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THEORY OF THE SCATTERINGOF PIONS BY NUCLEAR MATTER.

,

.

by

H. A. Bethe and Mikkel B. Johnson

AIISTKACT

We derive a relation between the (complex)wave number k
of a pion in nuclear matter of density p and its energy u.
The relation is determinedby the pion self-energylT(w,p). Fol-
lowing Dover and Lemmer, I is an integral of the forward scatter-
ing amplitude f(k,u,p) over the density. A formalism analagoue
to Chew and Low ia used to find f in nuclear matter; the result
is sim.1.larto the Chew-Low theory for free nucleons. Pauli prin-
ciple and finite mass of the nucleon can be taken into account
easily, and give a significllntmodification. The resulting fOr-

—_ mulae are evaluated in an approximatemodel. The wave number k
_ L stays moderate at all energies and densities, in contrast to most

=01 of the earlier theories.

tisz’ The resonance is defined as the energy at which the real part
:~*\_=_.— of the forward scattering from a nucleus such as 12C is zero. The-

‘?=—COi OLY predicts that this energy is 6 MeV lower than the free-nucleon
~cc! resonance; experimentallythe downward shift is 20 t 20 MeV. The

*— (-q
:Sol

theory is applied to finite nuclei, using a local-densityapprox-
~~ob imation with a simple correctionat the nuclear surface.

3=

Elastic

~~m! scatteringnear resonance is governed by the low-densitysurface
m region of the nucleus (density0.2.to 0.3 of central density);

:a~l
“~ml

this explains the success of earlier theories. Inelastic scatter-

Em~_
ing is dominated by the large refractive index for pions (up to 2);

c, inelasticallyscattered pions will either come out at very low
energy or be captured by the nucleus.

1. HISTORICAL INTRODUCTION

The problem of the interactionof pions with

nuclei haa received attention for at least 15 years.

Many good experiment have been done, and soon the

meson facilities at US Alamos and elsewherewill

produce further,more accurate and more detailed

experimentalinformation. A renewed theoretical

study is in order.

The most influential theory has been that of

Kissinger.
1 It can be based on the well-known

formula2 of physical optics

k2 = kz + 4mpf(k,0)
o

in which k. is the wave number in free space,

k2-~2-@
o

(1.1)

(1.2)

(w = energy, u = mess of pion, h = c = 1), k is the

wave number in the medium (nuclearmatter), p the

density3 of nucleons, and f(k,O) the forward scat-

tering amplitude for the scattering of a pion by one

nucleon4 in nuclear matter. Since the main inter-

action between pion end nucleon is the p-state



interaction

g:.v$l (1.3)

(~ the nucleon spin, $ the pion wave function),we

assume Chat

f(k,O) = aO(u) + al(u)kz , (1.4)

where a represents the s-state and a the p-state
o

scattering. Kissinger now assumes t~at the energy-

dependent factors a and alcan be deduced fro~
o

the scattering of pions by free nucleons. It iS

this assumptionwhich we shall change in this report.

Inserting Eq. (1.4) into Eq. (1.1),we obtain

(1.5)k2 = kz + 4npa (w) + 4npal(OJ)kz
o 0

and

W2 - p2 + 41fpao(w)
k2 =

(1.6)
1 - 41rpal(u)

The quantity al(u) has been carefullyevaluatedby

Ericson and Ericaon5 at the thresholdu = V, using

the best available numbers on the scatteringby free

nucleons. This yields

al(u) = (1 + M/Mjlco = 0.198 P-3 (1.7)

(c. is the Ericaona’ notation, M = nucleon mass).

This meana that the denominator in Eq. (1.6)van-

ishea for

P=P1 = 0.40 P3 , (1.8)

6
which is less than the density of nuclear matter,

P. = 0.16 fro-3= 0.47 p3 . (1.9)

Assuming the numerator of Eq. (1.6) to be positive
7

which it will certainly be at higher energy, the

wave number k turns out to be purely imaginary (:),

and at the “critical”density PI, it is infinite.

We shall call this the Kissinger syndrome,

consider it serious trouble.

2

and we

K.Lsslingerhas pointed out that for energies

u > ~, the free-nucleonscattering al(U) ia Complex

ao that the k2 fromEq. (1.6) doea not actually be-

come infinite at any p. But it does become very

large, and this gives rise to unphysicalbehavior
8

of the pion wave function and to wrong conclusions

on such matters as the one-nucleonabsorption of

pions by the process

N+r=N’ i-y (1.10)

(N = nucleon, N’ = nucleon of different charge). At

u e ~, the free-nucleonSCatteriIIg al(ld is PurelY

real because the phaae shifts are small, but the

Ericsons have pointed out that an important imaginary

term i.scontributedby the two-nucleonabsorption

N + N +11 = N’ + N + kinetic energy (l.ll)

and have calculated this contribution.5 It also

persists for 03> U. The Ericsons have found that

the Kiaslinger syndrome is further mitigated by the

Lorentz-Lorenzcorrection5’2 (see Sec. II).
9,10

The Ericsons and othera have applied their

theory to an understandingof the shift and width of

the energy levels of pionic atoms, and have achieved

impressiveagreementwith experiment. Their results

remain eaaentiallyunchanged in our theory.

In hia first paper, Kisalinger extended hia

theory to finite nuclei in which P = P(:) is a func-

t ion

into

.

This

of position. The last term in Eq. (1.5) ia made

a self-adjointoperator by replacing it b#l

-4mal(m) V.(pV)

(1.12)

-4mal(u) (pV2 + Vp.V) .

theory has been used widely
12

to calculate the

scatteringof pions around 80 MeV by 12C and other

nuclei; good agreementwith the differential cross

section has been obtained. At 30 MeV, Marahall et

al.13 were alao able to fit their experimentaldata

with the Kissinger scheme, but they needed a much

larger repulsive s-wave scattering than the free-

nucleon scatteringdata indicate. Their b. ia -4,

whereas the theoreticalvalue is -0.5.

*
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In an effort to cover energies closer to the

33-resonance,Ericson and Htifner14 represent f(k,O)

by a Breit-Wignerformula. For the coupling of the

p-state pion to the nucleon, they alternativelyuse

k2 [as we do in Eq. (1.4)] or k:, the free-pion wave

number. In the first case, they find that the reso-

nance is shifted down to lower energies, and in the

second case, it is shifted slightly up; comparison

with experiment is rather inconclusive. For the

width of the resonance, they take the values deduced

from free nucleon-pion scattering. The width is

then a function of the pion energy only, I’(E)or

r(ko). We do not believe this is justified; r should

depend on k, the pion wave number in nuclear matter

(see belOw, where the work of Barshay et al. is dis-

cussed).

Dover and I..ammer15 go back to first principles.

They show that k in nuclear matter is given by the

self-energyof the plon [our Eq. (2.2)]. Then they

establish that the self-energycan be calculated

from the scattering of the pion by single nucleons.

For the scattering, they deval.opa theory analagous

to that of Chew and Low16for the scatteringby a

free nucleon. The paper by Dover and Lemmer is done

with great care, and we shall use it as the basis of

our general theory in Sec. II. Unfortunately, in

the further evaluation of the scattering amplitude,

Dover and Lemmer make the same assumptions as Kiss-

inger, i.e., kz is used in the coupling of pion and

nucleon, as in Eq, (1.4),but in evaluating the

equivalent of al(w) in Eq. (1.4), they explicitly

set ~ = 10, the incident momentum [Ref. 15, text be-

lowEq. (3.30)]. Thi.ais incorrect, since Eq. (1.1)

shows that k # k o in fact, as we show in Sec. VII,
o’

this effect is much larger than the effects Dover

and Lamer take into account, such aa the Pauli

principle. The Pauli principle was also considered

by Eisenberg and Weber.
17

The first authors to give the correct treatment

of the resonance were Barshay, Rostokin, and Vagra-

dov.18 They introduce explicitly the A-particle

(33-resonance) as a separate particle. Absorption

of a pion may transform a nucleon into a A, which

then changes back into a nucleon when the pion is re-

emitted. The coupling constant TNA is known from

the width of the “free” A resonance. In nuclear mat-

ter the effective width is automatically proportional. .
‘tok9 (Ref. 18b, p. 200, top); the authors get a rea-

sonable shape of the total snd the reaction cross

section,

A13especially simple treatment of thie A-model
19

was given by Barshay, Brown, and Rho. They con-

sider that, after absorption or emieeion of a pion,

a nucleon may either remain a nucleon or transform

into a A (Ref. 19, Fig. 2). If the pion has very

low momentum, k << pF (the Fermi momentum of the nu-

cleons),the first process, N + T + N, is forbidden

by the Pauli principle, but the second process,

N + T + A, remaine unaffected. This picture gives

just the correct behavior of the scattering ampli-

tude f for very low k, which is important for the

interpretationof the energy of pionic atoms (Sec.

VI). The authors alao show that an earlier paper
20

of one of the present authors postulated an excee-

sive effect of the Pauli principle for low k.

The introductionof the A, while giving a very

simple description of many phenomena, raises some

new questions, In particular how does the A interact

with nuclear matter? Barshay, Rostokin, and Vagra-

do~8 explicitly introduce the potential energy VA

of the A in nuclear matter, and find that the self-

energy of the pion is sensitive to V
A“

It seems dif-

ficult to calculate VA; for instance, it should con-

tain the rather large increase of the self-energy
21

pointed out by Sawyer which is due to the fact

that the decay of the A into nucleon states inside

the Fermi aea ia forbidden. Because of the uncer-

tainty ‘n ‘A’ and other reasons, we felt justified in

continuing our calculations,begun in the summer of

1972, which are based on Chew-Low theory; after all

that theory generates.the A. But we agree with .

Barshay et al. that the effective width of the

resonance is proportional to kg, with k the momentum

in the medium.—

The use of k3 not only increases the width of

the resonance, in agreemantwith observation,but al-

so keeps down the resonance cross section of the

scattering by one nucleon inside nuclear matter,

a l%is is essential because this cross section
rN”
should not ,exceed(or at least not by much) ?rr~where

rOA’l’ is the nuclear radius. Otherwise, the scat-

tering cross sections of neighboring nucleons would

overlap, which ia very unreasonable. Having k2 in Eq.

(1.4), and al(w) the same as for~pions makee

a very large, in fact even larger than Ur for free
rN

pions which ie”130 mb, while m 2 ~ 40-rnb.
o

3



Many alternativeapproachedhave been published,

far too many to be enumerated. Landau, Phatak, and

Tabakin’2 uae a separable potential between nucleon

and pion to treat off-shell propagationof the pion.

Off-shell propagation ie, of course, already treated
16

very well by the Chew-Low method in which depend-

ence of the scatteringmatrix on k and on u are

cleanly separated; the Chew-Low method stays mere

closely in the framework of standard pi.on-nucleon

scattering theory.

Schmit and Dedonder
23

have also properly em-

phasized the importanceof off-shell propagationof

the pion in nuclear matter. In applying his theory,

Dedonder points out that the vaniahing of the real

part of the scatteringamplitude is a good criterion

for the position of the resonance (see Sec. VII) and

finda that his theory gives better values for this

position than earlier ones.

Gibbs
24

.useaa completelydifferent approach.

He doea not determine an optical potential (or aelf-

energy, or wave number) of the pion in nuclear nu2t-

ter, but conaidera the successiveacatteringaof the

pion by individualnucleona. This involves,of

course, a prodigious amount of computing,but Gibbs

haa simplified the problem sufficientlyto make it

manageable, at least for a light nucleus like *2C.

We believe that our nuclear matter approach can sim-

plify the scatteringproblem and bring to light the

essential physics with much less computing. In any

case, for heavy nuclei, the approach of Gibbs be-

comes completely unmanageable. Although, in princi-

ple, the method of Gibbs requires knowledge of the

off-shell T-matrix, he has invoked approximations

which render results Insensitive to the off-shell

extrapolation.

Although the need for going “off energy shell”

haa been recognized,a tractable calculationalpro-

cedure, properly motivated by physical considera-

tions, has remained elusive. From our point of view,

Eisenberg
25

haa recently taken a step in the correct

direction. He considers the interactionof the

transmittedpion (q in Fig. 1, Diagram 4u) with an-

other nucleon. This is the firat approximationto

using a refractive index for pions, as in Eqs. (1.1)

or (2.2). In agreementwith our later resulta, the

most important effect of

addition of an imaginary

4

the interactionof q la the

self-energy,

\ ,/ N 0
‘\\ q ,/ \, //’-----

‘> - ./ ,.-”,-,-.-,
/ ~, ,.\, f ,+ \

/ / \
4U 4C

Fig.

II.

1. Two fourth-orderdiagrams for the scattering
of a pion (dashed)by a nucleon (
Notation due to Dover and Lemmer.

~~lid).

GENEML THEORY

The fundamentaltheory has been very well rep-
15

resented by Dover and Lemmer. They consider the

propagator of a pion in nuclear matter [their Eq.

(’.8)1,

[ I

-1
D(k,u) = V* + kz - 1.A)2- II(k,w) . (2.1)

26
where lT(k,u)la the pion self-energy in nuclear

matter. This is, of course, complex (a) because the

pion of momentum ~ may be scattered into other di-

rections (which correspondsto a decay of state ~),

(b) because the pion may be absorbed by one or two

nucleons [Eqa. (1.10) and (1.11)],and (c) because it

may produce further pions by collision with nucleona.

Process (c) becomes importantonly well above the

33-resonance,ao we shall omit it. Process (b) will

be considered in Sec. VI. For the present, we shall

only consider scattering,process (a).

