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THEORY OF THE SCATTERING OF PIONS BY NUCLEAR MATTER

by

H. A. Bethe and Mikkel B. Johnson

ABSTRACT

We derive a relation between the (complex) wave number k
of a pion in nuclear matter of density p and its energy w.
The relation is determined hy the pion self-energy l(w,p). Fol-
lowing Dover and Lemmer, Il is an integral of the forward scatter-
ing amplitude f(k,w,p) over the density. A formalism analagous
to Chew and Low 1s ugsed to find f in nuclear matter; the result
is similar to the Chew-Low theory for free nucleons. Pauli prin-
ciple and finite mass of the nucleon can be taken into account
easily, and give a significant modification. The resulting for-
mulae are evaluated in an approximate model. The wave number k

L stays moderate at all energles and densities, in contrast to most
= of the earlier theories.
" ég' The resonance is defined as the energy at which the real part
e=——«ti of the forward scattering from a nucleus such as '2C 1is zero. The-
g%m l“;* ory predicts that this energy is 6 MeV lower than the free-nucleon
=" resonance; experimentally the downward shift is 20 = 20 MeV. The
§=8| theory is applied to finite nuclei, using a local-density approx-
3 o imation with a simple correction at the nuclear surface. Elastic
§____.03P scattering near resonance is governed by the low-density surface
éEml ) region of the nucleus (density 0.2 to 0.3 of central density);
"""‘Sg| this explains the success of earlier theories. Inelastic scatter-
EO’)“& ing is dominated by the large refractive index for pions (up to 2);
=" inelastically scattered pious will either come out at very low
' energy or be captured by the nucleus.
I. HISTORICAL INTRODUCTION K2 = kz + 4upf (k,0) (1.1)

The problem of the interaction of pions with .
nuclei has received attention for at least 15 years. 1n which ko 1s the wave number in free space,
Many good experiments have been done, and soon the
meson facilities at Los Alamos and elsewhere will

produce further, more accurate and more detailed kt -w? - (1.2)

experimental information. A renewed theoretical

study is in order. (w = energy, M = mass of pion, h'=c=1), k 18 the
The most influential theory has been that of wave number in the medium (nuclear matter), p the

Kisslinger.l It can be based on the well-known densi;y3 of nucleons, and f(k,0) the forward scat-

formula® of physical optics . tering amplitude for the scattering of a pion by one

nucleon(‘ in nuclear matter, Since the main inter-

action between pion and nucleon is the p-state



interaction

-

go Vo (1.3)
-

(o the nucleon spin, ¢ the pion wave function), we

may assume Chat

f(k,0) = ao(w) + al(w)kz . (1.4)

where a0 represents the s-state and a the p-state
1

scattering. Kisslinger now assumes that the energy-
dependent factors a0 and alcan be deduced fron

the scattering of pilons by free nucleons. It is

this assumption which we shall change in this report.

Inserting Eq. (1.4) into Eq. (1.1), we obtain

k? = kz + 4npa°(w) + 4mpa (w)k? (1.5)
1

and

2

w? - u? + 4mpag (w)

k? = . (1.6)

1 - 4mpa, (w)

The quantity al(w) has been carefully evaluated by
Ericson and Ericson5 at the threshold w = yu, using
the best available numbers on the scattering by free

nucleons. This yields

-1
al(u) = (1 + u/™) c, = 0.198 p~ 3 .7)

(c0 is the Ericsons' notation, M = nucleon mass).
This means that the denominator in Eq. (1.6) van-
ighes for

p=p =0.40 u o, (1.8)

which is less than the density of nuclear matter,6

p, = 0.16 fm-3 = 0.47 ¥ . 1.9
Assuming the numerator of Eq. (1.6) to be positive
which it will certainly be at higher energy,7 the
wave number k turns out to be purely imaginary (!),
and at the "critical' density p,» it is infinite,
We shall call this the Kisslinger syndrome, and we

consider it serious trouble,

Kisslinger has pointed out that for energies
w > U, the free-nucleon scattering al(w) 18 complex
so that the k? from Eq. (1.6) does not actually be-
come infinite at any p. But it does become very
large, and this gives rise to unphysical behavior
of the pion wave function and to wrong conclusions8
on such matters as the one-nucleon absorption of

plons by the process

N+mT=N+7y (1.10)
(N = nucleon, N' = nucleon of different charge). At
w =~ u, the free-nucleon scattering a,(u) 1is purely
real because the phase shifts are small, but the
Ericsons have pointed out that an important imaginary
term is contributed by the two-nucleon absorption

N+ N+m=N"+N+ kinetic energy (1.11)

and have calculated this contribution.5 It also

persists for w > u. The Ericsons have found that

the Kisslinger syndrome is further mitigated by the
5,2

Lorentz-Lorenz correction (see Sec. II).

The Ericsons and others have applied their
theory to an understanding of the shift and width of
the energy levels of pionic atoms, and have achieved
impressive agreement with experiment. Their results
remain essentially unchanged in our theory.

In his first paper, Kisslinger extended his
theory to finite nuclei in which p = p(:) is a func-
tion of position. The last term in Eq. (1.5) 1is made
into a self-adjoint operator by replacing it byll

=4ma, (W) Ve (pV)

(1.12)
= —4ma, W) (pV2 + Vp'V) .

This theory has been used widely12 to calculate the
scattering of pions around 80 MeV by !2C and other
nuclei; good agreement with the differential cross
section has been obtained. At 30 MeV, Marshall et
al.13 vere also able to fit their experimental data
with the Kisslinger scheme, but they needed a much
larger repulsive s-wave scattering than the free-
nucleon scattering data indicate. Their b0 18 -4,

whereas the theoretical value 1is -0.5,



In an effort to cover energies closer to the
33-resonance, Ericson and Hﬁfnerla represent f (k,0)
by a Breit-Wigner formula. For the coupling of the
p-state pion to the nucleon, they alternatively use
k2 [as we do in Eq. (1.4)] or k:, the free-pion wave
number. In the first case, they find that the reso-
nance is shifted down to lower energies, and in the
second case, it is shifted slightly up; comparison
with experiment is rather inconclusive. For the
width of the resonance, they take the values deduced
The width 1is
then a function of the pion energy only, I'(E) or
F(ko). We do not believe this is justified; I should

depend on k, the pion wave number in nuclear matter

from free nucleon-pion scattering.

(see below, where the work of Barshay et al. is dis-
cussed).

Dover and Lemmer15 go back to first principles.
They show that k in nuclear matter is given by the
self-energy of the pion [our Eq. (2.2)]. Then they
establish that the self-energy can be calculated
from the scattering of the pion by single nucleons.
For the scattering, they develop a theory analagous
to that of Chew and Low16 for the scattering by a
free nucleon. The paper by Dover and Lemmer is done
with great care, and we shall use it as the basis of
our general theory in Sec. II. Unfortunately, in
the further evaluation of the scattering amplitude,
Dover and Lemmer make the same assumptions as Kiss-
linger, i.e., k? 1is used in the coupling of pion and
nucleon, as in Eq. (1.4), but in evaluating the
equivalent of a (W) in Eq. (1.4), they explicitly
set k = k . the incident momentum [Ref. 15, text be-
(3 30)1]. (1.1)

shows that k # ko; in fact, as we show in Sec. VII,

low Eq. This 18 incorrect, since Eq.
this effect is much larger than the effects Dover
and Lemmer take into account, such as the Pauli
principle. The Pauli principle was also considered
by Eigenberg and Weber.17

The first authors to give the correct treatment
of the resonance were Barshay, Rostokin, and Vagra-

18

dov. They introduce explicitly the A-particle

(33-resonance) as a separate particle. Absorption

of a pion may transform a nucleon into a A, which
then changes back into a nucleon when the pion is re-
emitted. The coupling constant TNA is known from
the width of the "free™ A resonance. In nuclear mat-
ter the effective width is automeq%cal%y proportional

to k° (Ref. 18b, p. 200, top); the authors get a rea-

sonable shape of the total and the reaction cross
gection.

An especlally simple treatment of this A-model
was given by Barshay, Brown, and Rho.19 They con-
sider that, after absorption or emission of a pion,
a nucleon may either remain a nucleon or transform
into a A (Ref. 19, Fig. 2).

low momentum, k << pF (the Fermi momentum of the nu-

If the pion has very

cleons), the first process, N + m + N, is forbidden
by the Pauli principle, but the second process,

N + m > A, remains unaffected. This picture gives
just the correct behavior of the scattering ampli-
tude f for very low k, which is important for the
interpretation of the energy of pionic atoms (Sec.
VD).

20
of one of the present authors

The authors also show that an earlier paper
postulated an exces-
sive effect of the Pauli principle for low k.

The introduction of the A, while giving a very
simple description of many phenomena, raises some
new questions, in particular how does the A interact
with nuclear matter? Barshay, Rostokin, and Vagra-
dov18 explicitly introduce the potential energy VA
of the A in nuclear matter, and find that the self-

energy of the pion is sensitive to V It seems dif-

ficult to calculate VA; for instance? it should con-
tain the rather large increase of the self-energy
pointed out by Sawyer21 which 1s due to the fact
that the decay of the A into nucleon states inside
the Fermi sea is forbidden. Because of the uncer-
tainty in VA’ and other reasons, we felt justified in
continuing our calculations, begun in the summer of
1972, which are based on Chew-Low theory; after all
that theory generates the A. But we agree with .
Barshay et al. that the effective width of the
resonance is proportional to k¥, with k the momentum
in the medium.

The use of k® not only increases the width of
the resonance, in agreement with observation, but al-
so keeps down the resonance cross section of the
scattering by one nucleon inside nuclear matter,

g This is essential because this cross section

s;zuld not exceed (or at least not by much) ﬂr where
T, AI/3 is the nuclear radifus. Otherwise, the scat-
tering cross sections of neighboring nucleons would
overlap, which is very unreasonable. Having k? in Eq.
(1.4), and a,(w) the same as for free pions makes

UrN very large, in fact even larger than o, for free

pilons which 1s 130 mb, while nr°2 % 40 mb.



Many alternative approaches have been published,
far too many to be enumerated.
Tabakin22
and pion to treat off-shell propagation of the pion.

Landau, Phatak, and

use a separable potential between nucleon

0ff-shell propagation is, of course, already treated
very well by the Chew-Low method16 in which depend-
ence of the scattering matrix on k and on w are
cleanly separated; the Chew-Low method stays more
closely in the framework of standard pion-nucleon
scattering theory.

Schmit and Dedonder23 have also properly em-
phasized the importance of off-shell propagation of
the pion in nuclear matter. In applying his theory,
Dedonder points out that the vanishing of the real
part of the scattering amplitude is a good criterion
for the position of the resonance (see Sec. VII) and
finds that his theory gives better values for this
position than earlier ones.

Gibbsza.uses a completely different approach.

He does not determine an optical potential (or self-
energy, or wave number) of the pion in nuclear mat-
ter, but considers the successive scatterings of the
pion by individual nucleons. This involves, of
course, a prodigious amount of computing, but Gibbs
has simplified the problem sufficiently to make it
manageable, at least for a light nucleus like 12¢,
We believe that our nuclear matter approach can sim-
plify the scattering problem and bring to light the
essential physics with much less computing. In any
case, for heavy nuclei, the approach of Gibbs ﬁe—
comes completely unmanageable. Although, in princi-
ple, the method of Gibbs requires knowledge of the
off-shell T-matrix, he has invoked approximations
which render results insensitive to the off-shell
extrapolation.

Although the need for going "off energy shell"
has been recognized, a tractable calculational pro-
cedure, properly motivated by physical considera-
tions, has remained elusive. From our point of view,
Eisenberg25 has recently taken a step in the correct
direction. He considers the interaction of the
transmitted pion (q in Fig. 1, Diagram 4u) with an-
other nucleon. This 1is the first approximation to
using a refractive index for pions, as in Eqs. (1.1)
or (2,2).

most important effect of the interaction of q is the

In agreement with our later results, the

addition of an imaginary self-energy.

\\\\ q /’/ \\\\ /’//
:>\’\—__§:></ //"\—\:\/_P‘\\
L AN I A A

4u 4c

Fig. 1. Two fourth-order diagrams for the scattering
of a pion (dashed) by a nucleon (iglid).
Notation due to Dover and Lemmer.

II. GENERAL THEORY
The fundamental theory has been very well rep-
1
resented by Dover and Lemmer. 5 They consider the

propagator of a pion in nuclear matter [their Eq.
2.8)1,

D) = [u? + K% - 0? - Tae,w] . (2.1)

where NI(k,w) is the pion self—energy26 in nuclear
matter. This 1is, of course, complex (a) because the
pion of momentum E may be scattered into other di-
rections (which corresponds to a decay of state E),
(b) because the pion may be absorbed by one or two
nucleons [Eqs. (1.10) and (1.11)], and (c) because 1t
may produce further pions by collision with nucleons.
Process (c) becomes important only well above the
Process (b) will

Por the present, we shall

33-resonance, so we shall omit 1it.
be considered in Sec. VI.
only consider scattering, process (a).

The pole of the propagator Eq. (2.1) defines

the energy-momentum relation in the nuclear medium,

K2 = k2 + N(k,w) > 2.2)

which has a similar form to Eq. (1.1). The self-
energy diagrams can be divided into those involving
only one nucleon and those involving several. Some
of the one-nucleon diagrams are given in Ref. 15,
Fig. 7.

our Fig. 2,

A typical two-nucleon diagram is shown in

The pion is absorbed by nucleon a which
goes from an occupied state P, to a normally unoccu-
pied one, Py Then it interacts with nucleon b,
which then finally re-emits the pion. The interac-
tion must not be transmitted by a pion because then
Fig. 2 would be reducible to two scatterings by sin-
gle nucleons, but any heavier meson, e.g., O, P, or
w is possible. So the interaction represents closa
correlation between the nucleons a and b; we discuss

1ts effect at the end of this section.




oot

C-O‘

Fig. 2. A two-nucleon contribution to the pion self-

energy; a3 and b are the two nucleons.

For the one-nucleon diagrams, Dover and Lemmer
have shown that they are closely related to pion-nu--
cleon scattering diagrams (their Fig. 8). They show

[their Eq. (3.16)], that the functional derivative

UCI 4t £(p k; p k)

56 () ’ .3

where G(p) 1s the renormalized nucleon propagator28
in the medium, and f is the scattering amplitude as
a function of the four vectors p and k. The nucleon
propagator G has a simple form if we use the one-

nucleon approximation of nuclear matter theory.29’30

We have then, exactly as shown in Ref. 15, Eq. (3.19),

n(p)
€®@) - p, + 18

G(g,p°>

1= n(p)
e(p) - Py - 18

, (2.4)

where n(;) is the occupation number of nucleon state
;, and where
> >
e(p) = p2/2M + U(p) (2.5)
> >
with U(p) the potential energy of a nucleon p in the

field of all the others.3o

the interaction of a nucleon with another in which

>
U(p) takes into account

both nucleons return to their original state, indi-
These
are in contrast to the interaction in Fig. 2 in
which the excitation (provided originally by the pi-

cated by the wavy lines in Figs. 3a and 3b.

on) is transferred to another nucleon.

~ /
\\\ /, \\\ /’,
N Z}/ g>\ -t
3b
Fig. 3. Self-energy of a nucleon, (a) in a particle,

(b) in a hole state.

In general, the pion self-energy will depend on
all the occupation numbers n(;) of the nucleonstates.
(3.21), that

5
Dover and Lemmerl show, in their Eq.

SIED - 4 (ke p, k)l

-

(2.6)
Sn(p)

S 10-D

where the last symbol simply indicates that all nu-
cleons have to be taken on their energy shell; we
shall imply this fact in the following.
We are interested in nuclear matter. In this
case, all nucleon states inside the Fermi sea are

occupied,

n() =1 1f [p] <p, . 2.7

In this case, the self-energy [l can depend only on

the nuclear density

3
p=4n(;)9_2__=_.2_ p3

(2.8)
@m)?  3n? F

(factor 4 for spin and isospin). As the density is
increased from p to p + dp, one nucleon is added in
each state in a spherical shell in momentum space

with momentum |E| = Ppr Therefore

O fa G ;
s dQ_I; £ k, p k)papF , (2.9) |

= ame, (p k) . (2.10)

The integral in Eq. (2.9) 1is over all directions of

31 of p remains fixed at Ppe
(2.10) must, of

course, be calculated in nuclear matter, at the den-

; while the magnitude
The scattered amplitude f in Eq.

sity p corresponding to Pp [Eq. (2.8)]. 1In doing



this, we must use the appropriate relation between
III and w of the pion, viz., that given by Eqs. (2.2)
and (2.9). This will be done in Sec. III. Obvious-
ly, we have a self-consistency problemi f in Eq.
This

relation is determined by II(p,k), and II, in turn,

(2.9) depends on the relation between k and w.

depends on f.

It is interesting that, for any given density,
£ This clearly
the effect of the Pauli principle which
18 discussed in Sec. IV.

f needs to be calculated only p = p
'minimizes32
It also ensures that this

effect is given by an analytic function [see the
© discussion below Eq. (4.13)].

Using the average scattering amplitude defined

in Eq. (2.10), we get

Ni(k) = &4 Tl’ffAv(pF, k) dp . (2.11)

If fAv 1s independent of Pps i.e., of density p, and

only then, Eq. (2.11) leads to the simple, intuitive
formula, Eq. (1.1). As is well known, that formula

can be derived by considering the wavelets scattered

by individual nucleons, which interfere constructive
ly in the forward direction. From the theory of Do-
ver and Lemmer which we have followed here, it is
clear that Eq. (1.1) is only a low-density approxima-
tion; but it is satisfactory that the intricate Do-
ver-Lemmer theory leads back to Eq. (1.1) at least

in the low-density limit.

