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A SYSTEM OF NONLINEAR PARTIAL

DIFFERENTIAL EQUATIONS DESCRIBING CYLINDRICAL PLASMA COLLAPSE

by

Alfred Carasso and B. R. Suydam

ABSTRACT

We consider the snow-plough model for describing
cylindrical plasma collapse for a specified constant
driving term. This coupled nonlinear system consists
of five partial differential equations in two independ-
ent variables, one of which is the time variable.
Generally, the initial value problem for similar systems
is improperly posed. However, here we show that by
, direct construction of the unique solution, explicitly
== |=in terms of the initial data, the solution exists for
gggzﬁall pos_itive times and is generally an infinitely dif-
$=== 7T ,~-ferentiable function of the independent variables.
§§§§§F_51Névertheless, the solution always develops a nonphysical
singularity after a certain positive time, and there-

5 after ceases to describe the underlying physical situa~
= P—=tion. Our theory leads to an a priqri bound in terms
3I===§ of the initial data, on the time interval during which
g ..the snow-plough model is physically realistic. We

=M R

=l . ™
==™ . discuss several examples which illustrate the pathol-
ogies exhibited by the solution.

1. INTRODUCTION

The underlying physical problem considered in this report is the com-
pression of a fully ionized plasma by a magnetic piston. Because a fully
ionized plasma is normally a very good conductor, we may set the resistivity

The magnetic field then cannot penetrate into the plasma; it

equal to zero.
To treat

simply drives the sharp plasma-vacuum interface like a piston.

this problem properly, one should solve the hydromagnetic equations in the
This shock ultimately reaches the

plasma for the magnetically driven shock.
In this report we

center of the plasma and is reflected back to the piston.



are concerned with the early phaée of the compression, that is, before arrival
of the back shock. 1In this case, the piston motion can be well approximated

1,2

by a simplified model, the "snow-plough" equations, and one can avoid the
more formidable problem posed by the full hydrodynamical equations. Thus,
instead of following the development of the shock, we assume that each plasma
element remains undisturbed until the piston arrives. When the piston ar-
rives, each plasma element is picked up and sticks to the piston face. We
thus imagine the shock to remain infinitesimally close to the piston in this
approximation and assume the shock compression of the plasma is infinite.

Although these approximations are somewhat crude, the snow-plough model
has proved useful in plasma compression calculations. Recently, Nelson,
Brown, and Hart2 described a code used for numerical computations of such
problems. They reported that the code, based partly on the snow-plough model,
runs well and gives good results.

In Sec. 2, we derive the snow-plough equations directly from the prin-
ciples of mass and momentum conservation for the two-dimensional case of a
cylindrical plasma. These equations form a nonlinear system of five partial
differential equations in two independent variables. This set of equations
can also be obtained from the full hydrodynamical equations as a limiting
case, when the temperature approaches zero and y (the ratio of gpecific heats)
approaches unity.

This simplified system of snow-plough equations is the basis of our
study. These equations are highly unconventional, and the model raises new
mathematical questions. The initial value problem for similar systems is

generally improperly posed. In fact, a linearized stability analysis of the

snow-plough equations reveals that the growth rate of perturbations becomes
infinite as their wavelength approaches zero. Yet, surprisingly, the algo-
rithm discussed in Ref. 2 encountered no stability difficulties-—an apparent
contradiction to a well-known principle in numerical analysis.3 In this
report we take the first step toward answering these questions. We shall
show that for a specified constant driving term, the nonlinear initial value
problem is well-posed, and we shall construct its unique solution explicitly
in terms of the initial data. The solution will exist for all t > 0. Never-
theless, as will be shown, the solution always develops a nonphysical singu-
larity after a certain positive time, Tc' and thereafter ceases to describe




the underlying physical situation. This is so despite the fact that the
solution is generally an infinitely differentiable function of the independ-
ent variables. In fact, our construction leads to an upper bound, which

may be calculated explicitly in terms of the initial data, for the time in-
terval during which the snow-plough model is physically realistic. In Sec. 5,
we discuss examples which illustrate these points, as well as further compli-
cations not covered by our theorems.

The above problem is a particular instance of the more general problem
of moving a simple, closed plane curve according to some prescription. This
type of problem occurs in various physical situations. For example, optical
problems may be formulated in this fashion, the plane curve (or, more general-
ly, surface) being an isophase front. With proper rules for moving the curve,
diffraction and even nonlinear optical effects can be fully accounted for;
also, such a formulation has attractive computational features. Our ultimate
aims, therefore, are broader than the snow-plough problem discussed in this
report.

