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ANEW CO~ FOR DEEP‘~TIoN TRANSFQRTCALCULATIONS

AND’1V13NEW ljORMSOF THE NEUI’RONTRANSFORT EQUATION

[ w
S. A. W. (%lrSfd.

ABSTRACT

_ :. A new concept b solve radiation transport prcblexnsis developed
=0’>Sol bypassing the solution of the Boltzmann quation. A distribution func-
:= tion $ is defined as the product of the conventional neutron flux and

&:’
ad-joint distributions. ‘Ik3equations, one cmplex and linear, the
other real and nonlinear are derived for $. A conservation law for $

%—l= ~ is established ad a physical interpretation given for + as a flux dis-
S=
g~~i tribution for a limited nunixr of source pzrticles which will necessar-

$gg ily contribute to the integral response of interest. The linear but
$3>— m ,......!?9!@~ fo~ of tie transmrt equation is mlved analytically for a
~m !-.saqle case of a pure absorber in slab gsamtry.-

I. INTRODUCTION

.
It is well lunm~ that neutron transport problems, as described by the

linear Boltzmann equation, can k formulated in a “forward” or an “ad-joint”

mde; both formulationsbeing equivalent. Using the nomenclature of Ref. 1 m

have

M = c?,

with

I = <R,+>,
f

.) as the fomard formulation. L demtes the linear

transport operator, @ : @(~, ~, E) is the angular

(1)

(2)

tire-independent Boltzmann

flux distribution, Q ~ (1(~, ~, E)
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is a given neutron source distribution, R s R (r, Q, E) is a given respmse——

function, W I is an integral effeet of interest (response), wkre the

synbol <,> indicates integrations ov& the mmmn dmains of all independent

variables ~ (position), ~ (direction),ad E (emrqy) . ‘Ihesole objective in

xmst practiml radiation transport applications is the calculation of I when

Q and R are given. Fully equivalent is the adjotit formation

L+++ = R,

with

I = <Q,(j+>,

where the adjoint source-term is chosen to be the respnse

$+ ~ $+(st u~ E) is the *joint a.n@ar flu. me ad~oint

L+ is defined byl

q)+, Lip = <L+($)+,@,

and it is assured that the boundary conditions on $ ad $+

(4a) is satisfi~.

(3)

(4)

function R, and

transport operator

(4a)

are such that 13q.

It is clear from the above formulations, that in order to calculate I me

mst Icmw either 1$or $+, hence,

in deep penetration or shielding

tween the neutron source (Q) and

of mean-free paths of the source

solve either ~. (1) or ~. (3). In particular,

t~ calculations, the spatial distance be-

the detector (R) my be very large in terms

neutrons. Since the neutron flux at the

detector position is needed tievaluate I from ~. (2), the usual procedure in

solving Fq. (1) is to calculate the entire flux distributions @(~, ~, E) at all

locations r in the system although it is needed only at the detector lccation.—

The calculation of @ at locations ~ between the source and detector locations

seam to be an intrinsic requirement to obtain the needed $ at psitions where

R+O. However, the calculation of $ at all locations except the detector

location could k considered a waste of effort if it were not intrinsically

-red. It is intriguing that so mch wasted information mst be gmerated

in order to calculate the one number of interest, 1. The sam, of course, is

2
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true for the adjoint formation where the actual cq?utation of ++ at the

source location nust proceed step by step starting at the detector location.

In sensitivity calculations using variational mtbds, e.g., *f. 2, the

product of $ ● $+ is used which seem to k an even larger waste of information

and effort since @ and ++ xmst kth be calculated although each one of them

separately contains all the information ever needed for nmst radiation transport

amlyses. It is admitted, however, that such variational mthcds produce mre

useful tifoxmatim than just the value of 1. Nevertheless, the question arises:

why not calculate the product ~ = $$+ directly? Additional incentive to cal-

culate ~ directly is obtained by a very interesting analytic property of $

which will also provide the connection with our original problem of calculating

I.

II. A CONSEFSZATION

Iet us rewrite

~~VJ=@$+

~s. (1) and (3) for a pxrely absorbing medium (Z is the

macroscopic ab~rption cross section):

$2*V$+ Z+ = Q,——

- M$+ + Z@+ = R.——

Multiplying Eqo

subtracting the

($+(S2”V$)+——

(5)with $+ (from left) and ~. (6)with

second from the first equation gives

$ (G?”v$+)=—— Q@+- R@.

term on the left side of ~.

“divergence operator” (~=div)

W we consider three different volum integrals of q.

(5)

(6)

$ (from left), and

(7)

(7) can be combined to

acting on the vector

(8)

(8), keeping in mind

that each volum integral can be translated into an equivalent surface integral

3



by &USS’ S theOIH13

\

div(Q=IJ.J)dv❑ ! (n=Q)$dF,——

elenx?nton tie volum V and n is a normal vector on F—

the volum V.