The pole of the propagator Eq. (2.1) defines

the energy-momentumrelation in the nuclear medium,

kz = k: + II(k,u) , (2,2)

which has a similar form to Eq. (1.1). The self-

energy diagrams can be divided into those involving

only one nucleon and those involving several. Some

of the one-nucleondiagrams are given in Ref. 15,

Fig, 7. A typical two-nucleondiagram is shown in

our Fig. 2. The pion is absorbed by nucleon ~which

goes from an occupied atate pa to a normally unoccu-

pied one, pu. Then it inter,actawith nucleon b,

which then finally re-emits the pion. The interac-

tion must not be transmittedby a pion because then

Fig. 2 would be reducible to two scattering by 8in-

gle nucleons, but any heavier meson, e.g., U, p, or

u is possible. So the interactionrepreaenta Cloaa

correlationbetween the nucleons ; and b; we discuss

its effect at the end of this section.

b

*
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.-.-m
F“

———-

Fig.

have

2. A two-nucleoncontributionto the pion self-
energy; a and b are the two nucleons.

For the one-nucleondiagrams, Dover and Lemmer

shown that they are closely related to pion-nu--

cleon scatteringdiagrams (their Fig. 8). ‘l’heyshow

[their Eq. (3.16)], that the functionalderivative

(2.3)

28
where G(p) is the renormalizednucleon propagator

in the medium, and f is the scattering amplitude as

a function of the four vectors p and k. The nucleon

propagator G has a simple form if we use the one-
29,30

nucleon approximationof nuclear matter theory.

We have then,exactly as shown in Ref. 1s, Eq. (3.19),

G(&PO)

where n(~) is
+
p, and where

+
n(p)

E(;) - p. + id

+“
1 -n(~)

E(;) - PO - i~

the occupation number

e(:) = P2/2M + U(t)

with U(;) the potential energy of a

9 (2.4)

of nucleon state

(2.5)

nucleon ~ in the

field of all the others.
30

U(;) takes into account

the interaction of a nucleon with another in which

both nucleons return to their original state, indi-

cated by the wavy lines in Figs. 3a and 3b. These

are in contrast to the interactionin Fig. 2 in

which the excitation (providedoriginally by the pi-

on) is transferred to another nucleon.

/
‘.\ /’/‘+

30 3b

Fig. 3. Self-energyof a nucleon, (a) in a particle,
(b) in a hole state.

In general, the pion self-energywill depend on

all the occupationnumbers n(p) of the nucleOnstates.

Dover and Lemme$5 show, in t~elr Eq. (3.21), that

~= 41Tf(kp, kp)lp ..(p) ‘

an(p) o
(2.6)

where the last symbol simply indicates that all nu-

cleons have to be taken on their energy shell; we

shall imply this fact in the following.

We are interested in nuclear matter. In this

case, all nucleon states inside the Fermi sea are

occupied,

n(~) = 1 if 1~1 <pF . (2.7)

In this case, the self-energyIIcan depend only on

the nuclear dens%ty

J
P=4n(~)ti

(2T)3

2.— P;
3112

(2.8)

(factor 4 for spin and isospin). As the density ia

increased from p to p + dp, one nucleon is added in

each etate in a spherical shell in momentum space

with momentum 1~1 = pF. Therefore

dIl
J

++
z“ ‘n; ‘(p “ p ‘)P=PF ‘

(2.9)

z 4vfAv(pFk) . (2.10)

The integral in Eq. (2.9) ia over all directions of

p whfle the magni.tud$l
+

of p remaina fixed at pF.

The scattered amplitude f in Eq. (2.10)must, of

course, be calculated in nuclear matter, at the den-

sityp corresponding to pF [Eq. (2.8)1. In doing

5



this, we must use the appropriaterelation between

1~1 and u of the pion, viz., that given by Eqa. (2.2)

and (2,9). This will be done in Sec. III. Obvious-

ly, we have a self-consistencyproblem: f in Eq.

(2.9) depends on the relation between ~ and u. This

relation is determined by lT(p,k),and II,in turn,

depends on f.

It ia interesting that, for any given density,

f needs to be calculated only p = pF. This clearly

●mini.mizes32the effect of the Pauli principle which

is diacuased in Sec. IV. It also ensures that this

effect is given by an analytic function [see the

discussion below Eq. (4.13)].

Using the average scatteringamplitude defined

in Eq. (2.10),we get

II(k) -411
I

fAv(eF, k) dp . (2.11)

If fAv is independentof pF, i.e., of densityp, and

only then, Eq. (2.11) leads to the simple, intuitive

formula,”Eq, (1.1). As is well known, that formula

can be derived by considering the wavelets scattered

by individualnucleons, which interfereconstructive-

ly in the forward direction. From the theory of Do-

ver and Lenmer which we have followed here, it is

clear that Eq. (1.1) is only a low-densityapproxima-

tion; but it ia satisfactorythat the intricate Do-

ver-Lemmer theory leada back to Eq. (1.1) at leaat

in the low-densitylimit.

We now return to the contributionsof two-nu-

cleon diagrams (Fig. 2) to the pion self-energy.

These have been treated simply and elegantlyby Bar-
19

shay, Brown, and &o whose general method was de-

scribad in Sec. I. They show that the main effect

of these diagrams is to give a Lorentz-Lorenzcor-

rection which expresses the fact that two nucleona

can not be close together because of their strong

short-rangerepulsion. This effect exists even if

the repulsion has very short range (let ua say, com-

pared to the average distance between nucleons).

Earlier, the Lorentz-Lorenzcorrectionwas de-
5

rived by the Ericaons who used the analogy between

the p-state pion interactionand electroatatica.

They, aa well as Barshay et al., find that the laat

term in Eq. (1.5) ie replaced by

4Tpal(0j)

kz .

1 + (41T/3)pal
(2.12)

This means that the Kissinger syndrome is mitigated

but not eliminated. The density at which k2 in Eq.

(1.6) becomes Infinite is now raised to

P2 = (3/2) PI =0.60P’ , (2.13)

slightly above nuclear matter density [Eq. (1.9)].

But very large kz will persist,

There are other effects of two-nucleoncorrela-

tions but these are probably smaller. Three-nucleon

and higher correlationsshould be negligible.

The short-rangecorrelationbetween nucleons,

due to the repulsive forces, ia not the only one

that exists. Thare is also the long-range correla-

tion due to Fermi statistics,and the medium range

one, due to the attractive forces. The latter ia
33very weak and can be neglected. The Fermi corre-

lation is taken into account by introducingthe

Pauli principle explicitly in the scatteringby a

single nucleon, ae done by Dover and Lennnerand by

us in Sec. IV.

III. SCATTERING BY A NUCLEON

We shall treat the scatteringof a pion by a

nucleon in nuclear matter by the same method as that
16

used by Chew and Low for the scatteringby a free

nucleon. This method haa also been used for nuclear
15

matter by Dover and Lemmer whose work we have al-

ready used in Sec. II for the fundamental theory.

Dover and Lemmer rederive the Chew-Low theory from

Feynman diagrama and then introduce the Pauli prin-

ciple for the nucleons. Unfortunately,they then

make the approximation [below their Eq. (3.30)] that

the momentum inside the nucleus ~ is the same as the

outside momentum ~ . Wa have already diacuaeed in
o

Sec. I that this is not legitimate, and we shall see

later that the difference k - k. has very large ef-

fects.

In uai.ngthe Chew-Low theory, we shall also use

thair one-meson approximation34 which in by far the

simplest way to take unitarity into account. This

restriction to the “one-mesonapproximation”of Chew

and Low may, to some extent, be justified by tha

,

,

,
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modern analysis of r-nucleon scattering. According

to Donnachie and Hamilton,35 over 75X of the

strength of the A resonance ia contributedby the

Chew-Low theory, called “nucleon exchange”by

Donnachie and Hamilton. Most of the rest ia due to

exchange of a U-meson, more precisely of two pions

correlated in a atate of isospin and angular momen-

tum O (Fig. 4). Only 2.%is attributed to N* ax-

change, which is perhaps the closest analog to the

Chew-Low diagrams going beyond the one-meeon approx-

imation, and O.6% is due to p-exchange.

It would, of course, be best to consider the

Donnachie-Hamiltondiagram (Fig. 4) also in nuclear

matter. This would, however, make it necessary to

consider the behavior of the u-meson in nuclear mat-

ter. We have not felt able to do this, and have

therefore confined ourselves to imitating the Chew-

Low theory.

For the purposes of this section and the next,

we ehall assume that the nucleon has infinite maae,

so that the pion energy remaina unchanged in the

scattering; thue u and k have definite valuea. The

energy lost by the pion to the nucleon will be

treated in Sec. V.

The theory of thi.esection appliea to the acat-
+

tering by a nucleon of ~ momentum p. In the next

section, when we discuss the Pauli principle, we

shall make use of the fact, dlacusaed below Eq.

(2.9), that we need only the case p _ pF.

To have a theory of the Chew-Low type, it is

necessary (and sufficient)to have a definite rela-

\
\

\
\

\
\

Y
I

I
I

0
0

0

/0
0

Fig. 4. The only important pion-nucleon interaction
other than Che -Low, according to Donnachie
and Hamilton.3Y The line —o—- denotee a

U-meson.

tion between energy u and momentum k. (The momen-

tum serves both to count the number of intermediate

states, and to eetablish the unitarity relation, aee

Eq. (3.6).) For the scatteringby free nucleons,

the relation between u and k is

(3.1)

In nuclear matter this relation ia changed because

ofEq. (2.2). But for fixed nuclear matter density

p, there ia still a definite relation. Now, it is

well known that the forward scattered amplitude

f(~k,~k) is complex. In fact, becauae of the opti-

cal theore~6 the imaginary part of f ia always pos-

itive. Hence, using Eqs. (2.2) and (2,11) for any

real value of k the correspondingvalue of the ener-

gY ok has a negative imaginarypart,

Imwk~O (k real) .

Similarly, for any real w, the corresponding

number kw is such that

Imkw>O (w real) .

(3.2)

wave

(3.3)

Following precieely the procedure of Chew and

Low, we define the amplitude t~q(z),

tk(z) = - v(k) V(q) 411(4WkWq)-% X

4

(3.4)

where k is initial and q final momentum, z a com-

plex variable replaclng W, v(k) a form factor going

to zero aa k + m, a = (21, 2J) distinguishesthe

partial waves, I Is the total isoapin and J the to-

tal angular momentum, and the Pa are projection op-

erators of which we shall only need

P33 = (6kq - 1/3 TqTkt) P-2

[ 13i.:-(;”i)(:”;) . (3.5)

7



The important function is ha(z). Chew and Low chow

that hi, = h~l and therefore consider just the three

functionshl = hll, h2 = hl~ = h~l and h~ = h~q; on-

ly h~ is important for us,

An essential part of the theory is the unitari-

ty condition. To facilitatewriting this, Chew and

Low introduce the one-meson approximation,i.e.,

they aesume that only a single meson can ever be

present in any intermediateatate (ace the beginning

of this section). Ueing this approximation,the

unitarity condition becomes simply a relation be-

tween ha(z) and phaee shifts [Ref. 16, Eq, (34)].

To define phase shifts, it is essential that we

aseume the wave number k to be real. Only in this

case does there exist

scatteringformula,

f(k,e) = k-IE(22 + 1)

Aa will be remembered

the possibilityof a Rayleigh

ain 6gei6bL(cos e). (3.6)

in deriving this formula, one

considers in- and out-going sphericalwaves, e*ikr/r,

and either one or the other of these will become

nonsensical if k is complex.

The Chew-Low theory which uses the complex U-

plane gives ue just enough freedom to choose k to be

reel. There are branch points at u = * v in the

Chew-Low theory becauae of the relation in Eq. (3.1),

and these persiet also in nuclear matter, aa dis-

cussed in nmre detail in Sec. VI. A branch cut

thereforehas to start from u = p. Chew and Low

choose this to lie along the real u-axis which in

their caae is also the real k-axis. We choose it

(for the present) to lie along the line of real k,

u - plane

–--–kreal u real

hence complex u with negative imaginary part, see

Eq. (3.2) and Fig. 5. With Uk thus defined, we have
37

a unitarity relation along this line. If we

take38 the free-spaceunitarity relation of Chew and

Low [theirEq. (34)],
39

then

lim ha(z) =
Z++ic

=e ‘da(k) sin 6a(k)U2/k3v2(k) . (3.7)

The point z is just on the positive imaginary side

of the branch cut, so z still has a negative imgl-

nary part. The amplitude itself is, of course, at

present still unknown, only the form of the ampli-

tude is dictated by unitarity.

By considering the singularitiesof ha(o), Chew

and Low derive their Eq. (40) for ha(z). They can

greatly simplify this by introducinga new function

ga, setting

ha(z) = ka/[zga(z)] , (3.8)

where la is related to the unrationalizedcoupling

constant between pion and nucleon, fz - 0.08, In

particular,

a3=$f2 , (3.9)

whereas Al and AZ are negative and therefore lead to

repulsive interactionsin states 1 and 2. For ga(z),

Chew and Low then obtain the dispersion relation

08

H Pa(x’)
ga(z)-l -: “W’ 1—+= . (3.10)

i “-z
X’+z

We obtain precisely the same relation ~th tha ofiY

difference being that the integral goes along a com-

plex path in the x’-plane, viz., along the daahed

line of Fig. 5 which corresponds to real values of k.

To determine Fa, we uae the unitarity condition

in Eq. (3.7) [see also Appendix C, Eq. (c.18) and

Eq. (C.20)] and the definition of ga in Eq. (3.8)

which give

*

.

Fig. 5. The complex u plane. O = origin,--- line
of real k, x = a possible value of z, solid
line: branch cut along line of real w.



.

.

.

ga(z) - Lim

1

g=(z)

%-in
. .

. .
. (3.11)

The function Ga is determined in turn from the cross-

ing relations. Once we know the path in the complex

u-plane and the (real)value k at each point on the

path> we maY evaluate Eq. (3.10) to find ga(z) for

~ complex value of z.

To find ~wemust find the poles of Eq. (2.1)

for valuea of u just above the cut in Fig. 5, which

means evaluatingga(u) for theee same values of u,

But then the integrationin Eq. (3.11))encounter.qthe

pole, so we may write ga as the sum of a pole term

Al and a remainder AZ, which contains the principle

value integration(denotedby P),

Al(Q = - i.AakSv2(k)/a#

%

J[

Ask’9V2(k’)U-2
A2(Q=1-YP dx’

X“(x’-($)

Ga(x’)

1

+—

“% “

(3.12)

+

(3.13)

The integral [Eq. (3.13)]clearly divergee linearly

for large x’ until the form factor v(k’) cuts it

off. Hence the main contributioncomes from large

x’> and therefore the value of the integral does not

depend strongly on Uk. This is Chew and LOW’S ef-

fective range approximation. The integralhasthe
same form as in Ref. 16; the only difference is that

the path of integration is now complex. We may thus

write

A2(~) = 1 - ~(rl + ir,) . (3.14)

But the imaginary part of x’ is only important for

small x’ (see below), hence the imaginary part of

the integralwill be small compared with the real;

rl >r2 .