As a simple example of the above general class of problems, consider
the evolution of a curve when each point on the curve is moved toward the
instantaneous inward normal, at a uniform velocity, which we may normalize

to unity. Let the curve be given parametrically by

x = X(A,t), Yy = Y(A,t), (1.1)

and let the element of arc length, ds, be given by

1/2

ds = SdA, S = [(axx)z + (SAY)‘?] R (1.2)
where 3, =

a_
AT s



Then, the equations of motion for the curve are

th = —(l/S) BAY v aty = (l/S)BAX . (1.3)

The initial value problem is well-posed for this nonlinear system. How-
ever, if S were simply a function of (X,Y,A,t), the initial value problem
would probably be ill-posed because these equations constitute a generaliza-
tion of the Cauchy-Riemann equations.

Although we have not found a method of generally classifying such systems,
these problems have the following property in common. In their natural form,
the equations are not quasi-linear. When, by introducing new dependent var-

iables, they are quasi-linearized as

> -»> )
= .4
Aatx + Bal X c, (1.4)

the matrices A, B, and C are highly singular.
2. DERIVATION OF THE SNOW-PLOUGH EQUATIONS

1 2 3
Let (x ,x ,x ) denote Cartesian coordinates. We consider a cylindrical

. R 3
plasma with its axis along the x coordinate so that

% (anything) = O . (2.1)
9x

The plasma-vacuum interface can be described as a simple closed curve,

T'=T(t), in the (xl,xz) plane. This curve is given parametrically by

x' = R(x,t) (2.2)




and

x2 = Z(x,t), (2.3)

where t is time and x is a conveniently chosen parameter such that 0 < x < 2.

Thus, R and Z are 2V-periodic functions of x. We choose x to increase anti-
> -»>

clockwise around I'. The unit tangent T(x,t) and the unit normal n(x,t) to T

are given by

~
[}

1 (l/S) Rx, T2 = (l/S)Zx, (2.4)

and

nl = - (l/S)Z.x, n, = (l/S) Rx' (2.5)

(R2 + z° )1/2 i (2.6)
X X

where

0
]

The convention chosen for x makes -r:(x,t) point inward into the plasma. Let
us revert momentarily to three dimensions and consider an element 8I of the
interface with velocity -6 Then, in time §t, 6I sweeps up a volume (’ﬁ-_ﬁ)az.
Let p be the constant plasma volume density and u be the mass per unit area
of the piston, that is, mass of plasma already swept up. Then, because §I

3 .
= 86x 6x, mass conservation is given by

M= 0S(Usn) , (M= pus). 2.7

Similarly, if I > 0 is the jump in total pressure across the plasma-vacuum

interface, momentum conservation is given by



(Mﬁ’)t = nlls. (2.8)

With ﬁ = (U,V), we also have

R =U,Z_=V. (2.9)

Once T is specified, Eqs. (2.7), (2.8), and (2.9) are the equations of
motion of the piston, that is, the curve I' . Here we consider only the
case where Il is a constant specified a priori. Generally, the plasma may
have a "frozen in" magnetic field, sz, in addition to its pressure p.

Then, II is given by

1 2 2
Tt [(Bvac) - (Bp‘) ]— P, (2.10)

where BVac must be computed from given external currents and boundary condi-
tions on the moving curve I' . We hope to consider this latter problem in
future work.

We choose appropriate units so that p=1 = 1. Our nonlinear system is
then

'Rt =U
Zt =V
(MU)t = —Zx » 0<x<2m ,t>0 (2.11)
(MV)t = Rx

‘M, = VR_ - UZ
X X




where all five unknowns are functions of x and t, and 27 periodic in the
space variable x.
Here we describe the initial conditions to be adjoined to this system.
Let w denote a generic positive constant, not necessarily having the same val-
ue at different occurrences. We assume the initial interface to be a smooth,

simple closed curve with a continuously turning tangent so that

[Rx(x,O)]z + [Zx(x,O)] 2>uws0, (2.12)

0 < x<2m . We also assume the initial velocity to be a continuous function
of position along this curve and to be directed inward into the plasma at

every point (Fig. 1). Thus, with n, and n, as in (2.5),

1

nl(x,O)U(x,O) + nz(x,O)V(x,O) >w >0, (2.13)

