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ABSTRACT

An smal@.s is made of the anal@gy between schemes for integrating

the equations of motion of a compressible fluid, in Lagrangian coordi-

nates, and molecular models of matter. Computation schemes involving

one and two independent variables are considered, for flows with and

without shocks.
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I. FLOWS IN ONE SPACE DIMENSION

1. Introduction. In his pioneer paper [9] on the nmerical solu-

tion of time-dependent compressible flow problems, von Neumann suggested

using Lagrangian independent variables. That is, he suggested computing

the vector position~ of a moving fluid particle with material coordinate

~, as a function x(a,t)--

mension (see 5 2),this

of time t. For homentropic flow in one space di-

smounts to integrating the hyperbolic equation

(1) xtt=-pa=F’(u)xaa, where u = Xa;

and

(2) p = p. - F(u)

is a homentropic equation of state. Here subscripts denote partial deriv-

atives (thus x
tt

= a2 X/atZ), c1= # i.s the specific volume, and F’(o) > 0.

Von

yielded a

Neumann observed* that the natural spatial discretization of (1)

system of ordinary differential equations of the form

(3) m d2xi/dt2 = f(xi - xi-l) - f(xi+l - xi),

*
Though [9] is not easily available, it has been summarized in [6].
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where we set f(?5). -F(5/Aa). These are the

of a system of identical particles of mass m

equations of motion

= Aa, joined by springs -

Von

particles

of gases.

i.e., of a mass-spring system.

Neumann also suggested that the trajectories x<(t) of these
A

were analogous to those of gas molecules in the kinetic theory

Essentially because of this analogy, he “expected that the

approximation (3) would prove itself better than its original (l), and

give adequate approximate descriptions of shocks”.

Since 1944, von Neumann$s computational ideas have been extensively

explored. Von Neumann himself [11] decided to introduce “artificial vis-

cosity” (dashpots) into the mass-spring system (3) to simulate shocks,

as being more efficient computationally than statistical averaging of

the type used in the kinetic of gases. But no systematic exploration has

been made of the analogy which seemed so interesting to von Neumann.

The present paper* represents such an exploration; it analyzes the

relation between Lsgrangian hydrodynamical computation schemes and

molecular models of matter.

First, it notes that the force-laws of the system (3) correspond

to molecular models of crystals and liquids (“dense” gases) more closely

than to the models of “rare” gases used in the kinetic theory of gases.

It then shows how various physical concepts, familiar in theories of the

*
It was begun jointly with S. Ulam in 1953, in informal collaboration
with von Neumann. The collaboration of Mr. Lynch started in 1958.
The
and

work has been done largely at the Ios Alsmos Scientific Laboratory,
under Contract AT(30.1)-1987.
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liquid and solid state, are

schemes. It continues tith

chanlcs to such computation

applicable to hydrodynamical computation

applications of ideas from statistical me-

schemes.

Finally, it explores the mechanical properties which are possessed

by the synthetic materials defined by such computation schemes. Such

materials* may well simulate the behavior of real solids under large de-

formations, and that of real solids and liquids under extremely high

rates of strain, as well as or better than the.classical models of con-

-X-X
tinuum mechanics. In addition, their properties can be effectively in-

vestigated on high-speed computing machines, and a number of specific in-

vestigations of this type are proposed.

2. Elastic fluids. The simplest model of continuum mechanics is

defined by the following two assumptions: (i) the stress at any point

x and time t is a scalar ~ressure p(~,t), and (ii) the stress is a

single-valued function of the density, p = P(P). These assumptions may

be said to define a homogeneous elastic fluid, since they hold in any

homogeneous isotropic elastic medium incapable of sustaining a static

shear stress.

In fluid mechanics, flows with these properties are called homen-

tropic. They arise in the isentropic (e.g., adiabatic) flow of

geneous fluid. We omit the proof, and also the

*
In the limiting case At+O of zero time-step,
models of matter in the classical sense.

derivation of

they constitute

a homo-

molecular

**
To simulate
niques very

quantum-mechanicalphenomena, however, one must use tech-
different from those discussed below.
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Eqs. (l)-(2) of s 1, as a convenient mathematical expression of these

hypotheses.

In the adiabatic flow of a perfect gas,

(4) p=- F(u) =kcf-Y, F’(u) = kyu-y-l,

the so-called “polytropic” equation of state.

we have p = O and
o

(Seethe discussion ins l+.)

The approximation (4) seems physically adequate for atmospheric air, with

Y = 1.4. A wide variety of other gases can also be fitted quite closely

by (4), over fairly wide temperature ranges, under adiabatic conditions,

with values of ybetween I.Sand 2 (see [4]).

For small deformations, one can fit (2) adequately by the lineari-

zation (y = - 1)

(4’) p=po-b2u, F’(a) = b2 > O,a constant.

This approximation (Hookeis Law) is used in linear elasticity theory;

b= PC = c/u is the rate at which material is passed by a sound wave,

c being the sound speed. In fluid mechanics, it is called the Chaplygin-

Karman-Tsien approximation. Note that it reduces (1) to

(1’) ‘tt = b2 Xu,

the ordinary wave equation. Alone among equations of state, (4!) permits

plane waves of finite amplitude to travel without change of form. Cor-

respondingly, it avoids the formation of shocks [22, 9A 12, 13]0 unfor-

tunately, it is not satisfied by any known real fluid.

-1o-



In classical

be applicable also

assumption in Part

continuum mechanics, equations (1)-(2) are assumed to

to “slab” motions of solids; we shall discuss this

II.

Radial cylindrical and spherical motion leads to analogous equa-

tions* By using appropriate conditions of interracial continuity in ve-

locity u = Xt and pressure

homogeneous layers (slabs)

letting =F(a,a), one

isentropic flow.

p, one can treat problems involving several

or shells in contact with each other. And by

can also treat problems of non-homentropic

3* Spatial discretization. In order to solve

problems for (l)-(2) on a digital computing machine,

initial value (Cauchy)

one must use a finite

set of values aoj..o$~ofthe Lagrangian mass-variablea, and a finite

set of times to<t <t C .-..12 One can then think of x(ai,tj) as re-

presenting the position of the i-th particle at time tj. In this way,

each finite difference approximation to (1)-(2) can be regarded as defin-

ing a law of motion for a discrete system of particles, movements being

in discrete jumps.

It is very suggestive to fix the number of particles, and to let

Atj=t -t
J

tend to zero. In the limit, one obtains a system of or-j-1 —

dinary DE’s from the given system of partial DE’s, of exactly the type

(3) Considered inmolecular models of matter. ‘Thisgives a spatial

discretization, sometimes also called semi-discrete. Such spatial dis-

cretizations have been considered since the time of Lagrange by many

*[5, ~ 18]; the first exponent 2 in the last formula there shouldbe
deleted.
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authors, who have had four distinct purposes in mind.

First, the system (3) and its generalizations have been considered

as defining molecular models of solid crystals by Cauchy, Kelvin, Born,

L. Brillouin, and others ([1], [2], [3],

erally considered the small deformations

elasticit~; for such small deformations,

like (43) are adequate.

[24]). These authors have gen-

typical of the theory of

linear stress-strain relations

Second, three-dimensional analogs of (2) have been applied

kinetic theory of dilute fjasesjby Maxwel.1,Boltzmann, and their

cessors ([4], [8], [17]). The force-laws assumed here have been

to the

suc-

highly

non-linear, the forces being negligible except occasionally, during

binary encounters corresponding to near-collisions. These encounters

are then studied statistically.

Third, analogs of (3) have been applied to simulate equations of

state, and especially the change of phase from dense gases to liquids.

A resume of the status of such applications maybe found in [17, Ch. 4].

Finally, there is the tradition stemming from von Neumann [9], in

which the numerical integration of (3) is used to compute approximate

solutions to the non-linear wave equation (l)-(2). Since a character-

istic feature of this work consists in the use of non-linear force-laws

which are almost never negligible, it corresponds mathematically most

*
closely to molecular mdels of dense gases and liquids.

*Such models were first studied by Newton, who speculated that “the phe-
nomena of Nature ... may all depend on certain forces by which the
particles of bodies ... are either mutually impelled tow ds one
another, and cohere in regular figures, or are repelled ??Principia,

preface to the first edition). See also ibid., Book II, Prop. 23,
where “near neighbor” force-bws are considered.

-12-



4. Shocks; equation of state.

pic equation of state (2) breaks down

It is well-known that the homentro-

physically across (strong) shock

fronts in gases and liquids. When

(2) by a thermodynamic equationof

such shocks occur,

state of the form

one must replace

(5) P = P(uJT)> T= temperature.

The essential feature of (5) is its use of two variables in place of one

to specify the local state of matter.

