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‘Ibisreport presents Monte

fxBsrRAcT

Carlo calculations of the equation of

state of two systems of hard circles (two-dimensionalhard spheres), one

consisting of 12 molecules, the other of 48. Periodic boundary condi-

tions are used in both cases.

The two-dimensional systems were considered in order to reduce

IIsufiace!leffects for a given nuniberof molecules, compared b three-

dtmensional systems, and in order to ascertain if certain phenomena ap-

pearing in previous calculations for three-dimensional systems (possibly

indicative of the existence of a solid.fluid.phase transition) would

appear in the simpler two-dimensional systems. It seemed likely that

such tight be the case, the negative results of the pioneer Monte Carlo

investigation of Metropolis et al., being somewhat suspect on the same

grounds as those of Rosenbluth and Rosenbluth for three-dimensional hard,

spheres, where the behavior in question was not detected, presumably

owing mostly to the rather slow computing machinery available at the time.

No such phenomena were found for the 12-molecule system. Except for

certain trivial regions of configuration space, the Wrkov chains seemed

to estimate adequately the over-all petit canonical ensemble pressure



throughout the entire density range. The calculated yressure was a

monotonically decreasing function of the area, and agreed approximately

with the free-volume pressure at high densities, and with the virial

expansion at low densities, when account was taken of the theoretical

N-dependence at both extremes.

me 48-molecule system gave qualitatively

at the high and low density extremes where the

different results, except

behavior was as described

for the smaller system. In the all-important tid-density region the

Markov chains were unable to estimate the ensemble average owing to a severe

compartmentalizationof configuration space into two crystallographically

distinct types of configurations. The first, or L, type is related to the

familiar regular hexagonal configurations.

In the second, or H, type, two sub-classes couldbe distinguished. One

consisted.of configurationsbest described as imw-d=j with a s~chastfc

behavior more or less like that expected.for a fluid,. The other sub-class

of H-type configurations was derived.from a defect-lattice of 49 mole-—

cules in the rectangular cell, one molecule being replaced by a hole.

Within the latter configurations, diffusion occurred over a considerable

range of densities by the hole-diffusion mechanism. At reduced areas

T in the interval 1.3 to 1.35 (~ = 1 in the close-packed regular hexagonal

configuration), the system only infrequently changed back and forth be-

tween configurations of L and H type; transitions between the two H sub-

types were rather frequent. At T <1.3, L-H transitions were not observed.

Hbwever, the system couldbe stabilized in H-type configurations of the
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defect type by means of “compression“ from -c> 1.3, the apparent pres-

sure

same

of H

then considerably exceeding that of L-type configurations at the

reduced area. At T > 1.4 the L configurations and the defect type

configurationsprogressively disappeared, as would be expected.

We conclude that while these phenomena, which are similar to those

observed for three-dimensionalhard spheres, may yerhaps be the finite-

system manifestation of the existence of a first-order phase transition

in macroscopic systems, the present calculations certainly do not estab-

lish that such is the case. Calculations for considerably larger sys-

tems are necessary if the question is to be further investigated, as for

example in the recent dynamical calculations of Alder and,Wainwright for

a system of 870 hard circles, in which they obtained a van der Waals loop

in the equation of state.

Finally there is presented an extensive statistical analysis of the

data reduction procedures required by the present petit canonical en-

semble Monte Carlo method, in which the equation of state must be obtained

by numerically differentiating the directly estimable “cumulativepair-

distribution function.” It is concluded.that use of Nk,rkovchains conver.

gent to isothe~.isobaric ensemble averages might be advantageous. This

has been found to be feasible in some unpublished calculations for three-

dimensional hard spheres.





PREFACE

This long-overdue report describes the calculations made at the

IJX Alamos Scientific Laboratory from 1958 up to the present on systems

of twelve and forty-eight hard circles (i.e., two-dimensional hard

spheres). The previously published results for three-dimensional hard

spheres are briefly summarized, as well as some unpublished results.

It is a pleasure to express my appreciation to Dr. Berni J. Alder

and Dr. Thomas E. Wainwright of the University of California Radiation

Laboratory, Lfvermore, for many discussions in which ideas and.calcula-

tional results were exchanged.. I am also grateful to Professor

Robert D. Richtmyer of New York University, for pointing out the utility

of the l&rkov chain central limit theorem as a basis for the empirical

statistical analysis. Above all I am indebted to Mr. Jack D. Jacobson

for nearly all the calculator programs used in this investigation, as

well as for the over-all.supervision of the calculations.

v. w. wood

September, 1962
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with

GLOSSARY OF SYMBOLS

We list here the more important symbols used in this report, along

the number of the section in which each is defined.

Symbol

a

A(x)

b(N)

b
i

c

c

Ci(N)

(cm)

d

D(x)

E(x)

f(l)

f(2)

f(12)

G(c)

G(C, ~)

Description

Regular hexagonal lattice spacing.

Unit step function.

Unlmown coefficient in Salsburg-Wood theory.

Estimate of pi, q.v.

Coordination nuxiberof a close-packed configura-
tion.

Determinant of matrix (Cw).

ith
virial coefficient for a system of N molecules.

Spatial correlation matrix of a sampled set of
shell populations.

Diffusion parameter.

Theoretical standard deviation of a stochastic
variable x.

Expected (mean) value of a stochastic variable x.

Degrees of freedom of S“)2 .

Degrees of freedom of s‘2)2 .

Degrees of freedom of .‘12)2 .

Ensemble average of G(C, ~); i.e., the familiar
cumulative pair-distribution function.

cumulative pair-distribution function in con-
figuration space.

Section

2.3.3

2.1

10.1

9.1

3.3.1.1

8.3

10.2

8.3

2.3.5

8.2.1

8.2.1

9.2.2.1

9.2.2.1

9.2.2.1

2.1

2.1
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symbol

G(~, t)

ti(s, cl)

qc)

G
la’‘2Q!

i(t)

k

K

L

M

n

N

P

8

(Pij)

PN5T(V)

P(x)

Ubwoul-uu UJ., u J. lU!.JVJ..IU

(Continued)

Description

G(c, ~) at time step t of l&rkov chain realization.

The s‘h time-smoothed observation of G(C, t) at

Over-all estimate of G(c) at time t. We will
frequently abbreviate ~t(~a) as =t(cX).

Coefficients of skewness and excess of an observed
set of shell populations of shell a.

Molecule provisionally @isplaced at time t.

1301tzmannfsconstant.

The number of values ~2
c.d.f. isestimated.a’

a = l(l)K, at which the

The number of 2-molecule rectangular unit cells
whose longer sides compose one edge of 1?.

The number of 2-molecule rectangular unit cells
whose shorter sides compose one edge of V.

The nuniberof time-snmothed observations.

The number of molecules in a hard-sphere (or hard-
circle) system.

Thermodynamic pressure in the petit canonical en-
semble.

Pressure parameter of the isobaric-isothermal
ensemble.

?l.mdamentaltransition probability matrix for a
Markov chain.

Probability density of the fluctuating volune in
the constant pressure ensemble.

Cumulative probability function of a stochastic
variable x.
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symbol
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J
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r
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+
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1
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r
ij

~(a)

(a)
‘k

~2

~2
a

~2

.;1)2

J2)2

J12)2

t

T

Description

[Zij ].

Mea-square successive-differenceratio statistic
for a sequence of observed shell populations
for shell a.

The set of N vectors ~1, ~2,*0., ~N .

~ at time t.

Two-component position-vector of molecule i.

+
- ?..‘j I-

O’bservedtotal number
tion of shell u.

of runs in shell popula-

Number of runs of length k observed in Skiell

population of shell a.

Estimate of U2 .

Sample variance of observed shell population
for shell a.

Smoothed s: .

Within-shells estimate of 02 .

Estimate of G2 obtained from the variation of
observed average shell copulations about
empirical regression curve.

Pooled estimate of a2 .

l.krkovchain !Ttimell.

Thermodynamic temperature.
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GLOSSARY OF SYMBOLS
(Continued)

Description Section

Standardized normal deviate. .—

Volume (area) per molecule for hard-sphere (hard- 1.2, 2.1
circle) system.

Volume (area) per molecule for face-centered 1.2, 2.1
cubic (regular hexagonal) close-packed hard
spheres (circles).

Volume (area) of systemof N hard spheres (circles). 2.1, 3,1.1

Weight factors.

Matrix of independent variables in regression
analysis.

Least squares estimate of ~ .

Column vector (Yl, Y2,....YK) oryl, y2,***TK).

Sample mean of a set of observed shell populations

‘la~ ‘2a’”””yna “

Observed shell population for shell a over the sth

time-smoothing interval.

Gibbs phase integral in configuration space.

Theoretical coefficient of O!lin approximating
polynomial for la .

Theoretical coefficient of ~ in approximating
polynomial for G(~a) .

Maximum displacement parameter.

Dirac delta function.

G:+l- c: ●

Time-smoothing interval.
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Description

Argument of cumulative pair

Column vector of components

distribution function.

la ●

Theoretical shell population of shell a.

Compressibility factor.

Free-volume equation of state with an arbitrarily
appended O(N-l) correction.

Free-volume approximation for compressibility
factor.

Virial equation of state for a system of N
molecules truncated to a ~olynomial of degree
i in ~-l.

Degree of regression polynomial approximating T&.

Diameter of a hard-sphere or hard-circle molecule.

Unknown scalar

Reduced volume
hard s~heres

factor in q.

(area) per molecule in a system of
(circles).

Reduced area per molecule of a close-packed con-
figuration.

Theoretical shell population covariance matrix.

V/a*.
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7.4

2.1

10.1
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10.2

7*5

2.1

9.1

1.2, 2.1

3.3.1.1

9.1

9.1
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1.1

Chapter 1

INTRODUCTION

1.1 Preliminary Description of the Monte Carlo Method

The Monte Carlo method used in the calculations to be discussed in

this report is essentially that orginally described by Metropolis, et al.
1

Its theoretical basis has been discussed in a number of papers,2-5 so that

it will suffice t-arecall here that it is a prescription for defining a

stationary Markov

average converges

weight function.

chain with discrete states and discrete time whose time

stochastically to an ensemble average with a given

In this report we will consider only the classical me-

chanical petit ensenibleof Gibbs, whose weight function (unnormalized,)

is the usual Boltzma.nnfactor. The desired ensemble averages are then

estimated by the corresponding time averages over a particular realiza-

tion or development of the chain carried out to a large number of time

steps on a high-speed computing machine.