0 < x < 2r . Finally, because the mass swept up by the piston is initially

zero,
M(x,0) =0, 0<x<2m. (2.14)

x2 3. THE LINEARIZED INITIAL VALUE
PROBLEM
It is instructive to study the ev-
olutionarity of a linearized version
of (2.11). Consider the last three

equations in (2,11), namely,

| > xl (v = _ (1 U
, i X Ut"(ﬁ) Zx_(M) M,
1 Vv
x3 J Vi = (ﬁ) Ry - (ﬁ) M (3.1)

Fig. 1. Initial plasma-vacuum interface. M

Y

VR. - UZ
X X



By substituting the last equation for Mt in the first two equations, we

obtain
-
Ut = aZx - bRx
4 Vt = be + cRx (3.2)
kMt=dzx+fR s
2 2
Uu~- uv 1-v
wherea=<—M—l), b—-—M-, —(—M——),d=v,andf=—U.

A natural way of linearizing the system (2.11) is to consider the
equations in (3.2) as being linear with the variable coefficients a(x,t),
b(x,t), c(x,t), d(x,t), and f(x,t) presumed known. In matrix-vector notation,

with ax = %;3 we may write the linearized problem as follows.

R 0 0 1 0 0] R
yA 0 0 0 1 0 z
U = | -bd ad_ 0 0 0 U (3.3)
v cd b3 0 0 0 v
X X
M £3 ds 0 0 0 M
R L X X -4 - J

Consider now the simplest case, where a, b, ¢, d, and f are constants.
By Fourier transformation of the space variable x, we transform the above
system into an equivalent system in Fourier space. At each point £, the trans-
formed matrix, A(E), is obtained from that in (3.3) by replacing ax with i&.
It is easy to find the eigenvalues of A(£); they satisfy the characteristic

A [A4 + (b2 + ac) Ez] a 0. (3.4)

equation




Equation (3.4) shows that the linearized problem is well-posed if, and only
if, b2 + ac = 0; that is, if and only if,

Vix,t) + Vix,t) = 1 . (3.5)
If b2 + ac + 0, A(E) always has one eigenvalue A(£), such that

Re A(E) = o/]£| s, a0 >0, (3.6)
In that case, a solution of (3.3) at t > 0 cannot be estimated in terms of

e sas 2 . .
the initial data in the L™ norm, nor in most other useful metrics, and the

initial value problem for (3.3) is improperly posed, much like the Cauchy

problem for the Cauchy-Riemann equations.

In the next section we shall show that the nonlinear initial value pro-
blem (2.11) has a unique solution existing for all t > 0, and we shall construct
this solution explicitly in terms of the initial data. The explicit form of
the solution shows that the latter depends continuously on the data in the

00
L norm.

4, THE NONLINEAR PROBLEM

For given § > 0, let J. be the rectangle [(x,t)] 0<x<2m 0<t<S]

in the (x,t) plane. Let u(JS) be the linear space of all real valued func-
“tions, u(x,t), defined and of class C1 on J., the closure of JS’ and which are
2T periodic in the space variable x.

The nonlinear problem may be formulated analytically as follows. Given
the initial values U(x,0), V(x,0), R(x,0), Z(x,0), and M(x,0), which satisfy
(2.12), (2.13), and (2.14), find a time interval 0 < t < T and five functions
U(x,t), V(x,t), R(x,t), Z(x,t), and M(x,t) such that

(a) U,V,R,Z, M ¢ ot(JT)

(b) U, V, R, Z, M satisfy (2.11) on JT.



Lemma 1.

In any solution to the above problem, we have
Mt(x,O) >w>0, 0<x<27. (4.1

By assumﬁtion, a solution is a C1 function on 3& for some T > 0 .
In particular, the system (2.11) must be satisfied as t ¥+ 0 . By (2.12),
the unit tangent to the initial curve, ?(x,O), is well defined at every

point. Also, by (2.13), the initial velocity, ﬁ(x,O), is never zero and is

always to the left of ? . Hence, on 0 < x < 27 ,

VR - UZ
x X ‘ =@@x0) - k>w>0, (4.2)

where X is a unit vector in the x3 direction. Using the last equation in
(2.11), we obtain (4.1) from (4.2).

Lemma 2.
Let there exist a solution to the nonlinear problem. Then, there

%
exists T > 0 , such that

M(x,t) > 0 on JT* . (4.3)

Proof.
This follows from (2.14) and Lemma 1.

