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A NEW CONCEPT FOR DEEP-PENETRATION TRANSPORT CAILCUIATIONS
AND TWO NEW FORMS OF THE NEUTRON TRANSPORT EQUATION

'd by

S. A. W. Gerstl

ABSTRACT

f

A new concept to solve radiation transport problems is developed
bypassing the solution of the Boltzmann equation. A distribution func-
tion ¢ is defined as the product of the conventional neutron flux and
 +adjoint distributions. Two equations, one complex and linear, the

other real and nonlinear are derived for y. A conservation law for ]
is established and a physical interpretation given for y as a flux dis-
tribution for a limited number of source particles which will necessar-
ily contribute to the integral response of interest. The linear but

... complex form of the transport equation is solved analytically for a
.- Sample case of a pure absorber in slab geometry.
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I. INTRODUCTION

It is well knr::wnl that neutron transport problems, as described by the

linear Boltzmann equation, can be formulated in a "“forward" or an "adjoint"
mode; both formulations being equivalent.
have

Using the nomenclature of Ref. 1 we
(1)
with
I = <R,0$>, (2)

as the forward formulation. I denotes the linear time-independent Boltzmann

transport operator, ¢ = ¢(r, @, E) is the angular flux distribution, Q = Qx, @, E)



is a given neutron source distribution, R = R(r, {, E) is a given response

function, and I is an integral effect of interest (response), where the
symbol <,> indicates integrations over the common domains of all independent
variables r (position), @ (direction), and E (energy). The sole cbjective in
most practical radiation transport applications is the calculation of I when
Q and R are given. Fully equivalent is the adjoint formulation

L't = R, (3)
with
I =<Q,¢">, (4)

where the adjoint source-term is chosen to be the response function R, and
¢+ = ¢+(_r_, Q, E) is the adjoint angular flux. The adjoint transport operator

1t is defined by*
+ +
¥, 1> = <", 0, (4a)

and it is assumed that the boundary conditions on ¢ and ¢ are such that Eq.
(4a) is satisfied.

It is clear from the above formulations, that in order to calculate I one
must know either ¢ or ¢+, hence, solve either Eq. (1) or Eq. (3). In particular,
in deep penetration or shielding type calculations, the spatial distance be-
tween the neutron source (Q) and the detector (R) may be very large in terms
of mean-free paths of the source neutrons. Since the neutron flux at the
detector position is needed toevaluate I from Eq. (2), the usual procedure in
solving Eq. (1) is to calculate the entire flux distributions ¢(r, @, E) at all
locations r in the system although it is needed only at the detector location.
The calculation of ¢ at locations r between the source and detector locations
seems to be an intrinsic requirement to obtain the needed ¢ at positions where
R # 0. However, the calculation of ¢ at all locations except the detector
location could be considered a waste of effort if it were not intrinsically
required. It is intriquing that so much wasted information must be generated
in order to calculate the one number of interest, I. The same, of course, is




true for the adjoint formulation where the actual computation of ¢+ at the
source location must proceed step by step starting at the detector location.

In sensitivity calculations using variational methods, e.g., Ref. 2, the
product of ¢ - ¢+ is used which seems to be an even larger waste of information
and effort since ¢ and ¢* must both be calculated although each one of them
separately contains all the information ever needed for most radiation transport
analyses. It is admitted, however, that such variational methods produce more
useful information than just the value of I. Nevertheless, the question arises:
why not calculate the product ¢ = ¢¢+ directly? Additional incentive to cal-
culate ¥ directly is obtained by a very interesting analytic property of ¥
which will also provide the connection with our original problem of calculating
I.

II. A CONSERVATION LAW FOR § = ¢¢+

Let us rewrite Egs. (1) and (3) for a purely absorbing medium (I is the
macroscopic absorption cross section):

Q-Vo + X9 =Q, (5)

|K)

96" + 19" = R (6)

Multiplying Eq. (5) with ¢+ (from left) and Eq. (6) with ¢ (from left), and
subtracting the second from the first equation gives

0T (Q-90) + ¢ = 6" - Ro. (7)

Since 9_ V¢ = V-0¢, the two terms on the left side of Eq. (7) can be combined to
v Q¢¢ = V- which is the "divergence operator" (V=div) acting on the vector
field Qy:

div(y) = 04" - Ré. (8)

Now we consider three different volume integrals of Eq. (8), keeping in mind
that each volume integral can be translated into an equivalent surface integral



by Gauss's theorem3

/div(g-w)dv = {(g-g)w, ‘ . (9)

where dF is a surface element on the volume V and n is a normal vector on F
pointing outward from the volume V.