It will be convenient to adopt the following terminology: A system

is specified when a space or class of possible states is defined. A

(Markov) chain for such a systemis specified when a stochastic matrix of
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one-step transition probabilities between all pairs of these states is

given. A realization (or development) of such a chain is a sequence of

states actually traversed by the system In the course of a stochastic

evolution according to these transition ,probabilities.

It must be emphasized that the lltim~lmentioned in the above de-

scription has no relation to any actual physical time (except the machine

time involved in the development of the chain), nor does the motion of

the state point bear any detailed relation to any actual dynamical mrtion

of the molecular system. The procedure is a numerical method for esti-

mating classical statistical mechanical ensemble averages, and indeed

since it is a classical method (i.e., not quantum mechanical), the in-

tegrations over momentum variables involved in the ensemble averages can

be performed analytically, so that as actually carried out for a system

of N two-dimensionalmolecules the method is a random walk in the 2N-

dimensional configuration space of the system.

The original investigation reported calculations for a system of

224 hard spheres in two dimensions (hard circles), and subsequently

Rosenbluth and Rosenbluth6 considered systems of 256 three-dimensional

hard s~heres and 56 two-dimensional Lennard-Jones molecules. Our own

work began with systems of 32 and 108 three-dimensional Lennard-Jones

molecules.z From this point on, the term !bard sphere!!unless further

qualified will refer to the three-dimensional case; %srd circle,” b

two-dimensional case.

In the

had devised

the

( at the Livermre Laboratory,meantime Alder and Wainwright

their molecular-dynamicalmethod and applied it to systems of
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hard spheres. As the nsme implies, this method calculates thermodynamic

functions (as well as some transport properties) by time-averaging over

the actual dynamical phase-space trajectory of the nmlecular system,

starting from a suitable initial state,

Newtonian equations of motion over long

dynsmical equilibrium.

and integrating

enough times so

the elementary

as to attain

The lbnte Carlo statistical mechanical method

method, when applied to the same molecular system,

thermodynamic results “[atleast to O(N-l)], if the

and the dynamical

ought to give the same

quasi-ergodic hypothe.

sis of statistical mechanics is correct. This hypothesis, though widely

believed, has not been rigorously established,8 so that comparison of

results from the two methods is of some interest in itself.

The

which we

those of

our then

preliminary results of Alder and.Wainwright for hard spheres, of

were privately informed, in fact differed significantly from

Rosenbluth and Rosenbluth,b and this naturally led us to adapt

existing program for three-dimensional Lennard-Jones molecules2

to calculate the equation of state of systems of 32, 108, and 256 hard

spheres. The results indeed exhibited a behavior qualitatively different

6from that obtained by Rosenbluth and Rosenbluth, which we attribute to

their relatively slow computing machine (Maniac I); the phenomena in

question (to be described below) are likely to appear only after a rather

long ‘%imef!.

Accordingly programs especially adapted to the hard-sphere system

were prepared,5 and a re-examination of

29
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spheres by the Monte Carlo method was undertaken in collaboration with

Alder and.Wainwrightts dynamical investigation. Preliminary results by

both methods were published simultaneous ~’9 for systems of 32 and 108

molecules, as well as additional though

results,5 and a rather complete account

for systems of 4 to 500 molecules.10

still incomplete Monte Carlo

of the molecular-dynamical results

1.2 Summary of Results for Three-Dimensional %rd Spheres

The hard-sphere equation of state calculations by the Monte Carlo

method are summarized and compared,with the nmlecular-dynamical results

in Fig. 1.1, taken from Ref. 5. Also shown is the free-volume hard-

11sphere equation of state and the five-term virial equation of state of

Rosenbluth and Rosenbluth.6 In Fig. 1.1 the abscissa T is the ratio

v/v. where v is the volume yer molecule, vo is the face-centered cubic

close-packed volume per molecule, and.the other symbols have their

significance: p is the pressure, T the temperature, k Ildtzmann!s

Stant.

usual

con-

Two branches of the equation of state are shown in Fig. 1.1 for

T s 1.6. In the interval 1.52 < T s 1.6o the branches arose from sepa-

rately averaging the high and low plateaus of realizations having the

typical appearance of Fig. 1.2 (also taken from Ref. 5).

fluctuations occurred in the molecular-dynamical results,

in the same way.

Similar secular

and were treated
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Fig. 1.1 The equation of state of hard syheres, as reported,in Ref. 5:
(o, A) Monte Carlo method for N = 32 and 256, respectively; (+) molecular
dyntics, N = 32 (Ref. 9).
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1.2

1.2.1 !t~urglassII~del of configuration sPace.

This behavior led us to the following visualization of the geometry

of 3N-dimensional configuration space which is undoubtedly over-simpli-

fied but which affords a convenient model for the observed,behavior, and,

which motivated much of the subsequent investigation. We imagine that

at these densities the accessible region of phase space is essentially

hourglass-shaped, and we label the two chanibersof the hourglass L (low)

and H (high) according to whether an average restricted to the particular

chamber leads to a high or low pressure. This two-chamber description is

suggested by the essentially two-level appearance of Fig. 1.2. The con-

striction of the hourglass is imagined to be relatively narrow, and to

contain only a small fraction of the total accessible volume, as suggested

by the abrupt and relatively infrequent shifts in level in Fig. 1.2. The

state point representing the face-centered,cubic lattice configuration

(which is the usual starting point of the random walk) is deduced,to be

in chamber L from the fact that random walks begun from it typically

show initially a low plateau (e.g., Fig. 1.2), in this interval of T.

In these terms the random walk of Fig. 1.2 can be summarized as roughly

3.5 “ 105 steps in chamber L, 1.7 “ 105 steps in chamber H, 1.3 ●
~05

steps in chamber L, then 1.1 “ 105 steps in chamber

calculation was terminated,.

Larger values of T in the interval 1.52 to 1.6

shorter low plateaus and longer high plateaus; at T

seldom a noticeable low plateau. At smaller values

H, after which the

seemed,to lead to

> 1.6 there was

of T in this interval

33



1.2

the system tended to remain in chamber L for very long times; if it

succeeded in reaching chamber H it also remained there for a long time.

(These observations should be understood to apply to the 32-molecule

system; very few calculations were performed with the larger systems in

this range of reduced volumes.) ‘1’heseobservations led us to conclude

that as -rincreases the hourglass connection widens, with the chambers

probably becoming indistinguishable at T > 1.6. There is some sugges-

tion that at T = 1.6 chauiberH is probably much larger than chamber L.

For r near 1.52 the relative volumes are unknown, and the connection

between them very constricted. For ‘c< 1.52 neither the Monte Carlo nor

the dynamical calculations observed the 32-molecule system to leave the

L chamber, when the calculation was started from the face-centered cubic

(f.c.c.) lattice.

We were naturally led b examine the geometrical structure of con-

figurations sampled from the low and high plateaus of random walks in

the interval 1.52 s T S 1.6, though the number of configurationswhich

could be investigated was rather small due to the difficulty of adequately

visualizing the three-dimensional structures. Not unexpectedly, we found

that configurations selected,from a low plateau (i.e., according b our

model, points in the L chauiberof configuration space) were recognizably

close to the f.c.c. lattice arrangement. Furthermore, we noted that

diffusion (i.e., interchanges of neighboring molecules) was very rare,

perhaps non-existent, throughout the duration of a L plateau. On the

other hand, we were unable to recognize any particular regularity in
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configurations sampled from high plateaus (i.e., points in the H chamber),

during which considerable diffision occurs.

The infrequent molecular interchanges within a L plateau indicate a

revision of our model of configuration space to show NJ chambers of type

L, corresponding to the NJ permutations of the molecules, with inter.

connections which are more constricted than the L-H connections. This is

crudely indicated in Fig. 1.3 by showing two L chambers. Two H chambers

are also shown, although one might be consistent with the observations

for 1.52 < T S 1.6, because at smaller values of T they are expected to

appear (see below). The H-H connection is shown wider than the L-H

Fig. 1.3 A schematic diagram of the hourglass model 3N-dimensional
configuration space of a system of hard spheres near T = 1.55.
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connections, in agreement with the observations above.

It is obvious that for Markov chain realizations such as that of

Fig. 1.2, the over-all time average, which should converge to the desired

ensemble average, is in fact very poorly convergent. On the other hand,

the average over a particular L or H plateau may be reasonably convergent,

and if the plateau is sufficiently long this average is not too sensitive

to uncertainties concerning the beginning and end of the plateau. Ac-

cording to our model (Fig. 1.3) such averages estimate ensemble averages

restricted to the L or H chamber, which are evidently lower and upper

bounds, respectively,

nmtivation leading to

to the complete average. Such, then, was the

the double-valued equation of state of Fig. 1.1

in the interval T = 1.52 to 1.6.

1.2.2 Possible phase transition.

The properties of the L states outlined in the preceding section

are strikingly similar to those usually associated with a solid crystal-

line phase: (1) approximately regular lattice (f.c.c.) structure; (2) in-

hibited diffusion. Similarly, the properties of the H states resemble

those of a fluid: (1) irregular structure; (2) free diffusion; (3) higher

pressures than L states at the same T. Taken in conjunction with the

considerable discussion which has been carried out in the statistical

mechanical literature concerning the existence of a solid-fluid phase

transition for systems of hard spheres, these observations naturally led

3’9 to suggest them as tentative support for the existence of such aus
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phase transition. This interpretationwas also strongly supported by the

appearance of essentially the same phenomena in the kkmte Carlo calcula-

tions for three-dimensional Lennard-Jones molecules at a pressure and

temperature in reasonable agreement with extrapolation of the experimental

melting locus of argon. On the other hand.,of course, it was possible to

believe that these phenomena were artifacts of the small numiberof mole-

cules which were used in the calculations, rather than

the behavior of macroscopic systems.