Lemma 3.
*
Let there exist a solution to the nonlinear problem and let T be

as in Lemma 2. Then,

U +vi=1 , (x,t) eJT*. (4.4)

10



Proof.

From the last three equations in (2.11), we have

r

(MU) Q) = -MUZ,

{0 oy

3

(4.5)

M

3
<

Hence,

2y _ /.22 2.2
(M )t = (M Ve + MU )t . (4.6)

Using (2.14) we integrate (4.6) with respect to t to get

M2 (x,t) = M(x,t) [Uz(x,t) + Vz(x,t)] : 4.7
The result follows from Lemma 2.

Lemma 4.

The following two conditions on the initial data are necessary for

existence of solutions,

Uz(x,O) + Vz(x,O) =1 (4.8)

and

U(x,O)Rx(x,O) + V(x,O)Zx(x,O) =0. (4.9)

Equation (4.8) follows from (4.4) and continuity at t = 0 . Equation
(4.9) is a stronger requirement than (2.13) because it implies that the
velocity must lie along the inward normal to the initial curve; (4.9)

follows easily from the momentum equations at t = 0 .

11



Lemma 5.
Knowledge of U(x,t) and V(x,t) in any rectangle, JT’ uniquely determines
the other three dependent variables in JT . We have

R(x,t) = R(x,0) + J/IU(x,s)ds s (4.10)
0
t
Z(x,t) = Z(x,0) + fV(x,s)ds , (4.11)
0
and
M(x,t) = g(x) f[U(x,s)U(x,O) + V(x,s)V(x,O)] ds , (4.12)
0
s
+ [ds[ [V(x,s)Ux(x,u) - U(x,s)Vx(x,u)] du ,
where
R_(x,0)
g(x) = M (x,0) = Sy 2w > 0. (4.13)
Proof.

We need only establish the representation (4.12). Integrating the

mass equation in (2.11), we get

t
M(x,t) = V(x,s)Rx(x,s) - U(x,s)Zx(x,s) ds . (4.14)
[T ]

12




From (4.10) and (4.11), we have

Rx(x,O) +[Ux(x,u)du

S

Rx(x,s)

and

Zx(x,s)

Next, from the momentum equations in (2.11), evaluated at t

Mt(x,O)U(x,O) = —Zx(x,O)
and
Mt(x,O)V(x,O) = Rx(x,O)
Rx(x,O)

Define g(x) = V=0 Then, from (4.18) and (4.1), g(x) >w >0 ,

Zx(x,O) + f Vx(x,u)du .
0

(4.15)

(4.16)

(4.17)

(4.18)

and from (4.17), Zx(x,O) = -g(x)U(x,0). By substituting (4.15) and (4.16)

in (4.14), we obtain (4.12).

Lemma 6.

*
Let there exist a solution to the nonlinear problem and let T be as

in Lemma 2. Then U(x,t) and V(x,t) are independent of t on JT* .

Proof.

From Lemma 3, we have

U(x,t) = -cos B(x,t)

(4.19)

13



V(x,t) = -sin 6(x,t) , (4.20)

where 6(x,t) is to be determined from its initial values 6(x,0) . We
now seek an evolution equation for 6(x,t). Using (4.19) and (4.20) in
(4.12), we get

M(x,t) = g(x) J/.tcos[e(x,s)—e(x,O)]ds
0

- .zftds J{Sex(x,u) cos[6(x,s)-6(x,u)]du . (4.21)

From the last three equations in (2.11), we obtain

2
MUt = —Zx - MtU = (U - ) Zx - UVRx (4.22)
and

_ 2
MVt Rx - MtV = ( 1-v ) Rx + UVZx . (4.23)

Using (4.19) and (4.20) in (4.22), we obtain

M(x,t) sin 8(x,t) %%-u -sin 6(x,t) [Rx(x,t) cos 6(x,t)

+ 2 (x,t) sin e(x,t)] . (4.24)

14




Next, we substitute for Rx and Zx’ from (4.15) through (4.18) in (4.24),
to obtain

M(x,t) sin 6(x,t) %%-= sin 6(x,t) {—g(x) sin[6(x,t) - 6(x,0)]

t
+ / sin[8(x,t)-6(x,s)18_(x,s)ds } (4.25)
0

Similarly, starting from (4.23), we obtain

M(x,t) cos 8(x,t) %%-= cos 6(x,t) {—g(x) sin[6(x,t) - 6(x,0)]

t
+/sin[e(x,t)—e(x,s)]ex(x,s)ds}. (4.26)
0
Define N(x,t) by
t
N(x,t) = -g(x) sin[6(x,t)-0(x,0)] + / sin[e(x,t)—e(x,s)]ex(x,s)ds. (4.27)
0