When heat conduction k and viscosity v are negligible(adiabatic

flow), so that the entropy S is constant, one can deduce (2) by combining

appropriate assumptions about the internal energy

(5’) I=r(o,T)

with energy conservation principles. Thus, for a perfect gas, I = CVT

by definition and (4) follows with 7 = cp/cv; see [5].

By combining the preceding considerations with mass and momentum

conservation, and allowing heat conduction across shocks, one can then

deduce the Rankine-Hugoniot shock relations [5, SS 5A-62]. These are

independent of the specific conductivity k assumed, which merely affects

the thickness of the shock layer.

It is generally believed that the inviscid compressible flow equa-

tions of ~ 1, when taken with the Rankine-Hugoniot equations across

shocks, give rise to a system of partial differential equations and inter-

face conditions which define a well-set initial value problem. Moreover, it

-Ip



is believed that the resulting

lates real fluid motions under

been rigorously proved.

system, if integrated, adequtely simu-

many conditions. However, this has never

It is further believed that the preceding model is adequate for

*
the treatment of strong shocks in solids. If supplementedby chemical

kinetics considerations. it can be used to treat inviscid hvoersonlc

fluid motions. And if

transfer relations, it

channel.

,

supplemented by realistic fluid friction and heat

can be used to treat fluid flow in a heated

5. viscous Compressible flow shock thickness. However, the pre-

ceding hybrid model is not logically satisfactory. It is more logical,

and more consistent with physical reality generally, to treat explicitly

the effects of viscosity v and thermal conductivit~ k. It is generally

believed that the model of ~ 4 can be obtained rigorously from the re-

sulting system of partial

k$O.

This being assumed,

differential equations as the limit v 40,

it seems likely that the limit P40 with k = O

will do as well and be simpler. It is primarily this limit which till

**
be discussed below. Only for a quantitative analysis of shock wave

thickness is k important.

We therefore treat now

*
See [19]; shear strength is

the one-dimensional

perhaps negligible.

viscous compressible

**
See [5,(63.04)],where however bulk viscosity is neglected.
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flow of a perfect gas in the 13miting

for which computations are available.

In a perfect gas, the entropy S

case k = O; this is the only case

= Cvln (p Oq. One can define the

“viscous” stress q = k IIUx/3 [18,(5)], where p = v(T) iS amaterial con-

*

stant depending on the temperature. The one-dimensional Euler-lkqgrange

equation of motion (1) is then replaced by the one-dimensional Navier-

Stokes eqution

(6) =u=-
‘tt t (P-!l)a, q=uux=P~ua=W~a/xa~

At the same time,

the thermodynamic

Sl=v ~.y
(7) p=cV(y-l)T/u=e 9 a = Xa.

the polytropic equation of state (4) is repl.acedby

equation of state of a perfect gas [18,(4)]

The rate of change of entropyis [18,(3)]

(8)
‘t

= qxat/T = qua/T.

Shock thickness. In a viscous compressible fluid, shock waves

a finite thickness. The shock thickness can be estimated by assum-have

ing time-independent flow in (6)-(8). Given the upstream state (Sl,al)

w
and associated sound velocity, there exists for each u, > c1 a time-

independent flow (unique up to translation) for which li~+ -u(x) . u,,

*
Both [18] and [5,S 63] ignore the difficult problem of treating “bulk
viscosity” correctly; for this problem, see [22, & 33].

-x-x
H. Weyl, Comm. pure appl. math. 2 (1949), 103-22; D. Gilbarg, Am. J.
Math. 73 (1951), 256-74.
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liIIJ~+. a(x) = cl,● For this flow, U2 = limx ~~ u(x), 02 = liq ~w~(xl

and S
2
= liglw S(x) exist and are given by the Rankine-Hugoniot equa-

tions. For shocks of finite amplitude (with ul/a2> 1.01, say), most of

the flow is nearly uniform, the “shock thickness” b over which 9X of the

change in c(x) takes place being very small. The shock thickness b de-

creases with the strength, being of the order of the molecular mean free

path* if ol/a2 > 2.

6. Real and artificial viscosity. If a physically real.viscosity

is used in Eqs. (6)-(8), the effect is negligible except in shock layers.

Moreover these are so thin in comparison with mesh-lengths of interest

that real

computing

For

of!!140n

shocks go

viscosity effects cannot be computed effectively on digital

machines, in typical high-speed flows (large Reynold numbers).

somewhat the same reason, it is also awkward to treat the model

computing machines with a rectangular space-time mesh. The

between mesh-points and “shock-fitting”must be done by inverse

-w%
interpolation. To indicate what is done in practice, we write down the

spatial discretization of the partial differential equations (6)-(8).

This is (since pt = ([7 - II q- m) xat/xa by these equations):

(9) I&. . (Pn++-pn-*) + (~++- ~-Q$n
m= a-a

n n-l’

(lo) an++= [(7 - 1)~+1 - YPn++l (in+l - iQ/(xn+l -Xn),
z

-x-
D. Gilbarg and A. Paolucci, J. nat. mech. anal. 2 (1953), 617-42. See
also R. Becker, Z. Phys. 8 (1922), 321-62; L. H. Thomas, J. Chem. Phys.
12 (1944), 449-53; H. Grad> Comm. pure appl. math. 5(1952), 257-300.

*
See L. H. Thomas, Comm. pure appl. math. 7 (1954),195-206.
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(11)
%i-*=#V(%n+l ‘kn)/(xn+l ‘Xn)”

The pressuxe relation corresponds to the equation of state (7):

s/cv
(12) Pn++ = e [(xn+l - xn)/m]-y.

Since (9)-(12) define a system of ordinary differential equations, it is

easy

ious

(q =

term

This

to integrate the system munerical.lywith high accuracy by any of var-

methods.

The spatial discretization (9)-(12) reduces, in the limit v = O

O), to von Neumann’s mass-spring system (3). The viscous or damping

q is equivalent to

model was proposed

inserting a dashpot in parallel with each spring.

for solids by Kelvin and Voigt; it is the simplest

model of rheolo~.

To achieve smooth velocity profiles with a finite mesh-length, one

must introduce an artificial viscosity large enough to tie the thickness

of the shock layer two or three mesh-lengths, but not much larger than

this. To achieve this, one postulates that q in (6) and (11) shall.de-

pend on the velocity gradient accordingto some arbitrary lawq(ux,T)

(see [6, Part IX], [11], [181, [20]); it may even be non-linear* in Ux.

7. Molecular and continuum models of matter. The idea that con-

tinuum models of matter can be derived from molecular nmdels, as the

limiting case N +L= of N particles of equal mass m = Aa= ~+, - N, is

*
See [12, Ch. X, 5 9]; R. Iandshoff, Report IA-1930. Lax [20] advocates
using a-linear-viscosity. One can-postulate
duce the associated viscosity “law” (inverse

a wave-front, and then de-
method).
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very old. It can be justified for elastic fluids as follows.

If the molecules attract each other according to a force-law

F([~+1 - &]/m), the equations of motion are

(13) fii = F([xi+l - xi]/m) - F([xi - xi-l]/m), i = 1,2,0..,N0

Ilety= y(a,t) be a function with two continuous derivatives with re-

spect to a such that y(ai,t) = xi(t), i = 1,2,”””,N. Then, expanding

in Taylor series about ay/aa for a = ax, substituting into (13), and di-
L

vialingby m, we obtain

(14) ~(ai,t)/* = F’(~[ai,t]/2a)a2y( ai,t)/~a2 + O(Aa).

In the limit Aa = m +0 (N +-), tends to (1) if yE~2 varies—

smoothly in position and time, and FGt?l~

The mass-spring model (13) and its

sidered for many hypothetical force-laws,

generalizations have

sufficiently

been con-

and it is interesting to con-

sider some peculiarities

f(r) = kr7 corresponding

In this case, the

of these laws. We begin with the force-law

to the ~ lytropic equation of state (4).

particle model defined by (10) admits the energy

integral, constant in time,

(15) E=~mz&~+& X I(xi - xi-l)/roll-7, 7+1.

(A similar integral holds for any F(o).)

If y? 1 (a logarithmic analog of (15) exists for 7 = 1), then it

takes infinite energy to make two &icles collide. As a corollary, the

order of particles cannot change: each particle always has the same two

-18-



“nearest neighbors”. On the other hand, if y < 1, it only takes finite

energy to make xi = xi ,, and particles can collide

each other. (For y = -1 and for particles of equal

penetration is mathematically equivalent to elastic

It is curious that the condition 7> 1 should

or pass “through”

mass, such inter-

collision.)

also coincide with

7-’ should increase with the den-the condition that C2 = dp/dp = ky P

Sity - i.e., that the fluid should be normal.* (H. Weyl (op. cit.

22
supra, p. 105) postulates the related but weaker condition that p c

should increase with the density.) Note that ky > 0 since F’(u) > 0 in

(2).