~. (8) over a voluxw VR which includes tk detector

where dF is a surface

pointing outward from

1. Integrating

location but mt ths source l-tion (see Fig. 1) yields for tk left side of

m. (8)

/

/’ “
// \l-

“Q \\

P\\
nR \\

.,

V=VQ +v~

.

.,

v

,
1

Fig. 1. Subdivision of the systems volm V.
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.

J div(g))dv =

/
(rJR”Q)$ dF

‘R ‘R

wheze III = - nR is the inward normal vector on F— R“
term on tie right side of ~. (8) vanishes since the

that Q~Oin17R ‘Ihetite9ral over the secondten-n

(!la)

‘lb integral wer the first

Volum VR was chosen so

on the right side of q.

(8) resenbles ~. (2) if we also integrate over all angles~ and all energies

Therefore, integrating ~. (8) over the volume VR, all angles and energies,
-.

yields

I =

1~~
(&@ V (~, ~, E) dF d2~ dE.

m) FR

Hence, &e eff~ of interest (response)I can be calculated

directly by integrating the net inward current of the vector

surface FR enclosing the delxxxor, and also integrating wer

energies.

2. Similarly, intqrating Eq.

neutrcn source but not the detector,

E.

(lo)

flux Q=@ wer any—

all angles and

(8) over any volum VQ which inclules the

we obtain

(11)

where nQ is the outward norml vector on the surface FQ enclosing the volm

‘Q.
3. Integration over the entire system V, inclding both source and

de-tor, gives
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div(~$) dV= O.

v
(12)

If ~ is interpreted as a particle flux, namly an importance weighted

neutkon flux $+$, then E@. (10) through (12) allm very Meaningful conclusions:

a. Fran ~. (12) follcws that the system never loses any $-
@cles; a mnservation law for $.

b. FrcxnE@. (10) and (11) follcws that the integral response I
is given by summing up the net current of all @particles
which either enter any closed surface ~ around the detector
or leave any closed surface FQ around the source.

The above technique was derived from F&f. 4; the results are, therefore,

prdxbly not new. But the above interpretations are intriguing enough to

formilate a n= concept for the solution of deep-penetration transport pxoblem

with ftied sources. The id= is to establish an equation for Y and then cal-

culate I either fran Eq. (10) or q. (11). Fmm these equations follcws that

the distribution function ~ (~, Q, E) contains the necessary and sufficient—
infomticm to calculate 1. The neutron distribution @ (~, ~, E) at any given

point ~ outside the detector region gives information on all neut.mns which

traveled fran the source to ~, disregarding whether these neutrons will ever

reach the detector position or not; this is too much infoxnation if one

ord.ywants to calculate 1. The distribution ~ (~, g, E), hwever, gives at

any point r infonmtion only on those “~-particles”which will certainly con-—
tribute to & re.qmnse I. Intuitively this interpretation for ~ may be obvious

fran its definition as an inprtance weighted neutron flux distribution $+$.

Tb calculate I fran ~. (10) or ~. (11) it is sufficient ti know l.J(q ~, E)

only at any closed surface enccxrpassingeither R or Q. A graphical display of

the multidimensional function ~(r, $2,E) can inmdiately identify radiation——
Streaming effeds of significance for the special problem under consideration:

peaks in the spatial distribution of * will point b spatial streaming paths

(hete_eity effects), peaks in the energy distribution of ~ identify spectral

streaming (e.g., dw to cross-section minima), ~ W* in the angular distri-

bution will occur in directions which are of greatest importance to the problem.



III. DERIVATION OF THE lM3QUXCIONS

In the folhving we restrict ourselves to the mmoener getic transport

~tion ~ for ~9~raic s~licity we consider only slab gecmtry with

isotropic scattering. Rquations (1) and (3) take then the forml

*1

Since we want to derive an equation

Y(x,p) = $(X, P) + i$+(x,p),

(13)

()+(x,~’) d~’ + R. (14)

for $$+ we define a conplex flux distribution

(15)

Withi==, thenour unknmnpmduct *=$$+can bederivedfrom Yas ~

half of the imaginary part of Y2:

Bys urrtningand subtracting 13q.(13) and i-tis w. (14)we obtain a ~upkd

set of two equations for Y and its cm jugate ccnmlex, Y*:

* +1

?!-+~y=~v ax [ Ydv’+(Q+iR), (17)

‘J-,

*+1

‘Ibsinplify

JZY* =; Y* dp’ + (Q - iR).

