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FOUR COMPUTER PROGRAMS USING GREEN'S THIRD FORMULA

TO NUMERICALLY SOLVE LAPLACE'S EQUATION IN

INEOMOGENEQUS MEDIA

by

John K. Hayes

ABSTRACT

This report serves as a user's menual end expleins the
theory behind four computer programs that can be used to nu-
merically solve Laplace's equation. Laplace's equation in
two dimensions and in three dimensions with exial symmetry is
discussed. The numerical solution of both problems in inhomo-
geneous media is considered. A brief outline of applications

to Poisson's equation is given.

I. INTRODUCTION

This report discusses four computer programs:

(1) LAPLACE solves the mixed boundary value
problems for Laplace's equation in two dimensions.

(i1) LAPLARS solves the seme problems in axially
syumetric three-dimensional regions.

(1ii) LAPLDDC solves the mixed boundary value
problen for Laplace's equation in inhomogeneous media
in two dimensions.

(iv) LAPLDRS solves the mixed boundary value
problem for Laplace's equation in inhomogeneous media
in axially symmetric three-dimensional regions.

The programs are called progrsm (i), progrem (ii),
and so forth. These programs are written in FORTRAN
and are presently used on the CDC 6600. Programs
(111) and (iv) cen be used to solve almost any prob-
lems that can be solved with programs (i) and (ii).
However, programs (i) and (ii) are slightly faster,
slightly easier to use, and much simpler as far as
programming logic is concerned. All four programs
use the same method to obtain a solution, have more
or less the same input and output, and have the same
structure. Because the programs are so similar, we
emphasize the x-y plane with the understanding that
the axially symmetric problems can be handled simi-

larly.

The method used to obtain a numerical solution
is different from that of most programs used to
solve Laplace's equation, and makes the use of the
program different. Suppose we want to £ind a numer-
ical approximetion to a solution of Laplace's equa-
tion in a two-dimensional region, G, with boundary
S. TFor simplicity, assume that the region is a
homogeneous medium. LAPLACE uses the fundemental
formula

woy) = g [ [19F - i@ s (e )

to approximate the desired solution, u, in G. See
Sternberg and Smith,l p. 71. For this problem, ei-
ther u or du/dv is known at every point of the bound-
ary, S. The problem is to find u where du/dv is
known, and 3u/3dv where u is known. The velues of u
and 3u/3v thet are sought are called the unknown
boundary values. To approximate the unknown boundary
values, we use a corresponding form of Eq. (1) for
the boundary. Once the unknown boundary values have
been computed, the solution or any of its derivatives
can be approximated by using Eq. (1). Thus the use
of LAPLACE is a two-step process:



1. Approximation of unknown boundary values,
and

2. Approximetion of the solution or its deriv-
atives at desired points in G.
The program LAPLDDC also uses Eq. (1) to obtain a nu-
merical solution. LAPLARS and LAPLDRS use the ana-
log of Eq. (1) for the exially symmetric case.
II. GENERAL PROBLEM

In this section we detail the most general prob-
lem that can be handled by each of the four programs.
More general problems can be solved, but they must
be reducible to the form given here.
A. General Problem for LAPLACE

Consider a two-dimensional region, G, in the

x-y plane with boundary S. Suppose we wish to solve
for u(x,y), satisfying

2 2
3 u(x)Y) + .a_E(x’y) = 0 in G »
ax2 ay2
u= ¢ on SD )
and
-§2 =
= g on SN .

Here S U SN = 8, which is the boundary of G, and
Sp n Sy is, at most, a finite nuamber of points (for
example, corners of S). SN or SD can be empty. We
assume that S has a parametric representation {[x(t),
y(t)] | te(0,d4)] with respect to arc length. Here d
is the length of S. Moreover, we assume that both
x(t) and y(t) are piecewise smooth. The region G mey
be finite or infinite, but LAPLACE assumes that the
boundary S is finite in length. The method can be
extended to include infinitely long boundaries. Fi-
nally, Eq. (1) is not true, in general, for infinite
regions G unless u(x,y) - 0 as (x,y) - ». For the
other three programs (LAPLARS, LAPLDDC, and LAPLIRS),
the assumptions concerning the parametric represen-
tation and infinite regions must also be true.
B. General Problem for LAPLARS

Essentially the same problems that can be solved
with LAPLACE cen be solved with LAPLARS. Using axial

syametry, we shall assume that the problem has been

reduced from a problem in (z,r,¢) coordinates to a
problem in (z,r) coordinastes. Thus, only the z-r
plane need be considered. Moreover, using the symme-
try again, the problem will be restricted to the up-
per half-plene {(z,r)|r 2 0}. Note that, in all di-
agrams that follow, the z-axis corresponds to what is

2

normally the x-exis, and the r-axis corresponds to
the y-axis. Now let G be a connected region in the
upper helf of the z-r plane, and let S be the bound-

ary of G. Suppose we wish to solve for u(z,r) sat-
isfying

2 2
dr dz
u=f on SD »
and
) du
- & on SN .

Here S; U Sy =5 N {(z,r)lr > 0}, and Sy, n Sy is, at
most, a finite number of points. Notice that SD and
SN do not contain parts of the z-axis. Because of
the exial symmetry, the condition 3u/dn = -(3u/dr) = O
must always be satisfied on the z-axis.
C. General Problems for LAPLDDC

The physical problems that can be treated by
LAPLDDC are given in Ref. 2, p. 391. For instence,
one might have an electrostatic problem involving two
or more different materials. The materials might be
conductors, or might have different dielectric con-
stants. Another possibility is a masgnetic field prob-
lem with materials of different permesbility. Now

consider the general problem. In what follows, the
choice of two O0's is for ease of explanation only.
Let G be a connected region in the x-y plene.
Suppose that Gl and G2 are connected subregions such

that G = G Ug,, and G, n G, is empty. Let S, be

the boundary of Gl and S, be the boundary of G2. De-

2
fine C = §; n S, to be the boundary common to G; and
G,. See Fig. 1. Let o) be associated with Gl’ and
o, with G,. Define 3/3n, to be the exterior normal
derivative on 8, N C, that is, exterior to Gl’ and
define a/an2 to be the exterior normal derivstive

on S, N ¢, that is, exterior to G,. At every point
of C, 3/an, = -(a/ana). Finally, let S and Sy be
such that S-C = SN U Sp» and Sp n Sy is, at most, a
finite number of points. The problem is to find

u(x,y), defined on G and S= Sl U S,) such that

2 2
d3%u
—§+—%=o ing -¢C ,
x dy
u=s f on SD ,
du
-8 on Sy ’



1lim u(x,y) =
(x,y) - (xoxyo)

lim u(x,y)
(x:Y) ind (xoxyo)

(X:Y)GGl (x,y)eG2

for each point (xo,yo)ec, and

au(xoxyo)

au(xoxyo)— o -
2 an2

oy Sﬁi = for each point (xo,yo)ec.
When, Gl for instance, is empty, this problem reduces
to the genersl problem stated for LAPLACE. If the
stated problem were electrostatic, the o's would
correspond to the dielectric constants of the vari-
ous msterials. The boundary conditions on C are

called the matching boundary conditions.

S

Fig. 1. Possible configuration for G.

D. General Problem for LAPLDRS

The general problem for LAPLDRS is the same as
that for LAPLDDC, except that G must lie in the up-
per half of the z-r plene, and the partial differ-
ential equation corresponds to the axially symmetric

case.
III. INPUT

In this section we discuss the input for the
The input is slightly different from
3 but it is slmost exactly the

same for the four prograns considered here.

four programs.
that given by Hayes,
Assum-~
ing a compatible problem, the same input will work
for each of the four progrsms. For progrems (i) and
(1i) there are two allowable boundary conditions:
the Dirichlet boundary condition, i.e., u given, or

the Neumann boundary condition, i.e., du/dn given.

For problems in which only the Neumann condition is
given, the solution to the general problem is unique
only up to an additive constant. To meke the solution
to the interior Neumann problem unique, the approxi-
mate solution u, is mede to satisfy £ uA ds = 0, for
programs (i) end (1iii), and

‘i u,r ds = 0 ,
for the axially symmetric programs. For exterior
problems, we assume that u(v,w) = 0 as (v,w) = =,
This assumption mekes the exterior Neumann problem
uniquely solvable. However, using programs (i) and
(iii), erbitrary Dirichlet boundary conditions cannot
be imposed for the exterior problem because of this
assumption.

To use the programs in nonhomogeneous media, we
have another possible boundary condition, called =a
matching boundary condition. On the common boundary,
the solution, u, must be continuous and the normal
derivative must satisfy given jump conditions.

A. Boundary Description

Two different types of boundaries can be given as
The first is called the regular boundary to
distinguish it from the second.

input.
The regular boundary
includes all of the common boundary and SN' It also

msy contain all or part of S The regular boundary

must always be a finite numbgr of closed curves.
For programs (ii) and (iv), a closed curve can also
be a curve beginning and ending on the z-axis. For
instance, see Fig. 4. Moreover, boundary vslues giv-
en on the regular boundary always refer to one side
of the boundary.

problem might be the interior of a circle or the ex-

For instance, the boundary value

terior of a square.

For some other boundaries it is convenient and
even desirable to assume that the region enclosed by
a portion of the boundary is infinitely thin. For
instance, in electrostatics, if one is setting the
potential on a piece of foil, it is not unreasonable
to assume that the foil is infinitely thin, if its
actual thickness is very smsll compared to its other
dimensions.

The second type of boundary encloses a region
that is assumed to be infinitely thin, and is, there-
fore, called a thin-plate boundery. The values of
the potential are assumed to be given on both sides

of a thin-plate boundary. Moreover, the potential is

3



assumed to be the same on both sides. For this rea-
son, thin plates must not form a closed curve. Thin
plates can be used only with the Dirichlet boundary
conditions.

1. Simplified Boundary Data. The boundary and

boundary values cen be given as input in two differ-
ent ways. We will discuss the more general method
later. For the simpler method, the boundary S is
spproximsted by line segments, circular arcs, and
complete circles. The boundary values are assumed
to be constant on each section of the boundary, S.
This type of input is satisfactory for most physi-
cal problems. A line segment is described by its
two end points. The two end points and any interior
point ere used to describe a circular arc. For a
complete circle, one must give the coordinates of
the center of the circle, the radius of the circle,
and the orientation. The orientetion determines
whether G is interior or exterior to the circle.

A +1 denotes a positive orientation in which case
G is interior to the circle, and -1 denotes a nega-
tive orientation, in which case G is exterior to the
circle.

The orientation of the other boundary sections
is implicit in the input. The region G must be to
the left of the regular part of the boundary as one
follows the curve S in the direction given in the in-
put. The direction of the curve is determined by the
order of the points used to describe line segments
and circular sections and is from the first end point
to the second end point. Thus, interior regions give
the boundery S a positive (counterclockwise) orienta-
tion, and exterior regions give it a negstive (clock-
wise) orientation.

All of the input used to describe the simple
boundary conditions is given on data cards, each of
which refers to a part of the boundary which is
called a boundary section. Each card has ten fields.
We will discuss only the first seven fields now.

Each of the first seven fields is ten characters in
length and is read with a TE10.0 format. If the
boundary section is not in the common boundary, the
seventh field, i.e., columns 61 to 70, is used for
the boundary value, be it Neumenn or Dirichlet. If
the boundary section is in the common boundary, then
the seventh field is used to give the value of ¢ for
the region on the left of the boundary section.

We discuss here only programs (1) and (iii); for

programs (1i) and (iv), one simply replaces x-coordi-
nates by z-coordinates and y-coordinates by r-coordi-
nates. If a card is used to describe a line segument,
the first four fields are used for the x- and y-co-
ordinates of the first end point and for the x- and y-
coordinates of the second end point, in that order.
The f£ifth and sixth fields must be left blenk. If a
card is used to describe a circular arc, the first
six fields are used to give the x- and y-coordinstes
of the first end point, of the interior point, and of
the second end point, in that order. If a data card
is used to describe a complete circle, the first two
fields are used for the x- and y-coordinstes of the
center of the circle, the third and sixth fields must
be left blank, and the fourth and fifth fields are
used to give the radius and orientation, respectively.
For data cards used to describe circular arcs and line
segments, one can leave the first two fields blank if
the first end point is the ssme as the second end
point of the previous card. The data cards are printed
as they are interpreted. A blank card must precede
and follow the boundary data cards.

We will now consider four problems with simple

boundary input. See Fig. 2 for the first example.

(0,2)

w0 RPN

on
(-1.75,0) /L_—[ 12

[ s
I~

(2,-1.5 L

V/

N (2,-15)

Fig. 2. Sample problem using the three types of
boundary sections.

Here we want to find u(x,y) satisfying wet uyy =0
on G. G is the region between the circle and the
three-sided section in Fig. 2. The boundary conditions

are assumed to be u = 1 on the circle, du/dn = O on
the line segment Z2,—1.5$l0,25, end u = O on the rest



of the boundary.

put cards for this problem could be as follows.

Ignoring the informetion in columns
T1 to 80, the first seven fields for the boundary in-

80 COLUMN ENTRY
PROGRAMMER PROBLEM OAYE Pﬁgj_; OF

I 56 o 15h6 20]21 25[26 31 35[36 444l 45146 51 55156 61 6566 xn 73 80}
ek i -1- AA—LA_J_‘\:’I'S s " r_xou_x_x_L._\. o .2. citat b fotaa s Los s o Dl

PR PR o Y U P N RS LY DV 7 -1 VDS U - Y1 AN N T PRI A I QLTJ - ,

R B % Y - PR I T PR B Y- IV R NN BN 0.0 ./ —
L nJ;on N aa el 4 'L IV US I T I BT Y L 11—-1“"1le 111 ¢ J;I.Jn —
P S B S ST T Y i P | PV | Ll 1 dotda ) P . | hdnmd Al 1 Lt L T S | L Adda

The first two fields of the second and third cards
could have been left blank.

In Fig. 2 the orientation of the circle is neg-
ative, and that of the three-sided section is posi-
This is because G is interior to the three-
sided section, but exterior to the circle.
should be taken in deciding the correct orientation.

tive.

Care

Errors in orientation are easy to make and difficult
to detect. Orientation is not used with thin plates
becsuse the region G is always exterior to a thin-

plate boundary.
is all of the interior of the circle except the line
seguent {0,0)(10,0).

u 1 on the circle and u

{5,0)(10,0).

In the example shown in Fig. 3, G

The boundary conditions are

O on the line segment
Ignoring the informetion in columns

A\
20/ 1\
e A\
"

=
(5,0)

us] Z,

us=0
(00)

(10,0)

—

]/
]
/
/
S
—

e

\
N\
N\
AN
S

71 to 80, the boundary input cards for this problem Fig. 3. Thin-plate boundary problea.
are:
80 COLUMN ENTRY
PROGRAMMER PROBLEM JE PAGE OF |

] S6 1081 156 20{21 2526 0131 35{36 &l 4546 51 55/56 6061 65166 n 73 B804
PR AP o 1% IS N » WY IO Y X o % PP AU o X ENUPUDUPS: (NPT DD I ol 0,03 21

R B YR R P o R SN VU PP B+ | o 2t NP I 0 AP AT e oal . 31
At present, programs (1ii) and (iv) are not capable
of handling thin plates.

We will next consider an axially symmetric

problem. Physically the problem corresponds to a usl |
region between a sphere and a right circular cylin- -3,2) / '/ (2.2)
der. The cylinder encloses the sphere, and the cen- ,////
ter of the sphere lies on the axis of the cylinder. p to.
On the cylinder the potential is 1, and on the u=0
sphere it is 0. See Fig. 4 for a diagram in the ////
z-r plane. In this problem both curves are closed (-3,0) {-1,0) (0,0) (1,0} (2,0) z
in our generalized sense. This is because the pro- Fig. 4. Intersection of a sphere and a cylinder

Jection on the whole z-r plane would form closed
curves. Ignoring columns 71 to 80, the boundary

input cards would be

with the upper half-plane.



80 COLUMN ENTRY

PROGRAMM PROBLEM

PAGE OF

! Si6 ofl IS‘XG 2021 25[26 3031 35136 4041 45146

sdsi 55156

A R ¥ M - 1Y I PP T P T
N 1 P AUV B W

vttt a0l sy A N l.

NS L 2 Pl WY A

Ful 7 IR A v ) PR

codal ]

Prun,
3
N

P I U U ST S Y ik, il G U BN T S U Y It PENEY AN ANt L

IR U U i Y

PN Ll

In this type of problem it is easy to make an error
For the second and third cards, the
first two fields could have been left blank.

In all of the above problems, the boundary in-
This

is not true, in general, for problems in inhomo-

in orientation.

put cards could have been put in any order.
geneous media. For programs (iii) and (iv), the
vhole problem is considered as a sum of connected
Each of the subprob-
lems is complete in the sense that if the potential
on the common boundery were known, it could be de-

subproblems over subregions.