8. Wave transmission. A fundamental description of real and

synthetic homogeneous materials concerns their mode of transmission of

plane waves of given frequency and amplitude. For acoustic or small-.—

amplitude waves, all elastic fluid continua are characterized by their

sound velocity co = b/po;

+ g(a + bt) in Iagrangian

(space-time) coordinates,

+ g(x + cot) is the same,

Dispersion. Using Fourier analysis, one can attribute the preced-

ing result to the fact that sinusoidal acoustic waves travel in elastic

fluid continua

*See [5,p. 51;
Riabouchinsky
dp/&dp seems

the general wave form is x = f(a - bt)

2
coordinates, where b = F’(uO). In Eulerian

the general wave form 5X = f(x - cot)

because of the smalJ.amplitude approximation.

without attenuation or dispersion. This is however not

also the footnote on p. 5 of G. Birkhoff and J. M. Walsh,
Jubilee Volume, Paris, 1954. Glass may be “abno-1”:
to increase with p up to 10 kilobars.

-19-



true in molecular models: though there is no attenuation (in pass-bands),

there is always dispersion. The wave velocity c of a sinusoidal acous-

tic wave of length A, in a one-dimensional mass-spring system with par-

ticles spaced h = l/Napart, satisfies [3, p. 4]

(16) =casin(fi/h)/(xh/A),c

where cm is the velocity of long waves (A +a). That is, there is

dispersion: c varies with 1, between the limits cm and 2c~ti E0.6335ca.

Though the preceding phenomenon of dispersion is not observed

physically in gases, it does simulate (with molecular particle spacing)

some characteristic features of the behavior of solid crystals. For

example, many crystals have a frequency cutoff. Other models consisting

of two kinds of masses, alternatively spaced, will transmit waves only

in certain frequency bands. In this respect, such models simuhte the

optical behavior of many crystals and the behavior of electric band-pass

networks; see [3].

For large-amp~tude waves in elastic fluid continua, the wave form

is still given in Lagrangian coordinates by x = f(a - cot) + g(a + cot)

in the case 7 = -1 of linear elasticitjrtheory (Hooke~s Iaw), with which

most of the relevant literature has been concerned. In molecular models,

(16) still holds.

Shocks. It is well-known that shocks arise in polytropic elastic

fluids if y> -1. Moreover simple shocks (with uniform flow on each

side of the shock) are transmitted without change of form for any

-20-



(normal) equationof state in any continuous elastic

shocks in viscoelastic media, see S ~.)

As a result of dispersion, this feature is not

fluid. (For simple

reproduced in the

spatial discretization discussed above, even when y = .1. This was

first observedby von Neumann [9], for y = 1.4 (approximately).

When y = -1, the analog for molecular models of Kelvin~s Principle

*
of Stationary Phase is applicable to simple shocks and other pulses of

short duration. This principle asserts that each Fourier component

travels with its own wave velocity, so that the appearance of a pulse of

short duration after being transmitted through a long distance should be

as follows. The “head” of the pulse (which travels most rapidly) should

largely conserve its initial form; but the “tail” should be wavy with

wavelength diminishing continuously to the shortest obsenable wave-

length 2/N. It would be interesting to test, by numerical calculation,

whether this was also true in the non-linear case, with y > -Ii)

One can speculate that dispersion wil.1also make shock wave thick-

ness in molectir models greater than in continuum models (see 5 5). It

would be interesting to study this question for the viscoelastic molecu-

lar model of i?6, looking for solutions periodic in time. If the equa-

tions were linear (y = -l), the shock thickness would increase indefi-

nitely with time.

*~~,1g~~7]; [23, 3 241]; J. J. Stoker, %aterwaves”, Interscience (1957),
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9. Finite time-steps. In ~ 1-8, we have tiscussed systems of

particles whose positions were continuously defined in time, of a type

fmiliar in the kinetic theory of gases and in the molecular theory of

crystals. In digital computations one uses finite time-steps At.

It is important to choose these Atso as to minimize the computa-

tional (truncation and roundoff) errors. In the special case ~ = -1,

both truncation and dispersion can be elhinated by using At = Ax/c,

i.e., by integrating along characteristics. The accuracy of the approxi-

mation depends solely upon roundoff and the accuracy of determining xi(0)

and xi(At).

Convergence theorems.

gests that, as Aaitends to

The discussion at the

zero, the solutions of

beginning of S 7 sug-

stitable difference

approximations to (l)-(2) should converge to the solution of the differ-

ential equations, for the same initial conditions. The natural conjec-

ture is that this is true provided no shock waves occur and that the time-

steps Ati satisfy the stability condition Ati ~ A#c, the local sound

speed.

For the differential eqy.ationsdescribing the motion of an elastic

fluid in Nerian coordinates,

‘t
+Uu=

x

convergence follows

It also follows for

s

-1C2(P)P Px) Pt + (Pu)x = 0>

from a general theorem of Courant,

the coupled first-order hyperbolic

Isaacson and Rees.*

equations

““R.Courant, E. Isaacson, andM. Rees, Comm. pure appl. math. ~ (1952),
243-55.
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= b2(a)aa, b(u) =-,
‘t

U=u
a t’

equivalent to (1)-(2), from the same general theorem. To obtain x(a,t)

from

x=
a

the approximate solution, one must then integrate the equation

a.

The natural difference approximation to the second-order hyperbolic

equation (l), is

2
(17)

n+l n-1

‘s
-an+x.

SJ { }
=~a F([xj+l - xj]/Aa) - F([xj - Xj-ll/A~~

where

‘:

The solution

= x(jAa, nAt).

*
of this set of difference equations converges to the solu-

tion of (1) as At and Aago to zero, subject to the stability requirement

At%’!/Aa2 < 1; this requirement is met if At/Aais chosen small enough so

that Ax~/At is greater than the local speed of sound

c = @p/&.1+ = alF@)l+.

As a corollary, letting first At$O for fixed Aaand then letting

Aa~O, one obtains a rigorous proof for the convergence of the spatial

discmtization (l)-(2) to the exact solution of the corresponding con-

tinuum problem, provided there are no shocks.

*Provided Fe#2, x(a,0)=~2, and xt(a,O)e@l, and that the derivatives

Faa)xm (a,O)andxat(a,O) satisfy Lipschitz’conditions. The proof till

be given in the thesis of Robert E. Lynch.
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Unfortunately, no similar results have been proved for the one-

dimensional Navier-Stokes equations (6)-(8). Even the convergence of

solutions of (9)-(11) to solutions of (6)-(8) as m +0 (N +w) has not

been established. Neither has any convergence theorem been proved in

the limit Aa+O, v +0 to the motion of an elastic fluid with shocks.

Synthetic materials. Referring back to ~ 1, it is interesting to

speculate as to what kind of synthetic materials are defined by computa-

tion schemes like (17) with finite time-steps At . This question can be

asked also for difference approximations to the equations of a visco-

elastic fluid. For some computing processes (such as forward-difference

methods), the use of discrete time-steps can be regarded as introducing

a finite delay time into reactions. Such delay times or relaxation times

have also been suggested as being responsible for various physical phe-

*
nomena, such as ultrasonic attenuation. In the theory of viscoelastic

solids} similar delay times characterize Maxwell solids. Their charac-

teristic property is to cause high attenuation in narrow resonance bands

as contrasted with monotonically varying viscous attenuation. Such

resonance bands are observed physically.

Further study may reveal other qu&litative phenomena associated

with the use of finite’time-steps, also observable physically. By study-

ing such phenomena in one space dimension, one can hope to gain insight

into the three-dimensional case.

*
See, for example, M. Brillouin, “Ia viscosit~des liquides et des gaz,”
Paris, 1907, vol. 2, pp. 93-5; K. F. Herzfeld in Part H of “Thermodyna-
mics and physics of matter,” F. D. Rossini, editor, Princeton, 1955.

-24-



II. STATISTICAL MECHANICS

10. Kinetic theory of gases. In the kinetic theory of gases, it

is assumed that gases are composed of very many moving particles, inter-
*

acting with each other according to appropriate molecular force-laws. In

the semi-discretemodel(f!3) of a shock advancing into a uniform gas, ir-

regular particle motion occurs behind the shock; von Neumann suggested

[9] that this motionws ~alogous to the molecular motion in the kinetic

theory of gases. We will now analyze this suggestive idea critically.

In the kinetic theory of gases, pressure p and temperature T are

independent variables, as in the continuum model of S 4. Moreover, the

temperature has a purely mechanical

tional energy of molecular motion.

**
dimensional case, we can write

significance, as the mean transla-

Thus, by analogy with the three-

(18)

allowing for the possibility of variable mass m .
i

Here xi is the

*About N = 2.7x 10’9 per cc (Avogadro’s number) under standard atmos-

pheric conditions [8, p. 8]; the incorrect value 6 x 1023 (Loschmidt~s

number)is frequently quoted.