-1

further analysis we define a conplex source term

(18)



s =Q+iR,

and assure for the following that the given functions Q and R

with respect to x W p; also, Z and c are assured constants.

entiate ~. (18)with respect to x ad obtain

Eliminating w*/& fran q. (20) by using EQ. (17) , gives *

for Y:

-1-1

(19)

are constants

NCW we differ-

(20)

desbxxl eiquation

[

7A

● zy Y(x,p’) - —
P 2;’

1
1y(X,~”) dp” dp’. (21)

-1

‘he left side of this equation, for the real part of Y, Re Y ~ $, has been

derived earlier by other authors, e.g., ~f. 5, W is identified as the self-

adjoint second-order derivative part of the nonself-adjoint first-order de-

rivative prtion of the original transport operator. It is interestfig to note

that ~. (21) is valid for the canplex function Y containing information on $

as well as $+.

Now, sine Y = @ + i$+ does not give the desired prduct ~ = $$+ directly,

~. (16) rust be applied to calculate it. Thenthe res~nse Icanbecalcu-

lated via ~. (10) or Fq. (11)which in slab geomtry reduce to

m

I =

L[
l@(x,P) 6 (x - xs) dpdx, (22)

9.

.
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Where x~ is any space pint separatfig source ad detector. Location x~ can be

ttmught of as an infinite plane betieen source and detector which closes to a

full surface at infinity.

Since the new transport equation, Eq. (21), is an equation for the coqlex

variable Y = @ + i$+, it actually represents lxo equations, one for the real

~of Y, Rey=O, andone for tie imgina.ry Xof Y, Im Y=@+. n

pficiple it nwst k pssible, therefore, to derive from t.kse & equations

(throughelimination processes) one equation for the product ~ = $$+, which

was our original cpil. Rather than startm“ g from q. (21), we may aln start

with the original Boltzmnn ~s. (13) and (14) to derive an equation for

4 = $+*. For simplicity we *se c = O, the case of a purely absorbing mdium

and follcw tie latter a~roach. The equation we obtain for ~ [a real function,

not b be c&fused with the caq?lex function Y of ~. (21)] is nonlinear h

takes the form

(23)

‘Me fact that this equation is nonlinear follms fmm the prccess of elimination

and stistitutionwhen 4. (23) is derived fmm Fqs. (13) ti (14). ~ t.his

prccess, it was necessary to once differentiate and square tk entire equation.

fituitively, the process in deriving ~. (21) * ~. (23) f- the

wltm q. (13) and (14) can bS vi~ed as a proc~s of cox’Itinuo~lY

rducing the information content of the equations. m obtain Eq. (21) a

differentiationwith respect b x was required which is always a loss of in-

formation. As Pomraning ad Clark5 @nt out, the second-order form of the

transport equaticm is not consistent anynore with the continui~ equation of

classical diffusion theory since this information is lost by differatiation.

Hence, ~. (21) contains less information than Eqs. (13) and (14). SimilarlY,

the additional “squaring—process”required to derive lXI.(23) Mica-s that

this equaticm contains even less information than ~. (21). H-ver, such an

information rd.ction process was exactly what we had originally intendd.

Since @. (23) describes the khavior of “@particles” rather than neutronsI

it is not surprising &at neutron continuity cxxditions and neutron conservation

conditions may be lost. We gained, hmever, the very simple ad basic conser-

vation lW for ~ described in the previous section.

9



Iv. A SAMPLE CMCULATION

To dmmstrate the n= concept and

deep-penetration fixed-source transport

the applicability

pzmblems we chose

of the @quations to

a sinple emple for

which the Boltzmann equationcan be solved analytically exact: a point source

atx= O with a @nt detector at x = a in an infinite, purely absorbing

mdium, in slab geomtry. ‘Ibfurther siK@.ify the example, we allow neutrons

to travel only in one di-ion, p = 1. !lkn the fozward and adjoint fonruiLa-

tions of tie Boltzmann equation describe the problem as follws (source*

detector are normalized to 1.0; canpare Fig. 2).

Forward fonn@ation:

with the

I =

boundary condition @(0) = 1. Tk solution is: +(x) = e-zx,

<R,@>, with R =6 (x - a),

I

//’
r-—.— .—. —-—.

I
%=0

Fig. 2. Flux, adjoint, and @stribution
R= & (x-a).

1(24)

i
x

:G

for sanple prcblem with Q = & (x) and

10



Ad-hint formulatim:

‘-’do+(x)
dx

+ X$+(x) =6 (x- a),

with the boundary condition $+(a) =
f

I = CQ,$+>, with C!=6 (x)l

4 e-Za= .

Now, to exercise the nw concept in

for p = 1 and then perform integral

.