Further, rl will be almost

range” of Chew and LOW,

(3.14a)

equal to the “effective

rlsr. (3.14b)

As p + O, of course, r.~ + O, and rl + r. The Chew-

Low effective range r is directly related to the

resonance energy

r = l/u
r’

(3.14C)

for which experiments give the result
41

u = 2.39 P = 334 MeV .
r

(3.14d)

To see that the imaginary part of x’ is unim-

portant, start with large k. The Rayleigh scatter-

ing formula [or our main result, Eq. (3.26)] shows

that for large k

lf(k,O)f < (2g + 1)/k . (3.15)

For the p~,z state 2E + 1 is replaced by j + & = 2.

Using Eq. (2.11),

Ill(k)I < 8mp/k .

Therefore, using Eq. (2.2)

l<- ~:ol = lll(k)l< 8mp/k .

The ssme”limit holds for Im ~“
Therefore

Im(uk)
< 4np/k3.

(3.16)

(3.17)

(3.18)
%

making use of

condition for

Im(~)
—4
‘k

is that

the fact that~~k for largek. The

1 (3.19)

k3=4rp<k3 .
c

(3.20)

Using nuclear matter density PO = 0.16 fro-== 0.47p~



kc = 1,81 P ,

which is less than the momentum of a free pion at

resonance k= = 2.2 P. Equation (3.20) shows that

Imuk < Uk already when k ia only moderately larger

than kc, hence over most of the important range of

integration in Eq. (3.13).

Concerning the quantitativeaide, Dover and

Lernnerl’have ahown that the cut-off v(k) must occur
40

at k = 12 to 14 P if we want to reproduce the pos-

ition of the resonancewithout using the crossing

terms. On the other hand, rz comes from a range of

order kc - v ‘u; so we might expect

r2/rl C 0.1 . (3.21)

Thus, as a firat approximationwe may aet

rz - 0 and uae Eqs. (3.14b) and (3.14c) for r].

Equations (3.10), (3.12), and (3.13) then give

(3.22)

Finally we uae g to calculate the scattered ampli-

tude. Uaing Eqs. (3.4), (3.5), and (3.8) With

q’ = q (note that Eq. (3.4) is symmetric in q, q’ as

it should be) we find

(3.23)

Fig. 6.

10

The Lowest ~ass perturbation of the pion-
nucleon vertex, according to Hamilton end
Braathen, Ref. 40.

The isospin factor ia

= 2/3

(3,24a)

for pm+ and Nr-

for Pr- or Nlr+

for Pm” or NTo

for an average
nucleon, and an
average pion of
any charge.

For gj given by Eq. (3.22), we have

211 A3C

tqq(h) = -v2(q)— x

~q %
(1 -wk/ur) - iA3k3

2q2
x—. (3.24b)

U2

The forward scattering amplitude can be shown to be

f(k,k) = - (u)k/21f)tkk(lI)k+iE)

where we have set q = k, the wave number

of energy ~ moving in the +Z direction.

(3.25)

of a pion

(Note that

the substitution q = -k leads to the same result,

showing that the theory gives correct results for

pions moving to the left and to the right). There-

fore, we have

2A3 k2v2(k)
f (kjk) = C

kk7W “ (3.26)

Using g, obtained from Eq. (3.22) we may now lo-

cate the poles of Eq. (2.1) to find ~ in the first

approximation. We aesume here that there is one ●nd

only one important or dominant solution (dk;our cal-

culations chow that there is only one continuous Bo-

lution for w = reel which has a physically reason-

able form. The value ~ may be used in the inte-

grand of Eq. (3.10) to find an improved g~ which may

be used in turn in Eqe. (3.26), (2.11), and (2.1) to

find an improved Wk. The procedure presumably con-

verges fairly fast to the true w .
k

As we have aaid, the solution of Eq. (2.2) rel-

evant to nuclear matter ia the solution ku for

u = real, which is the analytic continuationof the

solution found above for k = real. To find this ●o-

.
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lution we need ga(u) for w = real, which is obtained

from Eq. (3.10) once we have found the solution Wk

to the above problem. We may then use this g~(w) in

Eq. (3.25), set k = kw and use Eqa. (2.11) and (2.2)

to get the desired solution.

We may, however, go one step further. Fa(w),

as given in Eq. (3.11), is clearly an analytic func-

tion of k. Therefore,we may change the path of in-

tegrationin Eq. (3.10) from the line of real k to

the line of real w, i.e., from the dashed line in

Fig. 5 to the solid line. We merely need to replace

all terms in Eq. (3.11) by their analytic equiva-

lents, i.e., w becomes real and k complex. We can
U

now

the

and

now

the

dete~ne ga(w) from lIq.(3.10). There is again

centribution from the pole, which is

- iuFa(w),

that from the principal value. The latter

eaaier to handle because the integral is a

3.27)

is

ong

real axis x’. Further, since our Fa is the ana-

lytic continuationof that quantity for real k, the

same should be true for the integral. Using again

the Chew-Low effective range approximation,we get

co

“f1’F’ dx’
T

u
[

Fa(x’)

X’-z
+
Ga(x’)

1
— .
X’+z

r1

The real part

Low so rl s r

is now even more simi

+ir.
(3.28)

2

ar to Chew and

= l/ur [Eqs. (3.14b, 3.14c)],but we

retain rl because the small difference from r may be

intereating for the shift of tileresonance energy.

Inserting Eqs. (3.27 - 28) into Eq. (3.10),

ga(w) = 1 - (ml -z
[ 1~Aak& (ku)p-2+ ~zr .

2

(3.29)

Equation (3.29)has the Chew-Low form. In the

expressionwith -i, which Is essentiallyimaginary,

the main term is the first, which is proportional t.o
k30 This is just the Chew–Low term, but with k in
w
the medium substituted. This agrees with the theo-

18,19
ries of Barshay and collaborators, and dis-

agrees with all other theories. The last term rz is

a small correction. The bracket gives the “width of

the resonance”. We see that on the low-energyside

this is much greater than for free n-nucleon scatter-

ing.

This is in contrast to some conclusionsof some ear-

lier papers,
15,17

but is in agreementwith experi-

ments.

The real part of g goes to zero at resonance

(by definition,see Sec. VIII). There is a real

contributionto g from the term with i, namely,

A&
—Imk~ ,
w

(3.30)

which is, in general, positive. This pushes the

zero of Eq. (3.29) to higher energy. The “range” r

is of course also slightly changed (probsblyin-

cresaed) from the Chew-Low value. But the defini-

tion of “resonance”in nuclear matter is rather

complicated (Sec. VIII).

We next use g to calculate the scattered ampli-

tude. Again use Uq. (3.25) for this, and find

2A3 k~2 (kw)
f~(k,k) = CW~u(l - wrl) - i[ ] ‘ (3.31)

where [ ] is the square bracket in Eq. (3.29). To

Eq. (3.31)has to be added

1. the scattered amplitude

and 31 states,

2. the scattered amplitude

3. the absorption of piona

process of Eq. (1.11).

for the 11, 13,

for s-states, and

by the two-nucleon

Amplitudes 1 and 2 can be taken from the free pion-

nucleon scattering. Amplitude 3 can be taken from

the theory of the Ericaons.
5

The sum then must be

integrated over p to get II(Eq. (2.11)]. We then

findkw fromEq. (2.2), and insert this back into

Eq. (3.31). The process must be repeated until self-

consistencyia achieved between the k~ used in Eq.

(3.31) and that computed from Eqs. (3.31), (2.11),

and (2.2).

Equation (3.31),with the bracket replaced by

its first term [see Eq. (3.29)]andrl by.l/wr,.is

19 [their Eq.identicalwith Barahay et al. (5)].

IV. pAuLI PUNCIPLE

In treating pion scattering,we have ao far

disregarded the behavior of the nucleon which does

the scattering. Actually, this nucleon (a) receives

energy from the pion, and (b) is subject to the

Pauli principle.

11



The Pauli principle, in nuclear matter, means

that the nucleon can go only (a) into statea of mo-

mentum”

P>PF 9 (4.1)

where pF is the Fermi momentum, or (b) into the—

state from which it came. Scattering into a state

p>pFis “quasi-elastic”and always involves energy

loss of the pion; elastic scatteringmeans to return

to the initial atate.

Figure 7 shows a typical Feynman diagram of the

type consideredby Chew and Low.
16

In the initial

state, nucleon and pion have the momenta ~i and ~
i’

respectively,so that the total momentum is

(4.2)

this ~ is conserved. In the intermediatestates a,

...e. at least one intermediatepion is present.—

Since the Chew-Low theory (Sec. 111) states that the

intermediatepion states of ~ momentum are most

important, the intermediatenucleon momenta Pa,””Pe

will nearly all satisfy the conditionof Eq. (4.1).

There is therefore little influence of the Pauli
42

principle in intermediatestates. Eiaenberg and

Webe~7 have treated this problem in their approxi-

mation; we shall neglect this correctionin this

report.

The final atate of the pion has a mementum

kf<ki ,
(4.3)

hence there is a considerableprobability that the

final nucleon momentum

Kf Pd K, P,

dL_____Y_/L_.
P, K2 . Pb Kl

Fig. 7. The Chew-Law diagram in nuclear matter.
Solid line nucleon, dashed line pion.

3f .$-zf
(4.4)

does-satisfy Eq. (4.1). Such final states are

forbidden. Now, by the optical theorem, the imagi-

nary part of the elastic, forward scattering ampli-

tude is proportional to the cross section of quasi-

elastic scattering,disregardingtrue absorption

(See Sec. VI). This cross section being diminished,

Im f(k,k) will also be, and so will be the imaginary

part of g [Eq. (3.11)]. We thereforehave to re-

examine the unitarity relation.

~is is convenientlydone by the Lippman-

Schwinger equation.
43

We define the K matrix which

is given by the same diagrams as T, but using the

denominatorsE - En without Ic, so that K is Riven

by the principal value of the dispersion integrals.

In this section, we shall aasume k to be unchanged

in quasi-elasticscatteringwhich amounts to the as- .

sumption of infinitemass of the nucleon= This as-

sumptionwill be corrected in Sec. V. Further, just

as in the main part of Sec. 111, we assume k to be

real. Then in the medium the matrices T and K for

different directions~i, if of k, are related by

(see App. C)

for scatteringwith orbital momentum E. The inte-

gral goes over all directions of ~. lieshall as-
’44

sume 9.= 1, and set

<~flKl~)= -21TKo(u) COS 6 , (4.6)

where Elis the scattering angle, i.e., in this case

the sngle between~ and ~f, and K. is a function of

fJIonly, hence constant in Eq. (4.5). K and T are of

dimension (length)’ es is also clear from Eqs. (3.4)

and (3.7). Later on, in Eq. (4.26),we shall use

‘OrK ‘he correct ‘3/2
type angular distribution.

The factor Q(k) in Eq. (4.5) takes care of the Pauli

principle,

Q=lifp= l*- Xl> pF

Q = O if pcpF . (4.7)

.

.

12
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have

In the absence of the Pauli principle,T will

the angular dependence

T=-21TTocose . (4.17)

Inserting this into Eq. (4.5) clearly solves the

equation for all 0, and

T=KO+iladKO TO= &
o (4.9:1

o“

If K. = (k u))
-1

tan 6, then

To = (ku)-l sin d ei6 (4.10:1

as it should be.

In the presence of the Pauli principle,T is

clearly no longer proportional to cos e. It might

be expanded into a series of sphericsl harmonics in

13and +, but this would be clumsy. We shall instead

solve Eq. (4.5) explicitly se a function of angle.

It is clearly reasonable to introduce a polar

coordinate system with ~ [Eq. (4.2)] as the axis.

Let the polar angles be x and ~, with $ = O in the

plane of i and Zi. Then the condition [Eq. (4.7)]

for the intermediatestate ~ to be allowed is

~2+k2-
PF2

Cos x ~ E Cos x =
2Pk 2

Now according to Eq. (2.11), the only

plitudes needed are those for which

Pi=li-iil=PF .

Further, because we have assumed [see

A. (4.11.J

scattered am-

(4.ha)

above Eq.

(4.5)] that k remains unchanged in the scattering,

we have k = ki. But then it is clear that

X2 =x~ ~ (4.llb)

which is the angle between ~ and ~
i“

This angle al-

ways exists, so we always have

-l<a=cosx2<l . (4.12)

Note that the upper limit inEq. (4.12)would

also hold if pi t PF because

but

not

P2 + kz - 2Pk = (P-ki)z< (~-~i)2

.=piz < PF2 ; (4.13)

the lower limit condition, cos x 2 -1, would

always hold. Indeed, Eq. (4.11)2gives~ z -1 if

P+k<p
F“ (4.13a)

On the other hand, if k x p%, the smallest value of

P permitted is

P
min

‘pi-k , (4.13b)

which clearly satisfies Eq. (4.13a) if pi c PF.

There is therefore a range of P for which A c -1; in

this case, the Pauli principle excludes all quasi-

elaatic scattering. One then haa to use Eq. (4.11)

for P > pF -k, and A = -1 for P t pF - k; in other

words, the Pauli limit is not an analytic function

of P. With p
i
= pF, Eq. (4.11) is always valid, and

the Pauli limit is analytic.

Using Eq. (4.11), the Integral in Eq. (4.5) be-

comes simply

} d(cos
-1

The K matrix element here ia[see Eq. (4.6)]

<iflK{t> = -21TKO [COS Xf COS x +

+ sinxf sinx cos (* - ~f)~ . (4.15>

It is easy to see that T must have the form

<ilT&i> = T1(x) + T2(X) cos ~ (4.16)

and

Cos

must not contain any terms proportional to

n$ with n > 1, because only in this way can the

integral over w in Eq. (4.14) give a nonvanishing

result. Carrying out this integral, we obtain sepa-

13



race equaczons ror L~ ano L*.