**See [8, S 146, p. 311],and compare with !3141, p. 299 ad E 26, P. 32.
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position of the i-th mass point in the semi-discretemodel of S 1; the

summations are over N gas molecules. (Note that, by Maxwell’s Principle

of the Equipartition of Energy [8, p. 81], the statistical expectation

i i - ~2/2 is independent of i.) Whereas in mass-springofEi=m(f

models of elastic fluids, which reproduce the adiabatic equation of state

under quasi-static conditions (i.e., very gradual compression),thepres-

sure p determines the nominal temperature T.

AS N +a, the convergence theorems of ~ 9 show that motions of

most individual molecules in the mass-spring model (3) will deviate less

and less from the mean motion, except behind shocks. That is, the effec-

tive local temperature (in the sense of kinetic theory) is zero. In par-

ticular, the intermolecular forces f(r) between adjacent particles in

Iagrangian hydrodynamical computations act continuously and normally vary

by a factor of at most ten, whereas the intermolecular forces treated in

the kinetic theory of dilute gases are negligible most of the time, being

appreciable only during brief near-collisions (encounters).

Specific heat. The proportionality of temperature to the kinetic

energy of relative motion (relative to the local mean motion) is clearly

illustrated by a study of specific heats. In monatomic gases, the speci-

fic heat is about 3 cal/mole ‘C [4, p. 42] above the critical point; in

diatomic gases, it is about 5 cal/mole ‘C. In solids, where the poten-

tial energy of vibration and the kinetic energy of vibration are about

equal, it is often* about 6 cal/mole ‘c. The number 3 is equal to the

*This is the Dulong and Petit Iaw [3, p. 166],approximatelYvalid if the
“Debye temperature” is one or greater.
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number of degrees of freedom of motion, due to a lucky coincidence:

that H20, with molecular weight 18, has the abnormally large specific

heat of 18 cal/mole ‘C at 200C.

At low temperatures, the specific heats of solids are consid-

erably less than 6 cal/mole ‘C. For various force-laws f(r), it would

be interesting to study the mean energy in thermal equilibrium of a

“solid” consisting of n particles of mass m, bombarded at random times

by particles of mass m having a Maxwell velocity distribution and mean

energy mv2/2. From this one could infer the ratio of specific heats

and the Debye temperature curve for various one-dimensional “solids”.

11. Equation of state. In the mass-spring model of 3 j, the

pressure is attributed to static molecular repulsion; in the kinetic

theory of gases, it is attributed to molecular motion. The first model

simulates liquids and solids, to a first rough approximation, while the

second simulates dilute gases very well, especially monatomic gases.

That is, pressure in gases is dominantly kinetic, whereas in liquids

and solids it is dominantly static.

In general, the virial of Clausius* allows one to decompose the

pressure into a kinetic component proportional to RNT, and a static com--—

ponent proportional to N=), where N is the number of particles per

unit volume. In n dimensions,

(19) pu S~[RNT+ N~)I=#[RT +-lo

*See [8, M 163-73], where the three-dimensional case is treated.
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Here T is defined as the mean kinetic energy of translation per particle.
.

One of the oldest problems in the molecular theory of matter is to

simulate the equations of state of real material by molecular models,

postulating an appropriate intermolecular force-law. Among the force-

laws which have been studied ([4], [8], [17]),the hardsphere, power laws

f(r) = Ar-a,and the Lennard-Jones formula f(r) = Ax’a - Br-P have re-

*
ceived the most attention. The problem is to deduce the observed pres-

sure p(u,T), internal energy E(u,T), and phase transitions as functions

of the specific volume a and temperature T.

Because such studies ignore the fact that real matter is made up

of positively charged atomic nuclei and negatively charged electrons of

much smaller mass, their conclusions cannot be taken as having a direct

physical significance. Rather, they must be considered as suggestive.

In particular, they may suggest computation schemes for simulating the

behavior of real materials in (say) atomic e~losions more realistically

than would be possible with an idealized elastic or inelastic fluid.

For such purposes, studies in one space dimension have much to re-

commend them. Moreover in one dimension, it is easy to supplement ana-

lytical studies by numerical studies of the motions of sample systems of

**
particles. We hope that such studies will be made. Because of

*
The Lennard-Jones formula is also assumed by G~neisen, in an attempt
to correlate the Debye temperatures of solids with their compressibili-
ties; see Born and Huang [2, p. 52].

**
Such a study has recently been made, for the rigid-sphere model in
three dimensions, by Alder and Wainwright. See “Transport processes in
statistical mechanics,” I. Prigogine, editor, Interscience, 1958, 97-140.
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similarity (see i?

with N < 100. In

14), one

[91, von

should be able to

Neumann suggested

compute some quantities

(in another context) that

N = 14n might be adequate in n dimensions.

In anticipation of such studies, we make a few elementary remarks

about statistical mechanics in one space timension.

In the rigid-sphere model,

willbe p(u - Uo) = NT, where T

it is evident that the equation of state

= mc2/2 and U. = Nro is the one-dimensional

“volume” occupied by molecules.

In general, one must distinguish between forces assumed to act only

between nearest neighbors, as in mass-spring systems, and universal——

forces (like gravitation) assumed to be defined for au particle-pairs.

forces of the first kind. These

(1oc. cit. in $ 3), and they are

were origi-

better suited

We will here consider only

nally postulated by Newton

to numerical computation.

In general, letting fk(t) = pk-~(t) be the force exerted on the k-th

particle by the (k-1)-st particle, it is easily seen that ?k = ?k+l,

averaged over a long period of time. Otherwise, the k-th particle would

undergo a net acceleration. Hence, ~k must be independent of k in the

= -1 of Hookels Law. In this case, if

one-dimensional case.

Now consider the case ~

f(r) = p. - Br is the repulsive force, then~k = p. - B(-% - ‘~ ,).

Since Yk = ~ is independent of k, it follows that NY = Npo - B(IN - ~l).

Solving for ? = p. - B(-% - -Xl)/N, we see that the pressure p = f satis-

fies

-29-



(20) P = P. - Bm~, a = (~ - xl)/Nm.

This shows that the pressure is independent of the temperature (kinetic

energy). In (19), the term in- is decreased by molecular motion

just enough to compensate for the increase in R.NT;the Clausius decompo-

sition (19) is completely misleading.

Similar considerations suggest that, in the synthetic gas defined

by the mass-spring model of ~ 3, the total pressure wilIlincrease with

the temperature (we will have (ap/bT)a> O) if y> -1, so that repulsion

increases more than linearly with approach (case of “stiff” springs).

In the opposite case, ~< -1 of “soft” springs, (bp/bT)a will be nega-

tive in (3). The simplest model of elastic colJ_isionis the extreme

case of a “stiff” spring; water below

of a “soft” spring; 7 = 2 corresponds

law.

4°C corresponds to the hypothesis

to an inverse square repulsion

It wouldbe desirable to study the dependence ofp(u,T) on f(r)

quantitativelyby the method described above. Using larger computing

machines such as STRETCH and IARC, one could try to simuhte more gen-

erally the statistical mechanics of polar molecules and the elusive

*
phenomena of condensation and evaporation.

Monte Carlo methods. Monte Carlo methods have also been used to

calculate the equation of state for various intermolecular force-laws

*
See [17, Ch. 5]; H. N. Temperley, “Changes of state,” London, 1956,
pp. 2->; O. K. Rice, Part E of “Thermodynamicsand physics of matter,”
Princeton, 1955; C. N. Yang, Phys. Rev.
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*
- and especially for rigid elastic spherical molecules. This approach

is related to that discussed in this report only in its objective and

its use of high-speed computing machines.

120 Ergodic theory. Though the conditions of statistical equili-

brium assumed in kinetic theories of matter are not attained during

times typical of hydrodynamical interest, it is interesting to speculate

what these conditions are, and what is the order of magnitude of the

time scale required to attain them. High-speed computing machines may

be expected to provide useful information regarding these questions, and

hence indirectly regarding molecular models of matter based on equations

of the form (3) and statistical mechanics.

In using computing machines to perform such research, it is impor-

tant to realize that some of the fundamental concepts of statistical

mechanics have themselves never been rigorously established. For in-

stance, it has never been proved that, as t +CO, the only statistical in-

variant of an assembly of molecules in a rigid container with elastic

walls are temperature and density. Stated more abstractly, one of the

gaps in the theory is the lack of proof of the assumption of “metric

transitivity” (also called the ergodic hypothesis): that all time-

histories having given energy and density have equivalent statistical

averages, with probability one.

*
The pioneer’study (for a two-dimensional “gas”) was by N. Metropolis,
A. W. andM. N. Rosenbluth, and A. H. and E. Teller, J. them. phys. 21
(1953),
Cimento
(1959),

1087-92. For subsequent work, see W. W. Wood et al., Nuovo
9 (1958), 133-43; Z. W. Salsburg et al., J. them. phys. n
67-72, and refs. given there.
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thesis

basis,

Though various theoretical arguments tending to confirm this hype.