This meens
that each section of the common boundary must be giv-

en as input twice, once for each of the two subprob-

termined independently on each subregion.

lems for which it is part of the boundary. To pre-

serve the orientation of the boundary, the direction
along the boundary sections is opposite for the two

inputs.

The subproblems must be numbered, and the bound-
ary data cards for each subproblem must be consecu-
tive. The order of the cards within the subproblem
is arbitrary. Columns 78 to 80 are used to give the
The field is read with

The numbering should be consecutive,

number of the subproblem.
an 13 format.
starting with

example shown

one. For clarification, consider the
in Fig. 5.

to scale, of course.

This diagram is not drawn
It is an approximation to an
example discussed in Sec. 4.03 of Ref. 4. The phys-
ical problem epproximeted is an infinite conducting
cylinder surrounded by a layér of material of dielec-
tric strength 5 in a uniform field of strength 1.

To approximate the behavior in the conductor, we use
a value of g that is very large compared to the other
values of 0. Ignoring columns 71 to 76, the bound-

ary data cards are listed on the next page.

-un a,n

usal 2 us=l|

(-1,-1) (1,-1

gul
on o

Fig. 5. Conducting and dielectric cylinders in a

uniform field.
Some numerical results for this problem are given in
Sec. V. If, instead of being s conductor, the inside
cylinder were air, the data cards would be the same,
except for the last card which would have & value of
1 instead of 1.E6 in the seventh field.

On each boundary data card, one must give two
more input quantities. Column 72 is the eighth field,
vhich is for the variable LT that determines the type
of boundary condition on the boundary section refer-
If LT = 1, the boundary is reg-

If LT = 2, the boundary is reg-
If IT = 3, the boundary is
If IT = 7, the boundary

enced by the card.
ular and u is given.
ular and 3u/an is given.
thin-plate and u is given.
section is in the common boundary. These are the
only four possibilities at present. Each of the ex-
émples has the variable IT given on the boundary

data card.
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PROGRAMMER PROBLEM QATE PA QF
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Columns T4 to 76 form the ninth field on the
card. The ninth field is used to give the integer
variable KV that tells how msny points are to be

used in spproximsting u and 3u/3v on a given bound-

ary section. KV should be odd and greater than or
equal to 3. If the value of KV given as input is
less than 3, then KV is assumed to be 3. If the
value of KV given as input is even, then KV is set
equal to KV - 1. If a boundary section is in the

common boundary, then the value of KV used for that

section should be the same as the value of KV used

for the other corresponding section in the common

boundary. If the values are not the same, then the

value of KV first given as input will be used for

both of the sections. The variation in the boundary

values, the shape of the boundary section, the de-

sired accuracy, and the computer time available all

determine KV; no set rule can be given. The user

can try different values of KV on each boundsry sec-

tion; the change in the solution usually indicates

the error. In the example in Fig. 3, we assumed that

51 spproximstion points on the circle and 21 on the

line segment would give sufficient accurascy. The two

boundary data cards have KV given.

Define NDCT to be the total number of boundary

sections, and set

NDCT
NT = z Kv, .
i=1
To compute the unknown boundary values, one must
solve a metrix problem of the form Az = b, where b
is a known vector of length NT and A is an NT x NT

matrix. For NT < 192, the mstrix can be stored in

core on a 65,536-word machine. For very large prob-

lems, however, the matrix A must be stored on an ex-

ternal device. The extended core storage (ECS) on
the CDC 6600 is convenient for this purpose. If the
user wants to use the ECS to store the matrix A, he
must request (N'I‘)2 + 1500 words of ECS. For the in-
core version, the core itself simulates ECS. The
reads and writes to the ECS are replaced by statements
that move the data to another part of the core. The
user must dimension a varisble called A to be of at
least (N'I‘)2 + 1500 length. The dimension steatement
must be placed at the start of the FORTRAN subroutine
ECRD. ECRD also handles the ECS reads and writes
when ECS is used. The size of the matrix A determines
the largest allowable problem. At present it is as-
sumed that NT < 630. By modifying the dimensions of
the variables discussed in Sec. XI, one can rsise or
lower this figure.

2. Generslized Boundary Data. The subroutine

BDRY is used for generalized boundary input. When-
ever the simple boundary input is the only type used,
BDRY shows up as an unsatisfied externsl. This is =
normsl procedure. The generalized boundary input can
be used in conjunction with the simple boundary input,
or it can be used as the only source of boundary dats
input. To use the generalized boundary input option,
the user must write a subroutine that must be called
BDRY. In what follows we will discuss programs (i)
and (1ii); the input for the other two programs is
the same.

Assume thet we have a boundary section, SI’ on
vhich we wish to have variable boundery values. Let

SI have the parametric representation
{lx(8), y(t)1]te(0,15,)}
with respect to src length. Here IS_ is the length

I

7



of the boundary section S To keep the orientation

1
correct for the regular boundary sections, the para-

metric representation must be such that as we tra-

verse S_ with increasing t, the region remeins on the

1
left. An equivalent condition is that [dyI(t)/dt,

- de(t)/dt] forms the unit exterior normel vector.
We must be able to compute xI(t), yI(t), de(t)/dt,
dy (t)/at,

2 dt dt2 at dt2

1 [dxi(t) Fy (8)  ayy(v) dexI(t)]

and the appropriate boundary value as a function of
t for te(O,ISI).

BDRY has the formel parameters (I, T, X, Y, XP,
YP, F, V). I and T are input to BDRY. BIRY must
give as output

X = X (T) ’

Y = YI(T) 2
XP = de('l‘)/d'l‘ "
YP = dYI(T)/d'r ,
snd
.. l[dxl(qv) a®y (1) _axy(r) d%&(m)] ’
24 ar a2 ar a2

and the variable F must contain the appropriate

boundary value. The boundary value can be
3
u[XI(t), YI(t)] or 55 u[xI('r), YI(T)] .

Each boundary section with generalized boundary in-
put must have a boundary deta card. The first six
fields must be left blank, and the last three fields
must contain the seme informetion as that for the
simplified boundery input. The seventh field must
contain the length of the boundary section. 1In this
case, it will contain ISI.

To clarify, consider the following example to
be used ms input for program (i). Let G be the
square centered at the point (0,1) with sides of
length 2. See Fig. 6. Let S, be the line segment
from (1,0) to (1,2); S,, that from (1,2) to (-1,2);
s5, that from (-1,2) to (-1,0); and Sy, that from
(-1,0) to (1,0).

Assume that the boundary conditions are

3 = 20(y-y°) ons,

g% = th - 120x2 + 8o on 82 R
u = Sx - 10y5 + y5 on S5 B
and
u=0 on Sh .
;;-s-‘ ~120x% +80
m;,/// 7// i
(1,01 ueO . (1,0}

Fig. 6. Variable boundary data problea.

The actual solution for this problem is u(x,y) =
thy - 10x2y5 + y5. For the boundary section Sh’
the simple type of boundary input can be used. To
generate the input for the boundary sections Sl’ 82’
and 85, the subroutine BDRY must be used. One possi-

ble such routine is as follows.



PROBLEM DATE

PAGE OF PROGRAMMER
For
C"comment
Statement Identification
1] 5617 72|78 80
{ SUBROUTINE BDRY (T.T,X,Y,XP, ¥P, F, V)
; Vs0.
! GOTH(1,2.3).1
! | X=YP =},
| XP=0,
Y=T
| F= 20 % (Y= Yes3)
! RETURN
: 2 X=1-T
I XPp=-[
Ye 2.
YP=0,
; F=5.#Xee - 120, ¥ Xuwd + R0,
! RETURN
3 X=YP= -
XP=O.
! ¥Y=2.-1
F= S #Y-/0.%Yey 3¢ YuuS
RETURN
END
1
!
If KV = 37 on each side of the square, then the stance, the solution u(x,y) might have discontinuous
boundary data cards for this problem are; boundary values or branch cuts. Suppose further,
80 COLUMN ENTRY
PROGRAMMER PROBLEM _DATE PAGE Of
I 56 om IS;HG 20|21 25/26 031 35{36 41 4546 S5 5556 606! 65|66 ~n 3 804
A 4  — ‘-l““ S S W LR N S W A S VS W 1 (R PO Y I D T SO B U I B T 1 it bl 3. L al ‘37
IV RS S AT SN IR B I AP I S . R 3T
P 1Y RS I o 7Y PSPPI IPRPINY 8 AP IV ¢ % S I I . Q. .4, .37
doi 1 ) U W ST S B S 1 Al DS U S S B B ) N S W Aol L L T Ll 14 1 P Sra— Aol i
In some cases it is difficult, if not impossi- that we have a function v(x,y) such that u(x,y) -
ble, to compute x(t) and y(t) explicitly, as when v(x,y) does satisfy the requirements for the general
the boundary curve is s section of a parabola or an problem. Usually u(x,y) - v(x,y) has involved bound-
ellipse. However, in these cases one can usually ary conditions, and we prefer not to set up problems
get an implicit expression and use it to compute with such conditions. Using the following option, we
x(t), y(t), and the desired derivatives. The speed can give the boundary conditions for u as input, if
of BDRY is not too importent because the routine is the function v and its first derivatives can be given
called, at most, a few thousand times. as a function of x and y. The real function BC is
B. Superposition of Solutions and Magnetic Field used to generate branch cuts for magnetic fields that
Problems

we will discuss later in this section. In this sub-
Another option is avallable. Suppose we wish routine are two comment cards. After the first card;
to find a function u(x,y) that does not satisfy all

we must insert a statement,
of the requirements for the general problem. For in-



BC = BC - V(X,Y) s

where V(X,Y) is the function, v, evaluated at X and
Y. After the second comment card, we must insert a
statement,

BC = RC - %(X’Y) * YP + g%(xyy) * XP

Thus, v(x,y) will be subtracted from all input bound-
ary data so that the programs can solve for u(x,y)
- v(x,y), and then v(x,y) will be added to all out-
put so that we get an approximste solution to u(x,y).
The following examples show how this option can
be used. Consider again the example given in Fig. 5.
The outside square was used to approximaste the effect
of a uniform electric field of strength 1. By using
superposition with the function v(x,y) = x, we cen
put in the effect of the electric field directly and
eliminate the need for the square boundary. The two

statements needed for BC are

BC = BC - X

BC = BC - YP .

The other input is the same except that the first
four boundary data cards are not used. We alsoc need
The
modification is described later in this section.

to modify two statements in two subroutines.

Suppose we now want to solve for u(x,y) in the
unit circle satisfying 32u/ax> + 3%u/dy° = 4 with

u = 1 on the boundary. In this example v is not

Arbitrarily choose v = 2x2.

needed for BC are

unique. The statements

BC = BC - 2.%x*#2
BC = BC - 4.%x*yp .

The other input for u is simply the boundary data
card for the circle.

The application of these programs to Poisson's
equation is difficult for the general problem. Sup-

pose we wish to solve for u(x,y) satisfying

2u + aeu
2

Ax dy

o

= £(x,y) in G

n

plus boundary conditions. This problem can be re-
duced to Laplace's equation by using the particular

solution

10

vy) = 35 [ fe(es0) o] (x-5)2(y-t)% Jfas @t .

The double integral can be difficult to deel with
numerically. However, for msny problems this tech-
nique is feasible and the problem can be solved.

The author knows of one physical problem for which
this is the only practical solution.

Next, we will discuss masgnetic field calculations.
Program (iii) cen be easily modified to compute the
Pro-
gram (iv) can also be modified to compute the scalar

scalar potential for a large class of problems.
potential for axislly symmetric problems, but the

modification is more difficult because one must write
an axially symmetric version of the progrsm BC dis-

cussed in Sec. XI.
in Sec. 7.28 of Ref. &4,
responds to the function Q in Ref. 4.

The scsalar potential is discussed

The function u(x,y) here cor

Suppose we have a series of subregions Gl’ G,,
e e e, GNRE having constant permeabilities Hys M
« o+ Wpee
current sources of megnitude Il’ 12, e e ey INBC at
the points (xl,yl), (xa’Ya)’ e e, (x“m,yum).
The sign convention for the currents will be deter-
mined by Biot end Savart's law. See Sec. 7.14 of
Ref. 4. For a single point source conductor, a posi-

tive I means a positive current of megnitude I into

2)
Suppose we also have s number of point

the paper, and this, in turn, gives B a clockwise di-
rection. A negative I means a positive current out

of the peper, which, in turn, gives B a counterclock-

wise direction. Let
NRE
G = ng Gj

and let C be the common boundary in G. G will usu-
ally be all of the x-y plane. The problem is to find
u(x,y) such that

_a_aﬁ(x:)') + _a_aﬁ(x:)') =0

ing -C ,
ax2 ay2

and for any closed curve, T,

§ Vu-dl" = I
r 2
r
where I is the algebraic sum of the currents inside

r
I'. Also, the function u(x,y) must setisfy the mstch-

ing boundary conditions on ¢. Thus, if (xo,yo)ec,

is on

and G, is on one side of C at (xo,yo) and Gj

the other side of C at (xo,yo), then



1im u(x,y) = 1im u(x,y) IF(1Ic(J).NE.O)D(L) =
(ay)~xg,v,) (:9)Lxg ) D(L)+ECN(X(L) (L), YN(L) (L) J*(1.+RA(J)) .
(x,y)e Gi (x,¥)e GJ
and If ROWSTOR, we insert the statement
au(xoxyo) au(xoxyo)
Hi v, = Ty SVJ : IF(IC(I).NE.O)FT(IG) =

FT(IG)-BCN(X(M),Y(M),YN(M),XN(M))*(L.+RA(I)*CN(M).
As the problem is stated, it does not satisfy the

requirements for the genersl problem. Superposition
must be used to satisfy the requirement with the in-
tegral. It is easy to construct a function v(x,y)
such that

This modification cen be used for other problems

where superposition is used and the matching boundery
conditions are not satisfied. These two modifications
are inefficient. For large numbers of current sources,

N one should use a table loockup for the modification to
2 Vv.dl” = II‘
ROWSTOR .

]
Consider the input needed for point current
d = 0.
for eny closed curve, T', end &v = 0. 1In fact, sources. There is one data card for each current
NBC y-y source. The formst used to read the cards is
v(x,y) = L% 1 ten X ,
2n k=1 "k FORMAT( 3E10.0). The first field, thst is columns

1 to 10, is used for the x-coordinate. The second

field is used for the y-coordinate, end the last

x—xk

with -m < tan_l(-) < 1. However, such a v does not,
in genersl, satisfy the matching boundary conditions.

field is used for the current. The deta cards for
Let u, = u - v. Obviously, then

1 the currents must go in front of the blank card pre-
ceding the boundary data cards. The following ex-
bu, =0 ample (Fig. 7). is a specific case of the example
and given in Sec. 7.26 of Ref. L.
Mu..dT"= 0
§ ™y

for any closed curve ['. Moreover, it can be assumed
thet u - v is continuous across C even though v has

branch cuts. However, for (xo,yo)ec,

. ég'-éx),u a o w
i avi avi i avi i avi

" <Bul + dv ) M v
Hiy\av, T v,/ T P Ay,
J\o F <) 3 avl

Program (1ii) must be modified to handle this dif-

ferent boundary condition.

In Sec. XI we discuss the subroutines used by
program (iii). The subroutines ROWSTOR and REGNSEL

Fig. 7. Magnetic shielding of bifilar circuit.
must be modified to handle this change in type of

boundary condition. There are comment cards in both This example corresponds to two infinite wires
subroutines telling where the modificetions go. The shielded by & cylinder of unit thickness end cerrying
change involves the insertion of two statements. 'In & unit current in opposite directions. Here it is
REGNSEL, we insert the statement sssumed that the cylinder has permeability 10. The

2

following current data cards and boundary data cards

11



vere used for this problem. the boundary y = 15, -n/2 £x < n/2. The problem
80 COLUMN ENTRY
PROGRAMMER PROBLEM OATE PAGE [+] 2
[} 56 IOLI 1516 20}21 25026 2031 35|36 444l 45146 SIS S9[56 606! 65,66 N 73 80
Cure ﬂln*..dﬂ’thc.ﬂlr.‘a.& aaa FOTIN R EFETET TS ST UrErS BRI PR S BPRrSTON S S NPUPEIY Y L L
ISP VN P N o ) IR AU V% IR IO N ETITOT NN S I PN I N
NP EACN IS RPN o 1 I .Y Y N I A L1
Bnundarg dlata cards | . N I T R L P ST ST SO N
NP VRN « 73 DU EPUPOY + T4 ISV EFEPUPII I T U NN BRIV % EPUN N Y IR Iy N - /
’
NI PP ¢ BT PR » V) PSP IV I U W PP P 7 BT Lat LO.l 7] Qs 2
TSN B o B NP Y « 1Y BRI NP P NP ¥4 IEPPRPES AP % AFUPIPS) DPRPUPI SPUPRDO RN /Y0 IO | S T N |
NI -.;0-‘..; N . ¥ IO P I i ll—lb_._'lll TS 1 _r_;lng_«jA_a_SA_._._3
i Al L0 a g FEr . | A 11 | 14 4 1 i 418 4111 212 L2 s & 4,12 A
The exact solution for subregion 3 of this was run twice. The inputs sre as follows.
problem is given by Smythe. The computed and exact
solutions are each given at a few rendomly chosen
comparison points in Table I.
Table I
RESULTS FOR THE PROBLEM OF FIGURE 7
B
f z Computed Bx True Bx Computed By True y
4, 0. 2. x 1078 0. 9.815 x 107 9.826 x 1072
3. L, 5.646 x 1077 5.652 x 107> -1.824 x 1077 -1.823 x 107°
0. 6. 1. x 108 0. -b.072 x 1070 4,077 x 107
- - .3
-8. -7. -1.315 x 10 5 -1.316 x 10 3 1.673 x 10’1‘ 1.675 x 10

C. Nonsmooth Boundary Values

method

is that the boundary values have piecewise continuous
third derivatives.
problems of interest do not satisfy this assumption.