In addition to whether or not a first-order phase

characteristic of

transition exists

for hard spheres, there are also differences of opinion as to whether, if

such a transition does exist, the exact petit canonical ensemble reduced

pressure Po/kT should,be a monotonically decreasing function of volume at

fixed T and,fixed finite N, or whether it might exhibit loops more or less

similar to those of the van der Waals equation of state. The best discus-

12sion of this problem seems to be that of Hill. The only cases in which

exact calculations exist are for certain simple lattice gases with small

N, where loops in fact do occur. It is thus of some interest to exsmine

the possibilities on the basis of our simple configuration-spacemodel

(Fig. 1.3), again under the assumption that the connections ha,venegli-

gible volume. We denote the volumes of’the L and,H chanibersby ~(z,N)

and,~(T,N), and,define three pressures: P(z,N), the result of averaging

over both types of chambers; PL(T}N)} obtained from the L chambers alone;

and.p (T,N), from the H chambers.
H The usual petit ensemble theory gives

pLVo/kT . N-l(a An ~a~)N ;
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pHvo/kT .N-l(a h w#-r)N ;

if
pvo/kT =N-l[a h (~ i-@/a~ .

.

The last equation can be written by use of the first two as

p=(l- W)PL -i-wH j

w=u#u/@ ,

giving the expected result that the over-all average pressure p is just

the average of pL and p weighted in proportion to their volumes
H ~ and

WH. Now consider the variation of r at fixed.N; on the right side of

the above equation for -p,the functions W, pL, and. pH all Vary. Let us

suppose, as is intuitively plausible, that pL and pH are both monotanf-

cally decreasing functions of T, as indicated in Fig. 1.4. Suppx3e in

addition that the weight function w increases from values near zero to

values near one, as T increases over a small interval, as shown in the

figure. If this increase is abrupt enough, it is clear that van der Waals

loops will appear, as is most easily seen by considering the limiting

case in which

other hand, a

tone p. Thus

model.

w approaches the unit step

more gradual increase in w

we see that either type of

function (see figure). On the

can evidently result in a mono-

isotherm could result from our

Accepting for the moment this first-order phase-transition inter-

pretation of the observations, let us consider the effect of increasing

the nuniberof molecules. For large enough N, and values of T between

the phase boundaries, we expect that a typical confjquration should be
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Fig. 1.4 A possible mechanism for the occurrence of van d.erWaals loops
for the model of Fig. 1.3.
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one of coexistent phases, some portions of the system being crystalline,

others fluid. The failure b observe this in small systems can be reason-

ably interpreted as being due to large interracial effects. Thus at

larger values of N we would expect Fig. 1.3 to change. Regions of mixed

L and H character should appear and,be Tredcminant exce-ptnear the _phase

boundaries. Exactly how this will occur is not clear; a likely possi-

bility is that the L-H connections expand and dominate the L and H

regions.

1.2.3 Wxtended fluid!! branch of the equation of state.

As already suggested in Section 1.2.1, it seemed likely that the

failure to observe H states in the realizations started from the f.c.c.

lattice at T < 1.52 was due to constriction of the L-H connections,

rather than to the complete disappearance of the H region of configura-

tion space. The well-known phenomenon of supercooling of liquids below

their freezing point, and,the existence of !lr~d~m close-packed” hard-

13
sphere configurations also influenced ou thinking in this respect, as

a result of which we devised the following IIcompressionprocedure!!for

obtaining starting configurations in the H region at reduced volumes

below 1.52.

We begin with an arbitrarily chosen H state from a high plateau of

a realization at T > 1.52. With the centers of the nmlecules fixed

in the Nkmte Carlo cell, the molecular diameter is increased (i.e., T

is decreased) to a value at which the closest pair of molecules is just
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in contact. The standard lkmte Carlo random walk is then carried out

from this starting point until one or the other member of this pair is

successfully moved. The molecular diameter is then again increased un-

til the closest pair (usually a different pair than in the previous step)

is in contact, etc. In this way a sequence of confirmations is obtained

with decreasing reduced volumes; since the “compression”process is

rather rapid (at least in the early stages) the state point was expected,

to remain with high probability in the H region. Such configurations

were used as the starting point for the usual random walk realizations,

and.gave the points shown in Fig. 1.1 on the upper branch of the equation

of state for -G< 1.52. Without intending to prejudice the decision with

respect to a first-order phase transition, we call this part of the upper

branch the ‘!extendedfluid.llbranch of the equation of state.

It is a priori quite possible that at high densities H chambers of

qualitatively different type (i.e., not equivalent under a permutation

of the molecule labels) may be present, and their connections may be-

come very constricted.or non-existent. In such a case more than one

upper branch of the equation of state may be present (at fixed small N).

This might explain the possibly significant difference between the

“extended fluid!?points obtained by us and,those obtained,by Alder and,

Wainwright (Fig. 1.1), who

procedure.

Sample configurations

T = 1.32 and T = 1.18 were

used a similar but more gradual IIcompression!!

from these extended fluid realizations at

examined,by constructing rather crude
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three-dimensionalmodels, and various two-dimensional~rojections. At

T < 1.32 diffusion was absent, in contrast to the rather free diffusion

at T > 1.52 already mentioned. (In terms of oux model this implies NJ

regions of the H type, either disconnected.or having very constricted

connections.) The highest density (T = 1.18) configurations fluctuated

very little, and were describable as rather distorted body-centered

cubic arrangements, apparently quite different from the structure de-

scribed by Alder and Wainwright7 at about the same density (thus suggest-

ing the presence of more

types).

From Fig. 1.1 it is

equation of state has an
77

than 1?!H regions of at least two non-equivalent

clear that the !Iextendedfluid!!branch of the

apparent asymptote in rough agreement with

scottfs’-~value of T x 1.16 for !rdenserandom packing!!,but the agree-

ment is nmst likely accidental, since one would.hardly expect to dupli-

cate IIdenserandom packing!!with as few as 32 molecules (no realizations

were generated on this branch with N > 32).

1.3 Retreat to Hard Circles

The indications, described in the previous section, of a possible

phase transition in systems of hard spheres ledus to question whether

similar phenomena might also be present in systems of hard circles and
.

have been missed in the original investigation,~ again due to the slow-

ness of the calculators of that date (as well as to the relatively large

number of molecules which was chosen). As far as statistical mechanical
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theory is concerned, the situation for hard circles is the same as for

hard spheres. The first-order phase transition has not been shown tc

exist, nor has it been shown not to exist. Only in the one-dimensional

case, where the complete equation of state can be obtained analytically,

is an exact answer known: in this case, there is no transition.

Aside from an investigation of the two-dimensional case as a ques-

tion in its own right, there were important reasons of convenience for

transferring our efforts to it. At that time the available calculators

were IBM type 704, and it seemed to us that we had,about reached the

practical limit of the ability of calculators of that speed to attack

the phase-transition problem in the three-dimensional systems. The

over-all average of 32-molecule realizations like that of Fig. 1.2 clearly

could.not be determined; that realization, for example, required between

four and five hours of machine time, and.its over-all average (as dis-

tinct from the within-plateau averages) is essentially worthless. With-

out a determination of such over-all averages at a number of points in

and near the possible transition region, the nature of the p-V isotherm

even for the small system remains in question. Further, even if the

equation of state for the 32-molecule system could,be determined, and

displayed, say, a van der Waals loop, the significance of this result

for macroscopic systems would.still be in doubt. obviously, the inherent

limitation of the method to very non-macroscopic numbers of molecules

prevents one from even expecting to prove the existence of a first-order

phase transition by such means. The most that can be expected is a
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demonstration by calculations for larger systems (N -1000, say) that

the phenomena appear likely to persist as IVincreases. [For example, one

can imagine that a van der Waals loop for small N might shrink as N in-

creases in such a way as to produce a second-order transition for ~cro-

scopic systems (N + CS).I

As already mentioned, there is some reason to suspect that at larger

values of N the statistical behavior may be less difficult (appearanceof

coexistent phases, rather than secular fluctuation between the two pure

phases). However, larger values of N were already very time consuming

outside the Wransitionr!region, and could certainly not be expected to

be less so inside it. Thus, an important reason for investigating two-

dimensional systems was the fact that with calculationally feasible

vslues of N (which sre only slightly greater than in three-dimensions),

the interracial effects believed to be responsible for much of the

diffictity should be considerably reduced.

An incidental advantage of the two-dimensional case is the greater

ease with which the geometrical structure of sample configurations can

be studied.

Accordingly, in 1958 we began the calculations which will be de-

scribed in this report. Unfortunately, soon after nnst of the calcula-

tions were completed the investigationwas put aside in favor of other

unrelated. problems, and only recently have we returned to the work of

reducing the results ta a form suitable for publication. Preliminary

14results were made available to Helfand,, l?risch, and, Lebowitz, for

comparison with their approximate analytical results.
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Alder and.Wainwright have also applied their dynamical method to

hard circles,
15

and.in a recent paper _presentan isotherm displaying a

van der Waals loop for a system of 870 molecules.

In the meantime our own situation with respect to calculator speed

has improved, with the availability of IBM-7090 and IBM-7030 machines.

In the near future we will attempt to verify the molecular-dynamical re-

sult for a large system of hard circles. In this report we present

Monte Carlo results for two small systems of 12 and,48 molecules, which

are of some interest in their own right, and.whose understanding ought

to facilitate the investigation of larger systems.

A considerable effort has been made to develop data reduction

methods which can give estimates of the precision of the equation of

state results, as will be described.
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Chapter 2

THE MONTE

2.1

CARLO METHOD FOR SYSTEMS OF HARD CIRCLES

Derivation of the Equation of State

The -petit

system of hard

canonical ensemble”expression for the pressure of a

circles in terms of the value of the radial distribution

function at the molecular surface is well-known, but the usual derivat-

ion proceeds byway of an assumption of circular symmetry. This as-

sumption is not exactly valid in our calculations owing to the finite

number of molecules and to the particular boundary conditions which are

used. For this reason we Tresent here a derivation which avoids the

symmetry assumption.

hard

The Gibbs phase integral in configuration s~ace for a system of N

circles of diameter a confined to an area V is

~(v) ‘f””j ~ ‘(r.jj ‘a) & ●

v ‘(u)
(2.1)

The two-component vector giving the ~sition of the center of molecule i

4
is d.enotedby ;i, while r denotes the set of all such positions

{

++
‘l) ‘}

‘2) ““”> ‘N > and.is a 2N-vectorJ
‘ij

is the magnitude of the
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+ +
separation vector r .

s
ri between molecules i

the set of all distinct molecular pairs. The

step function,

{

Oifx<O ,
A(x) =

lif x20 .