T1 (Xf) . .2T K cos xi coa Xf
o

1- iK ku ,
0

(4,24)

A
+ (3i/2) luuKO cos Xf < d(ma x) TI(x) cos X.

(4.17)

~2(Xf) . -2n K sin Xi ain Xf
o

A
i-(3i/4) kfIJKO sin Xf ~ d(cos X) T2(x) ain x .

(4.18)

Evidently, the integrala do not depend on Xf, ao we

may set

T1 (Xf) = ‘2T TC COS Xi COS Xf

and

T2(xf) = -2r TS sin xi sin Xf . (4.19)

Inserting these into the integrals,we get the~-

braic equation

a
TC=KO+i KOTCkW~y COS2 Xd(coa X)

-1

-Ko+.@oTc~(l+ag)

or,

K
‘rc= o

1 :iKolud(l+Ag) ‘--

(4.20)

(4.21)

whereX iagiven tiEq. (4.11). If the lower limit

of cos x wera X’, we would have in the denominator

A’ AA?8 instead of 1+A3 . (4.22)

!
Similar to Eq. (4.21),

K
Ts = o

1 -~iKOlcu(l+A)(2+A -Az) “
(4.23)

Thus we have solved the scatteringproblem with the

Pauli principle.

In the limit when there is no Pauli restric-

tion, A = +1, and the denominatorsof Eqs. (4.21)

as they should.

The forward scattering amplitude, Xf = Xi,

@ = O, is now

27TK coaz
~ilTlzi> = - ~

xl

-~fK kU(l+A3)
2 0

211K sinz Xi

1 -~ikuKo(l+A) (2+ A-A*) “

The actual case of the

Appendix A, and gives very

scatteringmatrix is given

written

r

(4.25)

p312 state is treated in

similar results. The

inEq. (A.16) and may be

3 sin2 X,

1<~imlTl~im>=-mKo ~
- ~ i lauK. (l+/l)(2+X-A2)

3 C082 xi+ 1
+ 1. (4.26)

1 - + i b K. (l+A) (2-A+A2)

Here m is the component of the spin in the direc-

tion of $. Equation (4.26)gives the same result for

m = + l/2 and - l/2. Uao there is no “spin flip”

from + 1/2 to - 1/2. Because ofEq. (4.llb),

cos xi = A , sin2 X = 1- A* .
i

(4.26a)

We have used real values of k in the derivation

ofEqa. (4.25) and (4.26),just as inEq. (3.11). In

our case, there is added reason for this; the nucleon

momenta are real, hence the momentum conservationa-

quations, like Eq. (4.4), can be fulfilledonly if k

ia also real. Aftar having eateblishedEq. (4.26)

for real k, we continue the same way se in Sec. III.

In particular,we use the analytic continuationto

real values of w. For this it is important that

A = cos X2 is an analytic function of k and P, and

T is an analytic function of A. But, an explained

below Eq. (4.13), k will not be en analytic function

ofksndPifpi c PF; therefore,it ia important

for the success of the thaory that we proved in

14
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Eq. (2.11) that only matrix elements for pi = pF are

required.

T in Eq. (4.26) is a function of k, u, and P

(becauseA occurs). KO is a functionof k and u

only, and is obtained from Sec. III. T must then be

integrated over s1l values of P [see Eq. (4.2)] cor-

responding to all directionsof ii relative to Z.

It will be remembered that Eq. (2.9) requires such

an integration. We have

1 1
pF+k

f
Av=;

1
dflpf(p) =& PdPf(P). (4.27)

4k ‘F lpF-kl

The l~er limit in Eq. (4.27)holds for real k.

When we extend the theory to real u and complex k,

it is simplest to assume that

ImP=Imk (4.28)

and tO tske the l~er li~t in Eq. (4.27) to be

k- PF.

v. ENERGY LOSS

In this section, we treat the effects of the

finite mass Of the nucleon. Once we take this fact

into account, a PiOn scattered by a single nucleon

transfersenergy to the latter; the acsttering is

called “quasi-elastic”.

We must first diacues frames of reference.

Three frames should be considered: (a) the frame in

which our relationbetween u and k holds, (b) that

in which the Chew-Low dispersion theory works, (c)

the frame in which experimentalresults on the posi-

tion of the resonance for scattering by a nucleon

and by a complex nucleue are to be compared.

(a) The relationbetween k and u holds for the

nucleus as a whole. Therefore it holds in the cen-

ter-of-mssssystem of the entire nucleus and the

pion. As the nuclear mass increases and we approach

nuclear matter, this frame becomes identicalwith

the laboratory frame. Only in this frame can we

speak of a definite relationbetween u and k of the

pion. If we wanted such a relation in the center-of-

mass system of the pion and an individualnucleon, it
+

would be different for each nucleon momentum p,

hence not definite.

(b) lhe Chew-Low equation holde in the center-

of-mass (cm) system of the pion and the scattering

nucleon. The Chew-Low theory is concerned only

with these two bodies. The rest of the nucleus may

influence the relationbetween energy and momentum,

both of the nucleon end the pion, but it will not

enter the scattering process. Because frames (a)

and (b) are different,we shall have to make a Lor-

entz transformationconnecting them. (Becausewe

use the cm system, the relation between energy and

momentum of the pion, even at high energy, is not

strictly u = (kz + ~Z)+, = we assumed in Sec. III,

but it is still the - in the free-nucleonand the

nuclear-mattercase.)

(c) In comparing experimentalresults, it is

essential to use the same reference frame for scat-

tering by the complex nucleus and by the nucleon.

Since, as wea discussed in (a), the laboratory frame

should be used for the nucleus case, the same frame—
45

must alao be used for the nucleon. If, e.g., the—

theorywere to predict that the resonance energy is

not shifted, then it should be observed at the same

laboratoryenergy in complex nuclei as for a nucle-

on, i.e., at a pfon kinetic energy of 194 MeV. It4
is for this reason that we have used Wr in the lab-

oratory in Eq. (3.14d).

To calculate the energy loss of the pion, we

must know the relationbetween energy and momentum

for the nucleon. As we discussed in Eq. (2.5), the

nucleon energy depends on the momentum p not only

because of the kinetic, but also because of the PO- “

tential energy U(p). This dependence is most con-

veniently expressed in terms of an effective mass

M*, a concept introducedby Brueckner; then

E(;) = p2/2u* + u
o“ (5.1)

This expressionwas found to be a very good approxi-

mation in many nuclear matter calculations. Sie-

mens46 has also determined the dependence of M* on

density, namely,

M/M*zcm=l+upF2 ,
(5.2)

If pF is measured in fro-i,Siemens finds a = 0.27,

but we believe 0.24 wnuld be better46[see Eq.

(5.2b)l. For normal nuclear density, pF = 1.33,

15



hence C = 1.43. The potential energy for zero mo-m
mentum UO is found from the binding energy B,

namely

U. -t.pF212M* = -B(PF) . (5.3)

The binding B(pF), for pF # 1.33 fr”-l,may be taken

frcm nuclear matter calculations,29 but we shall not

actually need UO in our theory. For normal nuclear

density, B = 16 MeV,

PF=12M* = 53 MeV, hence UO = -69 MeV . (5.3a)

Using Eq. (5.1), and working in the laboratory

system (or better the system in which the whole nu-

cleus ia initially at rest), we have for the total

energy of nucleon and pion

W=Eni+ui=M+p &M* + u + u
o t (5.4)

where the subscript i denotes the initial state, as

before, and the nucleon mass energy M= MC2 has been

fncluded. The energy W is, of course, conserved in

the quasi-elasticscattering. Becauae pi = pr, we

have from Eq. (5.3) that

p&M*+uo = -B(PF) , (5.4a)

which ie only about 16 MeV, and hence negligible

compared with M in Eq. (5.4).

For any meson state ~ which can be reached by

quasi-elaaticscattering,we have the nucleon momen-

tum

:=$-z

[see Eqa. (4.4) and (4.2)]. We

the direction X, @ with respect

energy is then

(4.4a)

assume that ~ ia in

to F. The nucleon

En=M+(&~)2/2M*+U
o

= M + UO + (2M*)-1 (P2 + k2 - 2Pk COS x) .
(5.5)

Energy conservationthen requires that the meson en-

ergy u(k) satisfy the equation

En+u(k)=W.

Inserting Eqs. (5.4)

M+ Uo, we get

w(k) + (2M*)-1 (P2 +

= Ui + pi2/2M*

(5.6)

and (5.5), and canceling

~z
- 2Pk COS x)

(5.7)

In our laboratory (or nucleus) system, we have

a definite relationbetween u and k, just as in Sec.

III. Therefore, gi~~n ~i$ Pi and P, Eq, (5,7) gives

a definite relation4’ between x and u, For any fi-

nal energy u(k) of the pi.on,there is a definite

angle x between ~ and ~. In Appendix B, we find

that, in general, cos x can go from the maximum of

Cos X2

aponds

shall,

P

It can

[Eq. (4.11)] to -1. The latter value corre-

to the minimum possible value of w, and we

in general, have

<u <w
min i“ (5.8)

easily be seen that, because pi = pr, Eq.

(5.7) is fulfilled for k = k - -~, w(k) = (J)f,and x = x
2

[Eq. (4.11)]. There is a continuous range of per-

missible values of w from w~in to wi.

So far, we have worked in the laboratory sys-

tem because only in that system is there a definite

relationw(k). However, to apply the Chaw-LOw the-

OZY, we should now go into the center-of-masssystem

of pion and nucleon. We shall denote quantities in

the cm system by primes. We consider~ and Ui as

fixed. The cm system moves relative to the labora-

tory system with the velocity

(5.9)

where W is the total laboratory energy, and where we

have neglected the binding energy [Eq. (5.4a)] in

the expression for W [Eq. (5.4)]. Setting48y =

(1 - ~2)-~= 1, the Lorentz transformationgives for

the pion momentum in the cm system after scattering
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I

t’=~-u(k)~. (5.1O)

We write its componentsas

kl’ = k’ cOS X’ = k COS X - u(k) @ (5.11.)

and

kt’ = k’ sin x! = k sinx (5.12)

(E = longitudinal,t = transverse to F, X’ =angle

between ~ and ~’). From this we get

By

‘i

kt2=k2+w262-2hBCOS x . (5.13)

Eq. (5.7), cos x is a function of u alone (~ and

being fixed), thereforek’ and cos X’ are like-

wise functions of the single variable w. (The term

0.J262in Eq. (5.13),being of second order in B, can

generallybe neglected.)

The cm pion energy is, setting agsin y = 1

u’=fJJ- ~-~=u-M3cosx . (5.14)

In the total cm energy, we set y = 1 + ~ (32and

hav$’

.
~! = ~y-l -w-—. (5.15)

2(M + ui)

w’ is, of course, conserved in scattering. But u’

is, in general, not conservedbecause the pion ener-—

gy u(k) is a complicated function of the momentum

rather than a simple quadratic function. Likewise,

the nucleon energy in the cm by itself is not con-

served. But conservationof W’ is enough for us,

and we identify this quantity with the cm energy in

the scattering of a pion by a free nucleon which oc-

curs in the Chew-Low theory.

The use of the cm system is necessary because

it is in this system that the r-nucleon scattering

has a simple angular dependence,and in this system

the Lippman-Schwingerequation holds. We get pre-

cisely Eq. (4.5), only with primes, ~’i, ~’, ~’f.

The Pauli principle limit is still Eq. (4.11) in the

lab system. Just in the limit, when x = X2, Eq.

(5.7) shows that k = k., and then Eq. (4.llb) also

still holds.50 z

Therefore Eqs. (4.5) and (4.14) togetherbecome for

t=l

<tf ’lT@i’> =<{f ’lKl~i’> + (3i/~2)

Cos x ‘
x
f

i
W’ k’ d(cos x’)~ d$’

1

<tf’lK[t’><~’lTlti> >

(5.16)

where cos Xi’ may be obtained from Eqs. (5.11) and

(5.13), and+’ = +.

Now assuming a pure p-state interactionand dis-

regarding spin factors, we may set

<tf’lK@ =-211K,(W’) ~f’-t’/u2

= -2~K (w!) kfr k! p-z
1 [

Cos xf’ Cos x’

1
+ sin Xf’ sin X’ cOS ($f - $) * (5.L7)

where K1 (W’) is obtainable from the Chew-Low equa-

tion. Equation (5.17) differs from Eq. (4.15) by

the factor k; k’/B2, which, in Eq. (5.17), iS ex-

plicitly exhibitedwhile in Eq. (4.15) it is in-

cluded in the definition of K. We write T in the

same way as Eq. (4.16) but modify the solution [Eq.

(4.19)] to read

Tl(xf) = ‘2TITCki’ COS Xi’

and similarly for T . The

(4.2o) and (4.21) l~ads to

kf’ COS Xf’ ~-z (5.18)

same argument as in Eqs.

Kl@’)/TC(W’) = 1 - ; iK (Wr)1

Cos xi’
(5.19)

x
J

-2
U’ k! d(cos X’) krz COS2 Xr v .

-1

Here we may express k’ cos X’ by Eq. (5.11), and

furtherwrite

k’ d(cos X’) = d(k’ COS X’)

- (k’ COS X’) d(k’2)/2k’2 . (5.20)

This is.convenientbecause we have simple expres-

1
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siona’l for k? cos X’ and k’z, [Eqs. (5.11)and

(5.13)10

Ik is clear that the integral in Eq. (5.19) is

smaller than Eq. (4.20), simply because generally

IJ,)*<U~ , k’ <k
i“

(5.20a)

This is physically reasonable. The integral in Eqs.

(4.20) and (5.19) represents the “damping” of the

elastic scattering by the quasi-elasticone. Since

the latter involves a decrease of momentum, and

since the “emission” of a p-state pion is propor-

tional to ks, the reduced momentum means reduced

damping. The Pauli principle (Sec. IV) already re-

duced the damping comparedwith free-nucleonscat–

terlng (Sec. III). Some damping will alwaya remain.