We now return to the contributions of two-nu-
cleon diagrams (Fig. 2) to the pion self-energy.
These have been treated simply and elegantly by Bar-
shay, Brown, and Rho

scribed in Sec. I.

whose general method was de-
They show that the main effect
of these diagrams is to give a Lorentz-Lorenz cor-
rection which expresses the fact that two nucleons
can not be close together because of their strong
short-range repulsion. This effect exists even if
the repulsion has very short range (let us say, com-
pared to the average distance between nucleons).
Earlier, the Lorentz-Lorenz correction was de-
rived by the Ericsons5 who used the analogy between
the p-state pion interaction and electrostatics.
They, as well as Barshay et al., find that the last

term in Eq. (1.5) is replaced by

4npal(w)
——k 2

. (2,12)
1+ (41r/3)pal

This means that the Kisslinger syndrome is mitigated
but not eliminated. The density at which k2 in Eq.
(1.6) becomes infinite is now raised to

p, = (3/2) p, = 0.60 u* , (2.13)
s8lightly above nuclear matter density [Eq. (1.9)].
But very large k? will persist.

There are other effects of two-nucleon correla-
tions but these are probably smaller. Three-nucleon
and higher correlations should be negligible.

The short-range correlation between nucleons,
due to the repulsive forces, is not the only one
that exists. There 18 also the long-range correla-
tion due to Fermi statistics, and the medium range
one, due to the attractive forces. The latter 1is
very weak33 and can be neglected. The Fermi corre-
lation is taken into account by introducing the
Pauli principle explicitly in the scattering by a
single nucleon, as done by Dover and Lemmer and by
us in Sec. IV.

III. SCATTERING BY A NUCLEON

We shall treat the scattering of a pion by a
mucleon in nuclear matter by the same method as that
used by Chew and Low16 for the scattering by a free
nucleon. This method has also been used for nuclear
matter by Dover and Lemmer15 whose work we have al-
ready used in Sec. II for the fundamental theory,
Dover and Lemmer rederive the Chew-Low theory from
Feynman diagrams and then introduce the Pauli prin-
ciple for the nucleons. Unfortunately, they then
make the approximation [below their Eq. (3.30)] that
the momentum inside the nucleus : 1s the same as the
outside momentum Eo' We have already discussed in
Sec. I that this 1s not legitimate, and we shall see
later that the difference k - ko has very large ef-
fects.

In using the Chew-Low theory, we shall also use
4 which is by far the
This

restriction to the 'one-meson approximation" of Chew

their one-meson approximation

simplest way to take unitarity into account.

and Low may, to some extent, be justified by tha




modern analysis of T-nucleon scattering. According

to Donnachie and Hamilton,35 over 75% of the
strength of the A resonance is contributed by the
Chew-Low theory, called "nucleon exchange" by
Donnachie and Hamilton. Most of the rest is due to
exchange of a U-meson, more precisely of two pions
correlated in a state of isospin and angular momen-
tum O (Fig. 4). Only 2% is attributed to N* ex-
change, which is perhaps the closest analog to the
Chew-Low diagrams going beyond the one-meson approi-—
imation, and 0.6% 1s due to p-exchange.

It would, of course, be best to consider the
Donnachie-Hamilton diagram (Fig. 4) also in nuclear
matter. This would, however, make it necessary to
consider the behavior of the o-meson in nuclear mat-
ter. We have not felt able to do this, and have
therefore confined ourselves to imitating the Chew-
Low theory.

For the purposes of this section and the next,
we shall assume that the nucleon has infinite mass,
so that the pion energy remains unchanged in the
scattering; thus w and k have definite values. The
energy lost by the pion to the nucleon will be
treated in Sec. V.

The theory of this section applies to the scat-
tering by a nucleon of any momentum ;. In the next:
gection, when we discuss the Pauli principle, we
shall make use of the fact, discussed below Eq.
(2.9), that we need only the case p = Pp*

To have a theory of the Chew-Low type, it is

necessary (and sufficient) to have a definite rela-

Fig. 4.
other than Chew-Low, according to Donnachie
and Hamilton. The line —*~+— denotes a
o-meson. ’

The only important pion-nucleon interaction

tion between energy w and momentum k. (The momen-

tum serves both to count the number of intermediate
states, and to establish the unitarity relation, see
Eq. (3.6).)

the relation between w and k 1is

For the scattering by free nucleons,

W = 4+ LI (3.1)
In nuclear matter this relation is changed because

of Eq. (2.2).
p, there is still a definite relation. Now, it is

But for fixed nuclear matter density

well known that the forward scattered amplitude

> >
f(pk,pk) 1is complex. In fact, because of the opti-
cal theorem

itive.

the imaginary part of f is always pos-
Hence, using Bqs. (2.2) and (2.11) for any
real value of k the corresponding value of the ener-

gy wk has a negative imaginary part,

Imw, <0

K (k real) .

(3.2)

Similarly, for any real w, the corresponding wave
number kw is such that
Imk >0
w

(w real) . (3.3)

Following precisely the procedure of Chew and
Low, we define the amplitude tkq(z),

B @ = = V0O V(@) mlhyu)TF
4
XZPa(k,q)ha(Z) ,

a=}1

(3.4)

where k is initial and q final momentum, z a com-
plex variable replacing w, v(k) a form factor going
to zero as k > o, o = (21, 2J) distinguishes the
partial waves, I is the total isospin and J the to-
tal angular momentum, and the Pa are projection op-

erators of which we shall only need

Ty -2
P, = () -1/3 Tqu )y U

kq

[3E-Z-(3-E>(3-Z>] . (3.5)



The important function is ha(z). Chew and Low show
that hl! = hy, and therefore congider just the three
functions h; = hll, h2 = h13 = h31 and h3 = hss; on-
ly hy is important for us.

An essential part of the theory is the unitari-
ty condition. To facilitate writing this, Chew and
Low introduce the one-meson approximation, i.e.,
they assume that only a single meson can ever be
present in any intermediate state (see the beginning
of this section). Using this approximation, the
unitarity condition becomes simply a relation be-
tween ha(z) and phase ghifts [Ref. 16, Eq. (34)].

To define phase shifts, it 1is essential that we
Only in this

case does there exist the possibility of a Rayleigh

assume the wave number k to be real.

scattering formula,

. 18
£(k,0) = k 'E(2L + 1) sin ge EPy_(cos 8). (3.6)

As will be remembered in deriving this formula, one
considers in- and out-going spherical waves, eiikr/r,
and either one or the other of these will become
nonsensical if k is complex.

The Chew-Low theory which uses the complex w-
plane gives us just enough freedom to choose k to be
real. There are branch points at w = £ yu in the
Chew-Low theory because of the relation in Eq. (3.1),
and these persist also in nuclear matter, as dis-
cussed in more detail in Sec. VI. A branch cut
therefore has to start from w = Y. Chew and Low
choose this to lie along the real w-axis which in
their case is also the real k-axis. We choose it

(for the present) to lie along the line of real k,

w - plane

w real

- ——k real

Fig. 5. The complex w plane. O = origin,--- line
of real k, x = a possible value of z, solid

line: branch cut along line of real w.

hence complex w with negative imaginary part, see
Eq. (3.2) and Fig. 5. With Wy thus defined, we have
a unitarity relation37 along this line. If we
take38 the free-space unitarity relation of Chew and

Low [their Eq. (34)],>° then

1im h (z) =

z»wk+i€ o

- 18,0 (3.7

sin 8 (Ou?/k*v? (k) .
The point z is just on the positive imaginary side
of the branch cut, so z still has a negative imagi-
nary part. The amplitude itself is, of course, at
present still unknown, only the form of the ampli-
tude is dictated by unitarity.

By considering the singularities of ha(w)’ Chew
and Low derive their Eq. (40) for ha(z). They can
greatly simplify this by introducing a new function
8y> getting

hy(z) = A /[zg,(2)] (3.8)
where Aa 18 related to the unrationalized coupling
constant between pion and nucleon, £2 ~ 0.08. In
particular,

4 .2
A 3 £,

, (3.9

whereas Al and Az are negative and therefore lead to
repulgive interactions in states 1 and 2. For ga(z),
Chew and Low then obtain the dispersion relation

. s Jr Y 6 x"
g (z) =1 —i'-mﬂfﬁ———+-ﬁ———] . (3.10)
G w j‘; x'-z x'+z

We obtain precisely the same relation with the only
difference being that the integral goes along a com-
plex path in the x'-plane, viz., along the dashed
line of Fig. 5 which corresponds to real values of k.
To determine Fa’ we use the unitarity condition
in Eq. (3.7) [see also Appendix C, Eq. (C.18) and
Bq. (C.20)] and the definition of 8 in Eq. (3.8)
which give




gu(z) - Lim

84(2)
z+, ~1n

. .. : 1
E i E [I;fum,km
- -°‘7 k>v? (k) p-2? .

“

(3.11)

The function Ga i1s determined in turn from the cross-
ing relations. Once we know the path in the complex
w-plane and the (real) value k at each point on the
path, we may evaluate Eq. (3.10) to find ga(z) for
any complex value of z.

To find W, we must find the poles of Eq. (2.1)
for values of w just above the cut in Fig. 5, which
means evaluating ga(w) for these same values of w.
But then the integration in Eq. (3.10) encounters the
pole, so we may write 8, 38 the sum of a pole term
A, and a remainder A,, which contains the principle

value integration (denoted by P),

A ) = - mmki‘v2 (k)/wkuz (3.12)
A k'3v2(kl)u—2
Ay (wy) = 1—%1‘[ x' | 22—
b t2 1]
x'“(x -wk)
G 1
+ ol . (3.13)

x'+wk
The integral [Eq. (3.13)] clearly diverges linearly
for large x' until the form factor v(k') cuts it
off. Hence the main contribution comes from large
x', and therefore the value of the integral does not

depend strongly on W This 18 Chew and Low's ef-

k'
fective range approximation. The integral has the

same form as in Ref. 16; the only difference is that
the path of integration is now complex. We may thus

write

Ap(w) =1 - w (ry +1x,) . (3.14)

But the imaginary part of x' is only important for
small x' (see below), hence the imaginary part of
the integral will be small compared with the real;

(3.14a)

Further, r, will be almost equal to the "effective

range" of Chew and Low,

(3.14b)

As p > 0, of course, xr, * 0, and r; + r. The Chew-
Low effective range r is directly related to the

resonance energy

r=1/w . (3.14c)
T
41
for which experiments give the result
w, = 2.39 y = 334 MeV . (3.144d)

To see that the imaginary part of x' 1is unim-

portant, start with large k. The Rayleigh scatter-
ing formula [or our main result, Eq. (3.26)] shows
that for large k

[£(k,0)] < (22 + 1)/k - (3.15)

For the p3/ state 22 + 1 1is replaced by j + % = 2,
2

Using Eq. (2.11),

(k)| < 8mp/k . (3.16)
Therefore, using Eq. (2.2)

lwf- wi | = [M(k)| < 8mp/k (3.17)
The same limit holds for Im w;. Therefore

Im(wk) R

— < 4Tp/k (3.18)

wk

making use of the fact that w =~ k for large k. The

condition for

Im(w, )
——wk—< 1 (3.19)
Wy
is that
ké = 4mp € k3 . (3.20)

Using nuclear matter density Py = 0.16 fm ? = 0.47uf




kc =1.81u s

which 1s less than the momentum of a free pion at

resonance kr = 2.2 . Equation (3.20) shows that

T, < W already when k is only moderately larger
than kc’ hence over most of the important range of
integration in Eq. (3.13).

Concerning the quantitative side, Dover and
Lemmer15 have shown that the cut-off v(k) must occur
at k = 12 to 14 U 1if we want to reproduceao the pos-
ition of the resonance without using the crossing
comes from a range of

terms. On the other hand, r

2
order kc - U = u; so we might expect

r,/r, < 0.1 . (3.21)
Thus, as a first approximation we may set

r, = 0 and use Eqs. (3.14b) and (3.14c) for r,.

Equations (3.10), (3.12), and (3.13) then give

=1 - _ L] 2 .
Bu (@) = 1 - w /w, 1k o ? (3.22)
Finally we use g to calculate the scattered ampli-
tude. Using Eqs. (3.4), (3.5), and (3.8) with

q' = q (note that Eq. (3.4) is symmetric in q, q' as
it should be) we find

A 2
-yt & —3 2
tgrg® =~V @ iy ) T

(aq. -1/3 1 T*') . (3.23)

q 99

The Lowest nass perturbation of the pion-
nucleon vertex, according to Hamilton and
Braathen, Ref. 40.

Fig. 6.
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The isospin factor is (3.24a)

C, =8, -1/37T1,=1 for Pr and Nt
qq q'q qq
= 1/3 for PT or Nﬂ+
= 2/3 for Pn° or Nr°
= 2/3 for an average

nucleon, and an
average pion of
any charge.

For g, given by Eq. (3.22), we have

, 2m A,C

toq @) = = V() —
qq

wq wk(l

qq
_ _ s
wk/wt) 1A,k

2q2

X —

"

(3.24b)

The forward scattering amplitude can be shown to be

f(k,k) = - (wk/2n) tkk(wk + 1€) (3.25)

where we have set q = k, the wave number of a pion
of energy we moving in the +z direction. (Note that
the substitution q = -k leads to the same result,

showing that the theory gives correct results for

pions moving to the left and to the right). There-
fore, we have
2y kv (k)
f (ksk) = C (3.26)

kk W2 wg W) -

Using g, obtained from Eq. (3.22) we may now lo-
cate the poles of Eq. (2.1) to find W in the first
approximation. We assume here that there 1s one and
only one important or dominant solution Wy 3 our cal-
culations show that there 1s only one continuous go-
lution for w = real which has a physically reason-
able form. The value wk may be used in the inte-
grand of Eq. (3.10) to find an improved 8, which may
be used in turn in Eqs. (3.26), (2.11), and (2.1) to
find an improved W The procedure presumably con-
verges fairly fast to the true wk.

As we have said, the solution of Bq. (2.2) rel-
evant to nuclear matter is the solution kw for
w = real, which 1is the analytic continuation of the

solution found above for k = real, To find this so-




lution we need ga(w) for w = real, which is obtained
from Eq. (3.10) once we have found the solution Wy
We may then use this gs(w) in
Eq. (3.25), set k = kw and use Eqs. (2.11) and (2.2)

to get the desired solution.

to the above problem.

We may, however, go one step further. Fa(m),
as given in Eq. (3.11), 1s clearly an analytic func-
tion of k. Therefore, we may change the path of in-
tegration in Eq. (3.10) from the line of real k to
the line of real w, i1.e., from the dashed line in
Fig. 5 to the solid line.

all terms in Eq. (3.11) by their analytic equiva-

We merely need to replace

lents, i.e., w becomes real and kw complex. We can
now detetmine ga(w) from Eq. (3.10). There is again
the contribution from the pole, which 1is

- 1wF_ W), (3.27)

and that from the principal value. The latter is
now easier to handle because the integral is along
the real axis x'. Further, since our Fa is the ana-
lytic continuation of that quantity for real k, the
same should be true for the integral. Using again
the Chew-Low effective range approximation, we get

. .
4 t

1 P/dx' [Fa(x)

v X -2z
u

The real part is now even more similar to Chew and

Low 50 ¥, ™ r = 1/wr [Egs. (3.14b, 3.14c)], but we

G, (x") 3.28
—%L———]= r + 1ir . ( )
x' + 2 2

retain r, because the small difference from r may be
interesting for the shift of the resonance energy.

Inserting Eqs. (3.27 - 28) into Eq. (3.10),

ga(w) =1-wr - -:T [)\ak:’vz (kw)u‘2 + w2r2 .
(3.29)
Equation (3.29) has the Chew-Low form. In the
expression with -i, which is essentially imaginary,
the main term is the first, which is proportional to
k&. This is just the Chew-Low term, but with k in

the medium substituted. This agrees with the theo-

18,19

ries of Barshay and collaborators, and dis-

The last term x, is

The bracket gives the '"width of

agrees with all other theories.
a small correction.
the resonance'. We see that on the low-energy side

this is much greater than for free m-nucleon scatter-

ing.

. which is, in general, positive.

This is in contrast to some conclusions of some ear-

lier papers,15’17

but is in agreement with experi-
ments.

The real part of g goes to zero at resonance
(by definition, see Sec. VIII). There is a real
contribﬁtion to g from the term with i, namely,

-2
AM (3.30)

Im k; N

This pushes the
zero of Eq. (3.29) to higher energy. The 'range'" r
1s of course also slightly changed (probably in-
creased) from the Chew-Low value. But the defini-
tion of "resonance” in nuclear matter is rather
complicated (Sec. VIII).

We next use g to calculate the scattered ampli-

tude. Again use Eq. (3.25) for this, and find

2.2
22, KRk

Kk yT w(d - wry) - 10 ) !

£ k) = C (3.31)

where [ ] is the square bracket in Eq. (3.29). To
Eq. (3.31) has to be added

1. the scattered amplitude for the 11, 13,
and 31 states,

2. the scattered amplitude for s-states, and

3. the absorption of pions by the two-nucleon
process of Eq. (1.11).
Amplitudes 1 and 2 can be taken from the free pion-
nucleon scattering. Amplitude 3 can be taken from
the theory of the Ericsons.5 The sum then must be
integrated over p to get II [Eq. (2.11)]. We then
find kw from Eq. (2.2), and insert this back into
Eq. (3.31).
consistency is achieved between the kw used in Eq.
(3.31) and that computed from Egs. (3.31), (2.11),
and (2.2).

Equation (3.31), with the bracket replaced by

The process must be repeated until self-

its first term [see Eq. (3.29)] and r, by'l/wr"is
identical with Barshay et al.19 [their Eq. (5)].
IV. PAULI PRINCIPLE

In treating pion scattering, we have so far
disregarded the behavior of the nucleon which does
the scattering. Actually, this nucleon (a) receives
energy from the pion, and (b) is subject to the

Pauli principle.

11



The Pauli principle, in nuclear matter, means
that the nucleon can go only (a) into states of mo-

mentum28

P> Pp s (4.1)

where Pp i1s the Fermi momentum, or (b) into the
state from which it came. Scattering into a state
P> Py 18 "quasi-elastic' and always involves energy
loss of the pion; elastic scattering means to return
to the initial state.