1. Integrating Eq. (8) over a volume VR which includes the detector

location but not the source location (see Fig. 1) yields for the left side of
Eq. (8)

Fig. 1. Subdivision of the systems volume V.



/diV@)th (nR-Q)y aF
R

VR

= '[ (EiRn'@w dar, (9a)

R
where 9—?:1 = - g_R is the inward normal vector on FR. The integral over the first
term on the right side of Eq. (8) vanishes since the volume V. was chosen SO

R
that Q = 0 in VR- The integral over the second term on the right side of Eq.

(8) resembles Eq. (2) if we also integrate over all anglesQ and all energies E.
Therefore, integrating Eq. (8) over the volume V.

R all angles and energies,
yields

1= (ny -9) ¥(x, 8, E) & d’0 dE. (10)

—c0 ) FR

Hence, the effect of interest (response) I can be calculated from Y = ¢¢+
directly by integrating the net inward current of the vector flux *y over any
. surface FR enclosing the detector, and also integrating over all angles and
energies.
2. Similarly, integrating Eq. (8) over any volume VQ which includes the
neutran source but not the detector, we obtain

I =f j f o) iz, 8, B) & a0 G, (11)
< (4m) 0

where nQ is the outward normal vector on the surface FQ enclosing the volume
VQ.

3. Integration over the entire system V, including both source and
detector, gives



/div(gw) av = 0. (12)
v

If ¥ is interpreted as a particle flux, namely an importance weighted
neutron flux ¢ ¢, then Egs. (10) through (12) allow very meaningful conclusions:

a. From Eq. (12) follows that the system never loses any -
particles; a conservation law for .

b. From Egs. (10) and (11) follows that the integral response I
is given by summing up the net current of all y-particles
which either enter any closed surface FR around the detector
or leave any closed surface Fg around the source.

The above technique was derived from Ref. 4; the results are, therefore,
probably not new. But the above interpretations are intrigquing enough to
formulate a new concept for the solution of deep-penetration transport problems
with fixed sources. The idea is to establish an equation for y and then cal-
culate I either from Eq. (10) or Eq. (11). From these equations follows that
the distribution function y(r, @, E) contains the necessary and sufficient
information to calculate I. The neutron distribution ¢ (x, 2, E) at any given
point r outside the detector region gives information on all neutrons which
traveled fram the source to r, disregarding whether these neutrons will ever
reach the detector position or not; this is too much information if one
only wants to calculate I. The distribution Y(r, @, E), however, gives at
any point r information only on those "y-particles" which will certainly con-
tribute to the response I. Intuitively this interpretation for y may be obvious
from its definition as an importance weighted neutron flux distribution ¢+¢.

To calculate I fraom Eq. (10) or Eq. (1ll1) it is sufficient to know y(x, Q, E)
only at any closed surface encompassing either R or Q. A graphical display of
the multidimensional function y(r, @, E) can immediately identify radiation
streaming effects of significance for the special problem under consideration:
peaks in the spatial distribution of y will point to spatial streaming paths
(heterogeneity effects), peaks in the energy distribution of y identify spectral
streaming (e.g., due to cross-section minima), and peaks in the angular distri-
bution will occur in directions which are of greatest importance to the problem.




ITI. DERIVATION OF THE y-EQUATIONS
In the following we restrict ourselves to the monoenergetic transport
equation and for algebraic simplicity we consider only slab geametry with

isotropic scattering. Equations (1) and (3) take then the forml

+l

u _a,¢____§§,u) + Z¢(x,n) = %/ ¢ (x,u") du' +Q, (13)
-1
. +1
- u y;é}ﬂll + 3¢t ) =S ¢ (x,u') au' +R. (14)
X 2
. -1

Since we want to derive an equation for ¢¢+ we define a complex flux distribution
.+
¥Y(x,u) = ¢(x,u) + i¢ (x,u), (15)

with i = /1, thenourlm]movmproductw=¢)¢>+canbederived from ¥ as one-

half of the imaginary part of ‘P2:

+ 2

Vi) = oot = % Im v2. (16)

By suming and subtracting Eq. (13) and i-times Eq. (14) we obtain a coupled
*
set of two equations for ¥ and its conjugate complex, V¥ :

* +1
Y _cC . .
-1
+1
¥ L F_cC * .
u&-+2‘l’ ——2-/ Y du' + (Q - iR). (18)
-1

To simplify further analysis we define a complex source term



S =Q + iR, (19)

and assume for the following that the given functions Q and R are constants
with respect to x and u; also, I and c are assumed constants. Now we differ-
entiate Eq. (18) with respect to x and obtain

32\11 aw* # a*y*
_ C
W=+ 1 ke —2/ = du'. (20)
a{ _l

* .
Eliminating & /& from Eq. (20) by using Eq. (17), gives the desired equation
for ¥:

32 +1
- uz—%}({’z‘-’—m-+ 22 Y(x,u) = (£ - cy)s +§u/
-1

n

. P " _ _C_ " i -
[11' ‘P(X,U ) 21-1' / W(Xiu ) d].l ]du . (21)
-1

The left side of this equation, for the real part of ¥, Re ¥ = ¢, has been
derived earlier by other authors, e.g., Ref. 5, and is identified as the self-
adjoint second-order derivative part of the nonself-adjoint first-order de-
rivative portion of the original transport operator. It is interesting to note
that Eq. (21) is valid for the camplex function ¥ containing information on ¢
as well as ¢'.

Now, since ¥ = ¢ + i¢+ does not give the desired product y = ¢¢+ directly,
Eq. (16) must be applied to calculate it. Then the response I can be calcu-
lated via Eq. (10) or Eq. (11) which in slab geometry reduce to

[+ 2]

I =/ up (x,1) 8 (x - x.) dudx, (22)



where Xg is any space point separating source and detector. Location x, can be
thought of as an infinite plane between source and detector which closes to a
full surface at infinity.

Since the new transport equation, Eq. (21), is an equation for the complex
variable ¥ = ¢ + i¢+, it actually represents two equations, one for the real
part of ¥, Re ¥ = ¢, and one for the imaginary part of ¥, Im‘l’=¢+. In
principle it must be possible, therefore, to derive from these two equations
(through elimination processes) one equation for the product ¢ = ¢¢+, which
was our original goal. Rather than starting from Eq. (21), we may also start
with the original Boltzmann Eqs. (13) and (14) to derive an equation for
Y= ¢¢*. For simplicity we chose ¢ = 0, the case of a purely absorbing medium
and follow the latter approach. The equation we cbtain for ¢ [a real function,
not to be confused with the camwlex function ¥ of Eq. (21)] is nonlinear and
takes the form

2.\ 2 2 ,
p4 (i-{%’-) + auPor % - w2 (%{’-) - 422QRw + 4Q2R2 = 0. (23)

The fact that this equation is nonlinear follows from the process of elimination
and substitution when Eq. (23) is derived from Egs. (13) and (14). In this
process, it was necessary to once differentiate and square the entire equation.
Intuitively, the process in deriving Eq. (21) and Eq. (23) from the
Boltzmann Egs. (13) and (14) can be viewed as a process of continuously
reducing the information content of the equations. To obtain Eq. (21) a
di fferentiation with respect to x was required which is always a loss of in-
formation. As Pomraning and Clark5 point out, the second-order form of the
transport equation is not consistent anymore with the continuity equation of
classical diffusion theory since this information is lost by differentiation.
Hence, Eq. (21) contains less information than Egs. (13) and (14). Similarly,
the additional "squaring-process" required to derive Eq. (23) indicates that
this equation contains even less information than Eq. (21). However, such an
information reduction process was exactly what we had originally intended.
Since Eq. (23) describes the behavior of "y-particles" rather than neutrons,
it is not surprising that neutron continuity conditions and neutron conservation
conditions may be lost. We gained, however, the very simple and basic conser-
vation law for y described in the previous section.



IV. A SAaMPLE CAICULATION

To demonstrate the new concept and the applicability of the y—equations to
deep-penetration fixed-source transport problems we chose a simple example for
which the Boltzmann equation can be solved analytically exact: a point source
at x = 0 with a point detector at x = a in an infinite, purely absorbing
medium, in slab geometry. To further simplify the example, we allow neutrons
to travel only in one direction, u = 1. Then the forward and adjoint formula-
tions of the Boltzmann equation describe the problem as follows (source and
detector are nommalized to 1.0; campare Fig. 2).

Forward formulation:

DG 4 10 =5 (0, 3
with the boundary condition ¢(0) = 1. The solution is: ¢(x) =e ",
I =<R,¢>, with R=6 (x - a), p(24)

~4-co

Le_zxé(x - a) dx, = e—Za .
y

A

-
X
X=0 R=Q
Fig. 2. Fluxx, adjoint, and y-distribution for sample problem with Q =8 (x) and

R = § (x-a).
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Adjoint formulation:

it
_g¢dxﬂ+z¢+(x)=6(x-a), ]
with the boundary condition ¢+(a) = 1. The solution is: ¢+(x) = et(x - a) ,
»(25)
I= <Q,¢+>’ with Q =6 (%),
- e—Za .