The thermodynamic pressure is defined by

where the

shape (to

and,j; and (ij) stands for

function A(x) is the unit

(2.2)

(2.3)

variation of the area V is understood,to take place with its

be discussed in Chapter 3, along with the

held fixed. The synibolsk and T as usual stand for

stant and the thermodynamic temperature.

If the dimensionless vectors

+
x
i

-4-+V ri

‘{ -)-0

x= ‘1’ ‘2} ““”’ %‘} 9

are introduced, (2.3) can be written

with

boundary conditions)

the Boltzmann con-

where w is a ftied unit area whose shape is independent of V. Differen-

tiation under the integral sign then gives
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With use of the identities

dA(x)
ax

= 6(X)

and

A(x)8(x) = 6(’) ,

where 6(x) is Diracls delta function, we obtain

Return to the original

ah%

av If‘% V“””v

coordinates ~i gives

[II A(r
ij -

(iJ)
.)]{Z#Q@i }’ ●

(=U

Next we introduce the cumulative pair-distribution function in configura-

tion space

in which the sum is evidently the number

tance between centers in configuration ~

the corresponding ensemble average

(2.4)

of molecular pairs whose dis-

is less than or equal to ~, and

1u) G(C, ~)d~ . (2.5)
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Then we obtain

b ‘n % N~ ?X(~)

av [1‘W a~ )
C=(Y

by use of which (2.3) becomes

pv oG’(a) .-mT=l+r (2.6)

The prime denotes partial differentiationwith respect to the argument

C of G(c);the latter of course depends also onN and V.

Equation (2.6) is the desired,result, expressed for convenience in

terms of the derivative of the average cunmlative pair-distribution

function, rather than in terms of the radial distribution function be-

cause the latter cannot be directly calculated,by the Monte Carlo method..

As indicated

necessary, and in

was also avoided,.

at the outset, no assumption of circular symmetry was

fact the usual assumption of uniform singlet density

Thus Eq. (2.6) applies, with the pressure definition of

Eq. (2.3), also to crystalline

necessarily uniform (though in

conditions, see Chapter

We will frequently

u = pV@T

for the compressibility

V=vp ,

3, the

phases in which the singlet density is not

the case of systems with periodic boundary

singlet density is always uniform).

find it convenient to use the symbol

(2.7)

factor. We also define the area per molecule

sad.define the hexagonal close-packed area per molecule

v0=/%s2/2 . (2.8)
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For coverings of the infinite plane by non-overlapping circles of

16
diameter a, it is known that V. is the smallest pxsible value of the

area per molecule v. The reduced area ~ is defined as

‘G= v/v. ● (2.9)

2.2 Estimation of the Equation of State

As indicated in Chapter 1, the average cumulative pair-distribution

function G(c) defined.byEq. (2.5) is estimated by the lbnte Carlo method

as the time average of the configuration-spacefunction G(~, ;) over a

realization of a suitable

states of the system. If

the realization

petit ensemble

at time t

t) = Gc~,

Markov chain in the space of the configuration

we denote the configuration state attained by

by;(t), and the correspond~g value of

;(t)~, then the re~ultfig esti~te of the

average G(c) is
t

1=—
t

The arrow indicates

y ii(c, t’)+
tu
the stochastic

average to the ensemble average as

G(c). (2.10)

convergence of the Markov chain time

lj+mo

Thus, the essence of the method is the generation on a high speed

computing machine of a sequence of configuration states, which sequence

forms a realization of a Markov chin having this convergence property.

For each state t’ in the sequenc~ the function ~(~, t’) and its running

average Gt/(c) are calculated for an appropria~ set Of v~ues Of C-

The development is carried to an appropriately
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2.3

whereupon the estimates ~t(~) nust be numerically differentiated,to

give G’(u), from which the compressibility factor u is calculated from

Eq. (2.6). The data reduction procedures involved are discussed in

Chapters 7, 8, and 9.

2.3 Classification of Parameters

2.3.1 Parameters which syecify the system: N, V(shape), and ~.

The basic parameters which define the physical hard-circle system,

and thus the space of configuration states, are the number of molecules

N, the area V (including its shape andhoundary conditions), and the

molecular diameter d. The first two of these parameters &re discussed

in detail in Chapter 3. Together they determine v . V/N, while a deter-

mines V. byEq. (2.8), the reduced.area ~ being then given byEq. (2.9).

It is convenient to reverse this procedure and,specify the reduced area

‘cas a fundamental system parameter instead of the diameter U.

2.3.2 Parameters which define the Mrkov chain: (pij) andb.

The conditions on the stochastic matrix defining the Markov chain

which suffice for the time averages of its realizations to converge

stochastically to the corresponding yetit ensemble averages have been

discussed,in detail elsewhere.1-5 Briefly, the configuration states to

be included.in the ensemble averages must form a single ergodic class,

and the elements of the stochastic matrix must satisfy a stationarity

condition involving the Boltzmann factors for the states.
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For the case of hard circles, the configuration states to be in-

cluded (“accessiblestates?!)are ordinarily all those in which no llover-

lapfloccurs, i.e., those in which all pairs (i, j) satisfy r
ij

s U. In

exceptional cases (Section 1.2.1) only a subset of these states may be

desired. If the one-step transition probability from state j to state k

is Pjk> the stationarity condition for hard circles reduces to the

reversibility or symmetry condition

‘jk
= pkj ●

The ergodicity condition requires that between any two ‘Inaccessiblestatesll

j and k there be a non-zero transition probability in some finite number

of steps.

The matrix which we used in the present calculations is the two-

dimensional nmdification of the one used in the hard-sphere calculations.5

Rather than write out its algebraic definition, we will describe the

stochastic process by which the configuration state ~(t + 1) at time

t -I-1 is generated from the state ~(t) at time t. One of the N molecules

is selected randomly and approximately uniformly; call this molecule

i(t). The two cartesian coordinates of i(t) (giving the position ~i(t)(t)

of this ndecule at time t) are given provisional displacements random

and uniform on a certain interval (-6,6), the other molecules remaining

in their positions at time t; call this _provisionalconfiguration

;’(t). If ~’(t) contains an overlap (i.e., if as a result of its provi-

sional displacement, molecule i(t) has approached closer than the dis-

tance a to another molecule), then i(t) is returned to its former
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position, and the next state of the realization is identical.to the

pre’ViOUS State: ;(t + 1) = ;(t). If ~’(t) contains no overlap, then it

becomes the next realized state: ~(t + 1) =;’(t).

The maximzm displacement parameter 6, which appears in the above

description (and.is not to be confused.with the Dirac delta function of

Section 2.1), affects the rate of convergence of the stochastic process

(i.e., the number of steps required on the average for a certain precision

of the statistical averages), but not

the petit ensemble limit. The value

for optimum convergence. It is clear

the existence of convergence toward,

of 6 should in principle he chosen

that both very small and very large

values will lead to too gradual a motion of the state point in configura.

tion space. In the hard-sphere case> a limited investigation of this

optimization problem was made, on the basis of the intuitive criterion

of maximizing the rectified trajectory of the

have been used as a rough guide in choosing 6

vestigation.

state point. These results

during the hard-circle in-

It is evident that the above described,Markov chains satisfy the

sufficient conditions for convergence, assuming of couse that the initial

state at t = O is chosen to be an accessible state, except for one possi-

bility. The latter is the case

state point to move between two

sible) regions of configuration

in which the prescription permits the

disconnected,( i.e., utually inacces-

spacej depending on their separation

relative to 6, as indicated,schematically in Fig. 2.1 The figure is to

be understood as a schematic projection of configuration space onto the
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Fig. 2.1 A possible one-step transition between two dynamically
inaccessible regions of configuration space.

two-dimensional space of a single molecule, with states j and k differing

only in the position of this molecule. The square with state j as center

is of edge 26, and consequently dynamically inaccessible states such as

k can Tossiblybe reached.from j. Such situations me believed to be

rare, since at densities where compartmentalizationof configuration

space is important the usual values of 6 are expected to be small com-

yared to the Trobable distance between mutually inaccessible regions.
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2.3.3 Parameters which determine the realization: ;(0) and,the pseudo-
random number sequence.

The realization which will

determined,by the initial state

quence which is used to produce

be obtained on the computing machine is

Z(O), and by the pseudorandom nuniberse-

the pseubstochastic sequence of states.

The initial configuration is usually a regular hexagonal arrangement of

the molecules with the distance a between nearest-neighbor centers given

by

a2 = 2v/73-N .

The random number sequence

(2.11)

is discussed in Chapter 4.

2.3.4 Parameters which determine the observations made upon a realization:

Ar2, K, and.At.

As seen in Section 2.1, for the determination of the equation of

state of hard circles, the derivative of G(c) at ~ = u is sufficient.

The required.numerical differentiation can accordingly be carried,out

using only observations of d(~, t) near ~ = U. To date only such observa-

tions have been made, not because the radial distribution function over

wider range is without interest, but because this restriction permits a

considerable increase in the speed with which the computer can generate

the realization. This comes about because the calculations required to

a

compute the observation ~(~, t) at each step can, if ~ is so restricted,

be limited to just the interactions of the displaced,molecule i(t)

(Section 2.3.2)with its immediate neighbors.5
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{}
For convenience the set of values La , at which the

are made, is chosen to be of the form

c;=G2+cYAr2 , cz=lj2,000,K ,

observations

(2.12)

2where Ar and K are suitably chosen parameters. They determine the

fineness of detail and,the range over which the cumulative pair.d.istri-

bution function is observed. In principle they should be chosen so as to

optimize statistically the results obtained in a given computation time.