Figure 7 shows a typical Feynman diagram of the
type considered by Chew and Low.16 In the initial
state, nucleon and pion have the momenta ;i and Ei’

respectively, so that the total momentunm is

> >
P - Pk, . (46.2)

this f is conserved. In the intermediate states a,
...e, at least one intermediate pion 1is present.
Since the Chew-Low theory (Sec. III) states that the
intermediate pion states of large momentum are most
important, the intermediate nucleon momenta Pa,"Pe
will nearly all satisfy the condition of Eq. (4.1).
There 1s therefore little influence of the Pauli
principle in intermediate st:at:es.(‘2 Eisenberg and
Weberl7 have treated this problem in their approxi-
mation; we shall neglect this correction in this
report.

The final state of the pion has a momentum

ke s kg s (4.3)

hence there is a considerable probability that the

final nucleon momentum

The Chew-Low diagram in nuclear matter.
Solid line nucleon, dashed line pion.

Fig. 7.
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> >
P, = f -k
£ £ (4.4)
does not satisfy Eq. (4.1). Such final states are
forbidden.

nary part of the elastic, forward scattering ampli-

Now, by the optical theorem, the imagi-

tude is proportional to the cross section of quasi-
elastic scattering, disregarding true absorption
(See Sec. VI). This cross section being diminished,
1m f(k,k) will also be, and so will be the imaginary
part of g [Eq. (3.11)].

examine the unitarity relation.

We therefore have to re-

This is conveniently done by the Lippman-
We define the K matrix which
is given by the same diagrams as T, but using the

Schwinger equat:ion.(‘3

denominators E - En without 1€, so that K is given

by the principal value of the dispersion integrals.
In this section, we shall assume k to be unchanged

in quasi-elastic scattering which amounts to the as- -
sumption of infinite mass of the nucleon, This as-
sumption will be corrected in Sec. V. Further, just
as in the main part of Sec. III, we assume k to be
real. Then in the medium the matrices T and K for
different directions Ii’ If of k, are related by

(see App. C)

<k llk,> = <K k% - (22+1)1 (ko) 87%)

< <
x J<&[K[&> q(®) dn< E]T|E,> (4,5)
for scattering with orbital momentum %2, The inte-
gral goes over all directions of I. We shall as-
sume £ = 1, and set44
<k [x[k>= -2m K (@) cos 6 (4.6)

where 0 1s the scattering angle, i.e., in this case

the angle between E and Ef, and Ko 1s a function of

w only, hence constant in Eq. (4.5). K and T are of
dimension (length)2 as 1is also clear from Eqs. (3.4)
and (3.7).
for K the correct P3/2 type angular distribution.

The factor Q(k) in Eq. (4.5) takes care of the Pauli

principle,

Later on, in Eq. (4.26), we shall use

Q=11f p = [F- K> p,

Q=0 if p<pg . (4.7




In the absence of the Pauli principle, T will

have the angular dependence

T=-21T cosf . (4.8)

Inserting this into Eq. (4.5) clearly solves the

equation for all 6, and

K
= & ——
To l(o + l(o To 1 - 1kw K, (4.9}
If Ko = (k w)_l tan 8§, then
T = (k 07! sn § &1F (4.107

as it should be.

In the presence of the Paulil principle, T is
It might
be expanded into a series of spherical harmonics in
0 and ¢, but this would be clumsy. We shall instead
solve Eq. (4.5) explicitly as a function of angle.

clearly no longer proportional to cos 0.

It is clearly reasonable to introduce a polar
coordinate system with F‘[Eq. (4.2)] as the axis.
Let the polar angles be X and Y, with Y = 0 in the
plane of B and ti' Then the condition [Eq. (4.7)]

N
for the intermediate state k to be allowed is

P2+ k2 - sz
Scosx = A,
2Pk 2

cos X <

(4.11)

Now according to Eq. (2.11), the only scattered am-

plitudes needed are those for which

>

N
pi = IP = kil = PF . (4-118)
Further, because we have assumed [see above Eq.
(4.5)] that k remains unchanged in the scattering,

we have k = k,. But then it is clear that

1

Xz =Xy (4.11b)

<> >
which is the angle between P and ki' This angle al-

ways exists, so we always have

-1 € XA = cos X, <1 . (6.12)

Note that the upper limit in Eq. (4.12) would
also hold if Py < P because

P2 + K - 2Pk = (P-k)? < (?‘-E1>2

=P <t (4.13)

but the lower limit condition, cos X2 2 -1, would
not always hold. Indeed, Eq. (4.11) gives A < -1 1if

P+ k< Pp (4.13a)

On the other hand, 1f k < Py» the smallest value of
P permitted is

s (4.13b)

which clearly satisfies Eq. (4.13a) if Py < Ppe
There 1s therefore a range of P for which A < -1; in
this case, the Pauli principle excludes all quasi-
elastic scattering. One then has to use Eq. (4.11)
for P > Pp -k, and A = -1 for P < Pp k; in other
words, the Pauli limit is not an analytic function
of P, With Py = Pp» Eq. (4.11) is always valid, and
the Pauli limit is analytic.

Using Eq. (4.11), the integral in Eq. (4.5) be-

comes simply

2T

d(cos X) f dy <1f|1<|T<> <E|T|Ei>. (4.14)
0

L

The K matrix element here is [see Eq. (4.6)]

<Ef|1<|E>= -2n l(o [cos Xg cos X +

+ sin Xg sin X cos W - wf)] . (4.15)

It is easy to gsee that T must have the form

<k[r[k> = T (0 + T,() cos ¥ (4.16)

and must not contain any terms proportional to
cos ny with n > 1, because only in this way can the
integral over ¥ in Eq. (4.14) give a nonvanishing

result. Carrying out this integral, we obtain sepa-
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rate equations for T1 and Tz.

Tl(Xf) = =2T K cos X, cos X;

A

+ (34/2) ko Ko cos Xg¢ J: d(cos X) Tx(x) cos X,

(4.17)
Tz(xf) = =27 Ko sin Xy sin Xg
A
+ (31/4) kw Ko sin X¢ g: d(cos ) Tz(x) sin X,
(4.18)

Evidently, the integrals do not depend on Xg» SO we

may set

Tl(xf) - —Zﬁ TC cos X4 €O8 X¢

and

Tz(xf) = =21 T sin Xq sin X - (4.19)

S

Ingserting these into the integrals, we get the alge-

braic equation

A
= 3 2
TC Ko + 1 Ko TC kw 2 fc cos® X d(cos X)

-
=K + § LR Tl (1+ A% (4.20)

or,

K
T, = 2 s (64.21)

C -1y K I (1+2%)

2

where A 1s given in Eq. (4.11). If the lower limit

of cos X were A', we would have in the denominator

AY = A'® dngtead of 1 + A? . (4.22)
Similar to Eq. (4.21),
K
T, = 0
s 1 "
1=-L4K o @Q+2) @2+2-2Y
Yoo (4.23)

Thus we have solved the scattering problem with the
Pauli principle,

In the limit when there is no Pauli restric-
tion, A = +1, and the denominators of Eqs. (4.21)

14

and (4.23) both reduce to

1 - iKokw » (4.26)

as they should.
The forward scattering amplitude, Xg = Xyo
Y = 0, is now

2
2m Ko cos” Xy

<E1|T|Ei> s 1 3
1 - 2 i Ko kw (1 + A°%)
(4.25)
pa Ko sin? Xg
1-11w K Q+ A 2+ -2 '

The actual case of the Py/s state is treated in
Appendix A, and gives very similar results, The
scattering matrix is given in Eq. (A.16) and may be

written

3 sin?® Xy

> -+
<k, m|T|k, m) = -7K
1 1 "li-l ik Q) @0-AY)
3 cos? Xg 1 ]
+ .

1- 5 1 kw xo (1+A) (2-A+02)

(4.26)

Here m 1s the component of the spin in the direc~
tion of P. Equation (4.26) gives the same result for
m =+ 1/2 and - 1/2. Also there 1s no "spin flip"
from + 1/2 to - 1/2. Because of Eq. (4.11b),

cos X, = A, sin? Xy =1- Az (4.26a)

We have used real values of k in the derivation
of Eqs. (4.25) and (4.26), just as in Eq. (3.11). In
our case, there is added reason for this; the nucleon
momenta are real, hence the momentum conservation e-
quations, like Eq. (4.4), can be fulfilled only 1f k
is also real. After having established Eq. (4.26)
for real k, we continue the same way as in Sec. III.
In particular, we use the analytic continuation to
real values of w. For this it 1s important that
A = cos X, 1s an analytic function of k and P, and
T 1s an analytic function of A,

below Eq. (4,13), A will not be an analytic function

But, as explained

of k and P if Py < Pps therefore, 1t is important

for the success of the theory that we proved in




Eq. (2.11) that only matrix elements for Py = Py are

F
required.

T in Eq. (4.26) is a function of k, w, and P
(because A occurs). Ko is a function of k and w
only, and is obtained from Sec. III. T must then be
integrated over all values of P [see Eq. (4.2)] cor-
responding to all directions of ;i relative to E.

It will be remembered that Eq. (2.9) requires such

an integration. We have
N pF+k
fov = 4— aQ_ f£(p) = PAPE(P). (4.27)
T 4l
pF IPF_kl

The lower limit in Eq. (4.27) holds for real k.

When we extend the theory to real w and complex k,

it is simplest to assume that
ImP =1Imk (4.28)

and to take the lower limit in Eq. (4.27) to be

k - Ppe

v. ENERGY LOSS

In this section, we treat the effects of the
finite mass of the nucleon. Once we take this fact
into account, a pion scattered by a single nucleon
transfers energy to the latter; the scattering is
called "quasi-elastic".

We must first discuss frames of reference.
Three frames should be considered: (a) the frame in
which our relation between w and k holds, (b) that
in which the Chew-Low dispersion theory works, (c)
the frame in which experimental results on the posi-
tion of the resonance for scattering by a nucleon
and by a complex nucleus are to be compared.

(3) The relation between k and w holds for the
nucleus as a whole. Therefore it holds in the cen-
ter-of-mass system of the entire nucleus and the
plon. As the nuclear mass increases and we approach
nuclear matter, this frame becomes identical with
the laboratory frame. Only in this frame can we
speak of a definite relation between w and k of the
plon. If we wanted such a relation in the center-of-
mass system of the pion and an individual nucleon, it
would be different for each nucleon momentum ;,

hence not definite.

(b) The Chew-Low equation holds in the center-
of-mass (cm) system of the pion and the scattering
nucleon. The Chew-Low theory is concerned only
with these two bodies. The rest of the nucleus may
influence the relation between energy and momentum,
both of the nucleon and the pion, but it will not
enter the scattering process. Because frames (a)
and (b) are different, we shall have to make a Lor-
entz transformation connecting them. (Because we
use the cm system, the relation between energy and
momentum of the pion, even at high energy, 1s not
strictly w = (k? + uz)%, as we assumed in Sec. III,
but it 4s still the same in the free-nucleon and the
nuclear-matter case.)

(¢) In comparing experimental results, it is
essential to use the same reference frame for scat-
tering by the complex nucleus and by the nucleon.
Since, as was discussed in (a), the laboratory frame
should be used for the nucleus case, the same frame
must also be used for the nuclqgg.as If, e.g., the
theory were to predict that the resonance energy is
not shifted, then it should be observed at the same
laboratory energy in complex nuclei as for a nucle-
on, i.e., at a pion kinetic energy of 194 MeV. It
is for this reason that we have used w, in the lab-
oratory in Eq. (3.14d).

To calculate the energy loss of the pion, we
must know the relation between energy and momentum
for the nucleon. As we discussed in Eq. (2.5), the
nucleon energy depends on the momentum p not only
because of the kinetic, but also because of the po-
tential energy U(p). This dependence is most con-
veniently expressed in terms of an effective mass

*
M , a concept introduced by Brueckner; then

> 2 *
= M + U
e(p) = p*/ ; (5.1)
This expression was found to be a very good approxi-
Sie-

*
has also determined the dependence of M on

mation in many nuclear matter calculations.
46

mens

density, namely,

M/M* = 2
—Cm=l+(1pF . (5.2)

If Pp is measured in fm !, Siemens finds g = 0.27,
but we believe 0.24 would be betteraG[see Eq.

(5.2b)]. For normal nuclear density, = 1.33,

P

15



hence Cm = 1.43. The potential energy for zero mo-
mentum Uo is found from the binding energy B,

namely

U + p 2/ = -B
o ¥ Py “Bpp) (5.3)

The binding B(pF), for Pp #1.33 fm_l, may be taken

29

from nuclear matter calculations, but we shall not

actually need Uo in our theory. For normal nuclear

density, B = 16 MeV,

*
pF2/2M = 53 MeV, hence U0 = -69 MeV . (5.3a)

Using Eq. (5.1), and working in the laboratory
system (or better the system in which the whole nu-
cleus 1s initially at rest), we have for the total

energy of nucleon and pion

W= Eni + wi

-M+p2/2M*+U +w (5.4)
i 0 i *
where the subscript i denotes the initial state, as
before, and the nucleon mass energy M= Mc? has been
included.

the quasi~elastic scattering.

The energy W 1s, of course, conserved in
B -
ecause p, = pg, we

have from Eq. (5.3) that

2 o™ - _
Py /™ + U0 = B(PF) s (5.43a)
which 1is only about 16 MeV, and hence negligible
compared with M in Eq. (5.4).
For any meson state % which can be reached by
quasi-elastic scattering, we have the nucleon momen-

tum

-+ -+
p=P-k (4.43)

[see Eqs. (4.4) and (4.2)]. We assume that k is in
the direction ¥, Y with respect to F. The nucleon

energy 1is then

%
E_ =M+ @ - B2/ +U

1

.M+U°+(2M*)_ (®? + k? - 2Pk cos ) .

(5.5)
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Energy conservation then requires that the meson en~
ergy w(k) satisfy the equation

Ep+wk) =W . (5.6)

Inserting Eqs. (5.4) and (5.5), and cancelling
M+ Uo’ we get

w(k) + (@)1 (% + K - 2Pk cos X)

i (5.7)

%
2
n + Py /2M

In our laboratory (or nucleus) system, we have
a definite relation between w and k, just as in Sec.
4 Py and P, Eq, (5.7) gives
between ¥ and w.

III. Therefore, given w

a definite relation For any fi-

nal energy w(k) of the pion, there is a definite
angle X between P and k. In Appendix B, we find

that, in general, cos ¥ can go from the maximum of
cos X, [Eq. (4.11)] to -1.

sponds to the minimum possible value of w, and we

The latter value corre-

shall, in general, have

L “ain < Wy - (5.8)

It can easily be seen that, because Py = Pp> Eq.
(5.7) 1is fulfilled for k = ki’ w(k) = wi’ and ¥ = X
2
[Eq. (4.11)].
missible values of w from Woin to Wy

There is a continuous range of per-

So far, we have worked in the laboratory sys-
tem because only in that system is there a definite
relation w(k). However, to apply the Chew-Low the-
ory, we should now go into the center-of-mass system
of pion and nucleon. We shall denote quantities in
the cm system by primes. We consider B and w, as
fixed. The cm system moves relative to the labora-
tory system with the velocity

BB

B=G~wra -

i

(5.9)

where W 1s the total laboratory energy, and where we
have neglected the binding energy [Eq. (5.4a)] in
the expression for W [Eq. (5.4)]. Set:t::tng(‘8 Y =
(1 - 82)7% 1, the Lorentz transformation gives for

the pion momentum in the cm system after scattering



K=k =wk B .

(5.10)
We write its components as
kl' = k' cos X' = k cos X - w(k) B (5.11)
and
kt' = k' sin X' = k sin ¥ (5.12)

(2 = longitudinal, t = transverse to E, X' = angle
-
between P and E'). From this we get

k'? = k% + w? B2 - 2kwB cos ¥ (5.13)
By Eq. (5.7), cos X is a function of w alone (P and
wi being fixed), therefore k' and cos x' are like-
wise functions of the single variable w. (The term
w?B8? 1in Eq. (5.13), being of second order in B, can
generally be neglected.)

The cm pion energy is, setting again y = 1

W' = W=k E = w - kB cos
X . (5.14)

In the total cm energy, we set Y = 1 + % B2 and

hz:we(‘9

p2?
WeauyYl~w- (5.15)
2(\M + wi)
W' 1s, of course, conserved in scattering. But w'

is, in general, not conserved because the pion ener-
gy w(k) is a complicated function of the momentum

rather than a simple quadratic function. Likewise,
the nucleon energy in the cm by itself is not con-
served. But conservation of W' is enough for us,
and we identify this quantity with the cm energy in
the scattering of a pion by a free nucleon which oc-
curs in the Chew-Low theory.

The use of the cm system is necessary because
it is in this system that the m-nucleon scattering
has a simple angular dependence, and in this system
the Lippman-Schwinger equation holds. We get pre-
cisely Eq. (4.5), only with primes, E'i’ K', K'f.
The Pauli principle limit 18 still Eq. (4.11) in the
lab system., Just in the limit, when x = Xo» Eq.
(5.7) shows that k = ki, and then Eq. (4.11b) also

st111 holds.”

Therefore Eqs. (4.5) and (4.14) together become for
L =1

] TN T T 2
<tf ITl%, > = i 'Kk, D + (31/87%)

A}

cos Xy
x w' k' d(cos x') [ dy'
[ (cos x") [ av

(5.16)
et [k[&D CrlT[E> S
where cos xi' may be obtained from Eqs. (5.11) and

(5.13), and Y' = ¥.