*
have been given, it still rests on an essentially experimental

and the generality of the conditions under which it may be e~ected

to hold is not clear. Without it, special arguments are needed to show

that the function p(u,T) is well defined (i.e., single-valued).

And yet it is easy to show that the ergodic hypothesis stated

above does not always hold. For instance the ~ower spectrum(energy den-

sity as a function of wavelength) is an invariant in a Chaplygin fluid

with~=-1. In a three-dimensional cube, the energy density as a func-

tion of the wave-vector (Ikll,lk21,1k31)is invariant.

Turning to one-dimensional molecular models, it is classic that

for N rigid elastic spheres in one dimension,

ties is conserved. Hence, again, density and

plete set of invariant, even though p(u,T) =

valued

spring

the entire set of veloci-

temperature are not a com-

NRT/((J- Uo) is a single-

function.

In the discrete analog of a Chaplygin fluid, defined by a mass-

system with Hooke’s Law, there is no energy interchange of ener~

between different wavelength (i.e., different

Hence the motion is not metrically transitive.

quencies a
J
= 2 sin (jfi/2N)of the normal modes

*
The most important is that of Oxtob~ and Ulam.

portions of the spectrum).

However, since the fre-

are ordinarily

Annals of Math. 40 (1939),
560-66. J.-Moser has recently prov~d a compl~mentary unpublished result-
on the existence of invariant.
Uhlenbeck in Appendix I of Mark
Interscience, 1959.

For a physical discussion, see G.
Kac, “Probability in the physical sciences,”
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incommensurable* (i.e., rationally independent), one may expect phase

randomization by dispersion in discrete models.

One can surmise that, in the non-linear case y # -1, both fre-

quency and phase will tend to distribute themselves statistically in a

uniform way, so that time-averages will.againbe independent of’initial

conditions. This is suggested by the Theorem of Oxtoby and Ulam; some

interesting experiments bearing on it have been performed by Fermi, Pasta,

and Ulam [16].%+ Some further experiments along similar lines for a

single “ping-pongball” have been reported and analyzed at the Fourth

Berkeley Symposium by S. Ulam and J. M. Hammersley.

One can also surmise that, in two or more dimensions, molecular

models of fluids will be ergodic for arbitrary force-laws with probability

one (i.e., for almost an initial velocities and distributions). This is

because of the great variety of possible angles of scattering. (We ex-

clude cases like that of closely packed rigid spheres, where the neigh-

bors of a fixed “particle” cannot change.)

13. Diffusivities; correlation functions. From statistical stu-

dies of time-histories of assemblies of particles subjected to various

assumed force-laws f(r), one can also try to estimate the viscosity

* This is especially likely if N is a prime, because the cyclotomic
equation is then irreducible (Eisenstein’s Theorem).

M
These experiments apparently indicate that equipartition of energy
does not occur. Joseph Ford)J. Math. physics 2 (1961)} ~7-931 has
sugge~d an explanation of this. His suggestion is that, for the
number of mass-points used in the experiments) there iS no appreciable
energy sharing between the weakly coupled oscillators.
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(momentum diffusion),thermal conductivity k (heat diffusion),and ma-

terial diffusivity D associated with molecular models (3) of fluids. If

the ergodic hypothesis is fulfilled, time-averages should be independent

of the initial conditions.

For dilute gases (i.e., at high temperatures), such studies will

probably nok be immediately rewarding. C1.assicalmethods of estimating

binary deflection probabilities seem more powerful as mathematical tech-

niques. Moreover physically, the ratio of the three diffusivities (for

momentum, heat,and matter) seems to be nearly independent of the force-

law assumed. Thus the Prandtl number v C~k is about 0.4 [4, Ch. 10],

while DP/W is between 1.0 and 1.5 [8, Ch. 13] for spherically symmetric

molecules. Deviations of real gases from these laws seem to be due

largely to the fact that real gas molecules have energy of rotation as

well as energy of translation, unless they are monatomic.

However, for dense gases and liquids, one can probably best esti-

mate the dependence of diffusivities on the force-law assumed from numeric-

al experiments. Such experiments might also reveal interesting rela-

tions between the shear viscosity P amd the bulk viscosity P’, which is

zero in a dilute monatomic gas.

To get the most information out of such (necessarily elaborate)

numerical experiments, a great deal of ingentity ~~ cefiainQ be re-

quired. This is especially true of dynamical studies: The statistical ,

mechanics of non-uniform gases is very difficult.

For example, let the kinetic temperature T(xi) of a mass-spring
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system (“gas”) with a temperature gradient be defined

equilibrium as the mean kinetic energy miu~/2 of the

mean position x =
i =(ai). If one defines the kinetic

in statistical

particle with

temperature T(x,t)

by an average over phase-space, how

from a smalJ sample of a few nearby

error?

To obtain some information on

tionary “gases” containing just one

can one compute this effectively

particles? What is the probable

this question, in the case of sta-

kind of molecule of mass m, one can

define a closely related correlation function

(21)

This

also

time

will provide a measure of the smoothness of a computation, and is

*
a fundamental statistical entity. The evolution of

would be especially interesting to study.

The study of such correlation functions should help

@(kjt) with

in separating

out local mean motions (those which one wotid obtain in the limit N +-)

from random molecular motions. Hence, indirectly, it would help in the

**
erfective definition and computation of conductivities and viscosities.

By analogy with the theory of turbulence, it would also lead to the in-

teresting concept of an energy spectrum of molecular motion, which could

*To avoid difficulties associated with Uiui kbeing undefined, it is

tinconvenient to use a periodic gas with ~ t) = xo(t) + X.

**
Far some other ambiguities in the kinetic theory of viscosity, see
C. Truesdell, Zeits. fur Physik 131 (1952), 273-89.
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be studied as a function of the force-laws being considered.

14. Springs with dashpots. The preceding discussion referred to

mass-spring models, with emphasis on nearest neighbor force-laws in one

space dimension. It follows from the discussion of ~ 13 that such mo-

dels will have a molecular viscosity V. Offhandj one would expect p to

be of the order of magnitude of p~h/3, where ~ is the mean molecular ve-

locity and h (the particle spacing) is the analog of the mean free path.

It would follow that Va~T, as in elementary kinetic theory.
*

Of great

mulas (9)-(12)

lar models for

*
kinds. These

interest are, also, molecular models constructed by for-

from the Navier-Stokes equations. These provide molecu-

viscoelastic fluids and for viscoelastic solids of various

models also describe some computation schemes using an

artificial viscosity v*>> v to smooth out the computed flow behind

shocks. In such computation schemes, where the pressure depends on an

internal energy (temperature)T for given a, one can introduce an

energy conservation law (and prove that the entropy increases monotoni-

cally). The temperatures may be attributed to the masses or the

springs; we omit the formulas.

* [8, Ch. XI~. For real gases, McrTn, where 0.65 < n< 1.

**[21, Part II]; W. P. Mason, “Physical acoustics and properties of sol-
ids,“ Van Nostrand, 1958, Ch. VII; D. R. Bland, “Linear viscoelasti-
city,” Pergamon Press, 1960. In their models of solids, some rheolo-
gists would also include ablock on a rough surface to reproduce the
transition to plastic flow at the yield point. Springs, dashpots,
and blocks, in various series and parallel combinations (Bingham,
Prandtl, Kelvin, Maxwell bodies, etc.)
producing characteristics of dough and

-36-
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For each choice of y, artificial viscosity

can thus define a synthetic gas, whose effective

v*, and spacing h, one

viscosity is a combina-

tion of the molecular viscosity

(This is analogousto combining

viscosity”.)

and the artificial viscosity postulated.

molecular viscosity with turbulent “eddy

Similarity. One can reduce the number of parameters required to

define such synthetic gases by identifying systems of particles whose

behavior is similar up to change in scale. For ~near viscosities, one

can thus define a natural Reynolds number Re =

Synthetic “Ulute” gases having the same y and

1
P ~h/w*2where ~a TZ.

Re should be completely

similar.

Analogous remarks apply

quite well in dilute gases by

Prandtl number [8,~ ml].

to thermal conductivity, which is given

the formula Pr = P CV/k = 4/(97 - 5) for the

Even in dense gases, the addition of a constant p. to the equation

of state has no effect on the particle dynamics defined by (3), or on the

continuum problem definedby (l)-(2). For example, with the polytmpic

equation of state p = PO + kpy, a measure of the diluteness of a gas

(in the sense of kinetic theory) is provided by h[~/k(~ . 1)]1/7-1,

which estimates the average ratio of the distance of closest approach of

two adjacent molecules, to the mesh-len@h.
*

*For a related similarity law involving mass-spring models without dash-
pots, see Rayleigh, Proc. roy. SOC. A66, p. 68 (ref. in [8, p. 283]).
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III. PLANE

15.