Then, (4.25), (4.26) together yield the following evolution equation for
0(x,t)

M(x,t) %%—= N(x,t) , (x,t) € JT* . (4.28)
This nonlinear equation has a unique solution in JT* , namely, 6(x,t) = 6(x,0).
Using (4.21) and (4.27), we observe that
(4.29)

15



Hence, from (4.28) and (4.29),

aN aM

M-ﬁ"l'N'a—t'

= *
0 on JT

Consequently, from (4.30) and (2.14),
N(x,t)M(x,t) = N(x,0)M(x,0) =0 on JT*

Since M(x,t) > 0 on JT* , we conclude that N(x,t) = 0 on JT*, and from

(4.28), et(x,t) = 0 on JT*. Hence,

U(x,t) = -cos 0(x)
and

V(x,t) = -sin 6(x)
as required.

Lemma 7.

(4.30)

(4.31)

(4.32)

(4.33)

*
Let there exist a solution to the nonlinear problem and let T be as

in Lemma 2. Then, on J.* , this solution is given by

T

(U(x,t) = -cos 06(x)

V(x,t) = -sin 6(x)
4 R(x,t) = R(x,0) - t cos 6(x)

Z(x,t) = Z(x,0) - t sin 6(x)

2
\M(x,t) =t g(x) - 5 6 (x)
Rx(x,O)

where g(x) =

V.0 >w >0, and 6(x) = arc cos[-U(x,0)].

16
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Proof.

This follows immediately from (4.32), (4.33), and Lemma 5.

Lemma 8.

Let 6(x) be as in Lemma 7. Then, there exists an open interval

[ € [0,21], such that

ex(x) >0, x€].

Proof.

(4.35)

. . 2 .. .
Let 1 and ? be the unit vectors in the x1 and x~ directions, respec-

> e als .
tively, and t(x) be the unit tangent vector to the initial plasma-vacuum in-

terface. Then, using (4.17), (4.18), (4.32), and (4.33),

T T
1 Rx(x,O) + 3 Zx(x,O)

1/2
[Rz(x,O) + Zz(x,O)]

X X

?(x) =

S T
= - 1 sin 6(x) + jJ cos O(x)

Let ¥(x) be the angle which ?(x) makes with the xl—axis. Then,
T(x) ¢ I = cos ¥(x) = -sin 6(x)
Thus,

Y(x) = 8(x) + %

By hypothesis, the initial interface is a simple closed curve.

net increase in ¥(x) as x ranges from x = 0 to x = 21 is exactly 2T,

Therefore,

(4.36)

(4.37)

(4.38)

Hence, the

17



2T

f 6, (x)dx = 8(2m) - 6(0) = 27 . (4.39)
0

Since ex(x) is continuous on [0,27], the result follows.

Lemma 9.
Define M(x,t) by

2

M(x,t) = tg(x) - 5 6 (x) (4.40)
for all 0 < x < 27 and all t > 0. Then, on any rectangle JT , the set of
points where M(x,t) + 0 1is dense.

Proof.
For t > 0 , M(x,t) = 0 if, and only if,
2g(x) = tex(x) . (4.41)

Since g(x) > w > 0, we see from (4.41) that given any x € [0,27], there is °
at most one positive value of t such that (4.41) is satisfied. Hence, in

any rectangle J the set of points where M(x,t) = 0 is either empty or

T 3
lies on a curve. This proves the Lemma.

Theorem 1.

Let the initial data satisfy the necessary conditions, (4.8) and (4.9),
in addition to (2.12), (2.13), and (2.14). Then, there exists a unique
solution to the nonlinear initial value problem, (2.11). The solution

exists for all t > 0 and is given by (4.34).

Proof.
It is readily verified that (4.34) is a solution of (2.11) for all
0 <x<2mand allt >0 . According to Lemma 7, (4.34) is the only

18




solution in f—my rectangle JT* wherein M(x,t) > 0 . An inspection of the
proofs of Lemmas 3, 6, and 7 shows, however, that (4.34) is the only solution
in any rectangle JT in which M2 (x,t) > 0 on a dense subset. By Lemma 9,

we conclude that (4.34) is the only solution to the problemon t > 0 .