One of the basic assumptions of this
It seems that most engineering
Figure 3 shows such a problem. The singularity in
this problem is similar to the one discussed by
Whiteman,5 and to the problem shown in Fig. 8. We
will discuss two ways to minimize the figure loss due
to nonsmooth boundary velues.

The simplest way to minimize errors due to
singularities is to distribute the points in the cal-
culation so as to minimize the effect of the singu-
larity.
given by Schultz.
end is shown in Fig. 8.

As an example, consider the first test case
The example is in the x-y plane
The change in boundary con-
ditions at the origin is such that au/an will not
exist at that point. Because the boundary of the
problem is infinite, the problem cannot be run ex-
actly as it is. A reasonable approximetion for this
problem is to truncate the region at y = 15 and im-

pose the boundary condition u = 15. + log(2.). along

12

(_-2!'0) e {0,0) u=0 (-E-vo)
Fig. 8. Schultz's6 first example.
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The only difference between the two inputs is

the distribution of points along the x-axis. Some
representative results are shown in Table II.
Table II
RESULTS FOR THE PROBLEM OF FIGURE 8
First Second
approximation approximstion True

X y to u tou solution
-% B 1.5938 1.6071 1.6090
- 2”8 g 1.7519 1.7645 1.7662

0 % 2.2436 2.2515 2.2530
Fom 3.7967 3.8030 3.8042

Redistributing the points has some disadvantages.

In the first place, the optimsl distribution of points
is difficult, if not impossible, to determine. Even

a good distribution of points is difficult to com-
pute. In the second approximation to the above prob-
lem, the distribution of points is nowhere near op-
Moreover, if the distribution of points is

involved, the input is involved, and there is a

timsl.
greater chance for errors. Also, there is a tenden-
cy to put more points in the calculation, and this
Finally, redistributing the
points merely minimizes the error due to the singu-
lerity.

is time consuming.

The solution may be good in the region of
interest, but the computed unknown boundary values
near the singularity are sometimes nonsense.

A second way to minimize the figure loss due to
This

can also be used for dis-

a singularity is to subtract the singularity.
method, discussed by Fox,7

continuous boundary values given in the input. Es-
sentially, the method reduces to finding the behavior
of the solution at the singularity and then subtract-
ing the singularity.

Consider the truncated version of the problem
shown in Fig. 8. Using the formula in Ref. 7, p. 303,
it follows that in polar coordinates the solution, u,
has the form

[

] af2 ;. (m
u(r,0) = o P T sin 2) . (2)
Thus, du/dn is not well-defined at the origin if
b, # 0. The term corresponding to n = 3 can also
cause trouble, but we will not discuss it. To elim-
inate the singularity corresponding to the term

2
blr
position of solutions with

v(x,y) = by [ﬁﬁg—'—x]é = b . sin(8/2) .

sin(g), we need only use the option for super-

Of course, b, must be found first, but that is easy

because the ;rogram itself can be used to approximate
the solution, u, and near the origin the term
bl ri sin(9/2) dominates ell other terms in the series
expansion.

This problem wss run using the same input as
that used in the first approximetion of the same
problem. from

this input and the relation

Using the approximste solution, uy,

u,(0.,0.06) *sbl(o.os)% sin(g) s

13



we computed an approximate value of bl' Here the
choice of the point(0.,.06) was arbitrary. Using the
approximate value of bl’ we ran the problem again
with the same input, but this time we subtracted the
function v(x,y) = b, r 8in(6/2) from the input data.
We repeated this process until bl converged. For this
problem, bl changed little after the first correction.
Table III gives some representative results for the

approximate solution using the first two guesses for
b

1
Table III
MORE RESULTS FOR THE PROBLEM IN FIGURE 8
Approximste Approximate
u using 1st u using 2nd True
x y bl value bl value solution
T3 5 1.6075 1.6090 1.6090
-3z 1.7647 1.7662 1.7662
o I 2.2519 2.2529 2.2530
ron 5.8033 3.8041 5.8042

Using the same number of points, the results
here for the subtraction method are more accurate
than the results for the method of redistributing
the points. However, the subtraction method did
require three times as much computation time.

The treatment of singularities on regions G hav-
In vhat
follows, we will consider the problem shown in Fig. 9.

The method of redistributing the points works

satisfactorily for this type of problem, but there

ing more then one 0 value is more involved.

are four boundary sections where points must be re-
distributed, instead of two as in the previous case.
Thus, it is twice as expensive to add points to the
calculation at the singularity.

The method of subtracting the singularities is
also more difficult to apply in this case. We will
assume that in some neighborhood of the singularity,
Also, we will

the solution, u,

the boundary is as shown in Fig. 9.

assume that in the subregion, Gl’
is represented by

@ 8
u(r,e) = T i[ai cos(SiO) + B8y sin(SiO)]

in polar coordinates, and that in the subregion, G2,
u is represented by

u(r,Q) = izﬁ r [ai cos(AiO) + bi sin(AiG)] .

4

Fig. 9. Region G having two values of O joining st

8 corner.

Here O < 61 < 62
the continuity across the common boundary, we immedi-
ately find that Ai = 81 for i=1,2, ... ,=,
Because u = O on both of the boundaries where the
Dirichlet condition is given, w; have 8

o=a,1=0.2=...o
Using the continuity of u across the common

. . .a8nd 0 < Al < A2 « « « « Using

1 > 0 and

&
boundary again, we can equate coefficients of r k

at 8 = vy to get

By sin(bky) =8 cos(ka) + by sin(bky) .

Let R = oé/ol' Equating coefficients for the

Jump discontinuity in the normal derivative at
e =Y, wve get

By cos(Bky) = R[-ak sin(sky) + by cos(Sky)] .
Using u= 0 at © = ¢, we get the condition

8, cos(bke) + b sin(bke) =0 .

The three equations written as a system are

8, cos(Bky) + by sin(BkY) - B, sin(&ky) =0 |,
-a, R sin(bky) +b R cos(bky) - Bk cos(bky) =0 ,
and

& cos(bke) + bk sin(ake) = 0 .



Setting the determinant of this system equal to zero,

we have

[1+R tana(sky)]tan(bke) - (1—R)tan(8ky) =0 ,
or

(1R)tan(8,y)

tan( 8k€ ) = 5
1 +R tan (Sky)

Using the formula for two ‘can_l
that

functions, we find

-1
8¢ = &y - tan [R tan(Sky)] R
end, hence,

tan[Sk(Y—e)]

Tan(5,Y) R

The equation determines the sequence 0 < 81 < 82 o .

From a numericel point of view, 81 is usually

Notice that if € = 2y,
then a solution does not exist for this equation un-
less R = 1. Notice also that once 81
been computed, one can compute & and b

the only number of interest.

and 31 have
1 from the

above system of equations. Moreover, a little anal-

ysis will show that

- i s
(e-y) > vy and R > 1 implies that c>8 > ey

™ b1
(e-y) > v end R < 1 implies that >0 >¢

: m g
(€—Y) < vy and R >‘l implies that m > 51 > €

and

>

. ™
- < i -—
(e-y) < y and R < 1 implies that > 81 v

Thus, singularities can occur at points on the bound-
sry where there is no reentrant corner, and singulsr-
ities need not occur at reentrant corners.

Now consider how the subtraction method can be
applied to a specific problem. As in the previous
example, we must first use the routine LAPLDDC to
compute the spproximate behavior of the solution
near the singularity. Using the approximate be-
havior of the solution in Gl and the computed vaiue

and b, .

of 81, we can approximste Bl and, hence, 8 1

Then set

5

1
Bl r sin(SlO) in G, and
v—

“Ys
r ]'[alcos(slo)+blsin(slo)] inG, ,

end run the problem again to get the desired solution.
If the common boundary is not a line segment, then
the subroutines ROWSTOR and REGNSEL must be modified
to take care of the fact that
v v

o, == {4 -0, &=

1 anl 2 an2
on the common boundary.
in Sec. III B.

This modification is given
The modification is probably the
easiest way to run the problem in any case.

This problem

Consider the example in Fig. 10.

(-3,4)

url / (0,00  u=0 (5,0)
6 3/
105 E
::/? j///// u=0
(-3,-3) /(o,-s)

Fig. 10. Region with singularity on common boundery.

was run using the input shown on the next page. It
was run a second time with the same input, except
that KV was 21 for each boundary section, and a third
Fi-
nally, it was run a fourth time with KV = 11, and
using the subtraction method described above,

time using KV = )1 for each boundary section,

Some

representative results are shown in Table IV,
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Table IV
RESULTS FOR THE PROBLEM OF FIGURE 10
Approximate u Approximste u Approximate u Approximete u
. (kv = 11) (kv = 21) (Kv = 41) (kv = 11
X y and subtraction)
0.2 0.2 2.3337 x 107* 2.3%4 x 107 2.3361 x 107+ 2.5365 x 107>
-0.1 0.1 1.4g42 x 107F 1.4967 x 107t 1.4977 x 107% 1.kg8% x 107t
-0.05 0.05 9.4565 x 1072 9.5578 x 1072 9.5735 x 1072 9.5847 x 1072

The suthor does not know of an analytic solution for
this problem. However, using the subtraction method,
the results shown are probably correct to four fig-
ures.
Iv. OUTPUT

Using any of the four progrsms is a two-step
process. The programs compute only the unknown
boundary velues. The call statement for each pro-
gram is the same except for the program name. The

call statement for progrem (i) is

CALL LAPLACE

No parameter; are given in the call statement. Once
the user has set up the input and called the subrou-
tine to compute the unknown boundary values, he is

feced with the question of output. For programs (i)
and (iii) the output presently available is of three
functional values at any given point in G,

gradient values at any given point in G, and equipo-

types:

tential or gradient plots. In many cases the user

would also like to have the computed unknown bound-
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ary values. The msnner in which these boundery

values sre stored is discussed in Sec. XI. For pro-
grams (1ii) and (iv) the output is the same, except
that presently there is no explicit gredient routine.
For all four programs, the call statements for the
output are the same.
A. FN

After the unknown boundary values have been
computed, it is simple to get the velue of the ap-
proximate solution at any point. The real function
PN(V,W) gives the value of the approximste solution
at the point (V,W). For (V,W) not in G, FN gives
the values -O.
B. GRADFN

Only programs (i) end (iii) presently have sn
explicit subroutine GRADFN.
mation to the grsdient of the solution u(X,Y), one
simply calls the subroutine GRADFN(X,Y,FX,FY). When
the computer returns from GRADFN, the varisbles UX
and UY contain au(X,Y)/ax end du(X,Y)/dy, respective-

For program (iii) there is one more detail.

To compute an approxi-

1ly.



At any given time, one can use GRADFN only on the
selected subregion. To select the Kth subregion,

for instance, one merely uses the call statement
CALL REGNSEL(K) ,

or calls the routine FN(X,Y) with (X,Y) some point
in the Kth subregion. Different subregions can be
For (X,Y) not in G,
or, in the case of program (iii), for (X,Y) not in
the selected subregion, GRADFN is not well-defined.

C. Plot Routine

selected as often as desired.

The plot routine is progresmmed to plot equipo-
tential curves and gradient curves on film, using
The

routine can be easily modified to use other systems

the Los Alamos Scientific Laboratory system.
or devices for plotting. The two end points of a
line segment asnd an integer, called K here, are
given as input to the plot routine. The plot rou-
tine plots K equipotential curves or gradient curves
depending on the call. The curves all cross the giv-
en line segment. If K > 1, then there are two curves
at the ends of the segment and K-2 other curves

If K= 1, then one

curve is plotted passing through the first end

crossing it at equal spacings.
point of the line segment. The equipotential and
gradient curves are a series of line segments of
length HH. HH is given as input.
later about the choice of HH.

discuss the input variables for the plot routine.

We will say more

In what follows, we

wWe discuss only the x-y plane because the plot rou-
tine in the z-r plane is exactly the same if one ex-
changes (z,r) for (x,y). A total list of input vari-
ables is as follows.

XMIN is the minimum X to be plotted.

YMIN is the minimum Y to be plotted.

XMAX is the meximum X to be plotted.

YMAX is the maximum Y to be plotted.

X1 is the first X coordinate of the line segment.

Y1l is the first Y coordinate of the line segment.

X2 is the second X coordinate of the line seg-

ment.

Y2 is the second Y coordinate of the line seg-

ment.

K is the number of equipotential or gradientb

curves to be plotted aslong the line segment.

HH is the step length to be used in constructing

the curves.

There are four entry points into the plot rou-

tine: LAPLOT, LAPIOT1, LAPLOG, and LAPLOGl. LAPLOT
end LAPIOT1 are both used to plot equipotential
curves, and LAPLOG and LAPLOGl are used to plot grad-
LAPIOT and LAPLOG advance the f£ilm;
plot all of the boundary inside the rectangle formed
by XMIN, YMIN, XMAX, and YMAX; and plot the desired
LAPIOT1 and LAPIOG1l
plot only the equipotential and gradient curves, and

ient curves.

curves inside the rectangle.

both assume that there has been a previous call to
either LAPIOT or IAPLOG. LAPLOT1 and LAPIOGl add
more curves to previous plots. The input variables
XMIN, YMIN, XMAX, and YMAX given in the call state-
ments for LAPLOT1 end LAPLOGl are used by these sub-
routines to determine the limits of any equipotential
or gradient curves. The rectangle formed by these
four points should be a subset of the rectengle given
in the previous call to LAPIOT or LAPLOG. The call

statement for LAPIOT is
CALL LAPIOT(XMIN,YMIN,XMAX,YMAX,Xl,Yl,xa,Ya,K,HH) .

The call statement for the other three entry points
is the same except for the name.

If K < 0, only the boundary will be plotted.

If there is an error in the input boundary date, and
the unknown boundary values cennot be computed, then
only the boundary will be plotted. The plots in this
case are sometimes useful for finding errors. If
AMIN 2 XMAX or YMIN = YMAX, then no equipotential or
gradient curves will be plotted. If K > 50, only 50
curves will be plotted.

The plot routine will stop plotting an equipo-
tential or gradient curve whenever any of the follow-
ing occur: the curve runs outside the rectangle
formed by XMIN, YMIN, XMAX, and YMAX; it runs into
the part of the boundary S-C; it forms a closed curve;
or it becomes too difficult to plot. The last con-
dition occurs most often near corners in the bound-
Plotting

equipotential or gradient curves is a time-consuming

ary S, or when crossing a common boundary.
process. When computing each line segment of length
HH used to approximate the curve, one must calculate
at least one velue of the potentisl and one gradient
vector. Thus, the step HH should be as long &s is
practical. When one plots equipotential curves, the
plot routine always requires that both ends of each

line segment used to approximate the equipotential

curve actually be on the curve. However, this is not

possible with gradient curves. To follow the gradient
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curves, the plot routine uses s Runge-Kutta method.
The error on any given step is O(Eﬂj). locally the
gradient curves are usually good, but the error over
the length of the curve is cumulative.
V. MISCELLANEOUS PROGRAMMING INSTRUCTIONS

There are a few limitations on the programs that
should be mentioned. When'one has an exterior prob-
lem, the approximate solution tends to break down at
large distances from the boundary (say 108 times the
length of the boundary). However, the most important
source of error seems to occur at the boundary. If
H is the distance between approximation points on a
given boundary section, then both PN and GRADFN start
to bresk down at about 1.5H from the boundary section,
except when the boundary section is linear. The er-
ror varies with the ratio of H to the minimum radius
It is easy to
lose as much as half of the significant figures at
the boundary.

of curvature of the boundary section.

The same type of error causes trouble
whenever two sections of the boundary are close rela-
tive to the distance between approximation points on
either of them. As in the sbove case, this is not
true when the boundary is linear.