FLOWS

Elastic fluids. The concept of an elastic fluid was de-

fined in ~ 2. It can also be defined as an elastic continuum (see ~ 18)

in which the stress tensor has no shear component in any direction, and

the pressure at any material point is determined by the specific volume.

In fluid dynamics, these correspond to the assumptions of homentropic

flow. We will treat below only the case of a homogeneous elastic fluid,

for simplicity.

In terms

are defined by a

vector function x(a;t), whose components are x(a,b;t) and y(a,b;t).--

analog of (1) in this notation is

a

The

of Iagrangian independent variables, elastic fluids

plane analog ofEqs. (l)-(2). This analog involves

II

a%x

(22) ‘tt = -
UVp , where u = ●

Ya yb

This is combined with a homentropic equation of state (2):

(23) p = p. - F(a).

The function F(a) is chosen to agree with experimental values measured

under quasi-static adiabatic conditions. Typically, one supposes that
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x(a;O) is given--

u of x
n -t=~on

inside a domain of interest, and the normal component

the boundary. (Alternatively,one can suppose p given

on a “free” boundary.)

Though mathematical existence and uniqueness theorems seem not

to be available, physical and numerical experience suggests that such

problems are usually well-set, except for the development of shock waves.

Shock waves must be treated by special techniques, involving the Rankine-

Hugoniot equations. These techniques will be discussed in ~ 17.

We will analyze below various schemes for solving Eqs. (22)-(23)

and related systems of equations on digital computing machines. Only a

few of these schemes define molecular models of matter in the classical

sense. But they can all be regarded as defining “synthetic

or models of matter which may simulate highly stressed real

a greater or less extent.

materials,”

materials to

16. Spatial discretizations. It is easy to think of spatial

discretizations of the~ystem (22)-(23). For example, one can select* a

square or rectangular network of particles (“molecules”) (a+, b+) in

(a,b)-space,and

(22)-(23), these

(24)

consider the particle paths

should satisfy the ~

.,

‘ij = ‘ij
F’(aij) &7/~X,

d

Xij(t) ‘dai,~J;t).BY

DEfso

%
= aijF’(dij)&@y,

the partial derivatives being evaluated at (ai,b,).
-1. d

*
One can also use triangular or hexagonal networks in place of rectangu-
lar ones.
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I

There are many ways of evaluating

a ‘a‘b=
Ya Yb

approximately. For instance, one can use the central difference scheme

(Xi+l ~-xi-l, j)(xi,j+l -1
- ‘i,J-J (4AaAb) .(25) aij ~ (y ‘

i+l,j - Yi-l,j)(Yi,J+l -Yi, J-l)

A logical scheme for evaluating aa/ax and aa/ay is less easy to select,

because of the many options for taking differences in (x,y)-space and

(a,b)-space. Unless care is exercised, one may find that the final for-

‘ulas ‘nvO1ve ‘it2,j and ‘i,j*2’ ‘hich ‘s ‘desirabl-e”

To avoid this, one can

half-integer mesh-point by

(xi j
(26) )

ai-+, J-& = (y
i,j

define a nominal specific volume at each

- ‘i-l,j
)(xi,j -xi J-l)

(AaAb)-l.

- Yi-l,j)(yi,j - y~~j-l)

One can then (for example) use bilinear interpolations*between the four

in (x,y)-space or (a,b)-space, to evaluate %
ij“

\Sub-members aif~,jt+~

stitution back into (24) gives a system of second-order ordinary DE’s in

the vectors (Xij,yij), in which the right-hand side involves all eight

neighboring mesh-points.

*
Bilinear interpolationuses bilinear functions c%+ px + yy + bxywith
undetermined coefficients.
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Mechanical models. One can also derive a spatial discretization

by mechanical analogy, placing a particle of mass m at each mesh-point,

Joining adjacent particles by impermeable but weightless straight rods

free to lengthen or shorten longitudinally, and letting the “gas” in

each quadrilateral area bounded by these rods expand and contract adia-

batically. . , (i’ sf-+, j! = j-~) is the area of theThat is, lf Ni,,~

quadrilateral with vertices at x(a 1, b ,+L,t), thenp
- i’%! J -2 il,j~(t)=

P. - F(N~, $,/m) as in (23). One easily obtains formulas for the kinetic

energy T =’~ mij(~i~ + ~i~)/2 and the potential energy

= -~ ~pi, ~, dAi, ~, of such a system. lf p = kpy =v =Zvi,,j,
J 9

Po(Ao/A)y (Y # 1), then ~pdA = kA1-y/(l-~) with k = PoA~l for example.

As in Lagrangian dynamical systems without external forces generally,
*

the equations of motion are then given variationally, by setting

d(aL/btj)/dt = bL/bq~, where L = T - V. This model was suggested by one

of the authors (Garrett Birkhoff, unpublished note, 1959).

A program for computing the motion of the preceding “synthetic

fluid,” with finite time-stepsyhas

method differs in several respects

slightly different

not clear that, in

Iagrangian system.

ing, they have the

*
For the continuum

model suggested

been devised by Walter Goad [25]. His

from an approximate method for a

earlier by Harwood Kolsky [14]. It is

the limit At~O, Kolsky~s model corresponds to a

Iagrangian systems are not only esthetically satisfy-

advantage that they make L(q,&) constant in time,
—-

problem of ~ 14, similar variational formulations
have been given by H. Bateman, “Partial differential equations,”
p. 164; Iamb, p. 188; P. Lush andT. Cherry QJMAM9 (1956), 6-21.

-41-



thus providing a useful check on computations.

17. Shocks and viscosity. The primary aim of the computation

schemes devised by KoIsQ and Goad was to calculate approximately the

motion of an elastic fluid, allowing for shock discontinuities. Much as

in ~ 6, one does this by introducing a large so-called artificial vis-

Cosity, chosen so as to smooth out irregularitiesbehind the shock while

permitting a step shock front to propagate without change of form. We

will now try to correlate such schemes with the concept of a viscous

elastic fluid.

A viscous elastic fluid may be defined as

stress tensor (matrix)IIPi$l! iS a single-valued

rate-of-strain tensor Il& /ax II at any point.
i J

a continuum in which the

linear function of the

We consider below only

homogeneous and isotropic viscous elastic fluids, which necessarily

satisfy the Navier-Stokes equations.

their

which

Viscous effects in such fluids are known to be characterizedby

shear viscosity v and their bulk viscosity V!2 material constants

depend on the temperature T and pressure p (the “state” (p,T)) of

the fluid. To determine exactly the motion of a viscous elastic fluid,

one must know its conductivity k = k(p,T) as well as w and p’. In prac-

tice, one is satisfied with approximate results, and makes simplifying

assumptions such as P = const.j P’ = O.

In compressible flow computations,

real physical viscosity at all. Instead,

one seldom attempts to

since the assumption w

simulate

>0

would give rise to the complication of no slip on solid boundaries, one
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tends rather to set w = O and to introduce a

viscosity v*>> V in calculating plane flows.

large artificial* bulk.—

Bulk viscosity also has

the advantage over shear viscosity of introducing a scalar pressure

stress, and not a symmetric tensor shear stress with three components,

in plane flows. The whole purpose of P* is to smooth out “random” fluc-

tuations behind shocks, and to

few mesh-lengths.

As stated, the real aim

make the calculated

is thus to simulate

“shock thickness” a

an elastic fluid

with shocks, in which the shocks satisfy Rankine-Hugoniot relations de-

termined by a function p(I,u), expressing the pressure at any point as

a function of the internal ener~ per unit mass of the fluid, 1,,and the

local specific volume. In a perfect gas, I = Cv T and p = RT/o = RI/CvU.

In practice, this simulation has been successfully achieved in

many cases, using finite time-steps At governed by variants of the

Courant stability condition [14, p. 13]. It has the advantage over

“shock fitting” that it treats all points alike. It has the disadvan-

tage of requiring a second dependent variable (internal energy I or en-

tropy S) to define the local “state” of the fluid.

18. The Kolsky-Goad fluid. To apply the computational methods of

Kolsky and Goad to real materials, one must know both the pressure

p(a,T) and the internal energy I(u,T) as functions of the variables u,T.

Especially, one must know p(u,I) across a single shock (the Hugoniot

*
Real bulk viscosity is subject to many anomalies; only in rnonatomicgas
is Stokest assumption Pt = O justified.
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curve & [26, p. 152]). For soldds, this will depend on

Poisson ratio, which may be unknown under the conditions

& 19. This uncertainty suggests a number of interesting

the effective

considered; see

questions.

It is also

by the mechanical

stable, p(d) must

Though the

interesting to consider the “Kolsky-Goad fluid” defined

model of B 16 as a synthetic material. For it to be

be a decreasing function.

microscopic appearance of this spatial discretization

of (22)-(23) is quite unlike that of real liquids and gases, its macro-

scopic behavior is that of an elastic fluid. One wonders whether it

might not

gases and

fines the

be used, for example, to simulate real equations of state for

liquids, including phase-transition. For instance, if one de-

T
temperature T as the mean kinetic energy mv /2 of translation

of the particles, one can ask for P(u,T).