Theorem 2.

Let R(x,t) and Z(x,t) be as in (4.34) and let I'(t) be the curve in the
(xl,xz) plane, defined parametrically by

”
I

= R(x,t) (4.42)

and

”
|

= Z(x,t) , (4.43)

where t is fixed and 0 <x<2m

Define Tc by

T = Inf {t(x)|t(x) >0, t(x) = 'gg(:)ﬁ} , (4.44)
x €[0,2m) x

with g(x) and 6(x) as in (4.34). Then Tc >0 , T'(t) develops a singularity
as t 4 Tc’ and M(x,t)<0 for some x €[0,2m] if, and only if, t > 2T .

Proof.

By Lemma 8 and the fact that g(x) > w > 0, the set of points t(x) such
- g(x) S . . .
that t(x) = -e—xTﬁ- and t(x) >0 is not empty. Since ex(x) is bounded on

[0,21] and g(x) is bounded away from zero, the above set of points {t(x)}
is also bounded away from zero. Hence Tc > 0 . We now show that the trace
of T(t) develops a singular point as t ¢ Tc . First, observe from (4.9)
and (4.34) that for all t > 0,

19



U(x,t)Rx(x,t) + V(x,t)Zx(x,t) =0 . (4.45)

From the mass equation in (2.11),
Mt(x,t) = V(x,t)Rx(x,t) - U(x,t)Zx(x,t) . (4.46)
Since Uz(x,t) + Vz(x,t) =1, it follows from (4.45) and (4.46) that

Rx(x’t) = Zx(x’t) =0 , (4.47)

if, and only if, Mt(x,t) =0 . From (4.34), we have Mt = g(x) - tex(x) .
Hence, the earliest time at which a singularity appears on the plasma-vacuum
interface is given by Tc . Notice that from (4.41), the earliest time at
which M(x,t) = 0 for some x €[0,21] is 2Tc .

Theorem 3.

(a) Let g(x) - Tcex(x) = 0 on [0,2]. Then, the trace of I'(t) is a circle
whose radius shrinks to zero as t ¢ Tc , and thereafter expands. (b) Let
gx) - Tcex(x) = 0 at some isolated point X € [0,21]. Then, the trace

of P(Tc) has a continuously turning tangent at every point, but the radius
of curvature tends to zero as x - Xq For sufficiently small € > 0 and
all t, such that 0 < (t—Tc) < € , the trace of I'(t) contains two cusps
near x, . (c) Let g(x) - Tcex(x) = 0 on some closed interval [a,b] properly
contained in [0,27] . Then, the arc a < x < b on the trace of I'(t), t < Tc
is an arc of circle which shrinks to a single point, y, as t 4 Tc’ and T'(t)
develops a corner at vy . For t slightly greater than Tc s> I'(t) contains

two cusps, one near x = a and the other near x = b.

Proof of (a).
From (4.9), (4.13), and (4.34), we have

Rx(x,O) = -g(x) sin 0(x) = —Tcex(x) sin 6(x) (4.48)
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and

Zx(x,O) = g(x) cos B(x) = Tcex(x) cos 8(x) . (4.49)
Hence,
R(x,0) =-R(0,0) + T, {(x -6, (u) sin 6(u)du (4.50)

R(0,0) + Tc[cos 8(x) - cos 6(0)] .

Similarly,

Z(x,0) = 2(0,0) + T_[sin 8(x) - sin 6(0)] . (4.51)

To complete the proof of (a) we substitute in (4.34) to obtain

R(x,t) - [R(0,0) - Tc cos 6(0)] (Tc-t) cos 6(x) (4.52)

Z(x,t) - [Z(0,0) - Tc sin 6(0)] (Tc—t) sin 6(x) . (4.53)

Proof of (b).
Let ¥(x,t) be the polar angle on I'(t), that is, the angle the unit tan-

gent to I'(t), ?(x,t), makes with the xl—axis. From

1 R (x,t) + 3 Z_(x,t)

T(x,t) = , (4.54)
[Rz(x,t) + Zz(x,t)] e
X X
and (4.34), together wigh
Rx(x,O) = -g(x) sin 6(x) , Zx(x,O) = g(x) cos 6(x), (4.55)
we find
- -sin e(x)[g(x)—tex(x)]
cos Y(x,t) = T(x,t)e1 = (4.56)

lg(x) - t6 (x)]
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Now if t S_Tc we have g(x) - tex(x) > 0 on [0,2m], and hence from 4.56,

¥(x,t) = 6(x) +% (4.57)
Also, the curvature ¢ is given by
8, (x)
K(x,t) = . (4.58)

lg(x) - te_(x) |

From (4.57) and (4.58) we see that if g(x) - Tcex(x) vanishes at some iso-
lated point Xq s the trace of P(Tc) has a continuously turning tangent at
Xy although the curvature there is infinite.