The next two restrictions apply only to programs
(11) and (iv). Both are results of the approximations
described in Sec. IX. If the restrictions are vio-
lated, there is a loss of accuracy proportional to
the degree of violation. In the first place, any
boundary section beginning or ending on the z-axis
must intersect the axis at an angle greater than 12°,

See Fig. 11.

™~

z

Fig. 11. Boundary section touching the z-axis.

Here the angle is a, and one should have a 2 120.

The second restriction is difficult to explain ex-
actly. We will discuss only linear boundary sections.
Let Sj be a linear boundery section with end points
(zl,rl) and (za,ra). ir SJ touches the z-axis, then
it must satisfy the first restriction. If it does
not touch the z-axis, then it must be true that
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lza’zl

Wd—_—i— < 10 min(ra,r

1) :

See Sec. III for the definition of KV.
en (zl,rl) and (za,ra), there is a corresponding .
minimum value of KV that will satisfy the second re-
striction.

For any giv- .

Probably we should say something about accuracy
and timing.
ited to sample problems.

The discussion of accuracy will be lim-
Earlier we compared some
numerical results to the explicit solution for a
problem with singularities and a magnetic field prob-
lem with current sources. Now consider the problems
shown in Figs. 5 and 6. These two problems were run
with exactly the input shown. The problem in Fig. 6
was run with program (i), and thet in Fig. 5 was run
with program (iii). Some representative results for

the problem in Fig. 5 are given in Table V.

Table V
RESULTS FOR THE PROBLEM OF FIGURE 5

x Y Computed u . True u
-0.023 -0.023 -0.004090 -0,004087
0.03 0. 0.004766 0.004762
0. 0.0%  2x 1079 0.

0.9 0.9 0.8999 0.8993
-0.5 0.1 -0.4o81 -0.4g976
0.06 0. 0.03908 0.03905

For this problem there is more than one possible
source of error. Using superposition to compute the
approximete solution, as was discussed in Sec. III B,
we get about the same solution in the dielectric me-
terial.

accurate.

However, the solution in air is much more
For the problem given in Fig. 6 the error
is entirely due to the discretization of the boundary

values. Some results for this problem are given in

Table VI.
Table VI
RESUITS FOR THE PROBLEM OF FIGURE 6
Computed True

%y Computed u True u Ju/3x dufax a
0.5 1. -1.,18762 -1.18750 -7.50007 -7.50000 E
0.25  0.25  -0.0039% -0.00391 -0.00002 0.0 *
0,05 0.4 0,00861 0.00865 -0.06303 -0.06500 3
-0.9 0.8 -1.1951% -1,19512 ~2,54809 .2.54800

The times given here are for the CDC 6600, end they
tend to be optimistic for small problems. The time

" required to compute the unknown boundary values is

simple to calculate.



1 NRE
Let Ni = 100 ? KV‘j , end let NT = igi N, . The

with Sje Gi
quantity NRE is the totel number of subregions. For
programs (i) and (ii), NRE = 1, and NT = N,. There
are two main problems in computing the unknown bound-
ary values. One is generating a mastrix called A, and
the other is the solution of the mstrix problem
The solution of the matrix
3 + 0.5NT2 sec. For pro-
grems (1) and (1iii), the time required to generate
the matrix A is sbout 1.3 ¥} N ) sec. Thus, the to-
tal time required to compute the unknown boundary

Az = E for the vector z.

problem requires about 1.1NT

values for the problem in Fig. 6 was about 7 sec.

To compute the value of the approximete potential in
the ith subregion using the routine FN requires 0.013
Ni sec, and to compute the approximate gradient at a
given point in the ith subregion using the routine
GRADFN requires 0.015 Ni sec.
(iv), it takes about a factor of six longer to gen-

For programs (ii) and

erate the matrix A or to compute the epproximate po-
tential. The times given here assume two things.
First, the only N’I‘5 operation for the matrix problem
is written in machine language which cuts the time
Second, the

routine to evaluate the elliptic integrsls is also

required for this operation in half.
written in machine language. The time savings for
this operation is not known.

For a solution u(x,y) of Lsplace's equation in
the x-y plene, it must be true that

ou
£°SVdS‘° K (3)

For an axially symmetric solution u(z,r) in the z-r
plane, it must be true that
du
iorsvds-o . (%)

For problems that have the Dirichlet condition given

somewhere on S, it has been our experience that the

ratios
du
£ 055458 £ or g% ds
———
u
g g lggld s £ o I%%I as

give a good indication of the correctness of the so-
lution. Unless the ratio corresponding to the given

problem is small, .‘LO-“L or 10_5, for instance, there

is usually an error in the input, or a singularity
on the boundary that has not been properly treated.
The above ratios are easy to compute end are dis-
cussed in Sec. XI. When computing the restios, one
need not include the integrals over common bound-
aries, because they are actually zero. For programs
(i) end (i1i), O is constant and can be eliminated
from the computation.
VI. INTEGRAL EQUATIONS

We now reduce the problem of solving for the
unknown boundary values for the general problem to
First we

The problem of solving for

solving three coupled integral equationms.
consider the x-y plane.
the unknown boundary values in a homogeneous medium
is a subproblem of solving for the unknown boundary
values in inhomogeneous media. Therefore, we con-
sider only inhomogeneous media. Moreover, the prob-
lem for the homogeneous medium is discussed by Hayes.5
Assume that G consists of NRE subregions Gl’
G2’ e e ey GNRE with boundaries aGl, aGa, e e ey
aGNRE' Let Cl, 02’ e e ey CNRE be the common
boundaries for each of the subregions. For k = 1,
2, . «. . , NRE, Ck must not be empty. Remember that
Ok is the velue of O for the region Gk' Let
{Ix(t),y(t)]]|te(0,d)} be & paremetric representation
of S with respect to arc length. Here d is the
length of S. To make the notation easier, let ‘ceBG‘j
mean that [x(t),y(t)le BGJ, and, similarly, ‘cec‘:.l
will mean that [x(t),y(t)le Cye As a point of in-
terest to be used later, note that for teaGJ,
[dy(t)/dt,-dx(t)/dt] forms the unit normal vector
exterior to Gj at the point [x(t),y(t)]. For any
point teC =§§? Ck, there is another point that
will be celled x(t), such that [x(t),y(t)] = [x(¥(t)),
y(x(t))]1.
u{t) mepping C onto the integers 1, 2, . . . , NRE
by the relation teC"(t) for all teC.
the function §(t) mepping C onto the integers 1, 2,
.« +« . , NRE by the relation y(t) = wlv(t)]. For
k=1,2, . . ., NRE, define u, to be the restric-
tion of the solution u to the subregion Gk‘

In a similar vein, define the function

Also, define

Because S 1s a finite number of piecewise
smooth curves, there are, at most, a finite number
of points [x(";i),y(gi)] for i=1,2, ..., NC
Let agi
NC be the angle inside G that the curve S makes with
itself at [x(§,),y(5;)]. See Fig. 12.

where S has corners. fori=121,2,...,
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(x(&)), y(€)

Fig. 12. Angle that S makes with itself at [x(gi),

From our definition, we see that O £ a
te(0,d), define

< 2n. For
gi

m ift:/gi fori=1,2, ..., NC ,

a(t) =

@ ift=§ .

gi
set x(s,t) = {{x(s)-x(£) 1% + [y(s)-y(t)12}H,

u(s) = ulx(s),y(s)], end du(s)/dv = dulx(s),y(s)]/av.
Notice that Eq. (1) holds on any subregion, Gk' If
we use the above definitions and assume that u(s) and

du(s)/3v are smooth, Eq. (1) becomes on the boundary

du (s)
e = [ {ufzrh]
Kk

o Fuliglle - o
p. 16. Actu-

ally Eq. (5) is a system of equations, because the
result holds on aGk for k=1, 2, ..., NRE. The

For a proof of this result see Hayes,5

basic assumption of the scheme is that Eq. (5), along
with the matching boundary conditions, can be in-

verted to solve for au/av on SD
3u/3v end u on C. For teC N 3G, the matching bound-

ary conditions are

, uon SN’ and both

w (t) = u‘,(t)[x(t)] ,
an 6
a du, (t) du t[x(‘c)] ©
O, —— -0
k 3V p(t) v )

Again, Eq. (6) is really a system of equations, be-
cause the conditions must be true on each of the NRE

common boundaries.

Define E(t) for te(0,d), by the relation

[ [ 2(s) & 1inlr(s,t))ds - a(t)£(t
s£ f gGk 3y nlx(s s - al (t)
- g(s) 1nlr(s,t)]as if teSy N 3G,
N aG
N k
E(t) =4
I £(s) —53 In(r(s,t)]ds- g(s) 1nlr(s,t)])ds
Sp N 3Gy ° ' N 3G,
L if te(SN uc)n 3G, .

Here £(s) and g(s) are the known boundary values
given in the statement of the general problem.

Hence, E(t) is a known function and can be computed.
For ease of notation for k= 1, 2, . . . , NRE, de-
fine s; = (sN uc)n 3G, end sg = (sD uc)n 36, -
Assuming that Egqs. (5) and (6) can be inverted to
solve for the unknown boundary values, one cen formu-
late the problem as the following series of coupled
equations.

) (t) - [ w(s) 3 1nlr(s,t)las
S.

N
3
+ f u§SS) In(r(s,t)]ds = E(t)
Sp if test

N

- Ik uk(s) %3 In[r(s,t)lds
S.

N
(s)
+J‘ au:vs In(r(s,t)]ds = E(t)
Sp Lf tesy N 3G,
for k=1, 2, ..., NRE, (7
and
() (8D = ey [X(E)] if teC
dqu .1 (t) du, ,, A[x(t)]
t t
we) T Cuts) oo e -

Equation (7) will be reduced to a system of
three equations with one unknown function. First,
more definitions are necessary. Define

Cl = [seClw(s) < y(s)] ,



c-=¢C-¢C N k = 1 is equivalent to
- &5 1nlx(s,t)] if tedG, end ses) S T(s) Ky(s,4)ds + S 7(s) Kp(s,4)as
Ky(s,t) = sy U c® sp U ct
for some k , (10)
0 othervise
+f T[x(s)]KN(s,t)ds + [ Tlx(s) Ky (s,t)ds = E(t)
1 2
[ In(r(s,t] if te3G, and se(SD U cl) ¢ ¢
n 3G, for some k , However, Eqs. (8), (9), and (10) are true independent
of k. Thus, the system (7), of 2(NRE + 1)
KD(S’t) = 1 [ u(s)/ V(s )]1n[r(s,t)] ir teBG equations is equivalent to the system:
2
end seC” N 3G, for some k , a{t)T(t) + I T(s)KN(s t)as + [ T(S)KD(s,t)ds
L 0 otherwise Sy U C Sp uct
and + [ 1ix(s) Jy(s,t)das + [ 7lx(s) K (s,t)ds
2
uk(s) if se(SN U ca) n 3G, ct c
1(s) = - uc?
du, (s) E(t) if tesy Uc™

1
——a—v—- if SG(SD ucg ) n BGk

a(t)rlx(t)] + [ T(s)KN(s,t)ds +{ T(s)KD(s,t)ds

Thus, 7(s) is defined on (0,d), and both Ky end K sy U c2 sy U ct

are defined on (0,d) x (O, d) Using the mstching
boundery conditions, if sec ﬂ 3G, , then uk(s)
Tlx(s)], and if tedG, and sec® N 3, , then

+ flT[x(s)]KN(s,t)ds + J‘aw[x(s)]KD(s,t)ds
c c

du, (8) = E(t) 1if tect s
T talx(e,t)] = Tix(s)Tig(s,8). and
Using these definitions consider the first equation f (s )KN(S t)ds + I (s )KD(S t)ds + I T[X(S)]KN(S t)as
in Eqs. (7) with k = 1. For te(SN U ca) N 3G, this Sy uc? Sp uct
equation is equivalent to
+ fe'r[x(s)]KD(s,t)ds: E(t) if tes,
a(t)r(t) + [ T(s) Ky(s,t)as + [ 7(s) Jole,t)as ¢
S U C S U C @) Now set
+ flTIX(S)]KN(s,t)dS + faT[X(S)]KD(S:t)dS = E(t) . Ky(s,t) for sesy U c?
¢ ¢ K(s,t) = 1
KD(s,t) for sesy UC ,
For tect N 3G,, the first equation in Egs. (7) with
k = 1 is equivalent to and
KD(s,t) for sec* R
‘a(t)Tix(e)] +£ ;(:) Ky(s,t)ds + [ L(Z) Ky(s,t)ds K(s,t) = KN(s,t) for sec?
(9)
+ [ ] ,t)ds + [x(s) K.(s,t)ds = E(t) . The above system then becomes
IlT x(s) Ky (s,t)ds faT x(s) 1K (s,t)ds

C

For teS n acl, the second equetion in Egs. (7) with
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a(t)T(t) + £T(S)K(s,t)ds + JT[X(S)]R’(S,t)ds

= E(t) for tesy U c2 s

a(t)rix(t)] + £’r(s)K(s,t)ds + {w[x(s)]it(s,t)ds (11)

= E(t) for tect s

and

£T(s)x(s,t)ds + gT[x(s)]K(s,t)ds = E(t) for tesy -
Note that at every point where two boundary sections
join, there is a possibility thet T, K, and K are
not well-defined. This will be covered later.

Now we will discuss the axially syumetric inte-
gral equation. Suppose we want to find an axially
symmetric solution, u(z,r,p), to Laplace's equation
on en axially symmetric region, G', in (z,r,®)

space. It is true that

w(z,,9) = rf£[<1)a““’°’°’ w(C, 0,003 Jas
(12)

See Courant,8
G', and

p. 257. Here S' is the boundary of

q = {(Z‘C)2+(r‘p)2+2rp[l—cos(o-cp)] }i

is the distance from the point (z,r,p) to the point
(C:p:9)°

can drop the dependence on ¢ and assume that @ = O.

Because u(z,r,p) is exially symmetric, we

Also, using the half-angle formula for the sine
function, we have

d= [(z—g)2+(r—p)2+4rp sina(g)]#

Let G be the restriction of G' to the upper half-
plene and let S be the restriction of S' to the

upper half-plane. Equation (12) cen then be written

in the form

wmh%;“WNQrﬁ -%gmm
2n 2n
[£ %(%)pd@]dﬂx% 2u(C,e) <£ d)pas
2n
-%gugm%{ﬂ@m}ﬂ
o

- (13)
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Consider now only the integral j de/d.
symmetry of the integrand, we h@ve

Using the

frao T )

d '3
° 7 2 [a0)Putr-p)Pebrp s10%(D) ]

- } 0
o 2 2 2,0.18
[(2-0)%(r-p)24brp s10%(D) ]
W 2 s
° [(Z-C)2+(r-p)2+4rp sina(o)]l\
Set
hrg

*— end d_ = [(z- 2 (x- 2]é.
B Tt T (2-¢)%*(r-0)

Obviously B 2 0. Assuming that do ¥ o,

n/2 0

° [(z-C)2+(r—p)2+krp sina(o)jf

, /2 .do
%0 [1+5 sina(e)]

n/2 o

?1: ° [1+s-s cosa(o)]é

1 /2 40

do(l+8)t ° [l - igﬁ sine(o)]k

= -l;__—f K (igﬁ)

d°(1+5)
Here K is the complete elliptic integral of the first
kind. See Ref. 9, p. 589-606. Set m = B/1+B. We
then have O € m < 1, and, thus, the following rela-
tion.

2n do _ |
- _FK
£ d 4 (1+B) B
[(2-0)%+(p-r)+irp]

Substituting this formula in Eq. (13), we get



Iz

u(¢,p) 2(m)p
uz,r) = 2" £ [(z-¢) +(p—r)2+hrp]b

2X(m)p
(2-0)%#(p-r)Psbrght

- (¢35 s . (1)

Equation (lh) is the axislly symmetric version of
Eq. (1). If we use the kernel 2K(m)p/[(z‘C)2+(p’r)2
+hro]é’instead of the kernel log(1l/r), then the rest
of the derivation for the integral equations is the
same as for the x-y plane. The system of Eqs. (11)
also holds for the z-r plane except that the kernel
is different.
VII. DISCRETIZATION OF THE FROBLEM

In this section we derive a discrete approxi-
mation to the system of Eq. (11). The derivetion
holds for both the z-r and x-y planes. T(s), f(s),
and g(s) are spproximated piecewise by polynomials
of degree two. We assume that these functions have
bounded third derivetives on S, except possibly at
a finite number of points. We assume also that the
boundary S is partitioned into sections SJ for j = 1,
2, . . . , NDCT such that: each section Sj is a
smooth curve, i.e., Sj has no corners and is con-
nected; each section S. is contained entirely in
either §,, Sy, or C; and f(s), g(s), or 7(s), which-
ever is defined on SJ, has bounded third derivatives
interior to Sj. Remember that NDCT is the total num-
ber of boundary sections. Usually SJ should be as
large as possible while still satisfying the three
given conditions.