The expression for TS[Eq. (4.19)],is similar

to Eq. (5.19), except that k’2 COS2 X’ is replaced

by (k’ sin X’)2 u kz si.nzX. In the model we shall

discuss below, we shall consider instead of TC and

Ts an average, namely, we replace 3(k’ coa X’)z in

Eq. (5.19)by k’z. This will simplify the calcula-

tion.

We shall now make an estimate of the energy

transferredto the nucleon, assuming that the magni-

tude of the pion momentum does not change (we shall

soon see that this is not an unrealisticassump-

tion). The greatest energy transfer clearly occurs

when the pion is scattered backward; it is

(zz+;f)z = 2k(k+pFcosa) ,- Pi2
AE =

(5.21)

2M* M*

where a ia the

has been used.

below),

k.
%,

we get

angle between ~i

Assuming, again

and ~ and pi “ PF

realistically(see

(5.21a)

‘i - ‘f
= AE = 2(pF2/M*) (1 + cos a) (5.22)

- 210 (1 + cos U) MeV , (5.22a)

46
aaauming P~ -1, M* =X11.43.= 1.33 fm This result

is enormous,and shows that backward scattering of

the pion simply cannot happen, unleea k decreasea in

the process. In any case, a large amount of energy

is transferredfrom the pion to the nucleon.

\{econclude that the assumptionof constant k

cannot Iloldindefinitelyto arbitrarily small values

of the pion energy. l’hisis in accord with the dis-

cussion in Sec. VI. At low energies, k2 is negativ~

because the repulsives-scatteringdominates. Above

about 30 NeV,s-scattering is no longer so importan~

and kz increases rapidly. Because of the Kissinger

syndrome, k2 is apt to become very large (Figs. 8

and 9) unless it is cut down by the “damping” term,

i.e., the imaginary term in Eq. (3.29). This term,

however, cannot be large unless k ia large, so on

every argument k must be large. On the other hand,

near the resonance,ltek should be fairly close to

the free-particlevalue kO, because near the reso-

nance we expect II(k)to be purely imaginary. We

therefore adopt the followingmodel.

We assume that k is constant and has the value

kr (resonancevalue of kO) above a certain critical

w = UC. Near Uc, k changes very rapidly from O to

kr, thus

k=0,ti<u=ml.2P

k=kr= 2.18P , W > UC .
(5.23)

The estimate UC = 1.2 B is based on the numbers

Sec. VI. Now it happens accidentallythat

of

I.0 I I I I I n I I I I 1 I

0.s -

a

o

.o,~
“o 0.s Lo

kOIP

Fig. 8. Real and imaginary part of kjp, for small
kO, as a function of kO/p. Theory of Se.c,
Whaa been used, no damping for quasi-elaa-
tic scattering is considered. For P = %POO

,

.
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Fig. 9. Real and imaginary part of k/~, for small
ko, se a function of kOlp. Theory Of Sec.
VI has been used, no damping for qussi-
elastic scattering is considered. For

P = %Po.

kr = 2.1811= 1.53 fro-l‘pF . (5.24)

Thus in this model the assumptionsin Eqs. (5.21) to

(5.22a) are justified.

This model is calculatedin Appendix B with the

approximateresult given in Eq. (B.21); th~ the

“damping integral”L

A

L=
J

k’3 u! d(cos
-1

is

t

x’)

= krz (M*/2P) (ui - W3c) (5.25)

‘[(2+aks)+(=+”j.
Using ui = 2.4 p (resonanceenergy),

u= = 1.2 p (30 MeV kinetic energy),

()P = k;+p:~=2.88v

H* = M/1.35 = 5.0 v ,

we find

L= 22.5 Pb ,

(5.26)

(5.27)

which agrees with a more accurate evaluation. (See

Appendix B.)

In the elementary theory of Sec. III, taken

literally,we would have instead

Lo = 2k@i = 49.6 p“ . (5.28)

But even in an elementary theory,we should evaluate

k and w in the center-of-masssystem of pion and nu-

cleon. Using the well-known relativistic formula

()
M+u’7=M2 +lJ2+2Mui , (5.29)

and taking again Wi = 2.4 p, we have

u; = 2.14 B, k;= 1.89 v

so the “damping integral” is

L: = 2kf’3ui’ = 28.9 yq . (5.30)

As mentioned, our theory gives L = 22.5 ph. There-

fore the Pauli principle and energy loss together

reduce the “damping integral” L by a factor of 1,280

The Pauli principle alone would reduce L by a factor

of 1.14. So we get the surprising result that the

nuclear

damping

ent for

At

reduced

high as

recoil does not have much influence on the

integral, except that which is already pres-

free nucleons.

lower energy Wi, the L will be more strongly

[compareEq, (5.25)] provided ki remaine

it seems to do (see Sec. VII). Analytically,

L depends on ki = k= only quadratically,while the

elementaryL’ goes as k:. Instead, L depends on the

energy of the incident pion, as w
i - Wc. The factor

w; in Eq. (5.30) is essentiallyreplaced by one-half

of the square bracket in Eq. (5.25).

In doing calculationswith Eq. (3.29),we

should aubatitute in the bracket

k;+L/2~v , (5.31)

Since L depends on P, an integrationover P must be

performed [ace Eqs. (4.27) and (4.28)]. For an ap-

proximation (Sec. VII) we have used Eq. (5.26) as an

average value of P.
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VI. LOW-ENERCY BEHAV1OR

The lowest energy pions are the T- in atomic or-

bits in pionic atoms. These have been most carefully

investigatedin a series of papers, theoretical

onees’g beginning with that of the Ericsons, and ex-
10

perimental ones, summarizedby Backenstoss and

later by Tauecher.
10

If we restrict ourselves to

nuclei having equal numbers of neutrons and protons,

the behavior of low-energypions can be describedby

just four

b. =

co =
B. =

co =

parameters,

scattering of s-wave pions,

scattering of p-wave pions,

probabilityof capture of s-wave pions by

2 nucleons, by the process in Eq. (1.11),

and

same for p-wave pions.

Assuming that these parameters do not depend on the

nuclear density,we have

k2 = k; + 4np[bo

In Ref. 5, the result

ently, e.g., the last

by

+ iBop +kz(co + iCoP)] .

(6.1)

is presented somewhat differ-

term in Eq. (6.1) is replaced

- v ● (cop + icopz) v . (6.2)

For constant P, this reduces to kz(cop i-iCop2). In

actual calculationsof 11-mesicatoms, it is essen-

tial to use Eq. (6.2)(aeeSec. VIII). We have also

omitted such factors es 1 + p/M in Eq. (6.1).

The constants iBo, iCo in Eq. (6.1) are denoted

by no, Co in Ref. 5. These quantities are in fact

complex, not purely imaginary. But the imaginary

part 1s, in practice, the most important one since

b. and co are purely real. The imaginary part gives

the capture probabilitywhich the Ericsons have cal-

culated from the elementary processes. The real

parts are the corresponding“energy shifts” which

might, in principle,be derived from the imaginary

parta by some dispersion theory, but are in prac-

tice essentiallyunknown.

The scattering amplitude CO has been derived by

the Ericsons, for zero kinetic energy, from the four

manured p-wave phase shifts, All, dl~, L$31, and

6~,, and the result is in good agreementwith IT-

mesic atoms. The constantb. ia, in first

approximation,given by the weighted average of the

s-wave phase shifts

(6.3)b: = (61 + 263)/3k .

But this quantity, as derived from measured m-nucle-

on scattering, is almost exactly zero. The Ericeons

point out a number of correctionsof which the mast

important is due to the correlationsof nucleons due

to the antiaymmetryof the wave function. This ef-

fect makes b. effectivelynegative, but comparison

with experiment is not easy.

The experiments conalat of measurementson 11-

mesic atoms.10 The shift of the x-ray levels rela-

tive to the pure Coulomb field gives b. (mostly from

the 1s state) and co (mostly from 2p). The width of

the levels gives Do (from la) and Co (mostly from

2p). The most recent experimentsgive
10

bo=- 0.0293 f 0.0005 P-l,

=0 = 0.227 i 0.008 U-3,

B. = 0,0428 i 0.0015 P-4, and
(6.4)

co = 0.076 f 0.013 B-6.

The precision, especially in b. and Bo, is impres-

sive.

We have used the values in Eq. (6.4), together

with the formula in Eq. (6.1), to calculatek2 as a

function of p and k:. In doing this, we have made

three assumptions,namely,

(a) The constantsbo, etc., are independentof

ener~y, which seems justified up to kinetic energies

of about 0.2 u = 28 MeV.

(b) The “damping terms” due to quasi-elastic

scattering,discussed in Sece. III-V, are negligi-

ble. This is justified because it is difficult for

the pion to lose energy In the laboratory system.

(c) We have taken into account the Lorentz-

Lorenz correction [Eq. (2.12)], i.e., we have re-

placed the last term in Eq. (6.1) by

41Tp(co+ icoP) k2 ,
(6.5)

1 + (4?r/3)p(co+ icoP)

The result was given in Figs. 8 and 9 for

P-%POandp-Po. In the latter caee, it ie

.
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remarkable that Re k is negative for kO c 0.4 p, u f

1.07 U. Even as high as u = 1.25 V, we have Ke k =

Im k, i.e.,
kZ is ~urely imaginary! This means that

the s-state repuleion dominates over the p-state at-

traction,even though b. is very small. At the same

time, Re k and Im k both tend to be considerably

larger than kO, because of the “Kisslingersyndrome”.

Forp=~pO, both parts of k are much better

behaved, as might be expected.

Because of the behavior of k, we have chosen

(in Appendix B) to set the “criticalenergy” Uc =

1.2 u because only above this UC does Re k become

appreciableand positive.

VII. NUMERICAL CALCULATIONS

We did numerical calculationsusing our theory,

with the following approximations.

1.

2.

3.

4.

5.

In Eq. (5.25),P was replaced by its root

mean square average,

(k2+pfP=r
)
2+

av

In the bracket in Eq.

P2/14*was neglected.

The capture of pione,

(7.i)

(5.25), the term

terme BO and CO of

Sec. VI, has been neglected.

The Lorenz–Lorentzeffect [Eq. (2.12)]has

been neglected.

The effect of the small phase shifts has

been neglected (see the end of this sec-

tion). I

We have done three separate calculations. In

one of these (A) we used

03 = 1.2 V, Ur = 2.14 u , (7.2a)
c

i.e., we used the center-of-massresonance energy.

In the two others we used the laboratory resonance

energy, and in calculations (B) and (C), -w=ctive-

ly, we eet

u = 1.2 U, Wr = 2.40 u ,
c (7.2b)

and

u = 1.0 y, (or= 2.40 u .
c (7.2c)

Thus in (A) and (B), we set the “critical”energy

u = 1.2 U, while in (C) we set it equal to U. The
c

latter is, of course, the lowest possible energy to

which the pion may be degraded; the former corres-

ponds approximatelyto the results of Sec. VI.

we introduce the abbreviationsad numerical

values.

~=4f2a, f2_oo80
3

., (7.3b)

C = 8TPOP-3C3, C3 = 2/3, C = 7.8 ,

~
r = PIPO, PFIu = dOr3 ,

do =pFo/u = 1.90 ,

(7.3C)

(7.3U)

(7.3e)

F?= WV
L , (7.3f)

P 1 + 0.53r3

and

( )

L+.
p = y2 + d~r3 (7.4)

Then the fundamental~qs. (2.2), (2.10), (3.31),and

[5.31) give

2
& (Yz) = ~(a _B~) _ iByz$ ‘

and

y2(r=O) =x2-1 .

(7.5)

(705a)

Note that Eq. (7.5) is a differentialequation for

y(r), at constant x.

The results are given in Figs. 1O-12. All of

these give the real and Imaginary part of k ae a

function of kO, and all of them refer to cases B and

C [Eqs. (7.2 b,c)] i.e., Wr = 2.4

momentum is thus

kO= = 2.18 P .

The dashed curves are for case C,

case B. The three figures refer,

P=%PO, PO and2p0.

For all three densities, the

M. The resonance

(7.6)

the solid ones for

respectively,to

internal wave num-

ber Re k rises initially much faster than k. as is

to be expected for an attractive potential, then
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Fig. 10. Real and imaginary part of k/U, with damp-
ing for quasi-elasticscattering. Model
of Appendix B has been used. Solid curve:
0)=- 1.2 p, dashed curve:w = 1.0 p.
P-+I PO.

c

falls below kO for energies above the resonance.

For p = 2p0, the effect is most pronounced. In fac~

k reaches a maximum at ko/p = 0.9 (50-MeVkinelic

energy), snd then decreaseswith increasingenergy!—

This is just the opposite of the elementary,Kisslitr

ger theory [Eq. (1.6)] in which k rises monotonical-

ly with k. (provided the denominatorof Eq. (1.6)

stays positive). At the lower densities, including

P-P09 the result is not so extreme. At p = 1.5P0,

the inside k stays essentiallyconstant for ko/p

from 1.0 to 2.6. ‘l’hisis the assumptionwe ma~e in

Sec. V and Appendix B. For p = po, this assumption

is still quite fair. In case A [Eq. (7.2a)], the

inside k is constant (over a wide range of ko) for

P-PO.

Another way to look at the result is to regard

k2 - k; as a potential U. This potential, even for

p as low as 0.25 PO, will decrease (in absolute val-

ue) with increasing energy, while the elementary

theory, Eq. (1.4),will have it increase monotonical-

ly. If we replace kz by k: in Eq. (1.4), then the

second term of Eq. (1.4) is k~al(u). Both factors

in this expression increasewith energy.

In all our results, k remains quite moderate,

and the “Kissinger syndrome” of Eq. (1.6) has beefi

completelyeliminated. Moreover, Eq. (1.6) would

predict that somewhere below the free-nucleonreso-

nance we have

Re 4rpa1 = 1 (7.7)

# I

Re

1
4

kelp

Fig. 11. Real and imaginary part of klp, with damp-
ing for quasi-elasticscattering. Model
of–AppendixB has been used. S~lid curve:
u = 1.2 V, dashed curve: UC - 1.0 p.
pc= po.