Next, let € > 0 be sufficiently small and let 0 < (t—Tc) < € . Then
g(xo) - tex(xo) < 0, and there are two points £ and n, such that £ < X <n,
and g(x) - tex(x) changes sign at each of £ and n. From (4.56), we see that
these sign changes lead to a jump of m radians in the polar angle at £ and n.
This is the reason for the appearance of the two cusps near Xg -
Proof of (c).

Consider R(x,t) and Z(x,t) fora < x<band 0 <t < Tc' We have,
using (4.55),

R(x,0) = R(0,0) - .4rag(x) sin 6(x)dx + Tc[cos 8(x) - cos 6(a)], (4.59)
a
Z(x,0) = Z(0,0) + /g(x) cos 8(x)dx + T_[sin 6(x) - sin 8(a)]. (4.60)

0

Hence, using (4.34), we have,

+

R(x,t) = R(0,0) - Tc cos 6(a) - fg(x) cos 6 (x)dx (Tc—t) sin 68(x), (4.61)
0

22




‘ a
Z(x,t) = 2(0,0) - T, sin 6(a) + fg(x) cos 8(x)dx + (T _-t) sin 6(x), (4.62)

0 a<x<b.

Thus, as t ¢ Tc’ we have R(a,t) + R(b,t) and Z(a,t) +- Z(b,t), and the arc

a < x < b on the trace of I'(t) is an arc of circle which shrinks to a single
point, vy , as.t 4 Tc . Moreover, from (4.57), we observe that at t = Tc’
the polar angle at Y experiences a jump equal to 6(b) - e(a)#o, and hence
I'(t) develops a corner at y as t 4 Tc' Subsequently, this corner evolves
into an arc of circle whose curvature is opposite to that when t < Tc' How-
ever, as in case (b) above, there will be two sign changes in g(x) - tex(x),
for t slightly greater than Tc’ near x = a and x = b, respectively. Hence,
there will again be cusps at these points. This completes the proof of

Theorem 3.

Theorem 4.
The unique solution (4.34) to the nonlinear initial value problem (2.11),
although it exists for all t > 0, is not relevant to the underlying physical

problem for t z_Tc .

Let u(x,t) be the density of mass swept up by the piston as in (2.7),
and let S(x,t) = [Ri(x,t) + Zi(x,t)] 1/2 as in (2.6). Theorem 2 guarantees
the existence of a point X, in [0,2m], such that S(xc,t) tends to zero as
t 4 Tc’ while M(x,tc) >w > 0on [0,2r]. Hence, since u = M/S, we have
u(xc,t) +oast 4 Tc’ a physical impossibility.

Remarks.

The quantity Tc is an upper bound on the time interval during which the
snow-plough model is physically realistic. In a real plasma, a magnetic
piston will drive a shock which always travels faster than the piston. Thus,
well before Tc, the shock front will develop singularities which lead to
shock-shock interactions. These interactions generate a signal in the shocked
material which travels back to the piston. The back signal modifies the mag-
netic piston behavior in a manner not included in the snow-plough model.

Thus, even though the solution is completely regular up to t = Tc, the model

breaks down somewhat earlier.
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5. EXAMPLES
The simplest example of a solution to the nonlinear problem occurs when

the initial interface is a circle. Let Ao > 0 and let

R(x,0) = Ao cos x, 2(x,0) = Ao sin x, (5.1)
U(x,0) = -cos x, V(x,0) = -sin x, (5.2)
M(x,0) =0, (5.3)

where 0 < x < 2 . In this case g(x) = AO’ 6(x) = x, and

T =A, . (5.4)