Now assuming a pure p-state interaction and dis-

regarding spin factors, we may set

(Ef' ll(l_l:'> = —2'rrl(1 W) _lzf'-_l:'/uz

= —ZWKI(W') k' k' p? [Fos Xg' cos x'

4+ sin xf' sin X' cos (wf - wﬂ s (5.17)

where K, (W') is obtainable from the Chew-Low equa-
tion. Equation (5.17) differs from Eq. (4.15) by
the factor k% k'/u?, which, in Eq. (5.17), is ex-
plicitly exhibited while in Eq. (4.15) it is in-

cluded in the definition of K. We write T in the

same way as Eq. (4.16) but modify the solution [Eq.
(4.19)] to read

—2 ] R
Tl(Xf) = 21T, ki' cos xi' kf' cos xf' n (5.18)

and similarly for T2. The same argument as in Eqs.
(4.20) and (4.21) leads to

K W/TM) =1 - 21K @)
' (5.19)

cos )(i
% f w' k' d(cos x') k'? cos? yx' TR
4

Here we may express k' cos X' by Eq. (5.11), and
further write

k' d(cos X') = d(k' cos X")
- (k' cos X') d(k'?)/2k'? (5.20)

This 1is. tconvenient because we have simple expres-
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sion351
(5.13)1,
It is clear that the integral in Eq. (5,19) is

for k' cos X' and k'2, [Eqs. (5.11) and

smaller than Eq. (4.20), simply because generally

w! < w s k' < k . (5.20a)

i

This 1is physically reasonable, The integral in Egs.
(4.20) and (5.19) represents the "damping" of the
elastic scattering by the quasi-elastic one. Since
the latter involves a decrease of momentum, and
since the "emission" of a p-state pion is propor-
tional to k¥, the reduced momentum means reduced
damping. The Pauli principle (Sec. IV) already re-
duced the damping compared with free-nucleon scat-
tering (Sec. III). Some damping will always remain.

The expression for TS[Eq. (4.19)]), 1s similar
to Eq. (5.19), except that k'? cos? X' 1s replaced
by (k' sin x')2 = k? sin? y.
discuss below, we shall consider instead of T, and

C

Tg an average, namely, we replace 3(k' cos x')? in

Eq. (5.19) by k'%2, This will simplify the calcula-

tion.

In the model we shall

We shall now make an estimate of the energy
transferred to the nucleon, assuming that the magni-
tude of the pion momentum does not change (we shall
soon see that this is not an unrealistic assump-
tion). The greatest energy transfer clearly occurs

when the pion is scattered backward; it is

(2% + )% = p,®  2k(k + py cos o)
AE = * = *
2 M

(5.21)

-
where o is8 the angle between Py and k and Py = Pp

has been used. Assuming, again realistically (see

below),
Kk pF s (5.21a)
we get
2 5%
w, - we = AE = 2(pF /M) (1 + cos O) (5.,22)
= 210 (1 + cos Q) MeV , (5.22a)

- %
assuming’*® pp = 1.33 fu ', M = M/1.43, This result
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18 enormous, and shows that backward scattering of
the pion simply cannot happen, unless k decreases in
the process. In any case, a large amount of energy
i1s transferred from the pion to the nucleon.

We conclude that the assumption of constant k
cannot hold indefinitely to arbitrarily small values
of the pion energy. This is in accord with the dis-
cussion in Sec. VI. At low energies, k? is negative,
because the repulsive s-scattering dominates. Above
about 30 MeV, 's-scattering 1s no longer so important,
and k? increases rapidly. Because of the Kisslinger
syndrome, k? 1s apt to become very large (Figs. 8
and 9) unless it is cut down by the "damping" term,
i.e., the imaginary term in Eq. (3.29). This term,
however, cannot be large unless k is large, so on
every argument k must be large. On the other hand,
near the resonance, Re k should be fairly close to
the free-particle value k , because near the reso-
nance we expect [I(k) to be purely imaginary. We
therefore adopt the following model. .

We assume that k is constant and has the value
kr (resonance value of ko) above a certain critical
w=uw.- Near wc, k changes very rapidly from O to
kr’ thus

k=0, wc< w, & 1,2y

- - (5.23)
k kr 2,180 , w > w, .

The estimate w, o= 1.2 u 18 based on the numbers of

Sec. VI. Now it happens accidentally that

0.8}- -
L L o
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Fig. 8. Real atd imaginary part of k/u, for small

k,, as a function of ky/u. Theory of Sec.
VL has been used, no damping for quasi-elas-
tic scattering is considered. ¥For p = kpo.
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Fig. 9. Real and imaginary part of k/u, for small

ko, as a function of k;/u. Theory of Sec.
VI has been used, no damping for quasi-
elastic scattering is considered. For

P = kpg.

k= 2.181= 1,53 fu  ~py . (5.24)

Thus in this model the assumptions in Eqs. (5.21) to
(5.22a) are justified.

This model 1s calculated in Appendix B with the
approximate result given in Eq. (B.21); thus the
"damping integral' L is

A
f k'? w' d(cos x')
—1 M

L =
=k ? /2P) (w, - w) 5.25
r i c (5.25)
e p? M
x (2 + ——————) (%1 - ——;) +{r - ——Ju,)
M+ wy, M M+ wy
Using wy = 2.4y (resonance energy),
w, = 1.2 p (30 MeV kinetic energy),
= [K2 2\ % o
P (kt + pF) 2.88 u
(5.26)
*
M = M/1.35 = 5.0 u ,
we find
L=225u" , (5.27)

which agrees with a more accurate evaluation. (See
Appendix B.)

In the elementary theory of Sec. III, taken
literally, we would have instead
= 3 N

Ly = Zkiwi = 49.6 u (5.28)
But even in an elementary theory, we should evaluate
k and w in the center-of-mass system of pion and nu-

cleon. Using the well-known relativistic formula

(rw ) wentema (5.29)

and taking again Wy = 2.4 u, we have
wy = 2.4 y, ki = 1.89 p
so the "damping integral" is

Ly = 2kg'%w,’ = 28.9 p*

0 (5.30)

As mentioned, our theory gives L = 22.5 u*. There-
fore the Pauli principle and energy loss together

reduce the "damping integral" L by a factor of 1.28.
The Pauli principle alone would reduce L by a factor
of 1.14.

nuclear recoil does not have much influence on the

So we get the surprising result that the

damping integral, except that which is already pres-
ent for free nucleons.

At lower energy W s the L will be more strongly
reduced [compare Eq. (5.25)] provided ki remains
Analytically,
L depends on ki = kr only quadratically, while the

high as 1t seems to do (see Sec. VII).

elementary L' goes as k;. Instead, L depends on the
energy of the incident pion, as wy - wc. The factor
wi in Eq., (5.30) 1s essentially replaced by one-half
of the square bracket in Eq., (5.25).

In doing calculations with Eq. (3.29), we
should substitute in the bracket

k& + L/2w' . (5.31)

Since L depends on P, an integration over P must be
performed [see Eqs, (4.27) and (4.28)]. For an ap-
proximation (Sec. VII) we have used Eq. (5.26) as an

average value of P,
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VI. LOW-ENERGY BEHAVIOR

The lowest energy pions are the W in atomic or-
bits in pionic atoms. These have been most carefully
investigated in a series of papers, theoretical

oness’9

beginning with that of the Ericsons, and ex-
perimental ones, summarized by Backenstosslo and
later by Tauscher.lo If we restrict ourselves to
nuclei having equal numbers of neutrons and protons,
the behavior of low-energy pions can be described by
just four parameters,
bo = scattering of s-wave pions,
¢, = scattering of p-wave pions,
B, = probability of capture of s-wave pions by
2 nucleons, by the process in Eq. (1.1l1),
and
C, = same for p-wave pions.
Assuming that these parameters do not depend on the

nuclear density, we have

k? = k2 + 4mp[by + 1Byp + k(cy + 1iCoP] .
(6.1)

In Ref, 5, the result is presented somewhat differ-
ently, e.g., the last term in Eq. (6.1) is ieplaced
by

=V e (epp + 1C 0T ¥ (6.2)
For constant p, this reduces to k?(cyp + iCyp?). 1In
actual calculations of m-mesic atoms, it 1s essen-
tial to use Eq. (6.2)(see Sec. VIII). We have also
omitted such factors as 1 + u/M in Eq. (6.1).

The constants 1B,, iC, in Eq. (6.1) are denoted
by By, C; in Ref. 5. These quantities are in fact
complex, not purely imaginary. But the imaginary
part is, in practice, the most important one since

b, and ¢, are purely real. The imaginary part gives

0
the capture probability which the Ericsons have cal-
culated from the elementary processes. The real
parts are the corresponding "energy shifts'" which
night, in principle, be derived from the imaginary
parts by some dispersion theory, but are in prac-
tice essentially unknown.

The scattering amplitude c, has been derived by

0
the Ericsons, for zero kinetic energy, from the four
§ ,» and

110 8190 3
6,,, and the result is in good agreement with m-

measured p-wave phase shifts, §

mesic atoms. The constant b, is, in first

20

approximation, given by the weighted average of the

s-wave phase shifts

bl = (8, +28,)/3k . (6.3)
But this quantity, as derived from measured m-nucle-
on scattering, is almost exactly zero. The Ericsons
point out a number of corrections of which the most
important is due to the correlations of nucleons due
This ef-

fect makes b, effectively negative, but comparison

to the antisymmetry of the wave function.

with experiment is not easy.

The experiments consist of measurements on T-
mesic atoms.lo The shift of the x-ray levels rela-
tive to the pure Coulomb field gives b, (mostly from
The width of
the levels gives B, (from 1s) and C, (mostly from

2p) .

the 1ls state) and c;, (mostly from 2p).

The most recent experiments give

b, = - 0.0293 * 0.0005 u~?,

c, = 0.227 +0.008 u?,

, = 0.0428 % 0.0015 u™*, and (6.4)
C, = 0.076 *0.013 u~¢,

The precision, especially in b, and Bo’ 1s impres-
sive.

We have used the values in Eq. (6.4), together
with the formula in Eq. (6.1), to calculate k? as a
function of p and k:. In doing this, we have made
three assumptions, namely,

(a) The constants by, etc,, are independent of
energy, which seems justiffed up to kinetic energies
of about 0,2 u = 28 MeV,

(b) The "damping terms" due to quasi-elastic
scattering, discussed in Secs, I1I~V, ara negligi-
ble, This is justified because it 1s difficult for
the pion to lose energy in the laboratory system.

(¢c) We have taken into account the Lorentz-
Lorenz correction [Eq. (2,12)], i.,e., we have re-
placed the last term in Eq, (6.1) by

4mp(cy + 1Cyp) K2

(6.5)
1+ (4m/3)p(c, + 1Cop)

The result was given in Figs, 8 and 9 for

p=J%p, and p=p,. In the latter case, it is



remarkable that Re k is negative for k;, < 0.4 u, w <
1.07 w.

Im k, i.e., k? is purely imaginary!

Even as high as w = 1.25 u, we have Re k =
This means that
the s-state repulsion dominates over the p-state at-
traction, even though b0 is very small. At the same
time, Re k and Im k both tend to be considerably
larger than k;, because of the "Kisslinger syndrome'.

For p = % P,» both parts of k are much better
behaved, as might be expected.

Because of the behavior of k, we have chosen
(in Appendix B) to set the '"critical energy" w, =
1.2 y because only above this w. does Re k become

appreciable and positive.

VII. NUMERICAL CALCULATIONS

We did numerical calculations using our theory,

with the following approximations.

1. In Eq. (5.25), P was replaced by its root
mean square average,

1
P, (krz + pf2)1 . (7.1)

2. In the bracket in Eq. (5.25), the term
leM* was neglected.

3. The capture of pions, terms B; and C, of
Sec. VI, has been neglected.

4, The Lorenz-lorentz effect [Eq. (2.12)] has
been neglected.

5. The effect of the small phase shifts has
been neglected (see the end of this sec-
tion). |

We have done three separate calculations. In

one of these (A) we used
(7.2a)

wc =1.2 y, wr =2.146 y ,

{.e., we used the center-of-mass resonance energy.
In the two others we used the laboratory resonance
energy, and in calculations (B) and (C), respective-

ly, we set

w =112y, w =240y

. . , (7.2b)

and

14
I

e = 1.0 u, w, = 2.40 . (7.2¢)

Thus in (A) and (B), we set the "critical” energy

w, = 1.2 p, while in (C) we set it equal to u. Th2

latter is, of course, the lowest possible energy to
which the pion may be degraded; the former corres-

ponds approximately to the results of Sec. VI.

We introduce the abbreviations and numerical

values.
x = w/yu, y=k/u, a=uw/u b= w /o, (7.3a)
B =% %, £ =0.080, (7.3b)
C = 8mpgu 3Cy, Cy = 2/3, C=7.8, (7.3¢)
1
r = p/p°, PF/u = dors > (7-3“)
= =1. 7.3e
dy = Ppo/H = 1.90 (7.3¢)
*
MW > (7.3£)
¥y 4 0.53¢°
% * 2 *
M_ M _ P_) (__M__) ]
¢=2uP[2 +(M+wixwi e T M+wiwc ’
and
L
P = (y2 + d§z3) . (7.4)

Then the fundamental Egs. (2.2), (2.10), (3.31), and
(5.31) give

BCy2

d
dr G = x(a - x) - iBy%¢ > (7.5)

and

yi(x =0) =x* -1 (7.5a)

Note that Eq. (7.5) 1s a differential equation for
y(r), at constant x.

All of

these give the real and imaginary part of k as a

The results are given in Figs. 10-12.

function of ko, and all of them refer to cases B and
C [Eqs. (7.2 b,c)] i.e., w, = 2.4 u. The resonance

momentum is thus

kor = 2,18 4 .

(7.6)
The dashed curves are for case C, the solid ones for
case B. The three figures refer, respectively, to
p =3 p,, p, and 2p,.

For all three densities, the internal wave num-
ber Re k rises initially much faster than k;, as is

to be expected for an attractive potential, then
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Fig. 10. Real and imaginary part of k/u, with damp-
ing for quasi-elastic scattering. Model
of Appendix B has been used. Solid curve:
we = 1.2 y, dashed curve: w, = 1.0 u.
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falls below k, for energies above the resonance.
For p = 2p,, the effect is most pronounced. In fact,
k reaches a maximum at ko/u = 0.9 (50-MeV kineéic
energy), and then decreases with increasing energy!
This is just the opposite of the elementary, Kisslin-
ger theory [Eq. (1.6)] in which k rises monotonical-
ly with k; (provided the denominator of Eq. (1.6)

At the lower densities, including
At p = 1.5p,,
the inside k stays essentially constant for kolu
from 1.0 to 2.6. '

stays positive).

P = Py the result is not so extreme.

This 1s the assumption we maje in
Sec. V and Appendix B. TFor p = p,, this assumption
i1s sti1ll quite fair. In case A [Eq. (7.2a)], the
inside k is constant (over a wide range of k;) for
P = Py

Another way to look at the result is to regard
k2 - k: as a potential U. This potential, even for
p as low as 0.25 p,, will decrease (in absolute val-
ue) with increasing energy, while the elementary
theory, Eq. (1.4), will have it increase monotonical-
ly. If we replace k? by kg in Eq. (1.4), then the
second term of Eq. (1.4) is kgal(w). Both factors
in this expression increase with energy.

In all our results, k remains quite moderate,
and the "Kisslinger syndrome' of Eq. (1.6) has beea
completely eliminated. Moreover, Eq. (1.6) would
predict that somewhere below the free-nucleon reso-

nance we have

Re 4mpa, =1 7.7)
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Real and imaginary part of k/u, with damp-
ing for quasi-elastic scattering. Model
of Appendix B has been used. Solid curve:
w, = 1.2 u¢, dashed curve: w, = 1.0 u.

P =Py

) T T

Fig. 12. Real and imaginary part of k/u, with damp-

ing for quasi-elastic scattering. Model
of Appendix B has been used. Solid curve:
w, = 1.2 y, dashed curve: w_= 1.0 p.
c
P= 2p,.
so that the denominator becomes purely imaginary.
Here k? would be purely imaginary, and hence

Imk = Re k . (7.7a)

In our theory, the imaginary part of k always re-
mains much smaller than the real part; e.g., for

P = py, nearly everywhere

Imk <4 Rek . (7.7)
The maximum value is
= = —1
(Im k)max 0.8 u=0.56 fo (7.8)




so that the absorption length of a pion is about
0.9 fm. Although this 1s small, it is not nearly as
small as would follow from free-nucleon cross sec-
tions,25 thus solving the problem of excessive ab-
sorption cross section mentioned in Sec. I. The
cross section correspoﬁding to Eq. (7.8) is 70 mb.
Im k stays high over a wide range of energies; e.g.,
at p = p,, we have
Imk >0.2 (7.8a)
for k, > 0.92 u; i.e., w = u > 50 MeV.

through the center of a !'2C nucleus traverses a dis-

A pion going

tance 2R = 5.2 fm; then Im k = 0.2 y corresponds to
an absorption of the pions to ¥ of the incident in-
tensity.

Roughly speaking, the calculations indicate

Im k = ¢(wp/p, (7.9)

where p is some function of the energy. This means
that the apparent absorption cross section is rough-
ly independent of p. The maximum of Im k occurs
roughly at the free—nucler resonance momentum [see
Bq. (7.6)]. Also, again very roughly,

Re k - k, = x(w)p/p, . (7.10)

0f particular interest is the point at which

Re k = kg . (7.11)
As discussed in detail in Sec. X, this is the best
definition of the position of the resonance in nu-
clear matter. From Figs, '10-12 and similar curves,
we read the values of k; at which Eq. (7.11) is ful-
filled. These are given in Table I under the head-
ing "33 alone."” 1t is seen that the "resonance" as
defined by Eq. (7.11) 1is shifted to slightly higher
values of k, as compared with kr [Bq. (7.6)].