3

+2
s.

I

c

Fig. 12. Real and imaginary part of k/p, with damp-
ing for quasi-elasticscattering. Model
of Appendix B has been used. Solid curve:

so that

Here k2

Im

u = 1.2 U, dashed curve: UC = 1.0 p.
Pc= 2P0.

the denominatorbecomes purely imaginary.

would be purely imaginary, and hence

k=Rek . (7.7a)

In our theory, the imaginary part of k alwaya re-

maina much smaller than the real part; e.g., for

p = pO, nearly everywhere
.

Imkt~Rek

The maximum value is

(Imk)max= 0.8

(7.7b)

p = 0.56 fro-l (7.8)
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so that the absorption length of a pion is about

0.9 fm. Although this is small, it is not nearly as

small as would follow from free-nucleoncross sec-

tions,zs thus solving the problem of excessive ah--

sorption cross section mentioned in Sec. I. The

cross section correspondingto Eq. (7.8) is 70 mb.

Im k stays high over a wide range of energies; e.g.,

at p = PO, we have

Imk>O.2p (7.8a)

for kO > 0.92 p; i.e., w - v > 50 MeV, A pion going
12C nucle~ traverses a dj.s-through the center of a

tance 2R= 5,2 fm; then Im k = 0.2 p corresponds t.o

an absorptionof the pions to % of the incident in-

tensity.

Roughly speaking, the calculationsindicate

Im k = I$((LI)p/pO , (7.9)

where p is some function of the energy. Thi5 means

that the apparent absorption cross section is rough-

ly independentof p. The maximum of Im k occurs

roughly at the free-nucleofnresonance momentum [see

Eq. (7.6)]. Also, again very roughly,

Rek- k. = X(U)P/PO . (7.10)

Of particular intereet is the point at which

Rek=kO .

Aa diacu.ssedin detail in Sec. X,

definition of the position of the

(7.11)

this is the best

resonance in nu-

clear matter. From Figs.‘10-12and similar curves,

we read the values of k. at which Eq. (7.11) is ful-

filled. These are given in Table I under the head-

ing “33 “alone.” It is seen that the “resonance” as

defined by Eq. (7.11) la shifted to slightly higher

values of kO aa comparedwith kr [Eq. (7.6)].

Roughly we find

k =kr +0.24 U p/PO .
213S

(7.12)

Small Phases

However, we have so far only taken into account

the scattering in the 33-state. The “small phase

shifts” 6~, 63, 611, 61B, and6~l also contribute to

the forward scattering and hence to the self-energy

Il. We write simply

f(k) = f~~(k) + fare(k) , (7.13)

where fsm denotes the contributionof the small

phase shifts. TIIisexpression neglects the fact

that fsm will change the relation between k and kO

by Eqs. (2.2) and (2.11), and hence will change f~a

for a given LO,[see Eq. (3.31)];but we believe

this correction is small. Now f~ is independentof

P, hence its contributionto Eq. (2.11)

n = 4npfsm .
am (7.14)

Therefore we have [see Eq. (2.2)], for any given u,

kz = k;~ + 4~Pfsm s (7.15)

where k~~ is the k calculatedby our previous theo-

ry, i.e., taking only the 33-scatteringinto ac-

count. Now f ia essentially real, hence
sm

Re(k2) = Re(k~3) + 4npfsm

Im(k2) = Im(k~3) .

Algebra yields

Rekf
Rek-Rek33=2’llp— (7.17)

]k12 sm “

Now we are interested in the resonance momentum in

nuclear matter, kn, for which Re k = ko. This will

occur when

Re k~~ = kO - 2npfsmRe k/lk12 . (7.18)

Now Rek=kO, and Im k @ Re k, especiallywhen

P <PO [IX. (7.9)], SO

the

Re k~~ =kO - 21rpfsm/k .
0

We have obtained

tablea of Herndon

the small phase shifts

et al~z in particular

(7.16)

(7.19)

from

from
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their “Cern theoreticalfit,” pp. 80-81. The fOr–

ward scattering amplitudeby an “average nucleon” is

(7.20)

f(T)=E(j+~)6(T,j)/ kO ,
~j

(7.21)

i6=d
where we have set sin 6 e We have included

all phases given in the table of Herndon et al. At

the resonance energy E = 1236 MeV, we have
53

f
am = - o.095/p . (7.22)

Taking the correction term in Eq. (7.19),kO = 2.18v,

PO

We

of

- 0.467 I.J=,we get

Re k = kO + 0.128 p/PO .
3$ (7.23)

may then again use Figa. 10-12 to find the value

kO at which Eq. (7.23) is fulfilled. This is

MS ted in Table I under “complete.”

Comparing the “complete” column with the “33

alone”,we see that the small phases shift the reso-

nance down. This is to be expected because fam is

negative [Eq. (7.22)], i.e., the small phases cor-

respond to a ~ulsive potential. Therefore to get-—

a resultant potential of zero required for res-

onance, the 33-term must contributean attractive

potential, I.e., the energy is below the energy of

the resonance calculatedwith 33 alone. The re-

sulting resonance momentum kn, according to

Table I, is slightly below the free-nucleonreso-

nance as long as p g PO.

TA8LE I

POSITIONa OF RESONANCE, DEFINED BY RE k = k.

33 Alone Complete

o

0.25

0.5

0.75

1.0

1.5

2.0

2.18

2.25

2.30

2.35

2.40

2.50

2.65

2.18

2.10

2.12

2.14

2.19

2.25

2.34

The data are somewhat scattered, and we estimate

that the correct kn forp = $ PO may be 2.10 * 0.02

correspondingto a downward shift of the resonance

by about 11 i 3 MeV.

DifferentModels

Figures 10-12 show that models B and C give

very similar results,so the answer does not depend

much on the assumed value of Uc, which is satisfac-

tory. Of course, the general model we used, constant

k from Uc to Ui (see Sec. V), is fully justified

only for p = 1.5 pO where the resultingk(w) is con-

sistent with the assumption. For p = 1.0 or 2.0 PO,

the assumptionshould still be quite good; for smal-

ler p, it is poor, and the calculationshould be re-

peated with more realistic assumptionsabout k(~).

Our calculationsshow that model A, in which

the resonancemomentum is lower, gives results for

any given p which are like those for models B and C

at a somewhat higher p. The upward shift of the

resonancewith the 33-scatteringalone is therefore

greater than given in Table I for any given p. The

“complete”shift, including the small phases, is

closer to zero at low density.

VIII. NUCLEAH SURFACE

In his first paper, Kisslingerlpointed out

that for finite nuclei, where the density changes

with position, the potential proportionalto kz

should be replaced as follows [see Eq. (1.4)].

k’ al(~)p+-al(~)v”(pv) . (8.1)

lhis is necessary to make the Schrodingerequation

self-adjoint. The same expressionhas been used by

the Ericsona5 and others, and has proved successful.

in the treatmentof pionic atoms. It is often

called a “nonlocal potential.”

Krell and Ericsong have shown how Eq. (8.1)-can

be transformed to a local potential. Instead of the
54radial wave function @k, they introduce

[1 +
‘!2 = 1 - ‘(r) r$t(r) , (8,2)

where approximately

a(r) = 4Tfp(c0+ ipCO) . (8.3)

.

.

~e give kOIV at resonance
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Then UL obeys a Klein-Gordon equation with an effec–

tive local potential U, For reasons to be discussed

“below,we shall only reproduce the parts of this

equation which are of firat order in p. We have

‘2W Jt(f.+ 1)

[

~:
—.. — - q(r) -
drz r’ ‘2 + 1- a(r)

1 (8.4)

I- Ug(r) Ug = O ,

where kO is the free-spacewave number, except that

it includes the effect of the Coulomb potential,c.

Is the effect of the s-wave interaction [arising

frombO and BO in Eq. (6.1)], and Ug (g for gradienO

arises from the p-wave interaction,

u
g

Another

a(r) in

term in

k:

(
dzp+~~

= - 211cov2p= - 2TC0 —
)rdr” (8.5)

drz

effect of the p-wave interaction is the term

the denominator
56

with k~. Expanding this

powers of p, we get

+ k~a(r) + ... = kg + 4ncOk:p + ... (8.6)

in which again higher powers of p are omitted. Col-

lecting all terms arising from the p-wave interac-

tion, i.e., proportional to CO, we get the equiva-

lent p-wave potential

u =-4mcO(k02p+~V2P) o
P

(8.7)

This result has also been derived in a simpler, but

less convincing,manner by Wilkin.57 Clearly, Eq.

(8.7) is dimensionallycorrect.

We have neglected all higher powers in p be-

cauee our theory deviates from that of Krell and

Ericson in order pz and higher, due to the “damping

term” which has been discussed at length in Sees.

III-V. But in the lowest order
58 in p, the theories

agree. As shown in Sec. IX, the most interesting

region of the nucleus for elastic scattering is in-

deed the region of low density, perhaps 1/4 to

1/10 PO. In this density region, the Krell-Ericeon

theory is justified,
59

but also ite first-order term

in p is sufficient.

The extra term V2 is, in general, not large far

scattering problems. As an example, let us take a

density distributionof the “Fermi” type which has

been used so much in the analysis of the Stanford

electron scattering experiments,namely,

p=(l+ex) -l, x==. .
a’

Experimentsshow that

a’ = 0.55 fm = 0.4 y-l .

In this case, one calculates that

(8.8)

(8.8a)

Vj)= ()l-e-x 2a’1.
P a’z(l+e-x)l+e-x r

(8.9)

Then, arbitrarily taking p = pO/7 (see Sec. Ix) ana

J?= 2.58 fm (correct for 12C), we find

In

so

a = 1.15 fm-2
P

= 2.35 U2 .
(8.10)

most experimentalcasea, 2k~ is larger than thie,

that the V2P term in Eq. (8.7) ia only moderately

important. But for pionic -, the V2p dominates

by far, and this fact has been used by Krell and

Ericson.9

Krell hnd Ericson point out that the V2p term,

plus other terms of higher order in p, represent a

“dipole” interaction at the surface of the nucleus.

For large r, V2p > 0, as is clear from the form

used in Eq. (8.8) eo that the potential Ug is at-

tractive,whereas for r f R, both terms on the right

of Eq. (8.5) are negative, and Ug j O. This argu-

ment is not changed (qualitatively)by the terms of

higher order in p.

With increasing energy, al(u) in Eq. (8.1) be-

comes complex, and at resonance, is purely imagina-

ry. Therefore, Ug is also imaginary. Then the

words “attractivepotential”must be replaced by

“additional absorption” and “repulsive potential.”by

“reduced absorption.” But in this case, 2k: = 9.5u~

which is large compared to Eq. (8.10).

We have followed the ideas of previous writera

on the effect of density variations near the nuclear

surface. It would be better to have a theory spe-

cifically designed for a finite nucleus. We have
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not found such a theory, thereforewe use a local

density approximation (LDA). The discussion of this

section shows that this approximationmay be good,

even in the surface region, as soon aa k. is sub-

stantial.

IX. EIKONAL APPROXIMATION

We shall make the local density approximation

(LDA), i.e., we assume that at every point in a fi-

nite nucleus

k = k(u,p) , (9.1)

where P is the local density at that point. The

considerationsof Sec. VIII show that this should be

a fsir approximationif w is not too small.

We then consider the pion wave going through

the nucleus at an impact parameterb. This ia the

eikonal approximation. It neglects the quantiza-

tion of angular momentum, and thus assumes, in ef-

fect,

Itob>l . (9.2)

At the observed resonance in 12C, 175 MeV, k ~ 2 p,

while the most important values of b are about

2.2 )1-1(see Table II). Thus,

(9.2a)

TABLE II

RELEVANT DENSITY p(bl)/pO ~RpION SCATTE~NG,

AND CORRESPONDINGIMPACT PARAMETERbl

Nucleus 12C

Im$(w) 0.9 l.10.5 ?J

kOh 2.0 1.25

Kin. Energy (MsV) 175 85

a(fm) 0.63 0.82

R(fm) 2.58 2.58

bl(fm) 3.18 2.49

(2mabl)4 3.55 3.58

kob~ 4.5 2.2

p(bl)/po 0.31 0.54

Pb

0.9 p

2.0

175

0.68

6.64

7.49

5,67

10.5

0.20

so that Eq. (9.2) ia quite well fulfilled. In an

angular momentum analyaia, the most importantwill

be

If the incidentwave Is

Yo=eikoz , (9.3a)

the wave which has gone through the nucleus at im-

pact parameterb, will be

Y = Y. expi~lz k[p(r)l - kO (9.4)
--

where

r = (Z2 + bz)% . (9.4a)

NOW in the interior of the nucleus, P - Po, and here

the imaginary part of k.ia very large; e.g., near

the resonance (Fig. 11)

Imk~O.8~ . (9,5)

Taking the nucleus lZC for which moat experiments

have been done, the radius is

93R = 1.12 A“ = 2.58 fm= 1.80 B-l . (9.6)

hence for b = O, the absorptivepart of the integral

inl?q. (9.4) is

2R Imk = 2.88 . (9.7)

Thus, tl)eamplitude of this wave is reducad by about

a factor of 20, the intensity by a factor of 300.

Even a nucleus as light aa lZC is black fOr @ens

60going through ita interior. Aa Fig. 11 shows,

this result does not change substantiallyif ko/p

varies between the limits 1.2 and 2.8 (kinetic ener-

gy between 80 and 280 MeV).

The most interestingvalues of b are those for

which

ll’/% =% . (9.8)
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This follows from the familiar argument of eikonal

theory. Consider a plane z = z] where zl ia some-

what larger than R. Then consider

S(b) = Y(b,zl) - yO(_D,Zl) (9.9)

as a source of sphericalwaves correspondingto tie

Huyghens construction. (This argument can be im-

proved by consideringa closed surface surrounding

the nucleus, e.g., a sphere of radius r > P.,and
1

giving ~ - $0 on that surface.) Clearly, for large

b, Eq. (9.9) is zero; for small b, it is not zero

but uninteresting,viz., - 4.. ‘Theinterestingval-

ues are those near the conditionof Eq. (9.8).