1. The solution is: $+(x) = e
x(x-a)

I

calculatiq I we must either solve ~. (23)

(IJ”)’ + 45(x)6(x-a)~“ - # ($’)z - 4XZCS(x)8(x-a)~ + MA(x) 6z(x-a) = O,

i-’=

I =

L

v (x)6 (x -X5) dx=$(x~); O<x~<a,

or solve 4. (21) for c = O, P = 1, and exercise ~. (16) and ~. (22):

- ytj+ #y = .2s

=X6(X) +i,Z5(x-a),

q)(x)= + h Y2,

-P=

I=

L

v (x)6 (x

= ; rt’n Y2 (X5) .

For this sanple case it ap~

solwd easier tian those in the

(25)

-X~)dX=IJ (X5); O<xs<a

(26)

27)

tion for Y(x) is easily obtained as

honmgeneous equation (corplemmtary

that the equations in
nonlinear formulation

fornmlation (27) are

(26). The general solu-

the sum of the geneml solution of the

solution) and a knmm or guessed prticular

11



integral for the inhonqeneous equation, since the equation for Y is an

ordinary linsar differential equation. It is easily verified that the general

solution is

Y (x) = Clexx + C2e-zx + ~ , (28)

where Cl and C2 are two corplex integrattin mnstants to be determhed fxom

boundary conditions. The necessaq boundary conditions for Y are derived fran

&se for @ and $+ given in l?qs.(24) and (25):

1. Re Y(0) = $(0) = 1,

2. RQ Y(-) = O,

3. lrnY(a) = $+(a) = 1, I(29)

4. Tnl Y(-) = o.

Sine Cl and C2 are cmplex, it is required to have four ccmditions, and there-

fore the original by two boundary conditions for @(O) and $+(a) nust be aug-

nented by flux and adjoint boundary conditions at x + + ~ as shmn in E@. (29).

Introducing c1 =a+iband C2=c+id, the valmsfor a through dare

determin
-Za

edfran~s. (29)asa=d=0, c =1, andb=e , which transform

t@ general solution (28) into the full particular solution of our sample case:

Y (x) = e-xx + ie-ZaeXx. (30)

Calculating tk square of ~. (30) yields

Y2(x)

from which

(27):

1

e-2zx - e2Z (x - a) + 2ie-Za= (31)

only the imaginary part is needd to calculate I according to 4s.

I = ; lt’nY-(XJ ,

e-~a= t for any xs. (32)

12



Of course,this result [~. (32)] is verified inmMiately by mnprison with

E@. (24) or (25). The fact that $ (x) = ~ IrnY2(x) is a constant in this case,

is an immxiiate consequence of the conservation law discussed previously.

Rquation (12) reduces in our special case to

d~ (X)
—= O, for O<x <a,dx (33)

and, that ~ therefore nmst be constant is obvious. Hwever, to identify from

first principles a boundary conditim for $(x) in ~. (33) -- which would

determine the value of the integration constant to be e-Za -- is not trivial.

v. OPEN ~STIONS

Since the foregoing analysis is

solutions to shielding-type pioblems

EOltzmann equation, it ap~s as if

just a first attempt to find

without the need to solve the “almighty”

more mathematical problem might be

genera~d in the new approach than solved. Obviously, my questions need

to be addressed before any cmclusions about the

approach my be drawn. The reader is invited to

questions, in particular those pertaining to the

concept.

1.

2.

3.

4.

VI.

have

5.

6.

7.

Here is a list of such questions:

How can lmundary conditions for J or Y

Can ~. (23)be generalized b incltie

usefulness of suh a n=

ask and an%er any relevant

practicability of the new

be formulatd in general?

scattering media?

Can 13@. (21) and (23) be generalize to other than slab gennetries?

Can energy-dependencebe treated?

What are the computational ramifications in solving mwlex or
nonlinear equations of the form of E@. (21) and (23)?

Is it possible to derive fran q. (23) or ~. (21) an equation
directly for 1, by partial integration, e.g.?

What are the analytic properties of the new “transrmt o~ators”
acting on $

COMIUJSION

In an attqt to

only the minimm

and Y?

solve shielding-type prcblems through equations

necessary information content, two new forms of

which

the

13



neutron tranqmrt equation have been established. The equations are for a

function @ = @+@ which obeys a conservattin law and allows the direct calcula-

tion of the integral respnse I = <R,$> = <Q,$+>. The physical interpretation

of ~ as ths restricted n* of source particles which will necessarily con-

tribute to the integral response gives insight ard urxlerstandingof the radia-

tion transport process from a n= perspective. The fact that these two new

form of the transport equation mnifest themelves as either linear and cxmple.x,

or nonlinear but real, is very interesting but can intuitively be uderstood

because of the reduced information content of these equations. Boundary a)ndi-

tions for the new Y-equations have been tr~ted only superficiallybut are felt

to be extr-y important in any general formation. !t’hefact that even the

linear Boltzmnn equation must lx solved n~ically for alnmst any prcblem of

practical interest gives hope that there may be scnE practical problem existing

for which the nurerical solution of the H equations my prove advantageous.
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