Due to the complications which

‘ij
become extremely distorted (which

calculations), this may not be easy.

fied scheme, perhaps using triangular

arise when the quadrilateral areas

are also inconvenient in ordinary

But one wonders whether some modi-

or hexagonal areas and allowing

unwanted rods to disappear and new rods to subdivide irregular areas,

might not be successful in simulating the behavior of real gases and

liquids. It must be confessed that other models for liquids* also fail

to simulate real molecular physics in any detail.

*
E.g., the “free volume” and “hole” theories [17, ~ 4.4, s 4.8]. See
also J. Frenkel, “Kinetic theory of liquids,’’Oxford,1946; M. Born and
H. S. Green, “A general kinetic theory of liquids,” Cambridge Univ.
press, 1946.
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19. Elastic solids.

tic solid as a continuum in

In continuum mechanics, one defines an elas-

which the stress tensor Ilp II is a single-
ij

valued function of the strain tensor llaxi/aa I1. The theory of elastic
J

solids is highly developed only for infinitesimal deformations from sta-

tic equilibrium of homogeneous, isotropic media which have not been~-

stressed. One then assumes IIpijll= O if&i/aa~ = ~ij, and makes ]]pi~ll

depend linearly on the difference llaxi/aajll- Ilaijll.

Under these assumptions, the elastic characteristics of a three-

dimensional medium can be shown [21] to be characterized by a rigidity

or shear modulus p and a bulk modulus v!= h + (2LL/3);the analogy with

the viscosity coefficients is obvious. In the plane, one has~l= A + p

instead.

It is frequently suggested that the equations of an elastic fluid

can be substituted for those of elastic solids, in two cases: (i) in

one-dimensional motion [5,

p~osions,when stresses far

However, this substitution

biguity as to the relevant

!% 3-5 md &S 97-101], and (ii)in violent ex-

exceed the yLeld point of the solid considered.

must be employed with caution, because of am-

modulus of elasticity.

Thus, across a slab, the velocity of compressive acoustic waves

is [(A + 2p)/p]+; along a bar, it is [E/p]* according to the simple

theory, where [21, p. 42] E = w [(3X + 21J)/(1+ v)]. For accurate results,

edge corrections are needed [26, p. 33]. Likewise the triaxial stress

required to produce a uniaxial strain (e,O,O) is (A + @, A,X)G, and this

is very different from the hydrostatic pressure

-45-
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produce the

because the

same bulk compression.

Poisson ratio v = A/2(A

Thus for steel, in which P/h= 11/14

+ v) = 0.28 [26, P.154], the X-

=, is nearly twice as great incomponent of pressure, a

as in the second.

All this shows that elastic solids are much more

fluids in their reactions to one-dimensional stresses.

As regards waves of finite amplitude, consider a

the first case

complicated than

shock front.

Lateral contraction over the short transition-time would produce unbe-

lievably large acceleration stresses; hence the compression-jump is al-

most surely uniaxialo In view of Bridgmants data* on the increase in

shear strength under hydrostatic pressure and under rate of strain} how

can one be sure that shear stresses (proportional to p in the elastic

range) are negligible?

Because of all these uncertainties, it seems desirable to ex-

plore the many kinds of matter which have been found in Nature,,and

molecular models for these kinds of matter. Besides elastic fluids and

solids, we have already mentioned viscoel.asticfluids and h!axwe~ solids.

Viscoelastic and plastic solids should certainly also be considered.

Perhaps one should also consider glasslike, rubberlike, and doughlike

**
substances. What about sand and sintered metals?

*
P. J. Brid~n, “Studies in large plastic flow and fracture,” McGraw-
Hill, 1952, esp. Ch. 16 (see also Ch. 12, where various complicated
phenomena affecting volume changes are described).

**
We follow the classification of R. Houwink, “Elasticity,plasticity,

and structure of matter,” 2d cd., Harren press> 19530 Houwink also
points out distinctive mechanical properties of casein, starch,and
clay. Sols, gels, paints, etc., have other peculiarities.
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Against the background of this general philosophy, we will now ex-

plore a few very simple mass-spring models, which seem especially promis-

ing as possible substitutes for pure fluids in computation schemes which

purport to approximate the motion of violently stressed solids.

20. Mass-spring networks. Mass-spring networks in the plane and

In space have been studied since the time of Cauchy, as providing mole-

cular models of elastic solids. In accordance with the terminology in-

troduced earlier, one can think of them as defining synthetic crystals.

It is interesting to consider the mechanical properties of such

synthetic crystals for their own sake, especially when one really wishes

to simulate a so~d. Following Cauchy and Kelvin, Brillouin [3] has

investigated the propagation of waves

linear springs (y = -l); however, for

seems more appropriate to choose F(u)

drostatic) compression. For example,

through such systems connectedly

hydrodynamical computations, it

to match p in (23) for uniform (hy-

forF(u) = ka-y, one might consider

the non-linear force-lay f(r) = -a r-5. A simple dimensional analysis

shows that this makes 8 = 27- 1; the relation between k and CYdepends

on the type of crystal.

simple networks. The simplest plane crystals have polygonal cells;

the cases of squares, equilateral triangles, and regular

the most interesting. Ifjin a square(or hexagonal)

network, each particle acts only on its k (or 3)

immediate neighbors as indicated in Fig. 1, then

the network is obviously unstable in compression,
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I

because the area enclosed can be flattened without shortening the

springs. Moreover, the equation of state for this model is not a func-

tion of specific volume - if the area of a cell goes to zero without

shortening the springs, the pressure does not change.

Though unstable in compression, the square network defined above

is stable in tension. This shows that the dynamic behavior of @ane

mass-spring systems may change when p. is changed in the equation of

state simulated - even though this is not true of continuous fluids or

for networks in one space dimension.

Braced square networks. Another synthetic crystal is defined by

the diagonally braced square cell of Fig. 2. Each net point is connected

with its 8 nearest neighbors. Though not necessarily isotropic, such

crystals have two orthogonal “principal planes” of reflection symmetry.

To compute the elastic constants of this

*
model, we suppose that the spring con-

stants for the horizontal and vertical

springs are a, while those for the diag- R

onal springs are b. The associated w

stiffness constants are then a and b/(2, respectively.

The elastic moduli can be easily computed.
‘e ‘btain Cll = a ‘b’

C12 = b’ ‘d C66 = b“
The stress-strain relation is given by

*We use the notation of I. Sokolnikoff, “Theory of elasticity,” second
edition, McGraw-Hill, 1956.
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()‘11(27) ’22 =

712

a+b b o

)( )

’11
b a+b O

’22 9
0 0 b

’12

where ‘r~~ and e.. are components of stress and strain. The condition for
*CJ J.J

isotropy is Cll = c12 + 2C ; a mass-spring system of this type, in which
66

a = 2b, is elastically isotropic. The

in the isotropic case as it should be,

plained.

Poisson ratiov =

for reasons which

b/(a+b) is 1/3

will now be ex-

21. Networks as spatial discretizations. In one dimension.,mass-

spring systems define useful

(and fluids). It is natural

(and in space).

As far as infinitesimal

are concerned, this question

spatial discretizations of elastic solids

to ask if this is also true in the plane

deformations of homogeneous isotropic solids

was partly answered by Cauchy. He assumed

implicitly what may be called Cauchy!s Hypothesis: that the mass-spring

system remained in static equilibrium under any affine deformation. This

is true, with central forces, for any crystal having central symmetry in

aU.

(as

its mass-points

Under Cauchy’s

above), and v =

-= hence for all the models of ~ 20.

hypothesis, M = A, which implies v =

1/4 in space. But experimentally, v

in many solids; thus for lead, v = 0.45 [26,p. 154].

It follows that one cannot approximate the behavior

1/3 in the plane

is far from 1/4

of most elastic

solids by simple mass-spring networks centrally symmettic in every mass-

point, even

cerned. In

as far as plane

particular, the

waves of infinitesimal amplitude are con-

bulk modulus and shear (rigidity) modulus
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are proportional, so that one cannot easily simulate an elastic fluid.

This is also true of the ionic crystals (with oppositely charged par-

ticles) used to simulate the alkali halides ([11, [2], [3])— though

various interesting properties of real crystals (e.g.> “BriKLouin zones”)

are simulated quaMtatively.

Anisotropy. The mechanical behavior of synthetic crystals under

small deformations is determined by their moduli of elasticity. Hence,

the braced square network discussed earlier is elastically isotropic~

even thou~ no molecular model can be isotropic in all its physical pro-

perties. However, even elastic isotropy is lost under large defor-

mations, a fact which makes it difficult to use synthetic crystals to

simulate isotropic polycrystalline solids (like steel) with v near 1/4.