Roughly we find

k -kr+0.24u plo, .

nys (7.12)

Small Phases
However, we have so far only taken into account

the scattering in the 33-state. The '"small phase

shifts" 61, 8, 611, 8,,> and §,, also contribute to
the forward scattering and hence to the self-energy
M. We write simply

£() = £,,(0 + £ (&) (7.13)
where fsm denotes the contribution of the small
phase shifts. This expression neglects the fact
that fsm will change the relation between k and ko
by Eqs. (2.2) and (2.11), and hence will change £
for a given w, [see Eq, (3.31)]; but we believe

33

this correction is small. Now fsm is independent of
P, hence its contribution to Eq. (2.11)

n = 4npfsm .

sm (7.14)

Therefore we have [see Eq. (2.2)], for any given w,

2 -2
k ke + 4npfsm .

2 (7.15)

where k,, 1s the k calculated by our previous theo-

ry, i.e., taking only the 33-scattering into ac-

count. Now fsm is essentially real, hence
2y - 2
Re(k®) = Re(k3,) + 4npfsm
(7.16)

Im(k?) = Im(k%,) .

Algebra yields
Re k
Re k - Re k,, = 2mp |k|2 fsm . (7.17)

Now we are interested in the resonance momentum in

nuclear matter, kn, for which Re k = k,. This will
occur when
- _ 2
Re k,, = k, - 2mpf_ Re k/|[k| . (7.18)

Now Re k = k;, and Im k < Re k, especially when
p <p, [Eq. (7.9)], s0

(7.19)

Re ky, =k = 2mpEg/k

We have obtained the small phase shifts from

the tables of Herndon et al,52 in particular from
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The for-

ward scattering amplitude by an "average nucleon" 1is

their "Cern theoretical fit," pp. 80-81.

£ _=2f

- 2 1 -
om =3 fgnT =) ¥ £ (T )

(7.20)

£E(M =2 G+% 8§ (T, N /k (7.21)
23 0

1% _ §. We have included

where we have set sin § e
all phases given in the table of Herndon et al. At

the resonance energy E = 1236 MeV, we have53

f__=-0,095/u .

om (7.22)

Taking the correction term in Eq. (7.19), ko = 2.18y,
Py = 0.467 ud, we get

Rek = ko + 0.128 p/p0 .

. (7.23)

We may then again use Figs. 10-12 to find the value
of ko at which Eq. (7.23) 1s fulfilled. This 1s
listed in Table I under "complete."

Comparing the '"complete' column with the "33
alone", we see that the small phases shift the reso-
nance down. This is to be expected because fsm is
negative [Eq. (7.22)], i.e., the small phases cor-
respond to a repulsive potential. Therefore to get
a resultant potential of zero required for res-
onance, the 33-term must contribute an attractive
potential, {.e., the energy 1s below the energy of
the resonance calculated with 33 alone. The re-
sulting resonance momentum kn, according to
Table I, is slightly below the free-nucleon reso-

nance as long as p < p,.

TABLE 1
POSITION? OF RESONANCE, DEFINED BY RE k = k,

p/p0 33 Alone Complete
0 2.18 2.18
0.25 2.25 2.10
0.5 2.30 2.12
0.75 2.35 2.14
1.0 2.40 2.19
1.5 2.50 2.25
2.0 2.65 2.34

Be give k,/u at resonance
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The data are somewhat scattered, and we estimate
that the correct kn for p = p, may be 2.10 £ 0.02
corresponding to a downward shift of the resonance
by about 11 + 3 MeV.

Different Models

Figures 10-12 show that models B and C give
very similar results, so the answer does not depend
much on the assumed value of W, which 1s satisfac-
tory. Of course, the general model we used, constant
k from w, to w, (see Sec. V), is fully justified
only for p = 1.5 p, where the resulting k(w) 1is con-
sistent with the assumption. For p = 1.0 or 2.0 P>
the assumption should still be quite good; for smal-
ler p, it is poor, and the calculation should be re-
peated with more realistic assumptions about k(w).

Qur calculations show that model A, in which
the resonance momentum is lower, gives results for
any given p which are like those for models B and C
at a somewhat higher p. The upward shift of the
resonance with the 33-scattering alone 1is therefore
greater than given in Table I for any given p. The
"complete" shift, including the small phases, is

closer to zero at low density.

VIII. NUCLEAR SURFACE

- In his first paper, KiSSIingerl pointed out
that for finite nuclei, where the density changes
with position, the potential proportional to k?
should be replaced as follows [see Eq. (1.4)].

k? a,(wp + -a, WV (pV) . (8.1)

This is necessary to make the Schrodinger equation
self-adjoint.

the Ericsons5

The same expression has been used by
and others, and has proved successful .
in the treatment of pionic atoms. It is often
called a "nonlocal potential,"

Krell and Ericson9 have shown how Eq. (8.1)°can
be transformed to a local potential. Instead of the

radial wave function ¢2, they introducesa

4y -[1 - a(r>]" 9, (5) (8.2)

where approximately

a(r) = 4mp(c, + 1pCy) . (8.3)




Then ug obeys a Klein-Gordon equation with an effec-
tive local potential U. For reasons to be discussed

"below, we shall only reproduce the parts of this

equation which are of first order in p. We have
2 2
'y g+ 1) kg
’ - Yt |l Toom "9 -
dr? r?
(8.4)

- Ug(r) ] u, = o,

where k, is the free-space wave number, except that
it includes the effect of the Coulomb potential, ¢
is the effect of the s-wave interaction [arising
from b, and B, in Eq. (6.1)], and Ug (g for gradient)

arises from the p-wave interaction,

) 2
Ug = - 2me,V%p = - 2wc0(5-3 + %-9%) . (8.3
dr?

Another effect of the p-wave interaction is the term
with k2.

term in powers of p, we get

o(r) in the denominator56 Expanding this

k2 + kZa(x) + ... =k} + 4mciklp + ...

P (8.6)

in which again higher powers of p are omitted. Col-
lecting all terms arising from the p-wave interac-
tion, i.e., proportional to c,» We get the equiva-

lent p-wave potential

U, = -dme (ky?p + V) . (8.7

This result has also been derived in a simpler, but

less convincing, manner by Wilkin.57

Clearly, Eq.
(8.7) is dimensionally correct.

We have neglected all higher powers in p be-
cause our theory deviates from that of Krell and
Ericson in order p? and higher, due to the "damping
term”" which has been discussed at length in Secs.
II1I-V, 58

But in the lowest order” in p, the theories

agree. As shown in Sec. IX, the most interesting
region of the nucleus for elastic scattering is in-
deed the region of low density, perhaps 1/4 to

1/10 p,.

theory 18 justified,

In this density region, the Krell-Ericson
59 but also its first-order term
in p is sufficient.

The extra term V2 1s, in general, not large for

scattering problems. As an example, let us take a

density distribution of the "Fermi" type which has
been used so much in the analysis of the Stanford

electron scattering experiments, namely,

o= 1+ e '1, x = TR | (8.8)
a!

Experiments show that

a' = 0.5 fm = 0.4 y~ ! . (8.8a)
In this case, one calculates that

V3 _ 1 1-e*\_2a

p 12 -x -x (8.9)

a'2Q +e M +e r

Then, arbitrarily taking p = p°/7 (see Sec, IX) ana
P = 2.58 fm (correct for 12¢y, we find

259 = 1.15 fm 2= 2.35 p? . (8.10)
In most experimental cases, 2k§ is larger than this,
so that the V?p term in Eq. (8.7) is only moderately
important. But for pionic atoms, the V?p dominates
by far, and this fact has been used by Krell and
Ericson.9

Krell and Ericson point out that the V2p term,
plus other terms of higher order in p, represent a
"dipole" interaction at the surface of the nucleus.
For large r, V?p > 0, as is clear from the form
used in Eq. (8,8) so that the potential Ug is at-
tractive, whereas for r < R, both terms on the right
of Eq. (8.5) are negative, and U > 0. This argu-
ment is not changed (qualitatively) by the terms of
higher order in p.

With increasing energy, a,(w) in Eq. (8.1) be-
comes complex, and at resonance, is purely imagina-
Then the

words "attractive potential" must be replaced by

ry. Therefore, Ug is also imaginary.

"additional absorption" and "repulsive potential" by
"reduced absorption.” But in this case, 2kI = 9.5)2
Which is large compared to Eq. (8.10).

We have followed the ideas of previous writers
on the effect of density variations near the nuclear
surface. It would be better to have a theory spe-

cifically designed for a finite nucleus. We have
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not found such a theory, therefore we use a local
density approximation (LDA). The discussion of this
gsection shows that this approximation may be good,
even in the surface region, as soon as ko is sub-

stantial.

IX. EIKONAL APPROXIMATION
We shall make the local density approximation
(LDA), i.e., we assume that at every point in a fi-

nite nucleus
k = k(w,p) (9.1

where p 1s the local density at that point. The
considerations of Sec. VLIII show that this should be
a fair approximation if w is not too small.

We then consider the pion wave going through

the nucleus at an impact parameter b. This 1is the

eikonal approximation. It neglects the quantiza-

tion of angular momentum, and thus assumes, in ef-

fect,
kb » 1 . (9.2)
At the observed resonance in 2C, 175 MeV, k = 2 y,
while the most important values of b are about
2.2 y~! (see Table II). Thus,
kob ™~ 4.5 (9.23a)
TABLE II

RELEVANT DENSITY p(bl)/p0 FOR PION SCATTERING,
AND CORRESPONDING IMPACT PARAMETER b,

Nucleus 12¢ Pb
Im¢ (w) 0.9y 0.5y 0.9 u
k,/u 2.0 1.25 2.0
Kin. Energy (MeV) 175 85 175
a(fm) 0.63 0.82 0.68
R(fm) 2.58 2.58 6.64
b, (fm) 3.18  2.49 7.49
(2‘rrab1);i 3.55 3.58 5,67
kob1 4.5 2.2 10.5
p(b,)/pg 0.31 0.54 0.20
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so that Eq. (9.2) is quite well fulfilled. In an
angular momentum analysis, the most important will
be

L, = kob - I = 4 . (9.3)
If the incident wave is
Y, =e 0 , (9.33)

the wave which has gone through the nucleus at im-

pact parameter b, will be

¥=y, expi/dz k[p(x)] - k, (9.4)

where
r= (22 + bz);I . (9.4a)

Now in the interior of the nucleus, p = p,, and here
the imaginary part of k is very large; e.g., near
the resonance (Fig. 11)

Imk =~ 0.8 u (9.5)

Taking the nucleus '2C for which most experiments

have been done, the radius is
s -1
R=1.12 A= 2.58 fm = 1.80 u . (9.6)

Hence for b = 0, the absorptive part of the integral
in Eq. (9.4) 1is

2RImk = 2.88 . .7

Thus, the amplitude of this wave is reduced by about
a factor of 20, the intensity by a factor of 300.
Even a nucleus as light as '2C 1s black for pions
going through its interior.so As Fig. 11 shows,
this result does not change substantially 1if kO/u
varies between the limits 1.2 and 2.8 (kinetic ener-
gy between 80 and 280 MeV).

The most interesting values of b are those for
which

lere, | ~% . ' (9.8)




This follows from the familiar argument of eikonal

theory. Consider a plane z = z, where z, is some-
what larger than R. Then consider
S(b) = ¥(byz ) - ¥ (b,z)) (9.9)

as a source of spherical waves corresponding to tae
Huyghens construction. (This argument can be im-
proved by considering a closed surface surrounding
the nucleus, e.g., a sphere of radius t1 > P, and
giving ¥ - ¥, on that surface.) Clearly, for larze
b, tq. (9.9) is zero; for small b, it is not zero
but uninteresting, viz., - wo' The interesting val-
ues are those near the condition of Eq. (9.8).

It is clear from Lqs. (9.7) and (9.8) that the
important values of b are large, so that the pion
goes only through the surface of the nucleus and en-
counters only low density. In this region, we make

the simple assumption that

p(r) = p(b) exp (b-r)/a ., (9.10)
We approximate Eq. (9.4a) by
r=b+ 2%/ (9.10a)

which turns out to be sufficiently accurate61 be-

cause b > a.
and (7.10),

We assume, in accord with Eqs. (7.9)

k(p) - ko = ¢(w) p/p0 s (9.11)
62
where ¢ is a complex function of the energy w.
Then the integral in Eq. (9.4) becomes
X(b) = 16(w) p(b) o "' (21a b)* (9.12)

To determine a, we use two approaches.
(1) The Stanford distribution [Eq. (8.8)]. We
shall find p(b)/p0 = 0.3.
the distance in which p/p0 decreases from 0.3 to
0.3/e; thus

We may then define a as

a=0.68 fm . (9.133)

(2) We may take the binding energy of the last pro-
ton in !2C which is 15.9 MeV, and calculate the

asymptotic decrease of the Schrodinger wave

function. This gives

a =% (20.7/15.9)% = 0.57 fn (9.13b)

We shall take the average between Eqs. (9.13a) and
(9.13b),
a=0.63fm (9.13)

For ¢ in kEq. (9.12), we use the curve similar

to Fig. 10 but calculated for p/py= 0.25. Then, at
resonance, we have
Imp(w) = 0.9 u (9.14)

We are interested in the value b, of b for which Eq.
(9.8) is true [see Eq. (9.12)].
Re x(bl) =-1n2 (9.15)
The results for b1 and p(b!)/p0 are given in Table II,
together with other quantities occurring in the anal-
ysis. We have considered 12¢ and Pb at the reso-
nance and at an energy where the effective absorp-
tion [Eq. (9.14)] 1s 0.5 u.
calculations, is 85 Mev.
The nucleon density at which Eq. (9.8) 1is true,

This energy, from our

p(bl)/po, is 0.31 for '2C at resonance, only 0.20
for Pb, and 0.54 for '2C at 85 MeV. So certainly at
resonance, the density which is most relevant for
pion scattering 1is far below nuclear matter density.
This was recognized by Dover and Lemmerli'who, in
their Fig. 24, plot the cross sections for m-scat-
tering by '2C as functions of the energy, assuming
various densities for the nucleus: p = 0.16 ud =
0.34 p, gives the best, though not perfect, agree-
ment with experiment.

The fact that p(bl) < Py is of very great im-
portance. It means that for the calculation of elas-
tic scattering, any theory is applicable which is
correct at these low densities. At these densities,
we are far from the Kisslinger gingularity so the
Kisslinger theory, [Bq. (1.6)], 1s alright, as well
as the "local" modification thereof [Eq. (8.7)]. The
first-order term in p, used in Sec. VIII, is then
also alright.

achieved in calculations of differential cross sec-

This .explains the considerable success

tions using the Kisslinger and related theo-

ties.12’57’63
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We must not conclude from this success, how-
ever, that the Kisslinger theory remains correct at
higher densities. The region of higher demnsity is
simply not explored by the elastic scattering be-
cauge the nucleus is black. In Sec. XII we consider
experiments to explore the high-density region.

The other data in Table Il are also interesting
For resonance pions the "relevant" impact parameter
b, 18 considerably greater than the usual nuclear
radius. This explains that the cross section is
substantially greater than geometrical; e.g., at 180
MeV, the observed reaction cross section of '2C is
425 mb, corresponding to an "effective radius" of
3.68 fm, which is very close to our b, = 3.55. Sim-
1larly, the elastic scattering corresponds to a
At 85 MeV, the effec-
tive b, 1s only about R, which is in accord with the

decreased reaction cross section.

large effective nuclear size.

The expression (21 a bl)!i gives the effective

length of the chord traversed by the pion. The mean
density along this chord is

Jjp p dz (b)

"97%"3‘2 S (9.16)

The value of kob, gives a guide as to the most im-
portant value of £ in scattering, see Sec. XI.

Deviations from the local density approximation
(LDA) may be discussed in terms of the local form of
the p-wave potential [Eq. (8.7)]. In rough approxi-
mation, we might replace p by

Petf (9.17)

=p + V3p/2 koz
1f we evaluate Eq. (8.9) at p/p, = 0.25, correspond-
ing approximately to p(b,) of Table II, we find in-
stead of Eq. (8.10), that

Vip/p = 039 fum > = 0.80u2 (9.18)
Then at resonance (k,/u = 2), Eq. (9.17) gives Pefs
= 1,10 p. The last line in Table II should then re-
fer to Pegs> SO that p(bl)/p0 1s further reduced, to
0.28 and 0,18 for carbon and lead, respectively.
Correspondingly, b, should be increased by about
0.1 a=0.06 fm.

At ko/u = 1.25, the density p(bl) %-% P, SO
that x = 0 in Eq. (8.8). Then Eq. (8.9) gives
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v%p < 0.
will now come in, and their effect, according to

However, the terms of higher order in p
Krell and Ericson,9 1s likely to give another posi-
tive term in the parentheses of Eq. (8.7). We

therefore believe that the correction to the LDA in

this case 1is small.

X. WIDTH AND POSITION OF RESONANCE
The width of the resonance might be defined as
the point where
= . (10.1)
Imk =3% (Im k)max
At the density p = i—po, this occurs at a laboratory

energy of 80 MeV (Table II).
ter-of-mass energy is then E = 1145 MeV while the

The nucleon-pion cen-

resonance is observed [see Eq. (10.3)] to occur at
I = 1220 MeV. The half-width is then

T =65Mev . (10.2)

For scattering by a free proton, we may define the
half-width as the point where Gss = 45°, which oc-
curs at E = 1192 MeV while the resonance is at 1236,
therefore

y T = 44 MeV (10.2a)

free

Thus the width in nuclear matter is considerably
larger than for free nucleons. At full density [
it 1s sti1l]l somewhat larger.

This result is in contrast to that of Dover and
Lemmer15 who find a decrease of the resonance width,
This may be attributed to their assumption that k =
ko, which was discussed in Sec. I.

The width as defined by Eq. (10.1) is not di-
rectly observable. The Im k merely determines the
transparency of the nucleus and thereby b1 (Table
II). Observations of the total (or reaction) cross

64,65

section show a very slow variation with energy

impressively slower65 than the n+—proton cross sec-—
tion. These cross sections merely indicate the slow
variation of b, with Im k.

Nevertheless, the observed reaction cross sec-
tion may be used to get at least an estimate of the
resonance width. The observationsGa seem compatible
with our estimate [Eq. (10.2)], but more accurate

evaluation will be necessary.