At the end points of each section SJ for j =
2, . . . , NDCT, there is & possibility that T(s) is
not well-defined because there is a possible change
in the type of boundary condition. Also, if there is
a corner, the Neumann derivative need not be contin-
uous around the corner. To correct the difficulty,
ve define an upper and lower limit at each se(0,d)
thet is an end point of a boundary section. Let

T(s+) = lim 7(s+58) s
80
50
and
T(s—) =

lim T(s+5) .
50
&<0

Similar definitions could be made for K(s,t) and

K(s,t), but, because these functions are always in-
tegrated, there is no problem with undefined points.
On each section Sj’ 7(s) is approximated by

using KV, points for j =1, 2, . . . , NDCT. Be-

cause ofjthe type of espproximestion used, each KV|j
must be odd and greater than one. Remember that

NT = NEg KVJ, and IS.j is the length of S. Define
hj= Is/(KVJ—l) for j=1,2, . . . , NDCT. We
next define arguments t fork=1,2, .. . , NT

for the function 7(s). T(s) is spproximated at these
points. First let j(k) be the integer-valued func-
tion defined for k= 1, 2, . . . , NT such that

J(k)-1 J(x)
i Ky <ks BV,
Set

-
[a(k) ] 3(x)
13 184~ £ k= kK,
J(k)-1 ] J(k)-1

L N FPE O ifk=1+ % KV, ,
J(k)-1 J(k)-1 ]
& IS+ |k-l- % Kv, hj(k) otherwise.

-

Looking at the parametric representation for S, we
see that for each section S,, there are two values
of tk corresponding to its end points. The first
point of Sj corresponds to en upper 1limit, and the
last point corresponds to a lower limit. There sre
KV|j - 2 other points [x(tk),y(tk)], equally spaced
at a distance hj along the boun@ary section. We
assume that the ordering of the sections Sj corre-
sponds to the ordering in the parametric representa-
tion.

Define T, = T(tk) for k=1,2, . . . , NT.
The function 7(s) is approximated on (0,d) by a
piecewise polynomial of degree two, called TA(S).
On the interval (tl,t5), TA(s) is the polynomial of
degree two having TA(tl) =T TA(ta) = 1,, and
TA(t5) = 13- On (t5,t5), TA(S) is the polynomisl of
degree two having TA(t5) = T3 TA(th) = T,, end
TA(tS) = g The approximation continues in this

manner until the point t is reached. ¢t corre-

Kvy KV

sponds to the end of the section Sl' Hence, Sl is

broken up into (KV -l)/2 subsections of equal lengtﬁ
and on each of the subsections T ( ) is a polynomial

of degree two. Because t

KV corresponds té the end
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of Sy» T(s) is possibly discontinuous at this point.
Therefore the upper limit T

KVi+l
interval. That is, for se(t

KV +1, tKV1+5)’ Tp(8) 1s
the polynomial of degree two with TA(tKV1+l) = TKVI+1,
vy e? #04 TA(txv1+5) ® TKVy+3" This
type of approximation is continued throughout (0,d).
Using the function j(k) giQen above, we can define

Ta(s) by

is used on the next

TA(txvl+2)

.
[Tk+2( S (8841 )BTy (8-t ) (5t )

el 8t (st 0) /2h§(k)

Ta(s) ’j 3(x)-1
if se(t,,t, ) end [k— 5 KVi] is odd,
\Tk if s = tk for some k= 1, 2, ..., NT.

Notice that

NT
TA(S) = k;r-l ok(s)Tk > (15)

where each Ok(s) is a pilecewise polynomial of degree
two, which is nonzero in, at most, an interval of

length hhj(k) centered at t, . An exact definition

of ©
r J(x)-1
(8-t )(s-ty, ) 12 Jk - &, KV,

k
is odd and less than va(k)

: J(k)-1
(8-ty ()(e-ty o) 1F k- 2 KV,

is odd and greater than one

is as follows.

and se(tk,tk+2),

9, (s) = 2hé <
3(k)
and se(tk_a,tk),

3(k)-1
2(s-t, ) )(e-t, ) 1Pk -, KV,

is even, and se(tk_l,tk+l),

Y otherwise .

To explain some of the above notation, consider
the following example. Suppose S is the unit circle
with center at the origin. Let [x(t),y(t)] = [cos(t),
sin(t)], te(0,2m) be the parametric representation

for the boundary S. Assume that

Sl = [[x(t):}'(t)]lte(oxﬂ/a)]: and
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s, = {lx(t),y(t)te(nf2,2m)} .

Obviously NDCT = 2, d = 2w, LS, =

1 n/2, end Ls, = 3n/2.

Assume that kv, = 3 end Kv, = 5. It follows that
NT = 8, n = n/4%, and h, = 3n/8. The locations of
the arguments t,, k=1,2, . .., 8 are shown in
Fig. 13.

If the Dirichlet (or Neumann) boundary condition
vere given on all of S and if £(s), (or g(s)), were
continuous, then it would be true that TL= Tg and
75 =T However, if the Dirichlet condition were
given on one section and the Neumann condition on
the other, then the pairs would not, in general, be
equal.

t7
Fig. 13. Distribution of arguments tk.

In what follows, the term O(hj) denotes both &
scalar and a vector quantity. In the scalar notation,
it has its usual meaning; in the vector notation, it
denotes a vector with each component bounded by =a
constent times hs. If 7(s) is assumed to have a
bounded third derivative, then

7(s) = 7,(8) + o(n’) for se(0,d) (16)
vhere h = max(hl,ha,...,hNDCT).

Next, we describe a method for using the coupled
Bgs. (11) to approximate TA(S). Substituting the

right-hand side of Eq. (16) in Eq. (11), we get

;(t)[TA(t)+o(h5)] + g[TA(s)»fo(ﬁ)]K(s’t)ds



W

+ {{Tk[x(s)]+0(h5)}RKs,t)ds = E(t) 1if tesy U c?

a(t){r, [x(t) 1+o(n”)} + i‘[TA(s)+o(h3)];c(s,t)ds

+ g{'rA[x(s)]i-O(h})}R'(s,t)ds - B(t) if ted
and

g[TA(s)i-O(h})]K(s,t)ds + g{'rA[x(s)]ﬁ»O(hj)}'K(s,t)ds

= B(t) 1if tesy, .

It is emsy to show that both glx(s,t)lds and
{lk(s,t)lds are bounded functfons of t with the
ound dependent only on S. Hence, it follows that

a(t)Ty(t) + [7)(£)K(s,t)ds + [Tal(s) (s, t)as
S

= E(t) + o(h5) if teSy U 02 s

a(t)Ty [x(£)] + fr,(s)K(s,t)ds + [r,[x(s)R(s,t)ds
c

(17)
= B(t) + o(h5) if teCl s
and
éﬁA(S)K(s,t)ds + f&A[x(s)]R(s,t)ds = E(t)+o(h5)
: ¢
if tes)

Using the representation formula for TA(S) given in
Eq. (15), we get

NT ~
a(t)TA(t)+ iilTk{ gbk(s)x(s,t)ds+£bk[x(s)]K(s,t)ds}

= BE(t) + O(hs) 1f teSy uc? ,

NT
AT DI E 7 {o,(s)x(s ess 5, [x(s) (s, )as}

= E(t) + O(b7)  if tec- (18)
and
NT
kfiTk{ gbk(s)x(s,t)ds + gbk[x(s)]ﬂxs,t)ds}
= E(t) + o(h5) if tes, .

Let Il be the set of indices k such that
thSN U 02; 12, such that tkecl; and 15, such that
thSD. Thus, I, U i, U I5 is the set of indices
k=1,2, .. ., Nr. To simplify the problem of
epproximating TA(S), Eq. (18) will be required to
hold only for NT values of the varieble t. The
choice of the NT points is arbitrary. Except for
special cases to be discussed below, the points t
for k=1, 2, . . . , NT will be used. Define
E, = E(t,), E= (El,Ee,...,ENT)T, and o = a(t;).
Given tiec, define i' to be that integer such that
b, = x(ti). That such a correspondence does exist
is guaranteed by our restrictions on the input.
Using the above definitions, we get the following

NT linear equations with constant coefficients.

NT
ar+ i;lTk{iok(s)K(s,ti)ds+ gok[x(s)Tk(s,ti)ds}

3
) if feI ,

=E1+O(h 1

NT
a, T+ i;lTk{gek(s)K(s,ti)ds+ gek[x(s)]RKs,ti)ds}

(19)
=B, + o(h5) if iel, ,
and
NT .
kfl Tk{gbk(s)x(s,ti)ds + ibk[X(S)]RKS’ti)ds}
= E; + o(h5) if ieI5 .

For i, k= 1,2, . . . , NT set
-
a, + £9k(s)K(s,ti)ds + g@k[x(s)IE(s,ti)ds

if (ieIl end i = k) or (1612 and i' = k),

8k =9

i@k(s)x(s,ti)ds + gek[x(s)TK(s,ti)ds

(

otherwise.

Now set A = (aik) and 1° = (71,72,...,T T, Using

¥o)
these definitions, we can write the system of Egs.

(19) in the form

M = E +0o(h%) . (20)
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All of the coefficients of A and E can be computed
numerically to any desired accuracy from a knowledge
of S, £(s), and g(s).

The matrix A does not, in general, have an in-
We will now dicuss this problem and its
remedies. The remedies described below, like the
choice of approximation pdints in Eq. (19), are
arbitrary.

verse.

Considering each subregion separately,
at the end points of each of the boundery sections
Sj for j=1,2, ..

are joined.

. , NDCT, two ends of curves
The curves may, or msy not, join at a
corner, and mey, or mey not, have the same boundary
conditions. These conditions determine how the ma-
trix A is to be modified so that it will have an
inverse. For each joined pair of end points of
boundary sections, we must determine which of the
following possibilities is true.

1. One curve is in S, and the other is in S_.

N D

2. Both curves are in SD’ and there is a cor-
ner where the curves Jjoin.

5. Both curves are in S and there is no cor-

2
ner where the curves join or goth curves are in SN'
4. one curve is in Sp» and the other is in Ce.
5. One curve is in SD’ and the other is in Cl.
6. One curve is in Sy» @nd the other is in ct.
7. One curve is in Sy? and the other is in Ca.
8. Both curves are in 02.

9. Both curves are in Cl, and there is a cor-
ner where the curves join.

10. Both curves are in Cl, end there is no cor-
ner where the curves join.

11. One curve is in Cl, and the other is in 02.

For simplicity, assume that curve Si Joins Sk

and

and that the corresponding values of t are til
is the start of S,.

ey - 11 1
In what follows we will assume in each subregion,

that u(s) is continuous along S, and that au/av is

Moreover, assume that t

continuous along S except at corners.

For cese 1, the matrix A need not be modified.
However we can replace an approximete equation by an
exact equation. To see this, assume that the Dirich-
let boundary is given on Si. Obviously,
k= f(tyy)-
then replace the k1 equation in Egs. (19) by

T(tkl) = f(til), and, thus, T We can

Tl ™ £(t

k il) :

In case 2 it is relatively easy to see that the
k1l equation in Egs. (19) is the same as the il equa-
tion. - Hence, A must certainly be singular. To cor-
rect this problem we need only replace the two equa-
tions by the third equation in Egs. (18) evaluated
at the two points t = t,, + hi/2 end t = t, - hk/2.
The author has tried replacing only one of the two
eQuations, but the results were not so satisfactory
as when both equations were replaced.
which implies that
then the il snd

If both

. For case 3, T(til)u T(tkl)

=T If both curves are in S

T11 % T D’
k1l equations in Eqs. (19) are the same.
curves have the Neumann condition given, then the

equations are the same except that the coefficients

11 84 Ty

of the equations can be replaced by

for T are interchanged. In eny case, one

Ty T (o] .

Tkl ”
If both curves have the Neumann condition given, then
the change does not have to be made.

Cases 4 and 5 are related. ® Assume that S, €S

i™D
and S,€C. For case 4, replace the il equation in
Egs. (19) by the third equation in Egs. (18) evalu-

ated at t = t,. + hi/2, and replace the k1l equation

i1
by the first equation in Egs. (18) evaluated at
t = tkl - hk/2. For case 5 we simply replace the k1l

equation by

Trae = f(tyy) -
Cases 6 and 7 are trested almost the same. As-
sume that SiesN and Skec. For case 6, we simply re-

place the il equation in Egs. (19) by

-T,,=0 .

Ti1 T Tka

For case T, we simply replace the il equation in Egs.
(19) vy

Ti1 T Tk1t

Cases 8, 9, and 10 are related. Case 10 could
be handled by the same method as case 9, but the
method of treatment in case 10 is more accurate.
For cases 8 and 10, we replace either the il or kil
equation in Egs. (19) by

o



k1 " i1 7 0 .
For case 9, we simply replace the il and k1l equations
of Egs. (19) by the second part of Egs. (18) evalu-
ated at t = t,, + h /2 end t =t - hk/2.

Case 11 can occur only when at least three sub-

regions meet at one point. Assume that Siecl and

Skece. Then change the k1l equation to

Til' - tkl = 0 .

If the stated problem happens to be interior
and to have no Dirichlet boundary conditions, then
the potential u is unique only up to an additive con-
stant. To fix this, the restriction

£ Ty(s)ds = 0

is imposed for programs (i) and (iii), and the re-
striction

£ TA(s)rds =0

is imposed for programs (ii) and (iv). It has been
found satisfactory to simply replace the equation
o in Eags. (19) by this restriction.

For the Neumsnn problem on an infinite region G, no

corresponding to t

restrictions on TA(s) are necessary because of the
assumption that u(v,w) - 0 as (v,w) - = .
VIII. APPROXIMATION OF A AND E IN THE x-y PLANE

The approximations to be discussed here can also
be used to evaluate Eq. (1) once the unknown boundery
values have been computed. For both the known and un-

known boundary values, we approximste

(s) = u(s) er‘()()
u(s) = u(s 'S Z u tk Ok 5 N
and k=1

NT du(t,)
a;asg ~ [aggsz]A - k 6. (s)

by
k=1 OV Kk

2

where Ok(s) is as defined above. Replacing the func-
tions u and 3u/adv by their approximstions in Egs. (1)
and (5) shows that one need only be sble to approxi-

mste
1
g Gk(s)ln(;)ds ,
snd (21)

gek(s) g; m(t)as .

Here r = r(s,x,y) = {[x(s)—x]2 + [y(s)-y]elk. To
evaluate the approximete solution, the pair (x,y)
must be allowed to range over all G and S. When we
evaluate A and E, the pair (x,y) is restricted to
the values [x(tk),y(tk)] for k=1,2, . . . , NT
and, possibly, the intermediate values at the end
points of the boundary sections.

Three different methods are used to epproximete
the integrals in Eq. (21). To explain the three
methods, we need more notation. Let T, = [slok(s)¥0].
Define the function h(s) for se(0,d) by

k-1 k
h(s) = h, for 131 IS, <s = 121 Is, .

Given a fixed Ok(s) and a point (x,y), the three
methods correspond approximstely to the three cases:
o T(sxy) = T(s)

(b) For some seTy r(s,x,y) = O,

(¢) The complement of (a) and (b).
For case (a), the functions 3/3dv ln[r(s,x,y)] and
In[r(s,x,y)] are smooth when thought of as functions
of the variable s. The integrals in Eq. (21) cen be

(a) For every seT

approximated accurately by a Newton-Cotes formula.

For exsmple, assume that tk is the start of the bound-
ary section Sj(k). Looking at the first integral

in Eq. (21), we have

ka(s)ln[;zgjéjyy]ds

1 tk+2 1
= — { (S_tk+1)(S_tk+2)ln[;rgj;7;7]ds

Bhy(x) "k

2h

- =

(k) ©

J(k)
[s—hj(k)][s—ahj(k)]ln ?T§1%;j§7§7]ds'

For 1=0, 1,2, 3,4, let § = —1n{r[ihj(k)/2+tk,x,y]}.
Using Eq. 3.5.13 of Ref. 6, we get

L)) N
22y b (o000 L2300 Mol mrams o

h,
~ —ﬁéﬁ [7(1)8,+32(8) 5, +12(0) g5+ 32(-5)85+7(0) 3,)

n k
- —%‘—)-5 (T8 126 -hey) . (22)

By combining the terms, we need compute only one

logarithm. The second integral in Eq. (21) can be
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treated in exactly the same way. When Ok(s) is more
involved, we have only to sum two integrals similar
to the one given above. The method discussed for
case (a) can be replaced by that used for case (c).
However, the method used for case (a) is faster.

For cases (b) and (c), the spproximetion is more
difficult. Looking at the definition of Ok(s), one
cen easily see that to compute the integrals in Eq.
(21) it is sufficient to be able to compute

tk+l i 1
N(k,i)’ { (S-tk) 1 m]ds
k
and (23)
t
k+1
i 1
D(k,1) = { (s-ty) %3 ln[r 8,X,y
k

fork=1,2, .. . , N[-1 and i = O, 1, 2. Thus,
we will discuss only the approximetion of the inte-
grals in Eq. (23). As a point of interest, note that
D(k,0) can always be computed explicitly. However,
this fact will not be used.