In practice they have been chosen somewhat haphazardly, in part on the

basis of graphical differentiation techniques.

The realizations used,in practice me much too long to allow the

tabulation of the observations at each step of the random walk. Also,

the running averages ~t(~a) we too slowly varying to be convenient for

the purpose of monitoring the progress of the realization. For this

~se we make comse-grained or time-smoothed observations by averaging

~(~a, t) over successive groups of At steps each. Thus, our primary ob-

servations are

SAt

@(s,CX)S*
I

~(~ajt’), U =1,2, 0=0,K, s = 1,2,*** . (2.13)

t’=(s-l)At+l

The coarse-grainingparameter At could also, in principle, be determined

optimally on the basis of statistical considerations,but in practice it

has also controlled intermittent dumping of data for restarting the cal-

culation, and has been chosen on the basis of convenience in this respect.
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2.3

running averages ~t(~a), which converge toward the desired

averages, are of course easily obtained at times t . sAt:

s

‘sA#~) ‘+ I G(s’,a) .

S’=1

(2.14)

yarameter which determines only the speed of the calculation: d,.

The Wiffusion distancelld.is a parameter5 which affects

speed.with which the computer generates the observations on a

realization. Its value determines the rnimberof neighbors of

only the

particular

the dis-

placed.molecule i(t) (see Section 2.3.2) whose interactions with i(t)

must be calculated,at each time step. A small value of d leads to a

small number of neighbors but more frequent updating of certain tables

of these neighbors. The balancing of these two opposing effects leads

to an opti?munvalue of d. This was the subject of a limited investigation

for the hard-sphere case,5 in which a rather broad range of nearly

optinmm values was found,. The values of this p~s,meter in the present

investigationwere selected,for the most part by analogy with the be-

havior of the three-dimensional case.
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Chapter 3

PERIODIC BOUNDARY CONDITIONS, THE AREA V,

AND TEE NUMBER OF MOLECULES N

As in all our previous Monte Carlo investigations,we have used

periodic boundary conditions in the belief that they probably afford

the best means of approximating with a finite number of molecules the be-

havior of quasi-infinite thermodynamic systems.

3.1 Definitions

3.1.1 V must be a unit cell of a planar lattice.

The first requirement of

V must be a unit cell of some

given an area V of specified

linearly independent lattice

erty. Let Vm, with m and n

these boundary conditions is that the area

lattice which covers the plme. That is,

shape and dimensions, there must exist two

vectors ~1 and 72 having the following prop-

any positive, negative, or zero integers, be

the area obtained.by applying to every pint ~ of V = Voo the translation

RJR) = R+m71+n72 .

Then V is a proper unit cell if corresponding to any point fioof the
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plane there exists a unique pair of integers m(~o) and n(~o) such that

+
‘man Contatis ‘o”

It is immediately clear that this requirement

alone considerably limits the shape of V. For example triangular shapes

are excluded. Among the satisfactory shapes

(includingrectangles) and,certain hexagons;

linear boundaries would also be admissible.

are evidently parallelograms

certain shapes with curvi-

This requirement being satsified, one next associates with each

configuration of N hard-circle molecules in the area V the infinite con-

figuration (covering of the plane by circles) of

by applying the above translations to the finite

3.1.2 Summation conventions.

density
16

N/V obtained

configuration.

The set (ij) of molecular pairs over which the

Section 2.1 are taken for any configuration is then

sums and products in

defined as follows.

The index i runs over just the N molecules of the basic cell V = Voo.

The index j runs in principle over all the molecules in all the cells

V # V , as well as over the values j > i in V
00 Ilbwever,for the00“

systems we will consider,the molecular diameter a and the relevant

values of the argument ~ of the cuxmlative pair-distribution function

will always be small enough compared to the dimensions of V so that the

equations are unaltered.,withj restricted to its values in V and.to
00

the molecules in the immediately adjacent cells. Owing to this extension

of the range of the j subscript, the set (ij) now contains more than

the N(N - 1)/2 distinct pairs obtained,if both i and,j were restricted,
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to just the molecules in Voo. lbwever, the independent variables which

syecify a configuration are still just the N position vectors ~i ranging

over V = Voo, and it is readily verified that the equations of Section

2.1 are unchanged.

3.1.3 M3xhumpacking density.

IIIthe terminology of Section 2.3.1,a Cmfiwation h= ELIIoverlaP,

and is thus not an allowed state during the randnm walk, if there is an

overlap between any pair of molecules of the infinite system. And con-

versely any configuration which is an allowed state under the periodic

boundary conditions corresponds to a non-overlapping covering of the in-

finite plane with a packing density equal to the density N/V of the

finite system. Thus, a finite system with periodic boundary conditions

cannot have a packing density greater than that possible for an infinite

system.

As mentioned in Section 2.1, the ms.ximundensity for an infinite

system is that of the familiar hexagonal close-packed arrangement, which

has a volume per nmlecule equal to Vo, as given by Eq. (2.8). It iS ob-

vious that if we wish our finite system to approximate the behavior of

nearly close-packed, quasi-infinite systems, we should choose V and N

so that the area V is an N-molecule unit cell for the regular hexagonal

lattice.
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3.1.4 Unit cells for regular hexagonal lattice.

Figure 3.1 shows several unit cells containing one or two molecules,

which themselves generate the regular hexagonal lattice, and,from which

larger composite unit cells can be constructed. Of the possible shapes,

rectangles are computationally the most convenient. The smallest such

unit Cd-l contains two molecules, as shown in the fi~e, ~d has edges

a and.6 a, where a is the nearest-neighbor distance. A rectangular array

of LM such unit cells, with

cell with an area

v = aIlk2

for a system of

N = *LM

molecules. For both of the

a rectangle with side-ratio

edges fiLa and,Ma, is accordingly a suitable

(3.1)

(3.2)

systems to be reported here, the area V is

fi/*, the ratio L/’Mbeing fixed at 2/3. The

smaller of the two systems contains 12 molecules (L . 2, M = 3), the

krge~48 molecules (L =4, M=6); see Figs. 3.2and,3.3. Both willbe

discussed in more detail in subsequent sections of this chapter.

3.1.5 Toroidal formulation.

An equivalent, often helpful, description of periodic boundary

conditions for such rectangular areas is to regard the N molecules as

moving on the surface of a torus, with a suitable definition of distance.

The periodic boundary conditions are in fact sometimes called toroidal

boundary conditions. In the above discussion we proceeded by the more
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Fig. 3.1 Unit cells for the planar regular hexagonal lattice.
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Fig. 3.2 The 12.molecule system in the regular hexagonal close-packed
configuration, r . 1.
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Fig. 3.3 The 48-molect.iLesystem in a regular hexagonal configuration.
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cumbersome lattice definitions in order to more

connection with quasi-infinite systems.

Finally it should.be mentioned.that durtig

clesrly establish the

the random walk, a dis-

placement of a molecule across the boundary of the cell V = Voo into an

adjacent cell is snowed. However, under the above definitions the

molecule simultaneously reappears in V at the opposite boundary, so that

the number of

simplicity of

molecules contained in V is conserved. (Note the greater

the toroidal formulation.)

3.1.6 Uniform singlet density; reduction of configuration space to
2(N - 1) dimensions.

Every configuration of a periodic system belongs to a two-dimensional

continuum of equivalent configurations in which the relative positions ~ij

me identical, corresponding to uniform translations around.the torus.

Due to this symmetry the singlet density of say periodic system is uni-

form. In addition the configuration space can be reduced to 2(N - 1)

dimensions by introducing coordinates of the N - 1 nmlecules i = 2,3,””*,N

relative to nmlecule 1. The position =1 of molecule 1 then disappears

from Eq.s.(2.1) and.(2.s), so that the integrations over ~1 can be carried

out to yield a factor V. This factor cancels from numerator and denomina-

tor of Eq. (2.s),with the result that the average cumulative pair-distri-

bution function G(c) is expressed as the ensemble average for a system of

N hard circle molecules having 2(N - 1) degrees of freedom, one ~lecfie

being held fixed at the origin.
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The random walk of the l.bnteCarlo method can be modified to take

place in this 2(N - I)-dimensional space by simply holding one molecule

fixed.. In some recent calculations for Lennard-Jones molecules this has

indeed.been done, since in addition to slightly increasing the calcula-

tion speed [bya factorN/(N - I)], the study of the geometrical struc-

ture of sample configurations is somewhat simplified.

3.2 Effect of Periodic I?azndaryConditions

and Finite N at Low Densities

17 have recently investigated theoretically theLebowitz and,Percus

dependence of the petit ensemble press~e on the nwber of molecules

for systems with periodic boundary conditions. They showed that there

are essentially two types of dependence of p on N at fixed v and T. One

of these, which they call the lhormalltdependence, arises from correction

terms to the virial coefficients which are of the form of polynomials in

N-l. The second, or %nomalousff dependence on N is more complex, and.

arises from the srea (for two-dimensional systems) dependence of the

virial coefficients of large enough order for the corresponding Mayer

? clusters to wind,at least once around the periodic torus. The latter

dependence can be predominant for very small values of N.

For the rectangular systems with L/M . 2/3 the reihlcedarea

rc(v, N), below which the virial coefficient of order v becomes area

dependent, is given by

Tc(v, N) = 4v2/3N.

65

(3*3)



3.2

In Table 3.1 this critical reduced area is ta%ulated as a function of v

for the two systems of the present investigation. Ih the 12-mlecul-e

system,the second and third virial coefficient have a Vnormal!lN-depend-

ence (i.e., are volume independent) at all values of the reduced area,

while the fourth virial coefficient becomes dependent on T for T < 1.78.

b the 48-molecule system,the second,through the sixth coefficients have

normal behavior, but the seventh virial coefficient is dependent on ‘c

for T <1.36.

TABLE 3.1

ANOMALOUS

CRITICAL VALUES OF THE REDUCED AREAG

DEl?ENDENCEOF VIRIA.LCOEFFICIENTS Cv

TC(V, N)

v N =12 N= 48—

2— —

31 —

4 1.78 —

5 2.78 —

64 1

7 ~.22 1.36

8 7.11 1.78

99 2.25

10 11.11 2.78

FOR
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3.3 Effect of Periodic Boqndary Conditions

and Finite N at His& Densities

3.3.1 &immaxy of Salsburg-Wood.asymptotic analysis.