This corresponds to case (a) in Theorem 3. We have, from (4.34),

2
M(x,t) = At - "—2 , (5.5)
R(x,t) = (Ao—t)cos x, Z(x,t) = (Ao—t)sin X, (5.6)

and the interface is a circle whose radius shrinks to zero as t 4 Ao.
Prior to that time, the above solution describes the following genuine

physical situation. From (2.10),

2 2
(Bvac) =(Bp2) + 8w(p+l) , (5.7)

where everything is measured in units consistent with I = p = 1. The
pressure p is constant and B % is a uniform field parallel to the cylinder
axis. As this field is trapped by the perfectly conducting magnetic piston,

its total flux is conserved and we have

A 2 . —
sz(t) = [ O/A(t)] B0 ; B0 = sz(O), (5.8a)
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where

1/2
A(t) = [Rz(x,t) + Zz(x,t)] = (Ao—t) . (5. 8b)
Thus, (5.7) becomes
[B"Iac(t)] 2 o gm(p+1) + 3(2) [1-'c/A0]’4 i (5.9)

Any programming of driving currents which produces such a vacuum field leads
to a real snow-plough problem whose solution is given by (5.5) and (5.6).

For example, if the vacuum is bounded by a metal shell of inner radius A

0 L)
and if a purely axial current I(t) of the form
’ 4 .2 71/2
Ay 8Tt (l-t/Ao) + By (5.10)
I(t) = 5= Vi
(l—t/Ao)

is driven along this shell, then such a current would drive a snow plough
satisfying (5.5) and (5.6).

As another example, consider the following initial data

X

2
R(x,0) =1 - sin [u + A cos‘ul du (5.11)
[ ]
Z(x,0) =/x cos [u + A coszu] du (5.12)
0
U(x,0) = -cos [x + A coszx] (5.13)
V(x,0) = -sin [x + A coszx] (5.14)
M(x,0) =0, (5.15)
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where 0 < x < 2mr and A is fixed.

For values of A such that
0<X<1.5, (5.

the initial curve is a simple closed curve with a continuously turning tan-

gent. Here,
gx) =1, ex(x) =1 - A sin 2x (5.

and from (4.44),

1
T, = Tex - .

With A = 1.3, the smooth initial curve develops two singular points, at

x = 31/4 and x = 7n/4, as t ¢ Tc = 0.435. This case corresponds to part (b)
of Theorem 3. The evolution of the interface is shown in Fig. 2. Figures
2 and 3 were reproduced from computer plots where the scales on the vertical
and horizontal axes are automatically adjusted, so that the resulting curve
nearly fills the frame. In our case, this adjustment leads to a vertical
magnification which greatly exceeds the horizontal magnification. The point
X = 3m/4 in Figs. 2 and 3 is marked by a small square. At t = Tc = 0,435,
we see that the curvature at x = 3m/4 appears rather modest in Fig. 2. We
assure the reader that this is a consequence of the automatic scaling. The
curvature at that point is infinite, although the tangent there turns con-
tinuously. The two cusps near x = 37/4 are clearly visible in Fig. 2, for

t > Tc’ as well as the appearance of multiple points.

It is possible for multiple points to appear before t = Tc' Thus with
A = 1.5, the bottom part of the curve (near x = 5m/4) smoothly interlaces
the top part (near x = w/4) at a value of t < Tc = 0.4, as shown in Fig. 3.
This experiment confirms the fact that Tc is really an upper bound on the
time during which the model is valid. In a real plasma, shock-shock inter-
action would have spoiled the model well before such an interlacing could

occur.
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Fig. 2. Evolution of interface Fig. 3.
when A = 1.3, when A = 1,5,

Evolution of interface

Although we do not show an example corresponding to part (c) of Theorem 3

in our figures, it is easy to see that such initial data exist.
A =1.3 as before, let

g(x)=1,0<x<1,n<x<3—",
—-" =2 -5 =2
and
g(x)=1—)\sin2x,%§x§‘rr,%§xi2'ﬂ-

Define the initial interface by

X
R(x,0) =1 - f g(u) sin [u + A coszu] du ,
0

Z(x,0) =] g(u) cos [u + A coszu] du ,
0

Thus, with

(5.19)

(5.20)

(5.21)

(5.22)

27




0 < x <27, so that,

8(x) = x + A cos? x. (5.23)
Let M(x,0) = 0 and let
U(x,0) = - cos 8(x), V(x,0) = - sin 8(x). (5.24)

It can be shown that the initial interface is a simple closed curve with a
continuously turning tangent. We have g(x) > 1 on [0,27], Tc = 1, and
g(x) - Tcex(x) = 0 on [n/2,m] and [3m/2,27]. Accordingly, the interface
develops corners at t = 1, with the polar angle making a jump of (A + 7/2)

rad at these points.
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