrite Eq. (63) as .
2_-1 9 e?
[I - 0,2 (15M1 + 35M3)] ¢2 = M1¢ . (64)

Multiplying by o42/¢€, rearranging, and using Eq. (62), we obtain

- §—5M3¢2 + =0a2¢3 = 5 [le (¢ + 2¢z)] ( -0a09 — EQ) . (65)

Using Eqs. (20)-(22) and (49), we see tnat Eqs. (62) and (65) are identical to the multigroup SP3 equations (18)
and (19). Thus, the muitigroup SP3 equations are an asymptotic approximation to the transport equation with an
error of O(e”), provided that the physical system is homogeneous or the solution has sufficiently weak tangential
derivatives at material intcrfaces.

IV, NUMERICAL RESULTS

In this section give a computational comparison of the multigroup P,, SP3, and S4 methods with anisotropic
scatter'ng tor calculating the k-eigenvalue of a small supercritical sphere of uvanium. The uranium has a density of
37.4 g/cm® and is composed of the isotopes U234, U23% and U238, with atomic fractions of 0.001054, 0.93737, and
0.05209, respectively. The sphere has a radits of 6.9355 cm. All calculations were performed with NIKE, a 3-D
even-parity unstructured tetrahedral-mesh code which offers options for both the Sy and SPn methods. The sphere
was modeled with 2587 nodes and 13,120 tetrahedra. All of the calculations were performed on the massively-parallel
Connection Machine-200 computer at LANL using a 12-group P, set of MENDEF-5 cross-sections.?3

The computational results are given in Table 1. (We also calculated a Lenchmark result for k.g using a 1-D
spherical geometry transport code with an extremely fine spatial mesh and the S, quadrature set; the resulting
eigenvalue is kest = 1.3923, which is very close to the S4 value given in Table 1.) It can be seen that the SP3 eigenvalue
differs from the Sy eigenvaive by about one percent, whereas the P, eigenvalue differs from the S4 eigenvalue by
about five percent. Comparing CPU times, we find that the SP3 method is about four times faster than the S



method. Aithough the P, method appears to be less than twice as fast as the SP; method, the particular solution
algorithm used in NIKE is not optimal for the P, method and runs about twice as long as an optimal algorichm
would. Thus, an optima’! P, method would be about thiec times faster than the SP3 method. Overall, our SPy
results behave as expected. Fur the probl m considered, the SP3 solution is mt'ch more accurate thaz: diffusion (P,)
solution, but much less costly thar the 54 solution method.

| Method | keg | CPU Time (s) |
P

1 1.328 211
SP3 1.408 300
Sy 1.390 1351

Table 1: P, SP3, and S4 Eigenvalues

IV. DISCUSSION

In this paper, we have shown that if the miltigroup neutron transport equation with anisotropic scattering is
considered for problems in which, for £ << 1,

1. the physical system is O(¢~!) mean free paths thick,
2. the probability of absorption is O(£?),
2. the mean scattering cosine is not close to unity,
then:
1. the P, equations are an asymptotic approximation to the transpurt equation with error O(c%),

2. the SP; and SP; equations are an asymptotic approximation to the transport equation with respective errors
O(e®) and O(¢7), provided that either (i) the physical system is homogeneous or (ii) the system is heterogeneous,
and the transport solution has weak tangential derivatives at material interfaces.

Therefore, the SPy equations can be understood as asymptotic corrections to Py theory. Also, for planar geometry
problems, they c.actly reduce to the Py (or, Sn4+1) equations. In practice, the SPN solutions are most accurate
for problems that are reasonably close to ones that could be called “diffusive,” or for problems that have transport
regions in which the soiution behaves nearly one-dimensicually. (This latter case of course includes all one limensional
geometries.) For problems that have strong multidimensional transport effects, such as voids, with streaming regions,
or geometrically complex spatial inhomogeneities, the SPN solutions are less accurate.

In general, if a transport problem is one in which the standard diffusion or P, approximation is reasonably accurate
(but perhaps not as accurate as desired), then the SPN approximations should be significantly more accurate (i.e.,
transport-like). This is the general observation of researchers who have experimented numerically with the SPn
equations, and it is consistent with our asymptotic theory. Thus, used for the proper kinds of problems, SPy theory
can be an accurate and relatively inexpensive way of including additional transport physics in a convertional diffusion
code.
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