Much has been written about the position of the
resonance. In our opinion, very little significance
is attached to the energy at which the reaction66
cross section reaches a maximum, This 1is only a
pale reflection of the behavior of Im k, still fur-
ther complicated by the finite wave length of the
pion.

The only significant definition of the reso-

nance is the energy where the real part of the nu-

clear scattered amplitude vanishes. The theoretical

significance of this point was realized by Dedond-
er.23 Experimentally, the real part of the ampli-
tude may be measured by means of the Coulomb inter-

ference. This has been done for T by Binon et

67 in both cases

al., and for n+ by Scott et al.,68
using a !2C target at laboratory energies from 115
to 260 MeV.

better by comparing them, Re fN(O) can be determined.

Using either of these experiments, or

Interpolating between the data of Scott et al., we

find the resonance at

+21

14 MeV (10.3)

T =174
res

in the laboratory system. This compares with the
(iaboratory) energy of the resonance for scattering

by the free nucleon,(‘l

= 195 MeV . (10.4)

Tfree

Thus the experimental resonance position is shifted

by

+21

AT = =21 -14

exp MeV (10.5)

We previously (Sec. V, beginning) emphasized that
the laboratory energy in a complex nucleus must be
compared with the laboratory energy for free-nucleon
scattering, not with the nucleon-pion center-of-
mass energy. .

Qur theory, Sec. VII, gave a shift

A Tthe = - 10 MeV .

(10.6)
This is not sufficient, although it is within the
wide limits of the experimental date [Eq. (10.5)].
Thus, the theory still requires modification. How-

ever, it has the great advantage over previous

theories that our shift is composed of two very mod-
est shifts, (a) from the propagation in nuclear mat-
ter, and (b) from the small phases. In other theo-
ries, many and individually large shifts are involved.
In Sec. VIII we emphasized that elastic scatter-
ing near the resonance gives no information about
the behavior of pions in the high-density core of
the nucleus because the nucleus is black. To inves-
tigate this behavior, we have to go off resonance,
let us say to kinetic energies of 50 to 80 MeV. §S1il-
bar and Sternheim12 have shown (their Fig. 2) that
in this energy range, the '"local" form [Eq. (8.7)]
of the potential is in good agreement with the ob-
served reaction cross section, whereas the original,
nonlocal form [Eq. (8.1)} of the Kissiinger theory
gives too large reaction cross sections. We believe
this may be explained by the fact that the local po-
tential [Eq. (8.7)] does not suffer from the "Kis-
slinger syndrome' [Eq. (1.6)] at large p, while it
is similar to Kisslinger's in the nuclear surface.
As we have discussed in this report, a correct the-
ory should indeed have these two properties. (Of
course, this does not justify the details of the

local theory in the nuclear interior.)

XI. ELASTIC SCATTERING AND “®CALCIUM

In Sec. IX, we used the eikonal method to es-
timate the elastic scattering. Using Eqs. (9.9),
(9.4), and (9.12), the source of elastic scattering
is given by

-1k

S(b) = s(b)e 0%l = exp X(b) -1 . (11.1)
Following the usual methods, the amplitude of the
diffracted wave at large distances becomes

21KF(0) = - 21rikfbdbS(b)J°(kob sin 8)  (11.2)

Probably better accuracy will result if we replace
(11.2a)

sin 6 + 2 sin 6/2 .

According to Sec. IX, if the center of the nucleus

is black, we have approximately

S(h) = -1 for b < b1 .

(11.3)
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For b > b, Bq. (9.12) gives

1?

X(®) = 1 $(w) (2mab) ™ P /o, (11.4)

where we have added the true-absorption term Cp0 to
Bq. (9.14),
[Eq. (9.10)],

Now use the radial distribution

p(b) = p(b,) exp(b, - b)/a . (11.5)
Then Eq. (11.2) becomes
b,
F(8) = - 1/ bdb(-1) J (qb)
0
(11.0)

- if badb Jo(qb){exp[.‘((bl)e(bl_b)/a]—l}
b

1
with

q = 2k,sin 6/2 . (11.6a)
The first integral is elementary and gives the well-
known diffraction from a black disk.

Fl(e) = ilel(qbl)/q . (11.7)
The second integral may be simplified by noting that
a < b1 so that only values of b close to b, contrib-—

ute. Than b can be replaced by b1 everywhere ex-

cept in the exponential and in db, thus

(b,
F,(8) = - iblaJo(qbl)-/x )
0

x [exp X(b) - 1] (11.8)
It should be remembered that X has a negative real
part [Eq. (9.15)]. Then

F,(8) = iblaJo(qbl)gln[—x(bl)]+ C-Ei x(bl)% ,

(11.9)

where C = 0.577 is Euler's constant. The integral-
exponential Ei (X(b,)) is small, and it is essen-
tially cancelled by the exponential term which we

left out in the first integral in Eq. (11.6). Using

Eqs. (9.15), (11.4), and (9.11), we have

X(b) = n 2 [1 -1 —l-m—f—:%_%p—]
0 (11.10)

Re k(p, w) - kg
= 1-1 2
fn 2 [ In k(p, w) +Cp | >

where k(p,w) is evaluated at a suitable value of p
near p(b,). Then setting

Y = Re k(p, w) - ko

n k(o w) F O (11.11)

and inserting into Eq. (11.9), we get

F,(8) = 1b;al, (ab,) [c + 2n(2n2) + ) fn(L + Y2>]

(11.12)
+ b,J,(gb,) arc tan Y .

Adding this to Eq. (11.7) gives the total scattered
amplitude.

The imaginary part of the scattered amplitude
is mainly the contribution from the black disk [Eq.
(11.7)]. The first term in Eq. (11.12) is small.
The second term gives the real scattering amplitude;
1t has the same sign as Eq. (11.11), hence it is
positive if the potential on the pion is attractive.
The real part of Eq. (11.12) may permit at least
semiquantitative comparison with Coulomb interfer-
ence at energles away from the resonance. The real
part arises only from impact parameters near bl, as
shown by the factor Jo(qu)'

Diffraction minima correspond to a zero of the
imaginary part of F, therefore essentially to

Jl(qbl) =0 . (11.13)
The differential cross section for this q should be
zero at the resonance energy. Away from resonance,
the real part of Eq. (11.12) will still give a non-
vanishing result. This may be another way to ascer-
tain the position of the resonance.

1t has often been suggested that pions in the
resonance region would be a very good tool for the
exploration of the neutron distribution in such nu-
clei as “®Ca. The proton distribution in this nu-

cleus is known to be very nearly the same as in




“0ca, but in addition there 1s a complete shell of
neutrons containing eight of these in the 1 f,”2

shell.
tribution of the neutrons or protons in the inner

shells (ls lp 1d 2s) of “®Ca, according to the den-
0

Figure 13, curve C, shows the density dis-

sity-dependent llartree-Fock calculations of Negele
which agree well with electron scattering experi-
ments and measured binding energies. Curve f shows
the density of the 1 f neutrons on the same scale.
Beyond r = 5 fm, the 8 f neutrons contribute somewhat
more to the total density than the 20 core neutrons.

The scattering of 1 18 determined by the ef-
fective density

O(W_)=-%-p +-;-p

n (11.14)

p ’
where Py and pp are the neutron and proton density.
The effective density for 7% scattering is
+_ 1 3
pPm)=gp,t7o, . (11.15)
Both p(T ) and p(n+) are shown on Fig. 13. We have
marked with crosses the points where p(n+) and p(m )
become equal to % P, = 0.040 fm~? which we showed in
Table II to be about the point b , i.e., the effec-
tive nuclear radius for elastic scattering near the
resonance energy. The corresponding point for core

scattering alone is marked on the C curve.

0.09 T T T
008
0.07

_096—
0051
004}
003
0.02

T ¥
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Fig. 13 Density distribution of nucleons in “8ca
according to the calculations of Negele 70
in nucleons per fm®. Curve C: Core nucle-
ons (either neutrons or protons). Curve f:
Neutrons in the 1 f shell. Other curves:
Effective density for scattering of wt or
m~. The + signs mark the points where the
effective densgity 1s 1/400 = 0.04 fn—3,

The effective radii are

b (1) = 4,60 fm |
b (") = 4.41 fm, and
b (C) = 4.30 fm.

(11.16)

Thus the “®Ca nucleus should appear about 4% larger
for m than for 'rr+ scattering, and the latter radius
is about 3% larger7l than the radius for scattering
by “°Ca.

be easy to observe by the position of the first dif-

The 47 difference between n+ and T should

fraction minimum; this would give direct evidence
that the neutron f shell extends beyond the core.
There is some chance that a similar, but much
smaller, effect could be observed in heavy nuclei
1like 29°Pp. Whereas thé maximum of the neutron
shell is located at about the same radius as the

last proton shell,70

the proton density decreases
more rapidly for large r than the neutron density
because of the Coulomb potential. Aside from the
effect being smaller, however, the Coulomb scatter-
ing might mask the first diffraction winimum in a
nucleus as heavy as lead.

Another way to observe the neutron 1 f shell in
“8Ca may be the charge exchange scattering. We con-
sider in particular the process in which the “%Ca

nucleus is changed into the analog state in “8sc,

Ca+ m = “8Sc(T = 4) + 1° ., (11.17)
The analog state has isospin T = 4, and a wave func-
tion just like “®Ca, except that one neutron in the
1 f shell is replaced by a proton. The energy
change is just that due to the Coulomb energy, about
6 MeV.

m°'s of high energy corresponding to the 6-MeV ener-

The process may be recognized by selecting
gy loss.72 The process (11.17) can only go on with
the neutrons in the 1 f shell. The core neutrons
will also give chargeexchange, but this involves
much greater energy transfer to the nucleus. More-

over, the process (11.17) can go on with n+; the T

can only undergo charge exchange with core protons.

So the observation of the difference between m - ™
and 1t - 7° charge exchange is another way to sepa-
rate out the .process (11.17). Once this is done, it
should give the density distribution of the 1 £

neutrons, rather than the combinations in Eq, (11.14)
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and Bq. (11.15); but of course the absorption of the
ﬂ+ before charge exchange, and of the m° afterwards,
must still be taken into account, and these involve
Eq. (11,15) and p(m°) = Py + pp.

Returning to the general problem of elastic
scattering, a correct theory should of course not
use the eikonal method, but an analysis in angular

This has been attempted by Beiner and
74

momenta.

Huguenin73 who write scattered amplitude

L
£k, ©) = (21k0)‘1 2 (2441 (5,-1) ®, (cos 6)
2=0
(11.18)

where

(11.18a)

with complex phase shift 62. When doing such an
analysis, one should be guided by the physical fea-
tures of the scattering as discussed in Secs. IX and
XI. In the resonance region, let us say from 100 to
250 MeV (laboratory kinetic energy), the nucleus is
black, so that we have very nearly

S

=0 forf<f =k R-% . (11.19)

2
For '2c, R = 2.58 fm, we get

L =1, =
o 1.75 for Tlab 100 Mev
and (11.20)

L =3, =
o 3.5 for Tlab 250 Mev

Only for £ > £ do we néed to find Sl from the ex-
0

perimental data., The maximum useful L may be set

arbitrarily by SL = 0,9. Using the notation of Sec.

IX, this corresponds to

= + 1.86

b =b a (11.21)
and

L =k b -% . (11.22)

0 2

For 12C, we have b2 = 4.35 fm,

L = 3,3 for Tlab = 100 MeV
and (11,23)

L =6, =

6.2 for Tlab 250 MevV .
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Thus we need only consider75

2 = 2 and 3 for 100 MeV
and (11.24)
L =4, 5 and 6 for 250 MeV .

It should be possible to do a phase shift analysis,
even with complex phases, for such a small number of
partial waves. This will be a way to derive k(p,w)
from experiment, rather than predict the experimental

results from an imperfect theory.

NII. INELASTIC SCATTERING AND REFRACTIVE INDEX

We have seen in Secs. IX-XI that the elastic
scattering in the resonance region does not indicate
anything about the behavior of pions in the interior
of the nucleus, except that the imaginary part of k
1s large. We shall now examine what information we
can get from inelastic scattering. In particular,
we shall look at quasi-elastic scattering, i.e., the
scattering of a pion by a single nucleon (see also
Sec. V.

The main feature of the theory is that the real
part of k in the nucleus is much greater than kg,
provided the energy is appreciably below resonance
(175 MeV lab).

the nucleon is also much larger.

Accordingly, the energy transfer to
From a quasi-elas-—
tic scattering, we therefore expect to get

(1) a recoil nucleon of very high energy, and

(2) an inelastic pion of low energy.

As we show below, it is prgbably difficult to ob-
serve the pion, so we shall concentrate on the re-
coil nucleon.

Quasi-elastic scatterings may occur (a) in the
nuclear surface, let us say at r > R, where R is the
point where p = I [ and (b) in the interior,

r < R.

most like a free pion, the nucleon effective mass is

In the surface region, the pion behaves al-

near 1, and the nucleon momentum is not very large
because Py < 1.05 fm~!. Assuming the nucleon to be
initially at rest and the pion to be scattered

backward, the energy transfer is

2
sz 2 kO M

ol vl . (12.1)

Aw ——
™+ wi>2

This is roughly half of thé kinetic energy of the
pion. The nucleon recoil énergy is about Aw - B

where B = 8-16 MeV is the binding energy.




In the interior, the momentum of the pion is
much larger than k, which permits a larger energy
transfer. The larger nucleon momentum, and the
smaller M*, further enhance the energy transfer.
As we discussed in Sec. V, nearly all of the pion
kinetic energy may be transferred to the nucleon.

Thus we may expect to see nucleons of high energy

emerge from the interior of the nucleus.

It is true that these nucleons may suffer col-
lisions while trying to get out of the nucleus. In
these collisions they may lose energy, be deflected,
or suffer charge exchange. But the collision cross
section is only about 40 mb, roughly half that of a
resonance pion, so that a recoil nucleon has a much
better chance to emerge, pogsibly even with undimin-
ished energy and with its original charge. We there-
fore propose an experimental search for high-energy,
quasi-elastic recoil nucleons. The incident pion
energy should be well below the resonance, perhaps
100 MeV.

The probability that a resonance pion, hitting
the nucleus head-on, will penetrate to p = é—p

r=R1is

[~
P = exp (-2 j Im k(z) dr) - (12.2)
R
Using Fig. 10, Egqs. (9.10) and (9.11), and Table II,
we find
P =~ 0.6 . (12.3)

For off-center hit, P is smaller, but we estimate
that roughly half of the pions have their first in-
elastic collision in the interior.

The scattered pions themselves have considera-
ble difficulty in getting out of the nucleus. In
the first place, there is the absorption by Im k,
giving a second factor P. Move interesting, and
often more important, is the refractive index

n = k/k, . (12.4)
Using Fig. 11, we have calculated Re n as a function
of w, at p = Py Figure 14 shows the result: Re n
has a maximum of nearly 2 between 30 and 60 MeV,
then falls to 1.5 at 100 MeV, 1.2 at 150 MeV, and to
1.0 at 220 MeV (lab). The minimum is about 0.94 at
300 Mev.

. This quantity is also plotted in Fig. 14.

20
n

1.8}
1.0

. [l 1 [ ]
03 10 15 20 25 3.0
ko/p
Fig. 14 Real part of the refractive index, at den-

sity p,, as a function of k /u. The +
sign marks n = ¥7 where the probability of
total reflection is one-half. ---line of
coszec, read on the right-hand scale.

A pion of 30 to 150 MeV, coming from the inside
to the nuclear surface (now considered plane) may
thus suffer total reflection. This phenomenon, as
is well-known, is not modified by the fact that n
changes gradually from its interior value to 1. To-
tal reflection will occur if the angle 8 between the
pion momentum and the normal to the surface satis-
fies Snell's condition

sin 6 > sin ec =1/n . (12.5)
Assuming that the direction of the pions in the in-
terior (e.g., after quasi-elastic scattering) is
random, the fraction unable to get out is

cos 8= (1 - 1/n)% . (12.6)
Actually, because of the absorption of pions in the
interior, both on the way in and especially on the
way out, the direction of pions coming to the sur-
face 18 not random, but favors small angles 6. An
uninteresting calculation shows that the fraction
totally reflected is then not Eq. (12.6) but nearly

cos? 8 =1 - 1/n® . (12.7)
Up to a-
bout 110 MeV, the chance of getting totally reflec-

ted is greater than one-half!
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It 18 for this reason that the observation of
quasi-elastically scattered pions is apt to be dif-
ficult. Their number is small, and the theory con-
tains so many uncertain factors that interpretation
Even 1f

inelastic pions are observed, it is hard to tell

of the cross section is nearly impossible.

whether they have been scattered once or several
times. An exception is, probably, the case of very
low energy of the scattered pion; see below.

The large total reflection does, however, have
one simple consequence. Most pions, once they are
inelastically scattered, will stay in the nucleus
for a long time, and therefore are apt to be cap-
tured by the two-nucleon process [Eq. (1.11)].
This process by itself has a very small cross sec-
tion;62 even at p = p,, the corresponding Im k is
only about 0.035 u, corresponding to a mean free
path of 20 fm.

tions, the path of the pion inside the nucleus may

However, by repeated total reflec-
indeed be 20 fm or more. The capture process [Eq.
(1.11) ] should be observable because the two nucle-
ons resulting from it have high energy because they
have absorbed the rest energy uc? of the pion. But
they may not come out in opposite directions be-
cause the pion momentum is still appreciable, per-
haps as high as 2 y. Their charge 18 also not nec-
essarily predictable because the pion may have suf-
fered one or several charge exchanges.

An integral method to determine this capture of
fast pions is to send a a beam on a thick target of

some material, and to measure the positrons from the

+ 4+
T -\

+
when the m has been brought to rest. Their number,

- e+ decay. These positrons will be emitted

divided by the number of incident n+, indicates how
many wt escape capture in flight.

The total reflection, which we have discussed,
may stop at low pion energy. As we discussed in Sec.
VI, Re k may become small and even negative at small
pion energy.