Consider for example a simple synthetic crystal corresponding to

a mass-spring network of equilateral triangles. Let the springs satisfy

the force-law f(r) =a r-b. The pressure will then be p =

8 =2y- Iandifa= k(~3/4m)-7/~~where m is the mass of

Then,under large uniaxial compressions, one obtains

tion of Fig. 3. It is easily verified

k u-y if

a “molecule.”

the configura-

that the horizontal stress ‘rIland the

vertical stress 722 satisfy

=a2 + (1/2 sec f3)l-5
‘11 Csc P
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Also this crystal is isotropic for infinitesimal deformations; it

is highly non-isotropic (and unsuitable for hydrodynamical computations)

as regards finite deformations.

Kinetic theory. As in the one-dimensional case, it would be in-

teresting to compute equations of state for synthetic crystals subject to

various force-laws, expressing the specific volume u = u(p,T) as a func-

tion of the temperature. As in ~ 10, one would have to define T in terms

of statistical equilibrium with a perfect gas at the stated temperature,

and not in terms of the mean energy per particle. Expansion anisotropy

could also be computed.

22. Universal force-laws. In the computation schemes

thetic arystals discussed so far, forces have been assumed to

between preassigned “near neighbors”. It is, of course, more

to let forces be determined entirely by the distances between

and Syn-

act only

reasonable

the

particle-pairs involved, irrespective of their initial locations. (For

the small deformations @ classical elasticity theory, to be sure, the

distinction is largely academic.)

The artificial restriction of molecular forces to preassigned

pairs of neighbors has been avoided by Born ([1], [2]) using Madelung!s

constants. However, he makes the equally artificial assumption of per-

fectly~eriodic displacements in calculating the mechanical properties

of crystals. (Somewhat similarly, Cauchy and others have made calcula-

tions assuming that all particles except the one under consideration re-

mained stationary.)
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Only recently have genuine “kinetic theory” calculations been made,

in which forces were allowed to act between arbitrary pairs of suffi-
*

ciently near particles, by F. Harlow and (for the model discussed in

E 16) byHarwoodKols@.
*

However, Harlow’s model uses central

configuration; it seems Mel-y that it has

forces and a simple initial

shear rigidity if it is iso-

tropic. Moreover it retains the artificiality of not hating a universal

force-law, applicable to all-sufficiently close particle-pairs. It

would seem to us that the device of having a cutoff radius (depending

on the entropies S or temperatures T of the particle-pairs involved)

would be more logical.and perhaps as effective computationally as re-

stricting forces to a preassigned number of neighbors of each particle.

This could be combined with an artificial conductivityy, acting between

“nearby” particle-pairs with f >
ij

and irregularities due to particle

Postulating forces with such

O, so as to smooth out both shocks

diffusion.

a cutoff radius was originally sug-

gested by Newton (1oc. cit. in ~ 3). It avoids the possible paradox of

infinite potential enerKY associated with distant particles, implicit in

For instance, iff(r) = ~-p with p ~ 4>some universal force-laws.

then the volume integral C/rp-l r2dr(C = 4Ytk/[p- 1]) of probable poten-

tial energy of randomly distributed particles is infinite. This paradox

*
F. H. B&low and B. D. Mei~erj “The particle-and-force computing
method for fluid dynamics, Report LAMS-2567,LOS AIamos, 1961.

w
H. Kolsky, “The nearest neighbor hydrodynamics calculation,” Memo,
dated July 1, 1961.

-52-



has been discussed by MaxweU (see [8,~ 165]).

an

is

In the computation schemes of Harlow

artificial viscosit~ is introduced, and

attributed to particles (or cells). It

and Kolsky mentioned above,

a time-dependent entro~

would be interesting to study

the synthetic materials defined by the same models without viscosity,

and to compute the equations of state p(u,T) and internal energy functions

I(u,T) for the synthetic materials which they define. This can be re-

garded as an extension to the plane and to universal force-laws of the

ideas introduced in ~ 11, for one-dimensionalmass-spring systems.

Plastic solids. Under increasing shear strains, particle-and-

force systems with universal force-laws behave somewhat like plastic

solids. Consider for example the square network of ~ 20 with molecular

spacing h and, for simplicity, a universal force-law with cutoff dis-

tance d = 2h. For small deformations from equilibrium, the system will

behave like a braced square network. But if a shear strain is imposed

which slideseachm-th row through a distance mh/2, then symmetry shows

that there will be static equilibrium (zero stress).

It would be interesting to try to simulate other features of plas-

tic behavior by quasi-molecularparticle-and-force systems. Especially,

it would be interesting to determine the relations to large strelns of

ideal simple crystals corresponding to the fourteen Bravais latt:Lces.*

*
C. K. Hel, “Introductionto solid state physics,” Wiley, 1956,Ch. I.
To simulate the effect of dislocations in imperfect crystals would
clearly be harder. See R. Hi~ “The mathematical theory of plasticity,”
Oxford, 1956,Ch. I.
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23. PIC models. Perhaps the most novel scheme which has been

used successfully to simulate an elastic fluid with shocks is the

patiicle-in-cell or PIC computation scheme developed at Ias Alamos by

Harlow and his co-workers. As the usefulness of this scheme as a compu-

*
tational tool has been discussed in some detail in other reports, we

will consider here primarily the synthetic materials which its variants

define. (The scheme now used in hydrodynamical computations evolved

after extensive trial-and-error experiments with such variants.*)

To represent a homogeneous material, a box is supposed divided

into square (or rectangular) cells, each of which contains a number

Nc(t) of identical particles. Each cell.C has density PC = Nc (in suit-

able units) and pressure pc = f(Nc,Ic), where Ic

depending on the past history of particles which

In the simple adiabatic case, we would have pc =

is an internal ener~

have been in the cell.

f(Nc), but the various

averaging processes used in actual PIC codes (KAREN, SUNREAM, etc.) act

like artificial viscosity in converting mechanical energy into heat.

An obvious peculiarity of the synthetic material defined by some

such schemes is the instability of static equilibrium unless Nc is a

half-integer. Unless the cells neighboring a given celJ on each side

contain the same number of

follows that in any stable

*
See [13],[24],and F. H.

-x-x.

particles, the cell will be accelerated. It

static array of particles, all “red” squares

Harlow, J. assoc. comp. math.4 (1957),137-42.

‘“--I)escribedin earlier Los Alamos Reports IAMS-1956and IAMS-2C82.
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of a checkerboardmust contain the same number of particles, and so must

all %lack” squares. The converse is also true, which shows that static

stability is possible if and only if the average density p = ficis an

integer or half-integer.

Obviously, the “diophantine” static instability described above be-

comes less serious as Nc increases. It is interesting to consider the

behavior of PIC material in the limit Nc +CO. In one dimension this can

be treated semi-analytically,taking the density p(x,t) as dependent var-

iable. Possibly convergence to the behavior of an elastic fluid can be

proved in this way, taking the iterated limit as N= += and cell size

tends to zero.

It has been shown [13,p. 16] that, in one dimension, the PIC ma-

terial has an effective (bulk) viscosity Vt = +15/2 (s = celL length);

the analogy with the formula v = pc=/3 of the kinetic theory is obvious.

On the other handy the natural shear viscosity is zero: the drag layer

along slip boundaries is at most one cell wide, even if averaging is

used.

The PIC material is highly non-~near (because of its “diophantine”

behavior, remotely suggestive of quantum mechanics). Hence it would be

interesting to compare the formula for bulk viscosity quoted above with

attenuation rates for sinusoidal waves of variable frequency and ampli-

tude, in directions parallel to ce12 boundaries and at a 45°angle with

them.

*F. Harlow, J. assoc. COmPO math.4 (1957)) p= 139*
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24. Synthetic materials testing. As the number of “synthetic

materials” proposed for hydrodynamic computations increases, the need for

objective standards of comparison clearly grows. It seems to us that

standard materials testing procedures used in mechanical engineering pro-

vide good precedents in this connection. (Only dynamic tests would ordi-

narily be of interest.)

Thus, in the LLnear range, one can derive moduli of elasticity and

viscosity by studying the velocity of propagation and the rate of atten-

uation of plane waves in various tirectionso Explosions of highly com-

pressed spheres, cubes (squares), etc.,give some useful comparisons in

the non-~near range. So do simple plane shocks, of varying intensity

and moving with varying velocity.* Impact tests (sayof high-speed

rigid missiles), somewhat analogous to drop tests, could also be used.

But just as in the case of ordinary materials testing, the stan-

dardization of such a series of tests can probably best be decided by a

committee. Therefore we wi~ not elaborate further on the subject.

*
Though the problems Which they attempt to solve are invariant under
transformation to moving axes, the ssme is not true of digital.Nerian
or quasi-Eulerian schemes, such as PIC.
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