J
Now, to exercise the new concept in calculating I we must either solve Eq. (23)

for 1 = 1 and then perform integral (22):

W2 + 8 (08 (x-a)y" - T2 (") 2 - 47% ()6 (x-a) P + 462 () 62 (x=a) = 0,
»(26)

~4-co

/ lb(x)G(x-xS) dx

or solve Eq. (21) for c = 0, u = 1, and exercise Eq. (16) and Eq. (22):

I

Yix); 0 < x, <a, J

-y 3%y =738 )
=18 (x) + i (x - &),
} (27)
Ve =3 In ¥,
<0
I=/ w(x)a(x-xs)dx=w(xs);0<xs<a
p

= % Im ‘Pz(xs).

For this sample case it appears that the equations in formulation (27) are
solved easier than those in the nonlinear formulation (26). The general solu-
tion for ¥(x) is easily obtained as the sum of the general solution of the
homogeneous equation (complementary solution) and a known or guessed particular

11




integral for the inhomogeneous equation, since the equation for ¥ is an
ordinary linear differential equation. It is easily verified that the general
solution is

XX | et

Y(x) = Cle o

S
T+, (28)
where Cy and C, are two complex integration constants to be determined from ¢
boundary conditians.. The necessary boundary conditions for ¥ are derived from
those for ¢ and ¢+ given in Egs. (24) and (25):

1. Re ¥(0) = 4(0) =1, )
2. Re Y(+o) =0,
3. Im¥a) =¢'(a) =1, b (29)
4. Im ¥(—) = 0.
J

Since Cl and C2 are camplex, it is required to have four conditions, and there-
fore the original by two boundary conditions for ¢(0) and ¢+(a) must be aug-
mented by flux and adjoint boundary conditions at x + % « as shown in Egs. (29).
Introducingcl=a+ibandC2=c+id, the values for a through d are
determined from Eqs. (29)as a =d =0, c =1, and b = e >3, which transform

the general solution (28) into the full particular solution of our sample case:

x

Y(x) = e 2¥ ¢ je L3IX, (30)

Calculating the square of Eq. (30) yields

2Lx _ eZZ (x - a) la

) =e + 2ie” (31)
from which only the imaginary part is needed to calculate I according to Egs.
(27) 2
_1 2
I=3 Imvy (xs) ’
-Za )
=e "7, for any x_. (32)

12



Of course, this result [Eq. (32)] is verified immediately by comparison with
Bqs. (24) or (25). The fact that y(x) = 3 Im ¥>(x) is a constant in this case,
is an immediate consequence of the conservation law discussed previously.
Equation (12) reduces in our special case to

ay (x)
ax

=0, for 0 < x< a, (33)

and, that ¢ therefore must be constant is obvious. However, to identify from
first principles a boundary condition for {(x) in Eq. (33) -- which would
determine the value of the integration constant to be e_z""1 -- is not trivial.
V. OPEN QUESTIONS

Since the foregoing analysis is just a first attempt to find
-solutions to shielding-type problems without the need to solve the "almighty"
Boltzmann equation, it appears as if more mathematical problems might be
generated in the new approach than solved. Gbviously, many questions need
to be addressed before any conclusions about the usefulness of such a new
approach may be drawn. The reader is invited to ask and answer any relevant
questions, in particular those pertaining to the practicability of the new
concept. Here is a list of such questions:

1. How can boundary conditions for § or ¥ be formulated in general?

2. Can Eq. (23) be generalized to include scattering media? ,

3. Can Egs. (21) and (23) be generalized to other than slab geometries?

4, Can energy-dependence be treated?

5. What are the computational ramifications in solving complex or
nonlinear equations of the form of Egs. (21) and (23)?

6. Is it possible to derive from Eq. (23) or Eq. (21) an ecuation
directly for I, by partial integration, e.g.?

7. What are the analytic properties of the new "transport operators"
acting on ¢ and ¥?

VI. CONCLUSION

In an attempt to solve shielding-type problems through equations which
have only the minimum necessary information content, two new forms of the
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neutron transport equation have been established. The equations are for a
function ¢y = ¢+¢> which obeys a conservation law and allows the direct calcula-
tion of the integral response I = <R,¢> = <Q,¢{*'>. The physical interpretation
of Yy as the restricted number of source particles which will necessarily con-
tribute to the integral response gives insight and understanding of the radia-
tion transport process from a new perspective. The fact that these two new
forms of the transport equation manifest themselves as either linear and complex,
or nonlinear but real, is very interesting but can intuitively be understood
because of the reduced information content of these equations. Boundary condi-
tions for the new ¥-equations have been treated only superficially but are felt
to be extremely important in any general formulation. The fact that even the
linear Boltzmann equation must be solved numerically for almost any problem of
practical interest gives hope that there may be sare practical problem existing
for which the numerical solution of the new equations may prove advantageous.
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