Using the definition of 3/3v and r(s,x,y), it
follows that

tk+l N gsr(s:x:Y)
D(k,1) = { (%) Sexy
k

k+% . i{[X(S)-x]—XL—l - I¥(s )-y]——i—l}
= 8~
lk ’ r (S:X:Y)

In what immediately follows, we restrict the dis-
For (x,y) fixed and se(tk,t
the functions {[x(s)-xly'(s) - [y(s)-ylx'(s)]} end
ra(s,x,y) will be approximated by polynomials of de-

cussion to case (c). k+l)’

gree two. Set

p(s—tk) = asa + bgs + ¢~ ra(s:x:Y) >
and
a(s-t, ) = as® + Bs + y = {[x(s)-x]y'(s)

- Iy(s)-ylx'(s)} ,  (24)

and choose a, b, ¢, a, B, and y such that the above
approximations are true at s = tk’ tk+l and
L) tk)/a. Define DA(k,i) and NA(k,i) as the ap-

proximations to the integrals D(k,i) and N(k,i) re-

28

sulting from the use of the polynomials p(s) and q(s).

Then we have

Yl i
N(k,1) % N,(k,1) = - { (s-t,) n[p(s-t,)]ds
k
J
= - (k) s Inlp(s)las
[}
and (25)
. tk+l N q(s—tk)
D(k,1) » DA(k’i)x’[k (s-t)" Freme,y %
BIR) 1o
= d .
[ e

Both NA(k,i) and DA(k,i) can be computed explicitly
for any given polynomials p(s) and q(s) of degree
two. However, round-off can be a problem whenever
lahJ(k)/cl gets small.

For case (b), r(s,x,y) = O for some se(tk’tk+l)
If we are generating the matrix A and the vector E,
and r(s,x,y) = O for some se(tk;tk+l), then either
r(tk,x,y) =0, r(tk+l,x,y) = 0, or r[(tk+l k)/2 x,¥]
= 0. If we compute values of the solution, and
r(s,x,y) grows small or is zero for some se(tk’tk+l)’
then we can use the values of u and au/an computed
at the closest point on the boundary to give an ap-
proximetion to the solution. Hence, we can assume
that r(s,x,y) is only zero when generating A and E.
Here we will assume that r(tk,x,y) = 0. The other
cases are treated similarly.

The integral N(k,i) is approximated in somewhat
the same way as in case (c).
is that p(s) is chosen differently. Here p(s) = 82
(as+b), with a and b chosen so that p(s—t ) = re(s,x,y)
at 8 = t 1
p(s—tk) = r (s x,y) and

The only difference

and (tk+tk+l)/2. Hence, we also get

2
4 p(s-t,) , &x(s,x,y) =t .
is k 35 at s tk

Using the approximation

tk+l

N(k,1) SN, (k1) = & { (s-tk)i 1nlp(s-t, ) ]ds

1n(p(s)las ,

h

J(k)
-] sl

o]

it follows that NA(k,i) can be integrated explicitly.



Hovever, there can be problems due to round-off if
( /bl is smell.
For case (b) the integrel D(k,i) is treated as

in case (a). However, the integrand

ln[r(s%x,y)] i

is not well-defined at s =

{[x(s)-x]y'(s)-ly(s)-y]x'(s)}

2
r(s,x%,y)

tk becruse both the numer-
stor and denominator are zero. Using L'Hospital's

rule, it is easy to shovw that

in 5 oy ] = R (e x () v (s x ()]
k

Now define a polynomial q(s) = asa + 88 = Y such thst

3(0) = Ay (5 (6 ) (8)y" (8 )]
and
t, .+t
q(s—t ) = 35 1o ;ng;:yy for s = b, E-E—Eﬁill

Then, approximete

Yol .
D(k,1) R’DA(k,i) = Jc‘ (s—tk) q(s-tk)ds
k
)
= f s'q(s)ds .
[}

If the boundary is & line segment or a circular

arc for se(t l), and r(s,x,y) = O for some

,t
se(tk,tk+l),kthz; 3/3v 1nl[1/r(s,x,y)] is constent
and the approximstion is exact.
IX. APFROXIMATION OF A AND E IN THE z-r PLANE

The approximations discussed here are more in-
volved then those in the previous section. The gosl
is to be able to approximate the integrals of Eq. (26),
given below, to within & relative error of about 107,
This is absolutely the best error estimste that one
can expect for any problem using programs (ii) and
(iv).

applicable to at least one other partial differential

The method of approximstion discussed here is

equation and probably more.

The approximstions here, just as in the x-y
plane, can also be used to evaluate Eq. (14) as well
Define u,(s ) and du (s)/av
Again, it is obvious thet one

as to compute A and E.
VIII.
need only be able to evaluate

Just as in Sec.

2K{m)ds
"% () Pe(por P |

(26)

and

zc(g)ds
% & [(2-0)%(pr)Prirp

4r
Here m = o .

2 2
(2-0)“+(r-p)“#irp
The two integrals in Eq. (26) are evsluated by

using Gaussian quadrsture schemes. However, the nua-
ber of points in the scheme and the type of Gaussian
quedrature scheme vary. The number of points used
in the Gaussisn quadrsture scheme for sny given case
As in the x-y

plsne, the integrals of Eq. (26) can be reduced to

was derived from a numerical study.

integrals of the form

tk+l
2K[m(s)]ds
N(k,i) = -t ) P)
) i(s o) {ta-c(e) 124 1x-n(s) Potro(s) J2
(27)
2K[m(4)]ds

i) = s-t
o) { Gt {t2(e) Ptr-p(s) Prtra(s)
for 1= 0, 1, 2, and k =

1,2, ... ,N -1,

are four different types of Gaussian quadrature

There

schemes used to approximate the integrsls of Egs. (27).
They correspond to the four cases:
(=) [z—g(s)]2 + [r—p(s)]2 4 0 for all se(tk,tk+1)

‘andr {0,
(b) [z—g(s)]2 + [r—p(s)]2 = 0 for some se(tk’tk+1)
and r f O,
(c) [z—g(s)]2 + [r—p(s)]2 4 0 for all Se(tk’tk+l)
and r = O,
(d) [z—g(s)]2 + [r—p(s)]2 = 0 for some Se(tk’tk+l)

and r = O.
Before describing the schemes, we will exemine
the integrand for D more closely. Let d§=(z—c)2+(p-r)2

Then

K(n) _ _ K(m)abp
[d +krp]§ ré .

Using the derivative formula given in Ref. 10, p. 521,

2K(m)
[(Z-C)2+(r-p)2+‘+rn]

we get
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-imb 0_5/ 2x( m)g%

%f g;[x(m)mk?} - lT{%m’}p’i’x(m)g-{%
\ s[EEKe)e o 29)

—K(m)]g?)-}

x(m)g%-mﬂpﬂ‘lgg+[%$l

(4rpm)
am K d
m[ﬂ_l - o K2 6]

Here E(m) is the elliptic integral of the second
kind, end m' = 1 - m. Now if t is the integration

variable used on the curve S, then
end

dp(t
am(t) {[d wrp(t)]h—?i—)-r l+p(*c)r

[damp(t)r]
: ad?
[dihr ég%El - 4p(t)r 332
[damp(t)r 2

_ (aBurén) gotere{[c0) = Ji)- Lo+ 100 })
[rip(e)r [

= ‘C(t) >

d+h§ﬁﬁi&

Hence,
kY [d2+l“ ]i— mn' 3V p v
- ¥t Egm)@i*‘*w’e 2 _ k() 20
™| (uprall® P W
3
L X, (a2ebrp)*/%5(a)
p(d§+‘*rp)§ krpal
[_dghr&-Bpr[(c-z)ﬁ-(p‘r)é]1
(dﬁ#trp)a ]
LKl B (., SS_).LQE!)L
p(di“‘rp)k p(d +“rp)n ]}
-r
(damp) (x(u)c-mm){aep[“—l"—("—"]}) (28)

Thus, the integrand for 3Kk,i) has a logarithmic
singularity end a singularity similar to D(k,i) in
The integrand for ¥ has only a log-
arithmic singularity. Now we will discuss the

Gaussien guadrature scheme corresponding to case (a).

the x-y plane.

Let Pl(s), Pa(s), P5(s), and Pu(s) be second-degree
polynomials, and let PS(S) be a third-degree poly-
nomial such that

t, L+t
k+l 'k
1. ~P1(s_tk) = p(s8) for s = Yo = Y 0
t, L+t
2 k+l 'k
2. Pa(s—tk) = do(s) for 8 = t,, 7 tra ’
3. Py(s-ty) = [¢(8)-z1p(8)-[p(s)-r1¢(s)
t, L+t
k+1l "k
for s = tk’ 5 ) tk+1 »
t L+t
H k+l 'k
4, Ph(s'tk) = ((8) for s = teo R el 0
and
t, L+t
2 k+l 'k
5. Ps(s—tk) = d (s) for s = tk; —%—» ty, and
a a 4(s) TN
rey Ps(s-tk) =3 for 8 = —5—

Define EM(s—tk) = hrPl(s—tk)/[hrPl(s—tk)+P5(s—tk)].
Let Wy, Wy, + + - , Wy, be the weights, end ?i, ?é,

. ?1“ be the abscissas, for an IM point Gaus-
sien quadrature scheme with weight function 1.

That is,
1 M
j‘f(t)dt ~ % wa(ﬂ)
o =1
11
See Stroud and Secrest.
L=1,2, ..., IM
variables, t = (s_tk)/hj(k)’ we appropriate the in-
tegral

Set SL =T h for

£ 3(k)

Now, using the ‘change of

1
LERTE CHRy SN

afaf o, [} byt

{gﬁ[thj(k)+tk]+hrp[thj(k)+tk]}}

by
N(k,1) ~ 500, e [(s R XC )]

zc[m(st)l
[PS(SL)+urP1(SL)]é




and the integral

B(k,i) = } th 1olth,, t. 1 &
A= [P0 T P[00 &
GO M SLTeS| a

{e [“‘a(k)“‘k]“r"[tha(k)“k]?

by

B(k,i) = hj(k) ) wL(sL)i-GK[EM(SL)1-E[EM(SL)]}Pu

(SL)_E[EM(SL)]Pl(sL)P5(sL)/P2(SL))/[PS(SL)+urPl(SL)]¥'

The choice of IM here depends on the minimum
values of the ratios d (s)/h. and s)/h, for
o( )/ 3(k) P( )/ 3(k)
Se(tk’tk+1)' %
have a relative error of about 10 .

IM is chosen so thst the integrsls

One might rea-
sonably ask why two different polynomials are used
to approximste di(s). The approximstion to dg(s)

is most critical. Hence, the third-degree polynomial
P ( ) is used. The ratio {[C(s)—z]6(5)—[p(s)—r]é(s)]
/d (s) is also importsnt.

tioned for the x-y

Moreover, &s was men-
plane, this ratio is constant for
meny importent cases. Without modifying the input,
it is not practicel to approximate the numerator by
a similar third-degree polynomial, and if one does
not, the ratio of the polynomial spproximaetions is
not constent for the important cases. Hence, we use
polynomials that will mske the ratio constent for
these ceses. :

We discuss next the Gaussian quadrature scheme
corresponding to case (b).
thet di(tk) = 0.
ing the parsmetric representation of the boundary,
there exists a smooth function Ee(s), such thet
d (s) = (s-t ) EQ(S) and Ee(t ) = 1. There also
exist four polynomlals Ql’

For simplicity we assume
Because of our assumptions concern-

, Qj, and Qh each of
degree four such thst

K(m) ~ @ (w') + g(n')log(a’)
E(m) zQ}(m') + Ql‘_(m')log(m') ’

and the maximum relative error in these two approxi-
mations is 2 x 10 See Ref. 9, pp. 591-592. Be-

cause

m'=1-m= dg(s)/(dg*—urp) = (S-tk)a ai(s)

/( dg"'l"rp) ’

we have

G
K(m) =Q (a') + Qy(m') log|——

do‘ﬂ&rp

+u(n') logl(s-£)%1
and
~2

d

=~ ' ' )

R(s) ~ay(a) + g (=) dos |2
[+

+ Qu(m') log[(s—tk)al .

For ease of notstion below, set

= @)

Ky (m,@') = Q;(m') +Q(a') log(@') ,

Ky(m) = Q') logl(s-t,)?] (29)
E,(@,3') = Qs(m') + Q,(a') log (')

and
Ep(m) = qu(u') logl(s-t,)] .

Let P,, Pg, and P, be the same polynomials defined

sbove. Choose P2 and P5 such that
Py(s-t,) = aﬁ(s) Bt s = t,(6,%6)/2, bt
and
Py(s-t,) = lim {{¢(t)-2]5(t)-[p(t)-r]{(t)}
3 k tis
/3(s) ats =t (bt )/2 by -
Set EM(s) = hrPl(s)/[hrPl(s)+P5(s)] and BM(s) = Pe(s)
/[hrPl(s)+P5(s)]. Let w, W, - - . , W, be the

weights and let §1, ga, e e ey glM be the sbscissas
for an IM point Gaussian quadrature scheme with
weight function log(t). That is,

1



1 M
J)‘ log(t)f(t)at = il W, £( gL)

See Stroud and Secrest.ll Set n, = §th(k) for
L=1, 2, . . , IM. Using the change of variables
t = (s—tk)/hj(k), we approximste the integral W(k,i)
by
) 2K, [EM(s ) ,EM(5,) ]
t 2
[PS(SL)+urPl(SL)]

M 1
N(k,i) zhj(k) ‘;:Fle (sL) Pl(s

2, [24(n,)] ]

(k) (n,)'p, (n,)
+2h (k) Z w, (n,)P.(n
J =1 (AR Ak R AL A

and the integral D(k,i) by
Bk1) ~n(k) T + (ix, 0 (s,)]
s 3 L:lesL Ky EM(SL), (SL)

- El[m(sb)’m(sb)]]h&(sl,) - El[m(sb)’

(s, ) 1P (s, )P5(s,) V[Bs(s, ) #hrp (s,)12
M

* any() ¥ 1%(%)‘(&2@(%)1-E2[r;u<nt)1}
P,(n,) - E,[B4(n,) 1P, (n, JP(n,) )/ [Ps(n,)

+ brp (n,) ¥

The SL'S and wL's used here are the same as those

used in the previous approximetions for ¥ ena V.

Finally let us consider the two cases when

r = 0. The two integrals in Eq. (27) then reduce
to
t i
k+l (s-t, ) p(s)ds
'ﬁ(k:i)=£ ——:—G‘)— ,
k o
and
t i
- k+1 (s-t, ) p(s) IRTYSRNY
Be,1) = [ ——p—{laleozlbleduotly, | (50
d
k [¢]

For case (c), Py, P,, and P; are the same as in

case (a) . N and ¥ are approximsted by

Vi e 5 1 t
(1,1) = ny(k) il"z,(sc) Pi(s,)/IRy(s )15,

and
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(75 (ny JobrP, (n,) 13}

- 3/2
B,t) m g B v (5) 75 250000 (75001772

For case (d), the approximstion is similar, except
that the polynomials are defined differently. As-
suming that d>(t,) = O, then P, P
fined by the relations

5 and P5 are de-

Pl(s—tk) = p(s)/(s—tk) for s = (tk+l+tk)/2, Y1
Pl(s—tk) = dp(s)/ds for s = e
Pa(s—tk) = dg(s—tk)/(s-tk)2 for s = (tk+l+tk)/2’ L

Pa(s—tk) =1fors=t R

k
and
P.(s-t, ) = lim {[g(s)—zlé(s)-p 4 } for s = t ,
3K s a%(s) k
beert by .
2 7 k+l

N and D are approximated by

~ IM iP k
N(k,1) ‘“h_j(k) ilvt(st) 1(54)/“’2(“1,)] ’
and
B(k,i) =~ h (k) IEM w,(s )ip (s,)P (s,)/[P (s )]}'
S TR R

X. MISCELLANEOUS MATHEMATICAL NOTES
Once the matrix A and the vector E have been

generated, the mastrix equation,
Az = B » . (31)

must be solved for the vector z = (zl,za,...,zNT)T.
This problem can be solved by an iterative technique
or by a direct method such as Gaussian elimination.
For a Neumasnn problem, an iterative technique is
usually faster than Gaussien elimination; for a
Dirichlet problem, the opposite is true; and for a
mixed problem, there is no fixed rule. Only Gaus-
sian elimination is used in the four programs dis-
cussed here.

The error asnalysis that follows is directly
applicable only to program (i). However, the re-
Let z be the

vector in Eq. (31). Define zA(s) = gflok(s)zk,

sults apply to each of the programs.