It is clear from liqs.(9.7) and (9.8) that the

importantvalues of b are large, so that the pion

goes only through the surface of the nucleus and en-

counters only low density. In this region,we make

the simple assumption that

p(r) = p(b) exp (b-r)/a . (9.10)

We approximateEq. (9.4a)by

r = b + z2/2b , (9.lCIa)

61which turns out to be sufficientlyaccurate be-

cause b ~ a. We assume, in accord with liqs.(7.9)

and (7.10),

k(p) - kO = $(w) p/p (9.11)
0’

62
where @ is a complex function of the energy w.

Then the integral in Eq. (9.4) becomes

X(b) = 1$((I))p(b) po-l (2ma b)% . (9.12)

To determine a, we use two approaches.

(1) The Stanford distribution [Eq. (8.8)]. We

shall find p(b)/pO = 0.3. We may then define ~ as

the distance in which p/Po decreases from 0.3 to

0.3/e; thus

a = 0.68 fm . (9.13a)

(2) We may take the binding energy of the last pro-

ton in 12C which is 15.9 MsV, and calculate the

asymptotic decrease of the Schrodingerwave

function. This gives

a = % (20.7/15.9)%= 0.57 fm . (9.13b)

We shall take the average between Eqs. (9.13a) and

(9.13b),

a= 0.63 fm . (9.13)

For 0 in Lq. (9.12),we use the curve similar

to Fig. 10 but calculated for p/po= 0.25. Then, at

resonance,we have

Ire@(w)= 0.9 u (9.14)

We are interested in the value b, of b for which Eq.

(9.8) is true [see Eq. (9.12)].

ReX(b)=-ln2. (9.15)
1

The results for bl and P(bl)/pO are given in Table II>

togetherwith other quantities occurring in the anal-
12C and pb at the reso-ysia. We have considered

nance and at an energy where the effective absorp-

tion [Eq. (9.14)] is 0.5 U. This energy, from our

calculations,is 85 MeV.

The nucleon density at which Eq. (9.8) is true,
12C at resonance,onQ 0.20

p(bl)/pO, iS 0.31 for

for Pb, and 0.54 for 12C at 85 MeV. So certainly at

resonance, the density which is most relevant for

pion scattering is far below nuclear matter density.
15

This was recognizedby Dover and Lemmer ‘who, in

their Fig. 24, plot the cross sections for n-scat-

tering by 12C as functio~ of the energY, assuting

various densities for the nucleus: p =0.16 U3 $=

0.34 pO gives the best, though not perfect, agree-

ment with experiment.

The fact that p(b,) 4 p. is of very great im-

portance. It means that for the calculationof elae-

tic scattering, any theory is applicable~hich is

cOrrect at these low densities. At these densities,

we are far from the Kisslinger singularity so the

Kisslinger theory, [Eq. (1.6)], is elright, as well

as the “local” modification thereof [Eq. (8.7)]. The

first-orderterm in p, used in Sec. VIII, is then

also alriuht. This-explains the considerablesuccess

achieved in calculationsof differential cross sec–

tions using the Kissinger and related theo-
ries 12,57,63

.

27



liemu~t not conclude from this success, how-

ever, that the Kissinger theory remains correct at

higher densities. The region of higher density is

simply not explored by the elastic scatteringbe-

cause the nucleus is black. In Sec. XII we consider

experiments to explore the high-density region.

The other data in Table II are also interestin~

For resonance pions the “relevant”impact parameter

bl is considerablygreater than the usual nuclear

radius. This explains that the cross section is

substantiallygreater than geometrical;e.g., at 180

MeV, the observed reaction cross section of 12C is

425 mb, correspondingto an “effectiveradius” of

3.68 fm, which is very close to our bl = 3.55. Sim–

ilarly, the elastic scattering correspondsto a

large effective nuclear size. At 85 wV, the effec-

tive b, is only about R, which is in accord with the

decreased reaction cross section.

The expression (2?Ia bl)% gives the effective

length of the chord traversedby the pion. The mean

density along this chord is

*=*. (9.16)

The value of kOb~ gives a guide as to the mm t im-

portant value of L in scattering,see Sec. XI.

Deviations from the local density approximation

(LDA) may be discussed in terms of the local form of

the p-wave potential [Lq. (8.7)]. In rough approxi-

mation, we might replace p by

‘eff = p + V2p/2 k02 , (9.17)

Ifwe evaluate liq.(8.9) at p/pO = 0.25, correspond-

ing approximatelyto p(bl) of Table II, we find in-

stead of Eq. (8.10), that

v2f2/p= o.39 fro-2_ 0.8@2 . (9.18)

Then at resonance (kO/p = 2), Eq. (9.17) gives peff

= 1.10 p. The last line in Table II should then re-

fer to peff, so that p(bl)/pO ia further reduced,to

0.28 and 0.18 for carbon and lead, respectively.

Correspondingly,bl should be increasedby abOut

0.1 a = 0.06 fm.

that

28

At kO/V = 1.25, the

x = O in Eq. (8.8).

density p(bl) B~pO so

Then Eq. (8.9) gives

Vzp < 0. However, the terms of higher order in p

will now come in, end their effect, according to

Krell and Ericeon,g is likely to give another posi-

tive term in the parenthesesof Eq. (8t7). Wa

thereforebelieve that the correction to the LDA in

this case is small.

x. WIDTH AND POSITION OF RESONANCE

The width of the resonance might be defined as

the point where

Imk=%(Imk)
msx”

(10.1)

At the deneity p = ~ PO, this occurs at a laboratory

energy of 80 MeV (Table II). The nucleon-Pion cen-

ter-of-massenergy is then E = 1145 MeV whila the

resonance is observed [see Eq. (10.3)] to occur at

E = 1220 MeV. The half-width ia then

k ‘eff= 65M@J .
(10.2)

For scatteringby a free proton, we may define the

half-width es the point where 638 = 45”, which oC-

curs at E = 1192 MeV while the resonance is at 1236,

therefore

% ‘free = 44 MeV . (1002a)

IIUS the width in nuclear matter is considerably

larger than for free nucleons.

it is still somewhat larger.

This result is in contrast

Lemmer
15

who find a decrease of

fiis may be attributed to their

kO, which was discussed in Sec.

At full density PO,

to that of Dover and

the resonancewidth.

eseumption that k D

10

‘l’hewidth as defined by Eq. (10.1) is not di-

rectly observable. The Im k merely determines the

transparencyof the nucleus and thereby bl (Table

II). Observationsof the total (or reaction) cross

section64’65show a very slow variation with energy

impressivelyslower
65

than the n+-proton cross sec-

tion. These cross sections merely indicate the slow

variation of bl with Im k.

Nevertheless,the observed reaction cross eec-

tion may be used to get at least an estimate of the
64

resonancewidth. The observations seem compatible

with our eatl.mate[Eq. (10.2)],but more accurate

evaluationwill be necessary.

,

.
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Much haa been written about the position of the

resonance. In our opinion, very little significance
66

is attached to the energy at which tl)ereaction

cross section reaches s maximum. This is only a

pale reflectionof the behavior of I; k, still fur–

ther complicatedby the finite wave length of tile

pion.

The only significant definitionof the reso-

nance is the energy where the real part of the nu-

clear scattered amplitude vanishes. The theoretical

significanceof this point was realizedby Dedond-

er.23 Experimentally,the real part of the ampli-

tude may be measured by means of the Coulomb inter-

ference. This has been done for n- by Binon et
67 +

al.,
68

and for ?r by Scott et al., in both cases

12C target at laboratoryenergies from 115using a

to 260 MsV. Using either of these experiments,or

better by comparing them, Re fN(0) can be determined.

Interpolatingbetween the data of Scott et al., we

find the resonance at

in the laboratorysystem.

(laboratory)energy of the

by the free nucleon,
41

Thus

by

T
free

= 195 MeV

the experimental

+21
AT = -21

exp -14

(10.3)

This compareswith the

resonance for scattering

(10.4)

resonance position is shifted

theories that our shift is composed of two very mod-

est shifts, (a) from the propagation in nuclear mat-

ter, and (b) from the small phases. In other theo-

ries, many and individuallylarge shifts are involved.

In Sec. VIII we emphasized that elastic scatter-

ing near the resonance gives no information about

the behavior of pions in the high-density core of

the nucleus because the nucleus is black. To inves-

tigate this behavior, we have to go off resonance,

let us say to kinetic energies of 50 to 80 MeV. Sil-

bar and Sternheim
12

have shown (their Fig. 2) that

in this energy range, the “local” form [Eq. (8.7)]

of the potential is in good agreementwith the ob-

served reaction cross section, whereas the original,

nonlocal form [Eq. (8.1)] of the Kissinger theory

gives too large reaction cross sections. We believe

this may be explained by the fact that the local po-

tential [IIq.(8.7)] does not suffer from the “Ws-

slinger syndrome” [Eq. (1.6)] at large p, while it

is similar to Kisslinger’s in the nuclear surface.

As we have discussed in this report, a correct the-

ory should indeed have these two properties. (of

course, this doea not justify the details of the

local theory in the nuclear interior.)

XI. ELASTIC SCATTERING AND “SCALCIUM

In Sec. IX, we used the eikonal method to es-

timate the elastic scattering. Using Eqs. (9.9),

(9.4), and (9.12), the source of elastic scattering

is given by

s(b) = s(b)e –ikozl = exp X(b) -1 .
(11.1)

MeV . (10.5)
Following the usual methods, the amplitude of the

diffractedwave at laree distancesbecomes
We previously (Sec. V, beginning) emphasized that

the laboratoryenergy in a complex nucleus must be

comparedwith the laboratory energy for free–nucleon

scattering,not with the nucleon-pion center-of-

mass energy~9

Our theory, Sec. VII, gave a shift

A Tthe = - 10 MeV . (10.6)

his is not sufficient,although it is within the

wide limits of the experimentaldate [Eq. (10.5)].

‘fhus,the theory still requiresmodification. How-

ever, it has the great advantage over previous

J2nkF(fI)= - 2mik bdbS(b)Jo(kOb sin 13) (11.2)

Probably better accuracywill result if we replace

sin t3+ 2 sin E1/2 . (11.2a)

According to Sec. IX, if the center of the nucleus

is black, we have approximately

S(b) = - 1 forb<b
1“ (11.3)

29



For b>bl, Eq. (9.12) gives

X(b) = i $(u) (2mab)% p(b)/p
o

(11.4)

where we have added the true-absorptionterm COO to

Eq. (9.14). Now use the radial distribution

[Eq. (9.10)],

p(b) = p(bl) exp(bl - b)/a . (11.5)

Then Eq. (11.2)becomes

bl
F(8) = - i~ bdb(-1) Jo(qb)

o
(11.6)

.

{[ H(bI-b)/a_liJ bdb JO(qb) exp X(bl)e
bl

Ms. (9.15), (11.4), and (9.11),We have

-X(bl)
[

=2n2 l-ilm~+OCp
o1

[=Ln2 1-
~Re k(p, w) - k

‘1Imk(p, u) + CP ‘

(11.10)

where k(p,u) is evaluated at a suitable value of P

near p(bl). Then setting

~ = Re k(p, u) - kl
Im k(o, u) + CP

and inserting into Lq. (11.9),we get

(11.11)

F2(13) = ib~aJO(qbl)
[ 1C+ 1.n(l.n2)+ 4 Ln(l +Y2)

(11.12)
+ blJo(qbl) arc tan y .

With

Adding this to Eq. (11.7) gives the total scattered

q = 2kosin 012 . (11.6a)

The first integral is elementary and gives the well-

known diffraction from a black disk.

F1(EI)= iblJl(qbl)/q o (11.7)

The second integral may be simplifiedby noting that

a < bl so that only values of b close to bl contrfi-

ute. Than b can be replacedby bl everywhere ex–

cept in the exponential and in db, thus

J
(b )

F2(9) = - iblaJo(qbl) 1 @@lx

o
X(b)

x[exp X(b) - 1] (11.8)

It should be remembered that X hea a negative real

part [Eq. (9.15)]. Then

h 1 1F2(13)= iblaJO(qbl)kn -X(bl) + C - Ei X(bl) ,
.

(11.9)

where C = 0.577 ia Euler’s constant. The integral-

exponentialEi (x(bI)) ia small, and it is essen-

tially cancelledby the exponential term which we

left out in tbe first integral in Eq. (11.6). Using

amplitude.

The imaginary part of the scattered amplitude

is mainly the contributionfrom the black disk [Eq.

(11.7)]. The first term in Eq. (11.12) is small.

The second term gives the real scattering amplitude;

it haa the same sign as Eq. (11.11),hence it is

positive if the potential on the pion is attractive.

The real part of Eq. (11.12) may permit at least

semiquantitativecomparisonwith Coulomb interfer-

ence at energies away from the resonance. The real

part arises only from impact parametersnear bl, se

shown by the factor JO(qbl).

Diffractionminima correspond to a zero of the

imaginary part of F, thereforeessentially to

Jl(qbl) = O . (11.13)

The differentialcross section for this q should be

zero at the resonance energy. Away from resonance,

the real part of Eq. (11.12)will still give a non-

vanishing result. his may be another way to secer-

tsln the position of the resonance.

It has often been suggested that pions in the

resonance region would be a very good tool for the

explorationof

clei as “8Ca.

cleus is known

the neutron distributionin such nu-

The proton distributionin this nu-

to be very nearly the same as in

,

.

.

b
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40ca, but in addition there iS a comPlete ehell ‘f

neutrons containingeight of these in the 1 f~,~

shell. Figure 13, curve C, shows the density dis-

tributionof the neutrons or protons in the inner
, 4aCa, according to the den-shells (1s 1P ld 2s) of

m
sity-dependentNartree-Fock calculationsof Negele

, which agree well with electron scattering experi-

ments and measured binding energies. Curve f shows

the density of the 1 f neutrons on the same scale.

Beyond r = 5 fm, the 8 f neutrons contribute somewhat

more to the total deneity than the 20 core neutrons.