Complementing to a certain extent the results of Percus and,Lehowitz

18discussed,in Section 3.2, Salsburg and.Wood, have recently established.

theoretically the behavior of the equation of state of finite periodic

systems of hard circles or spheres in the high density limit.

from

3.3.1.1 Stable Limiting configurations.

The fundamental assumption is that as the reduced area approaches

above a certain value T+. in a system of fixed.sha-peand N. a closed. .

region of the 2(N . 1)-dimensional configuration space of Section 3.1

contracts to a single point or limiting configuration Z*. As a result

at infinitesimal expansions from the reduced.volume @ only configuration

states which are infinitesimally close to the limiting configuration

space point =* are accessible from Z*. Such a limiting configuration is

said,to be stable. No easily applicable sufficient condition for =* to

have this stability property was obtained, but a necessary condition on

the coordination number c (defined as the average number of contacts

per molecule) of the limiting configuration was shown to be

c24_ 2/N . (3.4)

In addition an obviously necessary condition is that the limiting con-

figuration be close-packed, i.e., no molecule must be able to move with
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the other molecules held.fixed..

3.3

3.3.1.2 Rree.volume equation of state is asymptotically correct.

Provided that the limiting configuration is stable, the following

asymptotic expression for the petit ensemble equation of state restricted

to configurations accessible from the limiting configurationwas obtained:— —.

pv 2(1 - N-l)=+

“m= ‘G- ~* +0(1) . (3.5)

This result agrees, neglecting terms of O(N-l) and O(1) in (’c- &),

with the free-volume equation of state
18. . .. -,..L,.–-.—.-

basea on me ssme unnzmg con-

figuration,
.+

3.3.1.3 Difficulties for large N.

This asymptotic agreement with the free-volume approx-tion

(3.6)

is the

is because T - -i7* ~st be O(N )

be inaccessible from the per-

the molecules. The latter situa-

most interesting result of the Salsburg-Wood analysis. Hbwever, it still

has to be regarded as an uncertain approximation as far as systems of

thermodynamic size are concerned. This

if the states accessible from~* are to

+
mutations of r* obtained.by renumbering

tion is necessary (though not sufficient) for the Salsburg-Wood.derivation

of Eq. (3.5). Such a range of expansion is uninteresttigly small for

thermodynamic values of N. There are intuitive reasons to believe that

Eq. (3.5) is valid for such large systems, with ‘r*= 1, but tiis kS not

been proved.
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393

3.3.2.1 Stable regular hexagonal lattice.

The regular close-packed hexagonal configurationwith T* . 1 is

undoubtedly an example of a stable limiting configuration, although a

formal proof is lacking. In this case Eq. (3.6) becomes the usual free-

volume equation of state, which should consequently usefully approximate

the equation of state of finite systems at high density, provided that

the hexagonal configuration is accessible to the system. And under the

usual supposition that the vast majority of states of quasi-infinite

systems at high density sre close to the regular hexagonal configuration,

Eq. (3.6) is hopefully a useful approximation for these systems also.

3.3.2.2 Unstable honeycomb lattice.

The close-packed honeycoti lattice configuration with @ = 1.5,

Fig. 3.4, is an example of an unstable limiting configuration (for all

systems except those with very small values of N) whose coordination

nuniber(3) does not satisfy Eq.(3.4). Examination of the figure shows

that by a coordinated rotation of the molecules in one of the hexagonal

rings through one-twelfth of a revolution, the system reaches a configu-

ration in which these molecules, as well as their nearest neighbors,

all have considerable freedom of movement.
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Fig. 3.4 The unstable close-packed (~ = 1.5) honeycomb lattice of
coortiation nuxher 3.

3.3.2.3 Unstable square lattice.

Another example of an unstable limiting configuration is the close-

packed squsre lattice with N = 1.154, Fig. 3.5. Letus first consider

this configurationunder periodic boundary conditions in a squeze srea

v = NG2. We note immediately that the configuration is unstable in that

any row of molecules (except that containing the fixed molecule) can be

slipped horizontally sround the torus by an arbitrary momt. If d.ter-

nate rows sre so displaced.a distance of one hard-circle radius in the

same direction, we srrive at a configuration in which the nmlecules

within each row are still close-packed,but in which adjacent rows are
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Fig. 3.5 The close.~acked (T* = 1.154) square lattice.

no longer in contact. Alternate molecules in each row can consequently

be given small vertical displacements such that the configuration be-

comes one in which no molecules are in contact. Consequently the pres-

sure obtained.by averaging over states accessible from the close-packed.

squsre lattice is finite at ~ = 1.154. For sufficiently large N these

states may be expected to include a preponderance of states which approx-

imate a regular hexagonal arrangement of this density except for boundary

defects. The pressure is then expected to approach a~proximately the

usual (T* = 1) free-volume value.
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. .

3.3.2.3.1 Effect of rigid boundaries. The p?eceding example shows

that a configuration can be close-~acked, satisfy Eq. (3.4), and still be

unstable. Let us consider the same system with rigid.wall boundary con-

ditions. As far as we have been able b determine, this close-packed

configuration is now stable at finite N. Consequently the equation of

state under these conditions wouldbe expected.to approximate Eq. (3.6)

with T* = 1.154, for T - T* = O(N+). Bbwever, the behavior of large

systems at expansions greater than this would be quite different; as

connections appear between the square lattice configuration and the

approximately hexagonal configuration, the pressure can be expected to

shift rapidly to the lower values characteristic of the latter configura-

tions. Thus, one can argue that periodic boundary conditions are slightly

advantageous since they allow the instability of such a close-packed con-

figuration to manifest itself in finite systems.

3.3.3 Conclusion.

Comparhg the Salsburg-Wood analysis with the hard-s~here hnte Carlo

results of Fig. 1.1, we see that the approximate agreement of the high

density ~ints obtained from calculations started from the face-centered

cubic lattice (the ?tsolid~lbranch of the equation of state) is to be ex-

pected, and hopefully shouldbe characteristic of much larger systems.

The lfextendedfluid!!brsnch for the j2-molecule system wouldbe expected

to be in approximate agreement with Eq. (3.6) with N near 1.15. Ebwever,

the significance of this curve is in doubt. It might be a small s~tem
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artifact; or it might be the small system manifestation

randomly packed configurations of large systems.

The asymptotic N dependence given byEq. (3.5) my

of metastable

be expected to

be of some use in compsring Mmte Carlo calculations for systems of

different numibersof molecules, but its usefulness in this connection

may be expected,to be limited by our lack of knowledge of the N depen.

dence of the O(1) term (see Chapter 10).

3.4 The 12-MOlecule System

3.4.1 Surface molecules.

The twelve-molecule system defined.in Section 3.1 was shown in

Fig. 3.2 in its hexagonal close-packed confi~ation, -C= 1. ~ a sense

one can say that this system is almost all edge or %urface~!,although

the term requires a specisl interpretation since under periodic boun&cry

conditions there is no true one-dimensional surface (edge). ~wever, con-

sidering any specific configuration such as Fig. 3.2,

surface molecule is defined to be one which has among

hors one or more fli~geffmolecfles, i.e., one or more

we see that if a

its nearest neigh-

molecules contained

in another unit cell Vn in the notation of Section 3.1.1, then all ex-

cept two molecules (nunibers6 and 7 in Fig. 3.2) are surface molecules.

Another way of characterizing the finiteness of the system is to

note that, while in the regular hexagonal lattice arrangement the six

nesrest neighbors of each molecule are all distinct,there are only three

distinct next-nearest neighbors, instead of six as would.be the case in
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a large system. For example, in Fig. 5.2 the six next-nearest neighbors

of molecule 7 are molecules 5, 10, and 12, each being counted twice. In

this respect the 12-molecule, two-dimensional system is similar to the

32-nmlecule, three-dimensional system.

3.4.2 Toroidal topology of lattice lines.

Still another characterization of rectangular yeriodic systems is

obtained by considering the way in which the Trinci~al lattice planes, or

lines in the yresent two-dimensional case, wind around the torus. The

hexagonal lattice has three systems of such lines, which in Fig. 3.2 are

at angles of 30°, 90°, S.Ua150° with respect to the longer edge of the

cell. The vertical lines are seen to form four distinct columns (rings),

each of which contains three molecules. The inclined lattice lines,

however, fall into a single class. Proceeding from nmlecule 1 along the

1500 line, we find the sequence 1, 2, 7, 8, 9, 10, 3, 4, 5) 6> 11) 12}

1, ““” . That is, all twelve nmlecules are encountered before a repeti-

tion occurs. In geometrical terms, the 150° lattice lines of this system

in the hexagonal lattice configuration form a single spirsl around the

torus.

3.4.3 Critical ‘cfor diffusion; validity of free-volume equation of state.

In connection with the question of the reduced area range over which

the assumptions of the Salsburg-Wood analysis are valid for this system,

it is of interest to estimate the smallest vslue of -rat which the
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configuration of Fig. 3.2 and one or more of its permuted.arrangements

(obtaihedfrom Fig. 3.2 by renumbering the molecules) are connected. The

connecting path is probably one which we observed during the Monte Carlo

calculations,but which might have

It corresponds to a fluctuation in

columns of three molecules rotates

been anticipated,by study of Fig. 3.2.

which one of the above-mentioned,

one (or more) lattice distance around

the torus. The value of T required,for this fluctuation is that at which

one such column or ring has just sufficient room to rotate freely when the

other three rings are tightly nested together, as shown in Fig. 3.6. fi

the 12-molecul.esystem this requires T z 1.136.

the permuted lattice configurations are isolated,

does not follow, of course, that the free-volume

At smaller reduced areas

from each other. It

approximation is neces-

sarily good.for this system at all T < 1.136, since Eq. (3.5) is only an

( 12

( 0

( 4

Fig. 3.6 High density diffusion mechanism, showing the presumably highest
density path
possible for

between permuted regulsz hexagonal co~igu&tions, j&t -
the 12-molecule system at T = 1.136.
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asymptotic expression valid at ~ + 1.