£,(s) = £ o, (s)f(t,)

k with tk€SD

2 and 8A(S) = E ok(s)g(tk) M

k with thSN

: The approximste solution, ul(x,y), to the stated

probleam is

ul(x:Y) = %F[; gA(s)ln(%)ds + £ ZA(S)ln(%)ds
N D

3 1 3 1
- £ z,(s) i 1n(3)ds - £ £,(s) > 1n(r)d%] .
N D
If the boundary S consists only of line segments,

then all integrals can be evaluated exactly. In

this case, we have

I“(X:Y)-ul(x,y)ISE§; '£ (8-5A)ln(%)ds
N

+ +

i(w-zA)ln(é)ds Jr-2,)%; 1n(d)as
D. SN

+

[e-£055 1n<%)dsl]< (el lo?)
D

Here we essume the existence of bounded third deriv-
atives to get IS’QAI < O(h5), |f—§&| < O(hj), and
[v-zy| s [1-1p] + ]TA-zAf < [14]]A7 ”]O(hj). For thne
Neumsnn problem with a different discretization, it
can be shown that ”A_lu is bounded independent of
the number of points NT, if NT is large enough. For
mixed problems and Dirichlet problems, numerical
studies suggest that "A_lﬂ < 0(1/h), except for a
special case to be discussed later. Thus, using
the scheme explained above, we cen expect O(he) ac-
curacy. However, the order of accuracy is arbitrary,
and we can use whatever order is convenient. When
the boundary S does not consist of line segments,
there is also an error due to the approximetion of
the integrals in Eq. (21).

do not have cusps, or as long as hj’ divided by the

However, as long as we

minimum radius of curvature on Sj’ remeins small for
. J=1,2, . . . , NOCT, this error remsins negligible.

One might ask about the uniqueness of a solution,

[

T, to the system of Eqs. (11). What follows hss been
* proved only for the x-y plane. If the region G is
. homogeneous and S has no corners, then Eq. (11) be-

comes

T(t) + % £ T(s)K(s,t)ds = E(t) for tes,

and

b (11-4)

%g‘ r(s)K(s,t)ds = E(t) for teS
Kellner12 has studied the homogeneous problem associ-
ated with Eq. (11-A), i.e., E(t) = O.
that if S { 0, then there is & nontrivisl solution
if and only if the transfinite diameter of G is
equal to 1. See Hille15
finite diameter. Thus, we can expect the matrix A
in Eq. (31) to be singular if, and only if, G has
transfinite diameter 1.
very often, but it does occur with the unit circle.
The difficulty can be eliminsted by scaling the re-

He has shown

for a definition of trans-

This problem does not occur

gion G so that it does not have transfinite diameter
1. We cen numerically compute the transfinite diam-
eter of a given region G using programs (i) and (iii),
by simply scaling the region G so that the matrix A
is singular.
XI. FPROGRAM STRUCTURE

We will attempt to explain .i.ow the four routines
are programmed. Assoclated with each routine are a
number of auxiliary subprograms. For instance, the

subprogrsm LAPLDDC uses the subprograms:

(1) BC

(2) LAPLOT
(3) Ecsw
(4) N

(5) av

(6) BIRZ
(7) GRADFN
(8) «qc

(9) REGNSEL
(10) ROWSTOR
(11) ECw
(12) ER

(13) ECRD .

To use LAPLDRS, one needs all of the above except
(8) and (1), plus the two subprogrems:

(1%) ELLINT
and

(15) ELLINT2 .
To use LAPLACE, one needs the first eight subprograms
LAPLARS needs (2) to (7) and (13)
Although these 15 subprograms have the ssme

and program (13).
to (15).
name, they vary slightly depending on which of the

four programs they are associated with.
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Before we discuss the actual program structure,
a description of the general storege scheme is in
order. Almost all the variables mentioned below
are placed in common storage and used by several
subroutines. Most of the storage discussed here is
used to define the boundery. In the four programs,
the varisbles are named as though they lay in the
x-y plane. This makes it rather difficult to fol-
low programs (ii) and (iv), because all the z-coor-
dinates are called x-coordinates and all the r-coor-
dinstes are called y-coordinates. However, it does
mesn that most of the FORTRAN statements are common
to all four programs.

We will discuss the storage scheme for programs
(i) end (ii) first. Let S, be the ith boundary sec-
tion given as input, and let Si have the parametric
representation {[xi(t),yi(t)]|t€(0,di)] with respect
to arc length. Define K'l‘i to be the number in the
ninth field of the ith boundary data card, that is
columns T4 to T6. The following variables have one
entry for each boundary section.

Dc(i) = 4, = length of the boundary section,

LT(1i) = eighth data field of boundary data card,
i.e., column T2,

HD(1) = h, = DC(1)/(KT,-1),

KV(i+1) = KV(1) + KT,, [xv(1) = 0l.
The following variables are used to store the coor-
dinetes of boundary points.

X[3+kv(1)] = xi[(j—l)hi] for J=1,2,...,KT,

YO#v(1)] = v, [(3-1)n, ] for §=1,2,...,KT;

N[ J+Kkv(1)] = d.vi[(.j—l)hi]/dt Por j=1,2,...,

KTi ,
WI3EV(1)] = ax, [(J-1)h, 18t for F1,2,...,
KTi ’

fox(9) Py (0) ey (8) @ (o]
3 at 42 at a2 J

GlI+xkv(1)] =

evaluated at t = (§-1)h, for 3 =1, 2, ..., KTy

XI[3+Kv(i)] = xi[(.j—5/2)hi] for j=2,3,...,KT,
YI(3+kv(1)] = yi[(.i-5/2)hi] for §=2,3,..-,KT, ,
dy, [(J-3/2)n,]

XINLI+KV(1)] = — Ytor 3=2,3,...,KT,,

dxi[(.j—5/2)hi]

YIN{J+KV(1)] = =

for J=2,5,...,KT1.

Before the unknown boundary velues are computed, the
variables D[J+KV(1)] for J = 1, 2, ..., KT, contain

34

the known boundary velues corresponding to the points
{X[3+kv(1)1,Y[5+kv(1)]}, and the veriable F is the
same 85 the vector E in Eq. (20). After the unknown
bounda;y values have been computed, the variables

Dlg+kv(1)], Plg+kv(1)] for § = 1, 2, ..., KTy

contain the normal derivative and the potential, re-
spectively, for the points {x[3+kv(1) ], Y[ 3+kv(1)1}.
To illustrate this let 1 = 1, KTl = 5 and assume thet
8, = {lcos(t),sin(t)]]te(0,2m)} is the unit circle.
Figure 14 shows how the varisbles correspond to this
problem. At every point [X(J),¥(J)], the vector
[xN(3),-N(J)] is the unit exterior normel vector to
S. The points [XI(J3),¥I(J)] and the vector [XIN(JS),
-YIN(J)] satisfy the same relation. Between each
pair of boundary values there is one set of boundary
points that are used only to define the boundary bet-
ter. This choice is arbitrary; there could be none
or whatever number is desired.

The variable NDC is the to§31 number of boundery
sections. For programs (i) and (1i) it is the same
as the variable NDCT defined earlier. The varisble
N = KV(NDC+1). For programs (1) and (ii) it is the
same as the variable NT defined in Sec. III.

Now consider programs (iii) and (iv). The msin
difference is that in this case the boundery data for
one specified subregion only is stored for use at
any given time. The information for any subregion
is stored in exactly the same way as the whole reglon

is stored for programs (i) and (ii). Thus, NDC con-

(x(2), Y(2)), F(2),0(2)

(x1(3), YI(3)) (x1(2), Y1(2))

(x(, ),

(x(3), Y(3)), $ F{H, 0L

F(3),0(3) '
(x(5), Y(5)),
F(S), D(8)
(x1(4), YI(4)) (X1(8), Y1(5))

(x(4), Y(4)), F(4), D(4)

Fig. 14. Distribution of points on a circle.
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tains the number of boundary sections for the selected
subregion, and [X(1),Y(1)] 1s the first boundary point
of the first boundary section of the selected subre-
gion. The subroutine REGNSEL stores the information
for the selected subregion. The indexed boundary data
in the labeled common ZLAP are subregion oriented and
are stored by REGNSEL. The other labeled common stor-
age remains fixed throughout the computation.

The solution in any subregion is dependent on the
boundary data from all of the subregions. Hence,
there must be some variables concerned with the prob-
The variable NRE is the total num-

ber of subregions.

lem as a whole.
The subregions are numbered con-
The variable ND(J)
. , NRE gives the number of bound-
The variable
ICH(J) = %‘;i ND(K) for J =2, 3, . . . , NRE, and
ICH(1) = 0. ICH(J) is the number of boundary sec-
tions preceding the Jth subregion. The variable
NDCT is the number of boundary sections for the whole
problem. If the boundary section SI f Ca, then the
variable IC(I) = O. See Sec. VI for the definition
of 02. ir 5; € Ca, then IC(I) is the number of the
common boundary section that is the same as SI but
The variable RA(I) is re-
lated to the o velue. If S; ¢ ca, then RA(I) = 1,
and if S_ € ca, then RA(I) = ’°Ic(1)/°1‘

secutively, 1, 2, . . . , NRE.
forJ =1,2, ..
ary sections in the Jth subregion.

with opposite direction.

I
The varisble NT is the number of unknown bound-

Before the un-
known boundary values are computed, the indexed vari-

able FT corresponds to the vector E in Eq. (20).

ary values for the whole problem.

After the unknown boundary values have been computed,
they are stored in FI'. The way the boundary values
are stored is probably not so satisfactory as it

if SI € Cl, then the first 2 KTl
FT' are used to store the unknown boundary values on

could be. words of
Sl' All of the computed unknown values for the poten-
tial precede those for the normal derivative. If S
¢ Cl, then the first KTl words on FT are used to
store the unknown boundary values on Sl' 1t 82 € Ca,
then the unknown boundary values for 82 are already
stored in FI'. If 82 € Cl, then the next 2KT2 words of

1

FT are used to store the unknown boundary values on
82' if 82 ¢ C, then the next KTa words of FT are
used to store the unknown boundary values on 82' The
unknown boundary values for the remeining boundary’
sections are stored in the same menner. The variable

IE(I) is used as a pointer to tell where in FT the

1 it SI
¢ ca, then IE(I) is the number in FT of the first
1 it SI € Ca, then
IE(I) is the number +1 in FT of the last boundery
value on SIC(I)' Thia is because the boundary values
for SI can be derived from those of SIC(I)’ except
that they ere in reverse order. The variable IX(L)

= 1+i‘,’im‘ifor1.= 2,3 ..., NDCT, and IX(1)
= 1. This variable is similar to KV, except that KV
is defined only for subregions. The variable KSEL
has the number of the subregion which was last se-

lected.

unknown boundary values for S. are stored.

ﬁnknown boundary value for S

Most of the following discussion is applicable
to all four programs. There are a number of other
variables in common storage which perform various
Most of these varisbles are initialized in FN
and used in QV. We will not discuss them. The other
variables and their functions are as follows. BZ
is a logical variable used to indicate when the un-
BZ = F
if, and only if, the unknown boundary values have
The variable is used by the plot
routine to determine whether anything but the bound-
ary should be plotted. The variable BZ is also used
by FN to tell whether the approximate solution is de-
sired, or merely the integrals in Egs. (21) or (26).
The variables CN(I) and CD(I) for I =1,2, . . .,
NT are used by the routine FN to store the integrals
in Eqs. (21) and (26). The indexed variable Q is
used to store the integrals in Egs. (22) and (27).
Assuming that one is using progrem (ii), for instance,
a call to QV(I) will cause the following numbers to
be stored in Q:

Q) = D(1,0-1) forJ =1,2, 3

Q(J+3) = M(1,0-1) for J = 1, 2, 3.

See Eq. (27) for the definition of D and ¥. The
varisble Q@ is also used by the gradient routine to
The logical variable RI is
used to indicate whether a point is, or is not, in
After a csll to FN(S,T), the variable
RI = T if, end only if, (S,T) € ¢G. IfRI = F, then
FN is set equal to -O. The variable RI is used by

the plot routine, but it is in common storage and is

Jjobs.

known boundary values have been computed.

been computed.

store similar integrals.

the region G.

available to a user.

The subroutine FN has the formal parameters
(8,T). To make these two variables available to QV,
they are put in common storage; S is stored in V,

and T is stored in W. Assume that one makes a call
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to FN, and that the point (S,T) is very close to the
By finding the point (¥,¥) on the boundary

closest to (S,T) one can approximate

boundary.

W, ~ s - [ea%an] BED (5

Thig approximation assumes that (%,T) is not at a
reentrant corner, in which case the approximation is
Similar but more involved. The variasbles DP, ME1,
end FB are all used in the approximation of Eq. (32).
The variable DP is used both as an indicator and as a
storage location for the minimum distance. Whenever
DP 10100, then Eq. (32) has been used by QV to com-
pute the solution. The routine QV uses DP to store
the minimum distance to the boundary if Eq. (32) is
used. The approximetion is stored in the variable
FB. The varisble FB = 0. if, and only if, (S,T) ¢ G.
The variable ME1l is used to determine whether or not
the point (&,T) is at a corner.
only at the ends of boundary sections.

To determine if a given point (S,T) is in G, one

must first determine whether G is an exterior or ex-

Corners can occur

terior region. The verieble AR is & discrete approxi-

mation to
dx(t)
£y(t) % @ . (33)
The integral is minus the area enclosed by S. See

Ref. 2, pp. 311-31%4.
then AR is approximetely minus the area of G.

If G is en interior region,

If G

is an exterior region, then AR 1s the area of the com-
Even though S need not be closed in
the z-r plane, the approximeation is still valid be-

plement of G.

cause the z-axis is a boundary in our generalized
sense. The indexed variable ARR 1is used by programs
(111) and (iv). ARR(1i) is the integral of Eq. (33)
on the subregion Gi' This indexed variable is needed
for these two programs because of the possibility of
having both interior and exterior subregions in one
problem.

The logical variable B is used as an indicator

by the subrbutine FN to determine whether or not the
subroutine QV encountered case (a) of Sec. VIII.
BQ = T if, and only if, case (a) was applicable. If
BQ = T, then the integrals of Eq. (21) were computed
directly in QV, and if BQ = F, then the integrals of
Eq. (22) were computed in QV.

Most of the above variables are dimensioned.

The problem size is limited by the dimensions of

these variables and by the size of the metrix A

which is NT x NT. The variable FT must be of at

least NT length. The varisbles ¥, D, CD, CN, G, X, .
Y, XN, YN, XI, YI, XIN, end YIN must have dimensions .
as large as the number of approximation points for

the largest subproblem. For programs (i) and (ii)
they must be as large as the total number of approxi-
The variables HD, DC, LT, IC, IX, IE,
and RA must all have dimensions at least NDCT, and KV
must have the dimension NDCT + 1. The variables ND,
ARR, and ICH must have dimensions at least NRE. Fi-
nally, there are some variables, namely FF, GM, AL,
BE, R, B, GAl, and KT, all used in REGNSEL, that must

have dimensions as large as those of KV.

mation points.

These vari-
ables are equivalenced, and some care is necessary
when changing their dimensions.
We will now discuss the individual subprograms.

BC is a real function used to read current data cards
and set up branch cuts if they exist. Probably more
importent, the subprogram gives the user a simple

BC is exactly
The function

tan_l(y—yc/x—xc) with -1t < tan™t < 1 has & branch

way to use superposition of solutionms.

the same for programs (i) end (1iii).

cut starting at the point (xc,yc) and running parallel
to the x-axis to x = ~-®, The progrem BC merely adds
The

variable EC corresponds to current and determines

one of these functions for each current source.
the discontinuity across the branch cuts. The vari-
ables XC and YC correspond to the point (xc,yc).

The variable NBC is the total number of branch cuts.
The subprogram has three entry points. Entry point
BC evaluates the branch cut functions if they exist,
and entry point BCN evaluates the derivative of the
branch cut functions if they exist. Entry point BCR
reads current data cards if they exist.

The subroutine LAPIOT plots equipotential curves
or gradient curves. The progrem also plots the bound-
ary. The progrem has four entry points, the purpose
of each of which is explained in Sec. IV. The plot
routine has only slight differences for each of the
four programs, the main difference being the use of
the gradient function in programs (i) end (iii) as .
opposed to programs (ii) and (iv). See the routine
GRADFN below.

The variable IM in LAPIOT is used to count the
number of curves that have been plotted and is set

equal to zero on each entry into the subroutine. The



varisbles XS and YS contain the starting point for
The variable HH contains

the step size used to construct the curves.

the curve being processed.
The sign
of HH determines the direction of travel along the
equipotential or gradient curve. When one constructs
the curves, the plot goes from the point [XP(1),
YP(1)] to the point [XP(2),YP(2)]. The gradient
values corresponding to [XP(1),YP(1)] are always -
stored in FXO and FYO. If the gradient vector at
[xp(1),YP(1)] dotted with the gradient vector at
[xP(2),YP(2)] is negative, the curve turns more then
90° in one step and probably does not make sense. If
this is the case, the curve is discontinued.