MeV), Re k = k, and below this energy,

Thus at some energy w, (perhaps 30

Ren <1 1if w<w, . (12.8)
For these low energies, then, the pion will come out
easily from the nucleus once it has made its way to
the surface. Thus we may expect that many of the
inelastically scattered pions will come out with

very low energy regardless of the energy of the in-
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cident pion.76 The energy distribution of these pi-
ons will give information on the optical potential
of pions in the low-energy region, which is very in-
teresting. But it will give no information on the
inelastic scattering processes which have taken
place in the interior because most of the pions will
have suffered more than one collision, The angular
distribution of these low-energy pions is probably
not far from isotropic, with some preference for the
backward direction (because many of them will come
out near the place where the incident pion has en-
tered) .

The result, [Eq. (12.8)], may also mean that
incident pions of low energy, w < w,, may experience
something like mirror reflection from the nucleus,
giving enhanced and nearly isotropic elastic scat-
tering.

At low energy, the term V3p in Eq. (8.7) be-
comes important (i.e., the local density approxima-
tion is no longer good). Then there is effectively
a potential minimum at the nuclear surface, and the
pions may preferentially move along the surface.

We have discussed only one type of inelastic
scattering, the quasi-elastic one. There are at
least two other types: (a) excitation of surface vi-
brations of the nucleus, and (b) ejection of a-par-
ticles. Both of these may happen particularly with
pions moving near the surface of the nucleus. In
case (b) this 18 so because only in this manner can
the o-particle get out easily.

Experiments by Jackson et al.,77 by Lind et
al.,78 and by Ashery et al.,79 indicate that emis-
sion of one or several a-particles is remarkably
frequent. The experiment consists in the observa-
tion of the characteristic y rays from the residual
nucleus which indicate how many nucleons and of what
charge have been removed from the target nucleus,
The incident pions had energies up to 380 MeV. Ex-
0 at.60 and 0 MeV, in-
dicate a considerably smaller effect of this kind.

H. Lipkin81

ory may help explain these observations.

periments by Lewis et al.,8

has suggested that the present the-
First, the
plons are often near the nuclear surface, as dis-

cussed above. Second, they may not have enough en-
ergy to eject single nucleons. In collisions with
a-particles (perhaps preformed in the nuclear sur-
face) the pion loses less energy because of the

greater mass of the alpha.




It is obvious that the behavior of low-energy
pions is far from clear, and will require a lot of

further theoretical and experimental work.

XII11.SUMMARY

The basic quantity in our theory is the pion
self-energy Il which gives the relation between the
wave number k(p,w) of a pion in the nucleus and the
energy w [Eq. (2.2)]. Following the work of Dover
and Lemmer,15 the main part of Il is obtainable frow
the amplitude for forward scattering of a pion by a
single nucleon in nuclear matter by integration over
the nuclear density [Eq. (2.11)]. The main modifi-
cation to this result is the Lorenz-Lorentz correc-
tion [Eq. (2,12)] which is due to the fact that two
nucleons cannot come very close together.19

The forward scattering amplitude f(w,k,p) is
obtained from a theory analagous to that of Chew and
Low.16 The most important problem here is unitarity.
To treat this problem properly, we have to go to
real values of k, hence complex values of w. This
introduces certain modifications in the Chew-Low
theory. However, it is shown that the main feature
of the Chew-Low theory, the "effective range approx-
imation,'" 1s preserved, and we get a 33-resonance at
about the same energy as for free nucleons. After
performing the calculations, we can transform back
to real energy w and complex k, and obtain the final
result for forward scattering [Eq. (3.31)].

The Pauli principle for the nucleons in nuclear
matter is important because it excludes certain fi-
nal states in the quasi-elastic scattering of the
pion by a single nucleon., It is taken into account
by solving the Lippman-Schwinger equation (Sec. IX
and App. A).

f is only needed for nucleons at the top of the Fer-

It 1s helpful in this connection that

mi sea.

The (real part of the) pion momentum in nuclear
matter is large. This leads to large energy loss of
the pion in quasi-elastic collisions once the finite
Like the

Pauli principle, this reduces the probability of

mass of the nucleon is taken into account.

quasi-elastic scattering, and hence the imaginary
"damping' term which this process introduces into
The combined ef-
fect is about a factor of 1.28 in this damping (Sec.
V and App. B).

changed.

the elastic scattering amplitude.

Also the form of the damping term is

In this respect, our theory differs from

the simple model19 in which the pion changes the
nucleon temporarily into a A; in other respects,
this model is most similar to our theory.

The behavior of pions is rather different at
low energy where the damping by inelastic scattering

5,9,10

1s small. The standard theory of pionic atoms

is found justified. At kinetic energies up to about
30 MeV, k(p,w) is calculated algebraically (Sec. VI);
it is mostly imaginary.

At energies above 30 MeV, a simple model of our
theory is calculated numerically (Sec. VII). The
wave number k remains moderate for all densities, so
that the l(isslingerl syndrome [Eq. (1.6)] 1is avoided.
The real part of k is always much larger than the
imaginary part, again in contrast to the Kisslinger
theory. The effective absorption cross section at
resonance is considerably less than the free-nucleon-
pion cross section.

Effects near the nuclear surface are considered
in a very approximate way (Sec. V1II). Then the
scattering by a finite nucleus is treated in the
eikonal approximation (Sec. 1X). The elastic scat-
tering of resonance pions is essentially determined
by the part of the nucleus where the density is a-
bout a quarter of nuclear density. Because at this
low density the Kisslinger (and similar) theories
are valid, this explains the fact that these theo-
ries have given good numerical answers for elastic
scattering. A reason is given why the "local" form
of that theory [Eq. (8.7)] may be especially success-—
ful.

The center of the nucleus is black to resonance
pions, To get information on the interaction of pi-
ons with high-density nuclear matter, we must use
plons of lower energy, perhaps 30-80 MeV. Our theo-
ry is not yet ready to describe these because we
have not yet dealt properly with the effects of
changing density (surface effects).

The width of the resonance in our theory is ap-
preciably greater than for free nucleons (Sec. X),
in contrast to some recent theories.

The position of the resonance should not be de-
fined by the maximum of the reaction cross section,
and even less of the total cross section, because
these are secondary effects. The only proper defi-
nition 1s as the energy at which the real part of

the nuclear scattered amplitude is zero. This can

35




be experimentally measured by the Coulomb interfer-
ence. Experiments show that the so-defined reso-
nance i1s shifted downward from the free-nucleon
resonance by 20 * 20 MeV. Our theory predicts a
downward shift by 10 MeV, which is the sum of a
slight upward shift according to the calculations of
Sec. VII, plus a somewhat larger down shift due to
the contribution of the '"small" waves in pion-nucle-
on scattering. We do not consider this agreement as
satisfactory.

The eikonal method is used for a simple quanti-
tative calculation of elastic scattering (Sec. XI).
For a direct analysis of experimental data, one may
analyze for the complex phase shifts of those par-
tial waves which correspond to impact parameters
near the nuclear radius; only 2 or 3 values of &
will be needed.

cleus may be considered black (Sec. XI).

For the small values of £. the nu-

The proposed experiment to determine the 'neu-
tron halo" of “®Ca is very promising. The apparent
nuclear radius for scattering of m 1is about 4%
larger than for n+ (Fig. 13). Charge-exchange scat-
tering by “8ca 1s also promising.

A conspicuous feature of pion physies in nucle-
ar matter is the large refractive index, Re n = 2 at
about 50 MeV.
and 120 MeV which try to emerge from the interior of

Pions of energies between about 30

the nucleons are apt to suffer total reflection.
Therefore there should be few inelastically scattered

pions in this energy range. At low energies, < 30
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MeV, inelastically scattered pions may escape from
the nucleus. In many cases, however, inelastic
scattering in the interior will lead to subsequent
capture of the pion in the same nucleus. Some ex-—
periments are proposed to study these phenomena

(Sec. XII).

ACKNOWLEDGMENTS

H. A. Bethe wishes to express his appreciation
for the hospitality of the University of Washington
(Spring 1973) and of Nordita (Spring 1974). He is
very grateful to D. G. Boulware of the University of
Washington for an important suggestion, and to L.
Wilets and S. Blaha of the same University for com-
puting earlier versions of the theory. He also
wants to thank G. E. Brown and J. Hamilton of Nor-
dita, T. E. 0. Ericson of CERN, and H. Lipkin of the
Weizman Institute for valuable discussions. M. B.
Johnson wishes to acknowledge and thank A. S§. Gold-
haber for extended and useful discussions and cor-
respondence. We further wish to thank J. Negele
for his assistance in obtaining density distribu-
tions. The problem was suggested by discussions at
the Los Alamos Meson Physics Division (Summer 1972),
and we are grateful to several staff members and
visitors of that division, as well as the Theoreti-
cal Division, for discussions. Finally, we wish to
thank the Referee of Phys. Rev. Letters who rejected
our earlier, brief version of this paper, and thus

stimulated us to introduce numerous improvements.



APPENDIX A

PAULI DAMPING FOR P

For a p3/2 state, the K matrix element depends

on the infitfal and final directions not only of the
4
momentum, but also of the gpin, thus,(“

A« oo K[k w> = - 8r%k, x
(A.1)

T <o o "
X M n lys/z M(k )> <y3/z M(k)|m>

where ij is the generalized spherical harmonic.

Equation (A.1) suggests that we write the T matrix
in the form

<Ko |1k = L < lys/z M(E’ >
Mo
(A.2)
<-12' MITI-]: m>

Equation (4.5) is modified merely by adding the
spin variables m,, m, and me in the matrix ele-
ments. Inserting Eq. (A.1,2), we get

L < " *

. me lys/2 uke)> <k Ml'rlki >
= 812k I < X r

* M Beld s, k> Vg, 0 my>

. (A.3)

- )
+ 1kw K_ I d day I
0 L [ (cos x) fw L <mf|y

3/2 M(kf)>

~ A
< < > <
ys/z M(k)lw 5{ . m|y3/2 M (k) k M lTlii mi> *
Clearly, we can pick out the coefficient of

<mfly:«/z M(kf)>

on both sides, and thereby reduce the sum over M to
one term. Next we calculate the integral over Y

and sum over m. We note that

- (A.4)
Y./2 (k) = g C (In, % M-n;3/, M) yll‘(k)lM_m,

where the C's are Clebsch-Gordan coefficients, the
Y's are ordinary spherical harmonics, and |M-n >

3/2 SCATTERING

is the spin function of m, = M-n. Then
Ly = fav s < 0 > < "
M n ya/zM ( )lm mlys/zM'(k)>

=L COMm, tm; 3/ M) C(LM-m bm; of/z M)

faw y 1on o YIM' T . 4-3)

The integral over Y is zero unless M' = M. Then

Iy =L C*(l n, % M-n; 2/2 M) 21r|3{1“(k)|2 , (A.6)

21r|Y11(l:)|2 = 3/y sin?y , (A.7)
21r|Y1°(k)|2 = 3/3 cos?x , (A. 7b)
21 M%, %%, 3/, M) =%+ M/3, and (A-8a)
C2(1 M, % %, oM =% - M3 . (A.8b)

Because M' = M, Eq. (A.3)

tion for the single unknown < k M[T[Eimi>, which 1is

reduces to an equa-

<k M|1[km> = - 8n%K, < ya, u (ko lw

\ (4.9)
+ 1kuK, < k M[T[Tcimf]l d(cosx) I(X)

and is easily solved for T. According to Eq. (A.7),

we clearly need the integrals [see also Eq. (4.20].

A
Jo = 3/2[ cos?y d(cosy) =% (1 + A% (A.10a)

=1

A
Jg = 3/, [ sin?x d(cosy) =% (1 + A) (2+A-A%) .

-1 (A.10b)
Using Eq. (A.8),

‘(A.11a)

A
I 'j; d(cosx) L(x) = J_ 1f M=+ 3/,

and

-2 1
J /3Jc+ /3J8

M 1f M=+% .

. (A,11b)
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Then Eq. (A.9) has the solution

<iM|T[km,> = -81%Ke <y, 4 (ko) [me> £y

(A.12)
and
by ™ (L - 11<m<°JM)‘1 . (A.12a)
Inserting in Eq. (A.2),
<§fmf|T|Kimi> - - an%, g ty *
x< mf|y3/2 M (Ef)> Yy, u (£1)|m1> . (A.13)

We are chiefly interested in the forward scat-
~ o

tering, k Define

£ =k,
Ry = 81 [ys, y (kP> Y3y, gy Gk my>

+ same with -M . (A.14)

Recalling Eqs. (A.4) and (A.8), we find for

- 112 2
Fay, = 8r[Y '[* = 3 sin’y, (A.158)

and
B o= 8“[2/3|Y1°|2+1/3|Y11|"'] -3 colz)(i +1

(A.15b)

For m = -3, the same results are obtained. For
m, = i, me = -l (spin-flip), it is easy to show that
the contributions of M = +% and -% to Eq. (A.13)

just cancel; they have the same t Thus we find

M

> >
<k [T]km> = -m8 4 Ko oty By (A.16)

where the sum goes only over the two values M = 3/2,
1/2, and Fy is given in Eq. (A.15).

APPENDIX B
CALCULATION OF A MODEL

The assumptions of the model are stated in Egs.
(5.23) and (5.24).
of a pion which ends up at we = W, and kf = ki = kr'

We first calculate the angle Xg

Remembering Eq. (4.1la), Eq. (5.7) gives

cosx, - cosXg = M*(wi - wc)/Pkr . (B.1)

From our estimate in Eq. (5.22), it is clear that

nearly always

cosxf > -1 . (B.1la)

The only exception occurs if P is very small, cos o
~ -1 in Eq. (5.22), {i.e., ;1 nearly opposite to k.
We shall come back to this case.

In the usual case, i.e., if Eq. (B.la) is true,

we have to consider two ranges of integration, viz.,
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a. from Xy to Xg3 here k is constant = ki and

w changes with x, from w, to W

b. from Xg to T3 here w = wi 1 fixed, and k
changes with X, from ki to km (minimum k)
which we shall calculate.

In range a, we get w from Eq. (5.7) which we

write in the form

w = w2 + (P/M*) k cosX (B.2)

with

- _ (p2 2 _ 2
w, =, (P* + ki Pg Y/2Mx (B.3)
If we assume k, = pp, a8 in Eq. (5.24), the last

term in Eq. (B.3) is about P2/2M%. An average value
of P? is p;, + k2, then using Eq. (5.26)



P?/2M* = 0.83 pu . (B.3a)
If w, is the resonance energy,
wy = 2.4y, w2 =1.57 u . (B.3b)

Further, in Eqs. (5.9) and (B.2), using Eq. (5.26)

again,

B=P/(M+ w,) = 0.316 (B.4)
P/M* = CB , and (B.4a)
c=(M+ wi>/M* = 1,82 . (B.4b)

We insert Eq. (B.2) into Eq. (5.11), neglecting
consistently all terms of o]:de]:l‘9 B2, in the follow-

ing.

x = kK cos f = k cosy - wzﬁ (B.5)

We solve this for k cos X and insert in Eqs. (B.2)
and (5.14)

w= w2 +BCx , and (B.6)

W = w, +B(C-x . (B.6a)

This shows that w' is a function of the scattering
angle, i.e., of x, as noted below Eq. (5.15). The
reason 1is partly the small effective mass of the nu-
cleon [see Eq. (B.4b)]. From Eq. (5.13),

K2%=K%-28 w, x . (8.7
Therefore, as x changes (k = constant) )
dK' 3 = 280, dx . (B.7a)

As we stated above Eq. (5.21), we use k'? in-

2 *

X' in the integral in Eq. (5.19).
2

stead of k'? cos

Omitting the factor u™° and using Eq. (5.20), we

have from range a.

’

X1

I =f' W K d(cosy )
Xg

X
TJ e, + 8D [0 280 x)ax-tox 280, ax)]
2

X
= k2 w, x + 48 (k?(c-1) - w 2) x* | 2 ,
2 X
1 (B.8)

neglecting again a term 8%2. The limits on x are as

follows [see Eqs. (B.S5), (5.7), and (B.1).

x = ki cos X, - UZB

(B.9)
=%P-wB+ (k% - pF2>/2p =1.18 y ,
- = % - = -
x1 x2 (M*/P) (wi wc) 1.51 (wi wc)
=1l.8u (B.10)
x2 = - 0,63 u . and (B.10a)
xl2 - x22 very small . (B,10b)

The last term iﬁ Eq. (B.8) 1is therefore negligible;
the bracket in this term is also rather small, and
so is the factor ¥ B = 0.16. In Eq. (B.10), we have
used w, = 1.2 p (kinetic energy 30 MeV). Thus we

have essentially

1= k2 w - =
2 (xl x2)

= 2
ke w, (*/P) (g - w) = 15.6 u* (B.11)

A more accurate calculat:ion,(‘8
der B2, gives 13.5 u“.

In region b, we have w = w.» k variable, P
fixed, so Eq. (5.7) gives

keeping terms of or-

cosx = (2P)~' (k - B/k) , and (B.12)

=oM% _ 2 _ p2
B M (wi wc) + Py P . (B.13)
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In general, B > 0; for exception, see below. The
maximum value of cos X is cos Xg> [Eq. (B.1)]. The

minimum 18 -1, which is reached when

k=k = (p*+ Bi-p . (B.14)
With the values previously used,

B=7.2u% k =1.07u . (B.14a)

It 18 important that k cannot go to zero, but km
< ki' In this range, we use k as the independent
variable, rather than x.

We have
K cosy = (2P)~! (k? - B) - wB , (B.15)

' B — k?

e T ) ’ (B.16)

K2=k*Q1-12) +B , and (8.17)
wc

= ﬁ_‘_—wz = 0,136 (B.17a)

with our values of the parameters. The integral
corresponding to Eq. (B.8), but over range b, is

then given by

Ky

4PQ(w,) T -f () w, + 3B - % k27 x
k
" (8.18)
x [k2(1-T) = B(1+L) + 2P%r] dk? .