On the other hand, it is possible that the free-volume approximation

may indeed be useful for T x 1.136, since the probability of the above

fluctuation is exactly zero at this minimum value of r. At this and

slightly larger reduced volumes, the configuration-spacevolume of the

connecting paths is small, and,the region of accessible space omitted

in the Salsburg-Wood ‘Qolytope” estimate may be negligible. In order to

form an idea of the rapitity with which the connections become Mrger as

T increases, we can calculate the reduced.area at which the above rota.

tion of a ring can

lattice locations.

would appear to be

connecting region.

take place with all other rings in their regular

Under these conditions the fluctuation in question

fairly probable, corresponding to an appreciable

The required.value of T is

volume approximation is expected to break down

area.

3.4.4 Alterns.tivetetragonal (c =4) lattice.

4/3. Thus, the free-

st some smaller reduced

Figure 3.7 shows that this 12-molecule system is also compatible

with a different regular lattice configuration which is a relative of

the square lattice of I!Lg.3.5. This lattice has a two-molecule rect-

angular unit cell of side ratio fifl, and is compatible with aKIY

rectangular srea V based on the regular hexagonal lattice for which the

ratio L/M = 2/3 (see Section 3.19. The lattice is close-packed.at

T = 48~3 x 1.116, and is probably stable since its coordination number 4
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s

Fig. 3.7 A tetragonal close-packed.(T* = 1.1163) confi~ration which is
compatible with the 12.molecule system, as shown, as well as the 48-
molecule system.

square lattice,its lattice

some interval of reduced

is probably inaccessible

satisfies Eq. (3,4.),and,in contrast to the

lines are not orthogonal. Consequently, in

area greater them 1.H63 this configuration

from the regular hexagonal configuration. (Note that the close-packed

reduced area of this c = 4 lattice is slightly smaller than the above

estimate of the smallest reduced area at which the simplest permutations

of the hexagonal arrangement are connected.)

For some interval of reduced area close b ,T = 1.1163, then, the

equation of state obtained by averaging this system over the states

accessible from the c = 4 configuration wou.1.daccordinglybe expected

to approximate that given byEq. (3.6) with @ = 1.1163. For larger
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reduced areas, however, the equation of state wouldbe expected to shift

toward the lower values characteristic of hexagonal configurations. For

lsrge systems Fig. 3.6 suggests this should occur at expansions where the

inclined close-packed lines of nmlecules can slip along each other. For

the 12-molecule system, however, this is not a possible mechanism, since

the topology of these lattice lines is like that of the inclined lattice

lines of the hexagonal configuration: each of the two systems contains a

single class of all 12 molecules.

This configuration is mentioned in order to show the type of be-

havior which can appear in finite periodic systems. The st~cture of

the arrangement, e. g., the angle between the lattice lines, depends on

the ratio L/M, and one can be reasonably certain that for large s~tems

it is of no statistical significance.

3.5 The 48-Mlecule System

The regular hexagonal configuration of this system was shown in

Fig. 3.3. The area V for this system can be regarded as being made up

of four of those for the 12-molecule system. % a result any configura-

tion of the latter has a corresponding analogue among the configurations

of the 48-molecule system. Thus, many of the remarks already made in

connection with the smaller system apply also to the larger one. In par-

ticular, the tetragonally coordinated lattice of Fig. 3.7 is also possi-

ble with the 48-molecule system.
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Using the definition of surface molecule given in Section 3.4.1,

exactly one-half of the molecules of this system ere so ch~acterized.

In terms of the shell structure of the regular hexagonal lattice, all

neighbors of any molecule are distinct through the fifth shell. The

30° snd 150° lattice lines are found to decompose into two evenly divided

classes each. The smallest value of r at which one of the eight columnar

rings of six molecules can rotate around,the torus is 1.063, correspond-

ing to the larger concentration of lrfreearea!!possible in the larger

system. The value T = 4/3, at which this rotation is possible from the

re~lar hexagonal confi~ration is, of course, independent of the size

of the system.

The above description does not exhaust the possible structures

obtainable with this system, as we shall see when we come to the discus-

sion of the Monte Carlo results.
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Chapter 4

THE CALCULATOR PROGRAM

All the calculations to be described in this report were performed

on IBM Type 704 machines, using a two-dimensional.adaptation of the

hard-sphere program which has been descri%ed in detail elsewhere.5 With

this program a typical calculation time for one time-step of a realiza-

tion is roughly 17 milliseconds.

4.1 Random lhunbers

The pseudorandom numbers used.for all realizations were those of a

19 The cycle lengthsingle sequence of 70-bit %riLdle square” numibers.

of this sequence is unknown, but was found%y suitable tests to be

greater than

realizations

the sequence

bits) of one

four million. This iS more than is required for any of the

to be described here. Except for this test for repetition,

has not been further tested statistically. One-half (35

of these numbers

9 bits to select the nmlecule

coordinate displacements; the

was used at each time step as follows:

to be moved; 12 bits for each of its two

remaining two bits were discarded.
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4.2 Two V(?rsh)rls of the Proaam

Twd slightly different codes were used.,which we

codes A and B. In code A, through an oversight, what

low-order (less in magnitude than 2-17, unit distance

will designate as

amounts to a small

being the longer

edge of the rectangular cell) noise was introduced into the displaced

position Y! of the molecule which is moved at each time stey t
l(t)

(Section 2.3.2). The effect of this noise is small as far as the Markov

chain transition probability matrix is concerned, but at some point in

any realization its presence changes the success . failure outcome of

an attempted displacement for which this decision is borderline. Con-

sequently the configuration at the next time step of the realization in

which the noise is present differs from that in the same realization

without noise. From that point on, of course, the two realizations are

stochastically different. In the same way,two code A realizations which

are identical except for their values of the diffusion parameter d.

(Section 2.3.5) will also differ, which would not normally be the case.

In code B this noise was accordingly removed. A nuniberof realiza-

tions with identical parameters were run with both codes, and the results

were found to be in statistical agreement, as expected. Such calcula-

tions accordingly can be regarded as replicate observations on the same

system, in mch the same way as variation of the initial configuration

or the random number sequence can be used.b prodnce re~licate realiza-

tions for the same Ikrkov chain, or as variation in the displacement

parameter 6 can be used to obtain different Markov chains convergent to
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the same system averages.

4.3 Program Input and Output

The data required for input to the program are the parameters al-

ready discussed in Section 2.3: the system parameters, which are the re-

duced area T and the integers L and M which determine V andN according

to Eq. (3.1) and Eq. (3.2); the maximm displacement parameter 6 which

determines the Markov chain; and the observational parameters consisting

2
of the time-snmothing interval At and the parameters Ar and K which

determine the detail and range of the observations of the cumulative pair

distribution function. In addition the initial configuration can be

Finally the diffusion parameter d must be

the yrogram IS the set of time-snmothed values

provided; if none is give~the ~rogram positions the molecules on the

regular hexagonal lattice.

given.

The primary output of

6(s, a) of the cumulative pair-distribution function, as given byEq.

(2.13). These quantities, for Q = l(l)K, are recorded on magnetic tape

at the times t = At, 2At,==”, sAt,-””, along with sufficient additional

data ta permit the realization to be restarted at these times, in case

it is interrupted (for example, by a machine error). In particular the

configurations ~(t) at the above values of t are available on this output

tape, which is preserved.as the permanent record of each realization.

This tape is used as input to various auxiliary programs which perform,

for example the statistical reduction of the observations, as described
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in Chapters 7, 8, and,9. Another such program can be used to plot the

+
snapshot configurations r(t), available on the tape at time intervals

At, on the SC-4O2O microfilm printer-ylotter.
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Chapter 5

RESULTS FOR TRE 12-MOLECULE SYSTEM

We generated 27 realizations of varying length for the system of

12 hard circles described in Section 3.4. The parameters ~d result~g

compressibility factors are given in Table 5.1. The uncertainty esti-

mates given for the compressibility factors were obtained by statistical

techniques which will be described in Chapters 7, 8, and 9. Although

they were formally obtained as estimates of the standard deviation of

the estimated compressibility factors (whose distribution should be

approximately normal), with more than 100 degrees of freedom in most

cases, the statistical approximations involved are yrobably such as to

make them too small. Thus, caution should be exercised in any statis-

tical application such as confidence interval estimation.

As indicated by the appearance in Table 5.1 of just a single value

of pV@kT for each realization, we did not observe in this system of

12 hard circles the ?Ijumpyllor !f~o-plateau!lbehavior which was ex-

hibited by the hard-sphere systems as described in Chapter 1. This

point is discussed in more detail in Section 5.1. Section 5.2 is devoted
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TABLE 5.1 PARAMETERS AND COMPRESSIBILITY FACTORS

FOR TEE SYSTEM OF 12 HARD CIRCLES
(see footnotes on following page)

Realization(a)

Al

A2

A3

A4

A5

A6

A7

A8

A9

Alo

All

A12

A13

A14

A15

&L6

A17

A18

A19

Mo

A21

A22

A23

A24

A25

A26

A27

‘c

1.025

1.050

1.075

1.100

1.150

1.150

1.200

1.250

1.250

1.2$Xl

1.300

1.350

1.400

1.450

1.475

1.500

1.500

1.500

1.525

1.550

1.600

1.700

1.800

2.000

2.500

3.000

3.90

26
a -a

2.4

2.2

2.4

2.2

2.2

0.44

2.2

1.8

2.03

2.2

2.2

2.3

2.0

2.3

2.3

2.5

2.4

2.5

2.5

2.5

2.3

.2.?