The film plotter has a resolution of one part in
1024 for both the x and y directions. By the time
the grid lines and the scale have been drawn in, the
resolution is down to one part in 840 for the equi-
For the equipotential
curves, it was arbitrarily decided that the computed
resolution in the rectangle derived from XMIN, YMIN,
XMAX, and YMAX would be one part in 1680. Thus, any
point [XP(2),YP(2)] computed to be on a given equi-
potential curve will have at most an error of (YMAX
-YMIN)/1680 in the y-coordinate end of (XMAX-XMIN)/
1680 in the x-coordinate. This choice does not al-
ways give the full resolution of the plotter, but it

potential and gradient curves.

is a compromise between computation time and the best
possible resolution.

Construction of the equipotential curves is easy.
Assume that FO is the value of the equipotential, and
that [XP(1),YP(1)] was the last point to be plotted.
Because [XP(1),YP(1)] is not always exactly on the
equipotential curve, let F2 be the value of the po-
tential at [XP(1),YP(1)]. Also, let FX and FY be the
values of the gradient at [XP(1),YP(1)]. The first

guess for the next point on the curve is

XP(2) = XP(L)-HeFY/(FXCAre) e ( R0-F2) *FX/ (FX24FER)
YP(2) = YP(1)+EH*FK/(Fx2+Fe2 )R e(FO-F2)*FY /(FXOHFYD)

(34)

The first term is a step of distance HH perpendicular
to the direction of the gradient vector. The second
term is a step parallel to the gradient vector, and
is designed to correct for errors in [XP(1),YP(1)].
If the point [XP(2),YP(2)] is not close enough to the
equipotential curve, then another estimate is made by

moving in the direction of the gradient vector at

[xp(2),YP(2)].

point either is close enough to the curve or does not

Such corrections are made until the

improve satisfactorily, in which case the curve is
terminated.

The construction of gradient curves is slightly
different from that of the equipotential curves.
There is no direct way to determine how close & given
In LAPIOT the gradient

curves are approximated by using a simple Runge-Kutta

point is to an actual curve.

scheme on the autonomous system of ordinary differ-

ential equations

2

L) - u [x(6),¥(8)]

at

D I ORI O

dt
See Hildebrand'slu formulas 6.15.15 and 6.15.16.
In terms of the variables used in LAPIOT, the method
for any given step is
HH
XP(2) = XP(1) + (—5)(ux[xp(1),n=(1)] + u {xp(1)
+HRu [XP(1),YR(1) ], YP(1)+mu [XP(1),YP(1) 1))

Yp(2) = Yp(1) + () (o, (), YP(2) ] + u fxP(1)

+I-{Hux[XP(l),YP(l)],YP(l)+m{uy[XP(1):YP(1)]]) . (35)

The subroutine ECSW is simply a routine to read
It does the bookkeeping
on the size of the matrix and thg storage location

and write rows of a matrix.
of various elements. It also stores some variables
that are seldom used. The routine was written to
give the programs the capability to use external
storage. The subprogram is the same for programs (i)
and (ii). Similarly, for programs (iii) and (iv)
the subprogram is the same.

The subprograms FN and QV together perform one
function.
the integrals in Eq. (21) end for programs (ii) and
(iv) they compute the integrals in Eq. [26). 1In
both cases, the routine FN combines the integrals
with the appropriate brrmdary values to give the

For programs (i) and (1ii), they compute

approximate solution, if it is desired. For programs
(1) and (iii), the routines QV are identical as they
also are for programs (ii) and (iv). For each of

the four programs, the routines FN are slightly dif-
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ferent. For programs (1) and (iii), the routine QV
usually computes the integrals in Eq. (22), and the
routine FN combines the integrals to give the inte-
grals in Eq. (21). However, in case (2) of Sec.
VIII, the routine QV computes the integrals in Eq.
(21) directly. For progrema (ii) end (iv), the rou-
tine QV always computes the integrals in Eq. (27),
land FN combines the integrals to give the integrals
in Eq. (26). The routine FN does two other things.
First, it sets up variables used in QV. Second, it
combines the computed integrals to determine whether
the point used in the calculation is inside the re-
glon G. The routine QV performs one other computa-
tion.
solution is desired happens to be near the boundary,

If the given point at which the approximete

then QV computes the approximete solution using the
values of u and Bu/av at the nearest point on the
boundary.

Now let us consider how the routine FN computes
the integrals in Eq. (21) from the integrals in Eq.
(22). x 18 the start
of the boundary section Sj(k)' The function j(k) is
defined in Sec. VII. From the definition of Ok(s),
it follows that

For simplicity assume that t

[s—tk—hj(k)][s—tk—ZhJ(k)]/ehi(k) for se(t,,

Oy (s) = k+2

(o] otherwise.

Hence, on (tk’tk+l) it is true that

(=) = [(55 0] [0 20 /25

3s-t,) (s-t)7
=1-3 =3 .
J(k) 2hj(k)
On (tk+l’tk+2)’ vwe have

0(8) = (86,1 )[(5-51) 03 /22

(st 1)

2h4(x)

k+1)2 _ (s-t

= 2
2hy(x)

Hence,

J Ok(s) 1n [;1%7;:;7]ds
tk+

t.
- {; lok(S)ln[}ls%x,ys e+ £z+gk(s)ln[;zs%§:y7]ds
+1
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= N(k,0)- (k1) | N(k,2) | N(ktl,2) Né:+1 1)

2h 2 2
(k) 2hyy  Bhy(y) 3(x)

The other integral in Eq. (21) is treated exactly the .
same. The integrals for the axially syumetric case .
are also treated the same way.

If we call the routine FN in order to compute I
the approximate solution at some point (v,w), then -
FN determines if the point (v,w) is in the region G,
or, in the case of programs (iii) and (iv), if it
is in the previously selected subregion. This is
done in one of two ways. Assume first that G is an
interior region in the x-y plene, and that S has no

common boundaries. Then

3 0 if (v,w) ¢ G Us,
3V ln[r(sxvxw)]ds "{ (56)
3 o if (v,w) € G.

If (v,w) is not close to the boundary, then the inte-
gral above is a by-product of the computation of the
approximete solution. The case.when (v,w) is close
to the boundary is discussed later. If G is an ex-
terior region, then the result in Eq. (36) is exactly
opposite. If the region G has subregions, the above
result holds on each subregion. If the point (v,w)
€ G, but it is not in the selected subregion when
one calls FN, then the routine FN selects each of
the other subregions until it finds the one contain-
ing (v,w). For the z-r plene the method is the same
except that a different kernel is used in Eq. (36).

The variable DIC is used to store the integral
in Eq. (36). The variable ADIC is used to store the
integral of the absolute value of the kernel. DIC
is compared to ADIC to determine whethér or not the
integral in Eq. (36) is approximately zero.

The QV subroutine for programs (i) and (iii) is
completely different from the QV subroutine for pro-
Most of the basic theory be-
hind these two subroutines is covered in Secs. VIII
and IX.
went the approximate solution at the point (v,vw), and
(v,%) is close to the boundary. This section of the
program is the same for the two QV subroutines. Let
(XE,YE) be the point on the boundary closest to (v,w), -
and let (XP,YP) be the unit tangent vector at (XE,YE).

Under the assumptions on the boundary, if (XE,YE) is
not at a corner, then the vector (XE-v,YE-w) is par-
gllel to the vector (YP,-XP). Possibly the direction

grams (ii) and (iv).

Here we discuss only the case in which we

‘R
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v

P

is opposite, if (v,w) is not in G. By teking the dot
product of the two vectors, we can determine whether
(v,¥) € G for this case. If (v,w) € G, we approxi-

mate

2 du

_a; (XE:YE) .

(31

8(v,u) =~ u(eE, ¥E) - (E-v) 2+ (E-+)

If (v,v) € G, and (XE,YE) is at a corner, then
the corner is reentrant. In this case, we assume
that any singularities at the corner have been sub-
tracted out. Using this assumption, we can compute
the derivative of the solution in any direction by
using the two values of au/av at the corner. To
compute the approximste solution, we simply use Eq.
(57) with the derivative term replaced by the deriv-
ative in the direction (XE-v,YE-w).

For programs (i) and (ii), the routine BDRZ reads
the boundery data cards, puts the data in a usable
form, and genérstes boundary points upon request.

For programs (1ii) and (iv), BDRZ generates only
boundsry points. The BDRZ routines for programs (i)
and (ii1) are almost identical, as is also true for
We will discuss only the

BDRZ routine associated with programs (i) and (ii)

programs (1iii) and (iv).

because the other BDRZ routine is simply a subset
of the one to be discussed. The routine RDRZ has
Entry point BDRZ resds one bound-

ary data card and puts the information in a usable

two entry points.
form. Whenever a -0 is encountered in a data field,
the routine assumes that the field is blank. When
the routine reads a blank card, it sends a message
to stop reading cards. When using simplified bound-
ary datas, the entry point BDRZ in some sense replaces
the subroutine BDRY. BDRZ gives exactly the same
informstion for boundary sections with simplified
boundaries as BDRY does for generslized boundary

data.

The informstion needed to construct the simpli-
fied boundary sections is stored in seven-word blocks,
that is, seven words are used for each boundary sec-
tion. Generating a line segment or a complete circle
is a straightforward task using s boundary data card.
However, a circular arc is more difficult, and will
be explained. Suppose we have read in the points
(x1,Y1), (x2,Y2), and (X3,Y3). First solve for the
center point, called (AL,BE) here, of the circular

arc. Because the three points all lie on the circle,

we have

(AL-x1)2 + (EE-Y1)2 = RY,

(ALx2)2 + (mE-¥2)° = R® ,
and

(AL—X5)2 + (EE—Y5)2 = r?

1
o]
~

where R is the radius of the circle. Subtracting
the first equation from both of the other two, we
get the system of linear equations

2,412 +n2 A2

2AL(X1-X2)+2BE(Y1-Y2) = X1%+Y1°-X2°-y2° |,

2

PAL(X1-X3)+2BE(Y1-Y3) = X19+¥1°x3%-y32 .

These cen easily be solved for (AL,BE). Substituting
AL end BE back in the first equation, for instance,
we can compute R. The parametric form for the cir-
culer arc is

X(T) = R cos(D*T/R+GAL) + AL ,

Y(T) = R sin(D*T/R+CAl) + EE .
The variable GAl must satisfy

X1 = R cos (GAl) + AL ,
and
Yl = R sin (GAl) + EE ,

which is equivalent to
GAl = TAN’l[(Yl-BE)/(n-AL)] .

The variable D is the orientation and is either +1

or -1. The computation of D is involved. Define

the complex numbers Z2 and Z5 by
72 = X2-AL)+i(Y2-BE
© (X1-AL)+i(Y1-EE) °’

(X3-AL)+1(Y3-BE)
(x2-AL)+i(Y2-EE) °

and

23 =

Thus, arg(Z2) is the angle on the circle from (X1,Y1)
to (X2,Y2), and arg(Z3) is the angle from (X2,Y2)

to (X3,Y3).
It follows then that D has the same sign as the
argument that has the smaller absolute value.

We assume here that -m < erg(.) < m.

Equiv-
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alently, D has the same sign as the imeaginary part of
the complex number whose argument has the smaller eb-
solute value. The length of the circular erc is easy
to compute.

For programs (1) and (iii), the subroutines
GRADFN and QG perform approximately the same functions
vhen one computes the gradient as the subroutines FN
and QV do when one computes the potential. FN and QV,
however, will handle more difficult situations. The
gradient routine breaks down very near the boundary.
Also, it will not handle the round-off difficulties
described in case (c) of Sec. VIII. However, these
problems do not occur often.

The subroutine QG approximetes integrals of the
form

tk+l

2
{ (‘t,-t.k)‘j S;%; In[r(t,x,y)]dt for §
k

0,1,2 ,

tk+

1
{ (t—tk)J §; Inlr(t,x,y)]ldt for j = 0,1,2 |,
X A

. (38)
k+1 5 32
{ (t-t,) Syav In{r(t,x,y)]Jdt for j = 0,1,2 ,
k
and
Y1
0,1,2 .

{ (t.—t.k)‘j gy Inlr(t,x,y)]dt for j =
k

The three integrals corresponding to the first line
in Eq. (38) are stored in Q(1), Q(2), and Q(3). The
next three are stored in Q(4), Q(5), and Q(6), and
so forth, down to Q(12).
integrals above by explicitly evaluating integrals
of the form

In QG, one approximetes the

ol = } 245 grgao,1, 2,35
g —srg) ’ 2 ’ 2 ’
and (39)
h,J
@y = [52E forg-=o0,1,2,3 4 .
o p(t)

Here p(t) is a polynomial of degree two used to
approximate re(t,x,y). Explicit formulas for the
integrals Q2J for J = 0, 1, 2, 3, 4 are given on pp.
65-66 of Ref. 15. The integrals QJ for J =0, 1, 2,
3, 4 cen be found in almost any integral table. The
integrals in Eq. (39) are combined to give a rational

4o

fraction epproximetion to the integrals in Eq. (38).
The approximation is similar to case (c¢) of Sec. VIII.
The subroutine GRADFN completely treats what
corresponds to case (a) of Sec. VIII. Assuming that

the compufation is being done on the interval (tk,
tk+2)’ the decision to treat the integrals as in case

(a) or case (c) of Sec. VIII is determined by whether A
or not -
(t +t, . )
k “k+l
r(t,x,y) 2 5hj(k) for t = b, ——%— Y.
(41t byerp) . .
2 ? Yke2 T

The subroutine REGNSEL has two entry points.
Entry point SELINIT reads all of the boundary data
This part
of the program is similar to entry point BDRX of BDRZ.

cards and puts the data in a usable form.

To a large extent, the programming is the same.
SELINIT has a fewmore wrinkles because it must handle
common boundaries. For this entry point, there is
only one difference between programs (1ii) and (iv).
Progrem (iii) has a provision for reading current
Entry point REGNSEL sets ﬁp all of the
This entry

point for program (iv) differs from that for program

data cards.

boundsry data for a requested subregion.

(ii1) in that program (iv) does not allow negative
values of y.

Subroutine ROWSTOR is simply a program to store
the rows of the matrix A given the integrals in Egs.
(21) or (26). The integrals are trensmitted through
common storage in the indexed varisbles CN and CD.
The routine also computes a row of the vector E of
Eq. (20) eand stores it in the indexed.variable FT.

Subroutine ECW has two entry points. Entry
point ECW writes one word into a specified location
of the matrix A. Entry point ECAl adds one word to
a specified element of the matrix A. The real func-
tion ER reads one specified word from the matrix A
and stores it in ER.

ECRD is a routine to utilize storage which can

be core storage, extended core storage, disk, drum,

A}
or what have you. The progrem presently uses core

x
storage or extended core storage, but it cen easily
be modified to use whatever storage is aveailable. -

The storage is mostly for the matrix A. There are

two entry points to the subroutine. Entry point

ECRD reads a specified number of words starting at



-

M Y

a given location. Entry point ECWR writes a speci-
fied number of words starting at a given location.

ELLINT is a subprogram to evaluate the two
elliptic functions E(M) and K(M). If M < 0.81, a
quadratic interpolation from tabular values is used.
The table has 416 points for each of the two func-
tions. It has special values outside both of the
end points so that no special technique need be used
st the ends. If M > 0.81, then the routine uses
formulas 17.3.34 and 17.3.36 of Ref. 9 to approxi-
mate the functions. There are two versions of this
subprogrem, one in machine language and the other in
FORTRAN. The machine language version is faster and
should be used whenever possible because the timing
of this routine is critical.

ELLINT2 is a subprogram to evaluate the func-
tions K,, Q,, E;, and Q, of Eq. (29). Depending on
the parameters in the calling sequence, the routine
evaluates Kl and El or Q2 and Qh‘ This routine is
written in FORTRAN.

Finally, let us consider how some of the vari-

ables in common storage can be used for output cal-

" culations. Assume that program (1ii) is being used,

and that all the labeled common storage is available.
Suppose SJ is a boundary section in the subregion
J1. The following statements could be used to give
a Simpson's rule approximation to £ au/av das.
- J

CALL REGNSEL(J1) )

I1 = J - ICH(J1)

L1 = KV(I1) + 2

12 = KV(I1 + 1)

QUAD = D(L1-1)

DO 1 M= 11, L2, 2
1 QUAD = QUAD + L.*D(M) + 2.#D(M+l)

QUAD = HD(I1)*(QUAD-D(12))/3.

The first statement ensures that the right subproblem
is stored in ZLAP. The second gives the number of
the section SJ in the subregion J1. The other state-
ments follow immediately from the definitions of the

variables. Simpson's rule is about the highest order
integration scheme that makes sense, considering the
way the boundary values are computed.

10.

11.

12.
13.

14,

15.
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