Because k; < k; [Eq. (B.l4a)], we neglect k;. Neg-

lecting some small terms, we get
4P (tw T = [(M+mi)wc + M*(wi—wc)
2 2 2
+3épF-!‘2P-;ﬁki] x

X[ 2% (w-0) (D) + pg” (142) = (B2~ kHA-DI.
(8.19)

In the first bracket, we use Eq. (B4b). We neglect

ki, p; in both brackets, and { and P? in the second

bracket, and get
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11 = (M*/2PC) kiz(wi—wc) [chmi-wc-pz/zu*] + (B.20)

From the second bracket in Eq. (B.19) it is clear
that the result may be smaller if P is large, e.g.,
near its maximum Pp + k. I and II have the same

form and can be added.

- e 2
I + I1 = (M*/2P) ky (wy—w.)

x[(2+C~1) (wi-lezu*) + (1—c“)wc] '(B.21>

after using Eq. (B.4b). For our parameters,
I+ I =22.5u" . (B.22)

The correct 1:esult:(‘9 happens to be also 22.5 u*, by
a cancellation of errors. See Eqs. (5.27) and
(5.28) for discussion.
We now discuss two exceptional cases.
1. 1f P is very small, Eq. (B.la) does not
hold.
This will happen 1if

- _ %
P < Px k + [k2+2M*(wi w)] . (B.23)

With our parameters, ?1 = 1.91 y. This means that
roughly 1/5 of the permitted range of P? is in-
volved in Eq. (B.23).

1f Eq. (B.23) holds, the entire angular range

- 1 < cosx < cos), (B.24)

leads to values of we > W3 thus we have only ''range
a" to consider (see above). Neglecting the (rather

small) effect of the center-of-mass transformation,

we then need only to consider the Pauli effect.

This gives, similar to Eq. (4.25),

L/La = %(1+A) = % + P/4k . (B.25)

Thus the largest value of L is obtained for P = Pl;
it is about 0.7 Lj. For P < P,, Eq. (B.25) indi=

cates a decrease of L. Likewise, for P > P,




Eq. (B.21) holds and shows that L decreases with in-
creasing P.

2. If P_is very large, then B in Eq. (B.13)
becomes negative. Then Eq. (B.12) shows that cos X
can never become negative.

just reach 0 at km = 0.)

(For B = 0, cos X can
Instead, cos ¥ reaches a

minimum when

k=k = ( % 2_-2.%
, © (“B)® = (P*~D%) , (B.26a)

COSXpin = »%r ., and (B.26b)

2=
D% = Ar(w-w) + p? L (B.26¢)

For smaller k, cos X increases again, and reaches
+1 at

k = km = P-D (B.27)

which is the same as Eq. (B.14), except for a re-
versal of sign; clearly, k& < kz' The angular
range from Xmin to Xi 1s covered twice, with two
different values of k corresponding to each X.
(This is similar to the classical scattering of a

heavy particle by a light target.) We believe that

the integrand in Eq. (B.8) should then be changed to

ld cos% | . (B.28)
The contribution of the range from k& to kz 18 not
large, and the result is not much different from Eq.
(B.21).

Finally, we discuss the effect of using k'? in-
stead of 3 k'? cos? x', or of (3/2) k'? sin? ¥'.
Equations (B.9) and (B.10a) show that the important
region a involves generally small values of cos ¥',

hence in this region

3k 2 coszx' <k?
(B.29)
32 K % sin?y > K 2

" integral [Eq. (5.19)],
which corresponds to Jc in Eq. (A.10a), should be

Therefore the actual "cos

smaller than the L we have calculated, whereas Js

in Eq. (A.10b) is larger. From Egs. (B.9) and (B.7),
Using Eqs. (A.1l) to (A.16), it can
then be seen that the effective damping is slightly

cos X, = 0.56.

larger than our L.

APPENDIX C
PAULT PRINCIPLE AND UNITARITY
FOR THE MEDIUM IN THE
LIPPMAN-SCHWINGER THEORY

Here we give a justification for our basic nu-
clear matter equations [Eq. (3.11) and (4.5)]. Al-
though we use a specific model, the essential con-
clusions would presumably follow from a more general
approach.

Assume that the interaction of a pion with a

nucleon can te described by an equation of the form

T(w) = V(w) + V(w) G(w) Tw) |, (c.l)

where V(w) is a kernel and G(w) is a propagator for

the positive frequency components of the intermedi-
ate pion and nucleon. For the purpose of this ap-
pendix, we shall assume that the mass of the nucleon
i1s infinite (we relax this assumption in Sec. V).

We take V(w) of the form

<q |v(w) [q> = -4mv(Dv(q) (lun’qw.q)k

oy
P @ >9v(q ,q;5w) (C.2)

where v(q',q;w) is a quantity which would have to be

given in order to do a specific model calculation.
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The particular choice of factors in Eq. (C.2) coin-
cides with Eq. (3.4).

The pion propagator in nuclear matter is given
in Bq. (2.1). This propagates both positive and
negative frequency components. To obtain G(q,w)

from 1t, we write

1

Zwk
G(k,w) = ) -w_-Tk' s .3)

where wk 1s a solution of the equation D_l(k,wk) = 0,

i.e.,

w; - k%2 -+ Mk,w,) = 0 . (C.4a)

In Eq. (C.4a) k is real because the intermediate in-
tegration in Eq. (C.l) ranges over a complete set of
pion states; W is therefore complex. The normali-
zation N(k)~! in Eq. (C.3) 1s the residue of

D(k,wk>
(C.4b)

The factor Zwk 1s necessary 1if we want the solution
of Eq. (C.1) to coincide with the Chew-Low amplitude
[Eq. (3.4)].

In nuclear matter, nucleon '

'‘particles" contrib-
ute to the positive frequency propagator and "holes"
to the negative frequency part. A more correct the-

ory would therefore replace Eq. (C.3) with

2

G(k,w) = N ©w

(c.5)
k

The Pauli operator Q is defined in Eq. (4.7).

We have assumed, in writing Eq. (C.3) and
(c.5), that Eq. (C.4a) has only one (dominant) posi-
tive frequency solution W for real values of k.
1f, in a particular model, this assumption should
prove to be false, then Eq. (C.1l) is still a correct
equation, provided that we add to the right-hand
side of Eqs. (C.3) and (C.5) more terms of the same
form, corresponding to the additional solutions.

Let us assume that the solution to Eq. (C.1l)

- has the form of Eq. (3.4),
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G |t [§ = -4m (q )V(q)(m;wq)_;’

PL@DTE S0 - (c.6)

1t then follows from Egqs. (C.l), (C.2), and (C.6)
that

a0 = V@ -2 [ vdisw x

k*dkv? (k . «.n
using the fact that P33 is normalized so that
Sy > > > »
[, @ o r @D = @, . (c.8)

If we had used Eq. (C.5) for G(k,w), then T would

not have the simple angular dependence of Eq. (C.56).
UNITARITY

Define T+(q) and T (q) as follows

() = Lin
w+wdtie

T(q,q;w) (c.9)

Unitarity provides a (nonlinear) relation between

vt and T~ along the contour of real q. We make use

of the following82 theorem,

1f 'I‘A and TB are defined in terms of V, GA’

and GB’

T, = V+VG,T, (C.10m)
and

Tg = V+ V GyTy . (C.10b)
then TB may be expressed in terms of TA and the dif-
ference GB - GA’

Tg =Ty + T, (6;-6,) T, . (C.10c)




Taking GB = G(k,wq + in) and GA
G(k,w) given by Eq.

= G(k,wq = in) wita
(C.3), we find easily

zwk
Gy = G, = - NG (2m1) 8(w —wk) . (c.11)
Next, using the definitions in Eqs. (C.6) and (C.9),
(C.10), we easily find the
desired unitarity condition

and the theorem of Eq.

dw. v-1
mk] T TW |

W - T (k) = 41k*v2 (k) [N(k)dk
(c.12)
In the absence of the medium Eq. (C.12) reduces

(3.7).
(C.12) 1is just the con-

to the familiar condition of Eq. But in the
presence of the medium, Lq.
dition we need to obtain the result in Eq. (3.11).

To see this, refer to Eq. (3.10) and note

Fo(w) = 8, (w g;(wk) . (C.13a)

where g: and g; are defined in analogy to 5 and 7
in Eq. (C.9).
+ +

ha(wk) with T° we find

But using Eq. (3.8) and identifying

Ay
Fylw) =2/ L 1L
" <T P T_(k)> (C.13b)
and, using Eq. (C.12),
Fa(wk) = —41k"v? (k) —S [N(k) dkk] . (C.13c)

We may simplify Eq. (C.13c). Differentiating Eq.

(C.4a), we find

d
N(k) d:k = 2k - :—g (k,wk) . (C.14)

Now, in our theory the dependence of N(k,w) on k is

completely known [see Eqs. (2.11), and (3.31)].
Thus, we may write

M(k,w) = Ty (w) + kzﬂz(w) +... (c.15)

with the coefficients Ho, Hz, etc., known functions.

The contribution of Ho 18 of course the s-wave T-nu-

cleon scattering, H2 p-wave, etc.83 We may neglect
the k-dependent factor v?(k) because in realistic
cases it is different from unity only for very large
k. If we keep the first two terms of Eq. (C.15) and

use Eq. (C.4a), then

ol
pic (ow) = 20w =

(C.16)

It now follows from Eqs. (C.14) and (C.16) that

dw w, 2-p 24T ()
k k o %k c.17
N (k) - 2k [____TET—..——_- ( )
so Eq. (C.13c) becomes
Fo o) = -21k3v? (k) ay < k?
a
W wkz_uz +, () (C.18)

A simpler but less correct expression would be to
(C.14). This 1s
justified only for large k or small density; it

neglect the derivative %g in Eq.

leads to a result more like that of Barshay et al.
We find, then,

dw.

N(K) d—kk = 2k and (C.19)

A
= —24k3? o
F (w) = -21k’v (k) ™ . (c.20)
For very little additional effort, computation could
be carried through with the exact expressions of Egs.
(C.17) and (C.18).
and (C.20) in this work, but expect the qualitative

We have chosen to use Eqs. (C.19)
features to be unchanged in the more exact case.
PAULI PRINCIPLE
The concern here is to find the solution T(w)
(C.5). To

(2.2), we need T(w) for real w. Of
(C.1) 1is valid for any w, but to solve it

of Eq. (C.1l) with G(q,w) taken from Eq.
solve Eq.
course Eq.
we need the solution wq of Eq. (C.4a) because Eq.
(C.1) depends on Wy through the propagator [Eq.
(c.5).
T(wq)-

must first solve it for T(wq).

The solution of Eq. (C.5) requires, in turn,

Therefore, to solve Eq. (C.l) for T(w), we
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If we set w = wq in Eq. (C,1), then G(k,wq) is

singular when = wq. Therefore it is necessary
to specify the path of integration in Eq. (C.1).

To obtain the proper sign for the imaginary part of
wq, we must add +in to the denominator of Eq. (C.5).
In this case, G(k,wq) may be written as a principal

value and pole term,

Zwk Zwk
G(k,wq) = O] P wq_wk - i'n’W Q G(wq—wk) .

(c.21)

The principal value propagator may be used to define

a K-matrix

K(wq> - V(“’q> + P V(wq) c(wq) x(wq) (C.22a)

and the T-matrix may be expressed in terms of the
K-matrix through the help of the theorem of Eq.
(C.10). We find

modifications in Eq. (C.22a) and therefore that tha
K-matrix in Eq. (C.22c) may be taken to be the free
K-matrix, Rf(w). The reasons are (1) the high mo-
mentum intermediate states dominate Eq. (C.22a), and
(2) the nuclear effects contribute only over a rel-
atively small range of integration at low momenta.
Having solved Lq. (2.22c), we can solve Eq. (C.4a)
for w and then Eq. (C.1) to get T(w) for real w.
However, there is a simpler way to proceed.
Let us assume the validity of Eq. (C.22c¢c), with K
taken from the Chew-Low theory. In this case, the
dependence of K on its variables is completely
known. If it is true that only one mode W is im-
portant, and that no singularities are crossed in

moving the contour w,_ to the real axis, then T(w)

k
is the analytic continuation of T(wk), obtained by
replacing W, everywhere in Eq. (C,22¢c) by w, and k

everywhere by kw. The result is our Eq. (4.5).

q' [T [a> = <q 'R [P - 1n[d3k
1 (2m)

2w,
> > k + >
, <alk) [ o S@gw) @ Eo<kiTe) >

(C.22b)

Changing the variable of integration from dk to dwk,

we find the equivalent expression

imw (2 2
w( wq) q aQ

k

<q' TG &> = <q IR (3> -

dq

> > > > -+
R dog f(21r)3 <q lx(wq)|k>Q(i?,k)<k|T(wq)|q> .

(C.22¢)

d
For N(k)E;E-we may use either Eq. (C.17) or Eq.

(C.19).
Equation (C.22c) may be solved for T(wq) i1f
K(wq) i1s known. We expect that the results of cal-

culations will be insensitive to the nuclear matter
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in error. See Refs. 17, 19, and 20.

B. A. Lippman and J. Schwinger, Phys. Rev. 79,
469 (1950). If the scattering occurs in a med-
ium a very similar equation holds. See

App. C.

The coefficient is chosen to give the simple re
sult given in Eqs. (4.9) and (A.l12a).

In principle, it is possible to use the pion-
nucleon resonance energy in the center-of-mass
frame of these two particles. But then, for
the complex nucleus, we should use the center
bof mass of the pion and a nucleon at rest in-
side the nucleus, a highly artificial procedure
which would not change the final result. In
any case, it would be incorrect to compare the
resonance energy in the center-of-mass frame of
pion and complex nucleus (which is essentially
the laboratory frame) to the resonance in the
center of mass of pion and free nucleon.

P. J. Siemens, Nucl. Phys. Al4l, 225 (1970).
For summary, see Ref. 29, Eqs. (4.12) and
(4.13). Siemens calculated the individual-
particle energies using only the first-order
(pair) interaction [Ref. 29, Eq. (3.13)]. It
seems that higher order diagrams tend to make
C_ smaller, especially near the Fermi energy.
S8e G. F. Bertsch and T. T. S. Kuo, Nucl. Phys.
All2, 204 (1968). Above the Fermi energy, the
best guide is probably the optical potential.
According to J. P. Jeukenne, A. Lejeune, and

C. Mahaux, Phys. Rev. C (to be published), the-
ory and experiment agree on giving for the
optical potential at normal nuclear density

Mk/M = 0.70 (5.2a)

Cm =1.43 .
Therefore it should be better for our purposes
to ‘use

= p2 . .2b

Cp=1+0.24pg (5.2b)
Accbrding to Jeukenne et al., Fig. 5, Eq. (5.2a)
appears to be in agreement with experiment at
least up to the point where the potential en-
ergy is zero, which occurs at

=U

E(p) = Em—gf

& 160 MeV . (5.2¢)

This 1s amply sufficient to cover the range of
recoil energies needed in our theory. For low-
er density, E(p) is slightly higher than Eq.

(5.2¢). (It should be noted that Jeukenne et
al. take Pp = 1.40 fm™!, whereas we consider
1.33 fm~! “to be correct, but the value of

Cp = 1.43 comes directly from experiment.)
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Trouble arises here from the fact that, for
real values of k, the energy w(k) is complex,
as is wj.
in general, not be zero, whereas all other
terms in Eq. (5.7) are real, so Eq. (5.7) can-
not be strictly fulfilled. So we make an ap-
proximation, which we hope is good because
Im(wy) 1s not very large in practice. It is
probably best to postulate that Eq. (5.7) holds
for the real part of wj - w(k). This 1is the
only point in the calculation with real k where
the complex nature of w requires an approxima-
tion.

In our own calculations, we have carried terms
of order B%, which give corrections of order
10%. We will indicate the exact results, in-
cluding these terms, in App. B.

Making a Lorentz transformation from the cm to
the laboratory system gives W = y W' since P'
= 0 by definition.

It is not obvious that
P2 + kiz - p.2

F
2Pk

cos x < ¢cos X, =
i

is always true. But for most of the conceiv-
able reasonable relations between w and k, it
will be.

In general, the second term in Eq. (5.20) is
smaller than the first. Taking only the first
term in Eq. (5.20), and assuming w' to be con-
stant, Eq. (5.19) integrates to
1]
1/3 w [(ki

cos Xy - wB)’ + (k + w 8’1,

(5.193)

where k.. wy are the minlmum values of k, w
corresponding to cos X' = -1. The second term
in Eq. (5.19a) will, in general, be much smal-
ler than the first.
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1247 HeV.
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The Lorenz-Lorentz effect, and factors like
1 + u/M are neglected here.

The denominator is omitted in Krell and Eric-
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In this lowest order, the Lorenz-Lorentz effect
[Eq. (2.12)] is absent, as is the absorptive
term C, in Eq. (8.3).

As we pointed out in Sec. VI, that theory is
justified to all orders in p at low pion ener-
gy, because then the damping term is zero.

This was clearly recognized by Silbar and
Sternheim.

The imaginary part of wy - w(k) will,
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The approximation may underestimate the inte-
gral in Eq. (9.4) by about 5%.

The true absorption of pions, by the process in
Eq. (1.11), is negligible in comparlson. Ac-
cording to Eq. (6.1), we must add to k? a term

1 Copzk2 so that k? gets multiplied by 1 +
i Cop . Thus the change is

A(Im k) =% C p®(Re k) . (a)
For p = % p,, our most important density, this
amounts to about 0.001 Y, compared with about
0.2 u from the analog of Fig. 10. For p = kp,
and ky/u = 1.25, we get A(Im k/y) = 0.004,

still negligible compared with 0.25 from Fig.
10.
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For the practical purpose of the medical appli-
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happens to negative pions traversing a thick
target. In this case, the inelastic scatter-
ing leading to very low-energy scattered pions
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