2.5

2.5

2*9

2.8

3.0

85

K—

18

13

12

12

12

19

11

11

19

13

10

11

11

10

11

11

11

11

11

11

10

10

9

8

11

11

8

~(b)

99

14

19

23

24

19

11

29

15

16

29

32

24

42

44

42

76

30

38

39

99

23

24

16

18

23

26

pVfikT

76.EU ~ 0.55

38.06 * 0.38

26.42 f 0.17

20.62 f 0.09

14.25 * 0.07

62.9 ~ 0.87

11.20 * 0.10

9.182f 0.063

9.262? 0.098

8.4o5 k 0.076

8.328? O.O&

7.423? 0.084

6.857 f 0.079

6.272f Oo091-

6.214 t 0.047

6.033~ 0.062

5.W9~ 0.052

6.oo8~ 0.079

5.788* 0.062

5.524* 0.058

5.229* 0.073

4.660 * OoO&

“4.o66f 0.062

3.372 ~ 0.064

2.459* 0.031

2.030 ~ 0.029

1.674* 0.015



FOOTNOTES TO TABLE 5.1

a All realizations were generated using code A (see Section 4.2) with
At = 19 200, except Al, A6, A9, and A21 for which code B with
At = 4 800 was used. The value Ar2/a2 = 1202-~ was used in all cases
except Al and A6, which had a value one-eighth as large, and A26, which
had one-half the standard value. All realizations were started from
the regular hexagonal lattice (Fig. 3.2) with the following exceptions:
A6 and A9 were started from the tetragonal lattice of Fig. 3.7; AIO
was.started from a configuration generated by the ITcompressionprocessf!
(see Section 5.1.2); KL8 was started from a configuration obtained by
Alder and Wainwright after 20 000 collisions along a dynamical trajec-
tory started from the hexagonal lattice.

b This column gives the number of coarse-grained observations (of At
steps each) used in estimating pV/NkT. On all realizations the first
coarse-grained observation was not included, except for A9, where the
first five such observations were omitted.



5.1

to the geometrical structures observed in this system. In Section 5.3

our qualitative conclusions with respect to this system are summarized.

Discussion of the quantitative aspects of the equation of state results

is postponed until

the data reduction

after the calculations for the 48-molecule system and

techniques have been described.

5.1 Statistical Behavior

5.1.1 Regular lattice realizations.

Gur principal objective in studying the 12-molecule hard-circle

system was to see whether it would exhibit phenomena -possiblyindicative

of the presence of a phase transition in large, quasi-infinite systems.

Such

true

indications might be of essentially two different types.

The first possibility is that it would be feasible to estimate the

ensemble average (over-all configurations accessible from the hexa-

gonal lattice) over the entire density range. In this case the indica-

tion of a possible phase transition would take the form of an anomaly in

the resulting p-v isotherm, presumably either a 100-pof the van der

Waals type or a more or less horizontal inflection point. It might then

also be ~ossible to obtain a.similarly complete equation of state for a

significantly larger value of N, and,thus perhaps to obtain some indica-

tion

of a

of the behavior of the anomaly with increasing N.

The second,phenomenon which might be regarded,as suggestive

phase transition is the same IIjwpy?lor l!tio-plateau~!behavior as

was obsened for hard spheres and described in Chapter 1. None of our
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realizations of llarkovchains for the 12-nmlecule system displayed such

behavior. However, as we shall see, later calculations for the system of

48 hard.circles did display this “jumpy”behavior at reduced areas in the

interval 1.3 to 1.35. The calculations for the smaller system were al-

most all done before those of the larger one, so that at the time we had

no particulu reason to concentrate our attention in this interval of re-

duced area. As a result,for the 12-nmlecule system in this interval we

have only realizations All and A12 at ~ . 1.3 and 1.35 respectively.

The JIcontrolchsrts?!for the first three observed points G(s, 1),

d(s, 2), and g(s, 3) of the cumulative pair-distribution function for

these two realizations are shown h Figs. 5.1 and 5.2. Even in retrospect,

considering our later experience with the 48-molecule system, these control

charts are not especially noteworthy, although that for realization A12

shows some indication of non-randomness in successive coarse-grained ob-

servations.

Thus, our calculations indicated,that the ensemble averages over the

accessible configurations of this system were being reasonably well esti-

mated at all densities. It was accordingly possible ta inquire about the

presence of anomalies in the resulting isotherm which might, as already

described, be indicative of a phase transition in large systems. In

F!Lg.5.3 the estimated reduced pressure pvo/kT is plotted against the

reduced area T in the sane logarithmic representation as used in Fig. 1.1

for hard s~heres. Also shown are the virial equation of state, with

-5neglect of terms of O(T ) as given by Metropolis, et al.,
1
and the usual
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Fig. 5.2 Control charts for the first three cumulative distribution
functions of realization A12 at r = 1.35.
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Fig. 5.3 The equation of state of the system of 12 hard circles as
calculated by the Monte Carlo method in the present investigation (o).
Also shown (x) are the results of Metro~lis et al.l for 224 hard circles.
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free-volume equation of state Eq. (3.6),with @ = 1. (The free-volume

curve for T* = 1.1163 and the neighboring mint for realization A6 are

discussed in Section 5.2.4).

The results have the expected qualitative behavior at low and high

densities. In the latter region the points lie slightly below the free.

volume curve, %y an anmunt which is in at least rough agreement with the

N-l term inEq. (3.5). At low densities the lbnte Carlo values approach

agreement with the virial approximation; the scale of the figure is too

small to show whether or not the difference is O(N-l T-l) as would be

expected from the analysis of Lebowitz and Percus.

Furthermore, we note that all the points appear to lie on a reason-

ably smooth curve, includtig across the interval ~ . 1.3 to 1.35 in which,

as already mentioned, the 48-molectie system will be seen to exhibt anom-

alous behavior. Figure 5.3 is in marked contrast to Fig. 1.1, where even

if all the points in the interval T . 1.5-1.6 were ignored, and the en-

tire “extended fluid” branch as well, the remaining points for the regu-

lar face-centered cu%ic lattice realizations would clearly indicate the

presence of some sort of anomaly between T = 1.5 and 1.6. The Mnte

Carlo results for the 12-nmlecule system as plotted in Fig. 5.3 give no

hint of any sort of anomaly which might suggest a phase transition for

large systems, nor does Fig. 5.4 fn which the mid-range data are shown

in the usual linear representation.

Comparing (Figs. 5.3 and 5.4) the present results for 12 hard

circles with those of the original investigation1 of the system of 224
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Fig. 5.4. Central portion of Fig. 5.3 re@otted on a linear scale. The
radii of the points (.) correspond,approximately to the standard.
deviations given in Table 5.1.
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hard circles, we note that there is approximate agreement at both low

and.high densities, 17 adas would be expected from the Lebowitz-Percus

Salsburg-Wood
18

analyses. A more quantitative comparison at these two

extremes will be

The present

previous ones in

made in Chapter 10.

results appear to be significantly higher than the

the mid-density range T = 1.3 to 1.5, say. Two explana-

tions of this difference are possible. On the one hand, it is conceiv-

able that the two systems, one of 12 molecules in a rectangular cell, the

other of 224 molecules in a square cell, stmply have appreciably different

equations of state in this region. As will be seen when the behavior of

the 48-molecule system is described, there is reason to suspect that such

is indeed the case,but in quite a different fashion from that suggested

by the results of Ref. 1.

The other possibility is that the random walks of Metropolis et al.,

because of the rather slow calculator availa%le at the time, were not

long enough for convergence; that is, their averages are too low due ta

‘inemory”of the initial regular configuration. In our opinion this

latter possibility is quite likely since accorCtLngto Metropolis et al.,1

their random walks were all less than 22 400 steps long, only slightly

exceeding the usual time-smoothing interval for our smaller systems. We

ordinarily discard the first

a tendency to fall below the

density range.

coarse.grained,observation because it

over-all average, particularly in the

shows

mid-
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5.1.2 A single “compressor”experiment.

With the intention of seeing whether

fluid.!!branch of the 12-molecule equation

we could obtain an !Iextended

of state distinct from that

obtained by starting the realizations from the hexagonal lattice, we

carried.out one l?compressor~!experiment using the technique described in

Section 1.2.3. The configuration selected.was the last one in realiza-

tion~6 at T = 1.5. It was l’compressed.flto r = 1.29, and,the resulting

configurationused as the starting point for realization AIO. As shown

in Figs. 5.3 and,5.4 the resulting reduced.pressure is not significantly

different from that expected for a realization begun at the regular hexa-

gonal configuration.

the

our

At the time, this result was interpreted.as additional support for

absence of any behavior indicative of a phase transition. However,

subsequent experience in studying the geometrical structure of both

this and the larger system has suggested, as will be disassed fi Sec-

tion 5.2.2, that the parent configuration from realization ~6 had a

structure so close to the regular hexagonal configuration that the above

result might have been e~ected.

At this point the investigation turned to the

with results to be described.in the next chapter.

48-molecule system,

Recently the labora-

tory acquired.the high-speed,,electronic printer-plotter device (SC-4020)

mentioned,earlier, with which it has been feasible to make a nnch more

thorough study of the geometrical structure of the hard-circle system

than was possible using hand-plotting techniques. Accordingly, we
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5.2

returned briefly

trical character

in the following

to the 12-molecule system in

as a function of the reduced

section.

order to study its geome-

area -c,as will be discussed

5.2 Geometrical Structure of the 12-Molecule System

5.2.1 VOTOnOi -pOlygOns.

In characterizing the geometry

from the Markov chain realizations,

of irregular configurations sampled

we will find it convenient to employ

the ‘Voronoi~olygonsr!used by Rogers
16

in establishing his upper bound

for the greatest possible Tacking density of hard spheres, and by Banal
20

in his recent studies of the packing of hard spheres (in the three-dimen-

sional case, of course, one has ‘Voronoipolyhedra!!whose definition and

Properties are similar to those given below for two-dimensional systems).

In any configuration ~ of a system of N hard-circle nmlecules, there

is one

of all

closer

Voronoi plygon for each molecule i. It is d.eftiedas consist~g

those points of V (regarded as the surface of a torus) which are

to ~~ (the center of molecule i) than to the center of any other
J-

molecule. The boundaries of the polygon are evidently segments of some

of the N - 1 perpendicular bisectors of the line segments ~. j=l,
lj’

2,***, N, #i. From the definition it is easy b see that the N plygons

are all

In

tion of

polygon

convex and fit together so

irregular configurations a

a lbeighbor!rof molecule i

as to fill the area V.

convenient (for some purposes) defini-

is any other

shares an edge with that of molecule i;
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