The scattering of IT-is determinedby the ef--

fective density

3
P(m) =yPn ++pp , (11.14)

where p and p are the neutron and proton density.
n P

The effective density for n+ scattering is

P(7r+)=+Pn++Pp . (11.15)

Both P(rr-) and P(m+) are shown on Fig. 13. We have

marked with crosses the pointe where p(m+) and p(n-)

become equal to % PO = 0.040 fro-3which we showed in

Table II to be about the point bl, i.e., the effec-

tive nuclear radius for elastic scattering near the

resonance energy. The correspondingpoint for tote

scattering alone is marked on the C curve.

.

.
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Fig. 13 Density distributionof nucleone in “8Ca,o
according to the calculation of Negele
in nucleons per fm’. Curve C: Core nucle-
ons (eitherneutrons or protons). Curve f:
Neutrons in the 1 f shell. Other curves:
Effective density for scattering of n+ or
T-. The i-signs mark the points where the
effective dansity is 114P0 = 0.04 fro-3.

The effective radii are

b] (T-) = 4.60 fm,
+bl (T ) = 4,41 fm, and (11.16)

bl (C) = 4.30 fm.

~hW the ‘ISCa*uclew should appear about 4% larger

for n-
+

than for n scattering, and the latter radius

is about 3% larger
71

than the radius for scattering

by ‘°Ca. The 4% differencebetween n+ and m- should

be easy to observe by the position of the first dif-

fraction minimum; this would give direct evidence

that the neutron f shell extends beyond the core.

There is some chance that a similar, but much

smaller, effect could be observed in heavy nuclei

like 20‘Pb. Whereas the maximum of the neutron

shell is located at about the same radius as the

last proton shell,
70

the proton density decreases

more rapidly for large r than the neutron density

because of the Coulomb potential. Aside from the

effect being smaller, however, the Coulomb acatter-

~m.ight meek the first diffractionminimum in a

nucleus es heavy es lead,

Another way to observe the neutron 1 f shell in

*sca may be the charge exchange scattering. tiecon-

sider in particular the process in which the ‘8Ca

nucleus is changed into the analog state in “8SC,

Ca+lT+= ‘aSc(T = 4) + n“ . (11.17)

The analog state hae isospin T = 4, and a wava func-

tion just like qaCa, except that one neutron in the

1 f shell is replaced by a proton. The energy

change is just that due to the Coulomb energy, about

6 MeV. The procass may be recognizedby selecting

no’s of high energy correspondingto the 6-MeV ener-
72gy loss. The process (11.17) can- go on with

the neutrons in the 1 f shell. The core neutrons

will also give charge-exchange,but this involves

much greater energy transfer to the nucleus. More-

over, the process (11.17) can go on with IT+;the V-

can only undergo charge exchange with core protons.

So the observation of the differencebetween n- - IT”
+

and T - T“ charge exchange is another way to eepa-

rate out the.process (11.17). Once this is done, it

should give the density distributionof the 1 f

neutrons, rather than the combinations in Eq, (11.14)
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and Eq. (11.15);but of course the absorption of the

IT+before charge exchange, and of the II”sfterwards,

must still be taken into account, and these involve

Eq. (11.15) and p(lI”)= pn + pp.

Returning to the general problem of elastic

scattering,a correct theory should of course not

use the eikonal method, but an analysis in angular

momenta. ‘Ibishas been attemptedby Beiner and

Huguenin
73 7.4

who write scattered amplitude

L

f(kO, e) = (2ikO)-1~ (2L+1) (S1-l) Pk (COS EJ)

!.3=0

(11.18)

where

. yk
‘L

(11.18a)

with complex phase shift 6L. When doing such an

analysis, one should be guided by the physical fea-

tures of the scattering as discussed in Sees. IX and

XI. In the resonance region, let us say from 100 to

250 FleV(laboratorykinetic energy), the nucleus is

black, so that we have very nearly

‘L=o for!,<!t =kOR-% .— c
(11.19)

For 12C, ~ = 2.58 fm, we get

80 = 1.75 for Tlab = 100 MeV

and (11.20)

LO = 3.5 for Tlab = 250 MeV .

Only for k > LO do we nked to find Sk from the ex-

perimental data. The maximum useful L may be set

arbitrarilyby SL = 0.9. Using the notation of Sec.

IX, this corresponds to

bz =b + 1.86
1

and

L=kb -+
02

For 12C, we have bz

L = 3.3 for T.

a (11.21)

. (11.22)

= 4.35 fm,

= 100 MeV
lab

and (11.23)

L = 6.2 for Tlab = 250 MeV .
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Thus we need only consider
75

1 = 2 and 3 for 100 MeV

and (11.24)

k = 4, 5 and 6 for 250 MeV .

It should be possible to do a phase shift analysis,

even with complex phases, for such a small number of

partial waves. This will be a way to derive k(p,u)

from experiment, rather than predict the experimental

results from an imperfect theory.

S11. INELASTICSCATTERINGAND REFRACTIVE INDEX

We have seen in Sees. IX-XI that the elastic

scattering in the resonance region does not indicate

anything about the behavior of pions in the interior

of the nucleus, except that the imaginary part of k

is large. We shall now examine what informationwe

can get from inelasticscattering. In particular,

we shall look at quasi-elasticscattering, i.e., the

scattering of a pion by a single nucleon (see also

Sec. V.

The main feature of the theory is that the real

part of k in the nucleus is much greater than kO,

provided the energy is appreciablybelow resonance

(175 MeV lab). Accordingly, the energy transfer to

the nucleon is also much larger. From a quasi-elas-

tic scattering,we therefore expect to get

(1) a recoil nucleon of very high energy, and

(2) an inelastic pion of low energy.

As we show below, it is probably difficult to ob-

serve the pion, so we shall concentrateon the re-

coil nucleon.

Quasi-elasticscattering may occur (a) in the

nuclear surface, let us say at r > R, where R is the

point where p = % PO, and (b) in the interior,

r<R. In the surface region, the pion behaves al-

most like a free pion, the nucleon effective mesa is

near 1, and the nucleon momentum is not very large

because pF ~ 1.05 fr”-l. Assuming the nucleon to be

initially at rest and the pion to be scattered

backward, the energy transfer is

PF2 2 k02M
Au=== .

m (M+ui)2 ,
(12.1)

This is roughly~ of th~ kinetic energy of the

pfon. The nucleon recoil &tergy is about AU - B

where B ~ 8-16 MeV is the binding energy.



In the interior, the momentum of the pion is

much larger than kO which permits a larger energy

transfer. The larger nucleon momentum, and the

smaller F@, further enhance the energy transfer.

& we discussed in Sec. V, nearly all of the pion—

kinetic energy may be transferredto the nucleon.

Thus we may expect to see nucleons of high energy

emerge from the interior of the nucleus.

It is true that these nucleona may suffer col-

lisions while trying to get out of the nucleus. In

these collisions they may lose energy, be deflected,

or suffer charge exchange. But the collision cross

section is only about 40 mb, roughly half that of a

resonance pion, so that a recoil nucleon has a much

better chance to emerge, possibly even with undimin-

ished energy and with its original charge. We there

fore propose an experimentalsearch for high-energy,

quasi.-elaaticrecoil nucleona, The incident pion

energy should be well below the resonance, perhaps

100

the

r=

MeV.

The probability that

nucleus head-on, will

R iS

a resonance pion, hitting
1

penetrate to P = ~ PO,

P = exp (-2
J

Im k(r) dr) . (12.2)

R

Using Fig. 10, Eqs. (9.10) and (9.11), and Table II,

we find

ps3t)06 . (12.3)

For off-centerhit, P is smaller, but we estimate

that roughlyhalf of the pione have their first in-

elastic collision in the interior.

The scattered pions themselveshave considera-

ble difficulty in getting out of the nucleus. In

the first place, there is the absorptionby Im k,

giving a second factor P. More interesting,end

often more important, is the refractiveindex

n = k/kO . (12.4)

Using Fig. 11, we have calculatedRe n as a function

ofu, atp=pO. Figure 14 showa the result: Re n

has a maximum of nearly 2 between 30 and 60 MeV,

then falls to 1.5 at 100 MeV, 1,2 at 150 MeV, and to

1,0 at 220 MsV (lab). The minimum is about 0.94 at

300 MeV.

~
0.5 Lo 1.5

kelp “

Fig. 14 Real part of the refractive index, at d--
Sity Po, as a function of kO/P. The +
sign marka n -fi where the probability of
total reflection is one-half. ---line of
COS20C, read on the right-hand scale.

A pion of 30 to 150 MeV, toting from the inside

to the nuclear surface (now consideredplane) may

thus suffer total reflection. This phenomenon, as

is well-known, is not modified by the fact that n

changesgradually from its interior value to 1. To-

tal reflectionwill occur if the angle 6 between the

pion momentum and the normal to the surface satia-

fies Snell’s condition

sin t3> sin 0= = l/n . (12.5)

Assuming that the direction of the pions in the in-

terior (e.g., after queei-eleeticscattering) is

random, the fraction unable to get out is

Cos ec = (1 - ~/n2)% . (12.6)

Actually, because of the absorption of pions in the

interior,both on the way in and especially on the

way out, the direction of pions coming to the sur-

face is not random, but favors small angles e. An

uninterestingcalculation

totally reflected is then

cosz 13 - 1 - l/n2
c

shows that the

notEq. (12.6)

.

Thie quantity is alao plotted in Fig. 14.

fraction

but nearly

(12.7)

Up to a-

bout 110 MeV, the chance of getting totally reflec-

ted is greater than one-half!

.
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It is for this reason that the observationof

quasi-elasticallyscattered pions ia apt to be dif-

ficult. Their number is small, and the theory con-

tains so many uncertain factors that interpretation

of the cross section is nearly impossible. Even if

inelastic piona are observed, it is hard to tell

whether they have been scattered once or several

times. An exception is, probably, the case of ~

~ energy of the scattered pion; aee below.

The large total reflectiondoes, however, have

one simple consequence. Most pions, once they are

inelasticallyscattered,will stay in the nucleus

for a long time, and therefore are apt to be cap-

tured by the two-nucleonprocess [Eq. (1.11)].

This process by itself haa a very small cross sec-

tion?’ even at p = PO, the correspondingIm k is

only about 0.035 p, correspondingto a mean free

path of 20 fm. However, by repeated total reflec-

tions, the path of the pion inside the nucleus may

indeed be 20 fm or more. The capture process [Eq.

(1.11)] should be observablebecause the two nucle-

ons resulting from it have high energy because they

have absorbed the rest energy UC* of the pion. But

they may not come out in opposite directionsbe-

cause the pion momentum is still appreciable,per-

hapa es high as 2 p. Their charge is alao not nec-

essarily predictablebecause the pion may have suf-

fered one or several charge exchanges.

An integral method to determine this capture of

faat pions is to send a m+beam on a= target of

some material, and to measure the positrons from the
+
T -P+-e+ decay. These positronswill be emitted

+
when the T hea been brought to rest. Their number,

divided by the number of incident T+, indicateshow
+

many T escape capture in flight.

The total reflection,which we have discussed,

may Stop at low pion energy. * we discussed in Sec.

VI, Re k may become small end even negative at small

pion energy. l%ue at some energy UI (perhaps 30

MeV), Re k = k, and below this energy,

RenCl ifal<wl . (12.8)

For these low energies, then, the pion will come out

easily from the nucleus once it has made its way to

the surface. ‘hue we may expect that many of the

inelasticallyscattered pione will come out with

very low energy regardlessof the energy of the in-

76
cident pion. The energy distributionof theaa pi-

ons will give informationon the optical potential

of pions in the low-energyregion, which ia very in-

teresting. But it will give no information on the

inelasticscattering processeswhich have taken

place in the interior because most of the piona will

IIavesuffered more than one collision. The angular

distributionof these low-energypiona ie probably

not far from isotropic,with some preference for the

backward direction (becausemany of them will come

out near the place where the incident pion has en-

tered).

The result, [Eq. (12.8)], may also mean that

incident pions of low energy, u z Wl, may experience

something like mirror reflection from the nucleus,

giving enhanced and nearly isotropic elastic scat-

tering.

At low energy, the term V2p in Eq. (8.7) be-

comes important (i.e., the local density approxima-

tion is no longer good). Then there is effectively

a pOtential minimum at the nuclear surface, and the

pions may preferentiallymove along the surface.

We have discussed only one type of inelastic

scattering, the quasi-elasticone. There are at

least two other types: (a) excitation of surface vi-

brations of the nucleus, and (b) ejection of a-par-

ticles. Both of these may happen particularlywith

pions movl.ngnear the surface of the nucleus. In

case (b) this is so because only in this manner can

the a-particle get out easily.

Experimentsby Jackson et al.,
77

by Lind et
78

al.,
79

and by Aahery et al., indicate that emiss-

ion of one or several a-particles is remarkably

frequent. The experiment consists in the observa-

tion of the characteristicy rays from tha residual

nucleus which indicate how many nucleona and of what

charge have been removed from the target nucleus.

The incident pione had energies up to 380 MeV. Ex-
80

periments by Lewis et al., at..6Oand O MeV, in-

dicate a considerablysmaller effect of this kind.

H. Lipkin81 has suggested that the present the-

ory may help explain these observation. First, the

pions are often near the nuclear surface, es dis-

cussed above. Second, they may not have enough en-

ergy to eject single nucleone. In collisionswith

a-particles (perhapspreformed in the nuclear sur-

face) the pion loses less energy because of the

greater maaa of the alpha.

.

.

.

.
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It is obvious that the behavior of low-energy

pions is far from clear, and will require a lot of

further theoreticaland experimentalwork.

XIII.SUMMARY

The basic quantity in our theory is the pion

self-energy11which gives the relationbetween the

wave number k(p,u) of a pion in the nucleus and the

energy u [Eq, (2.2)]. Following the work of Dover
15

and Lemmer, the main part of 1 is obtainable from

the amplitude for forward scattering of a pion by a

single nucleon in nuclear matter by integrationover

the nuclear density [Eq, (2.11)]. The main modifi-

cation to this result is the Lorenz-Lorentzcorrec-

tion [Eq. (2.12)] which is due to the fact that two
19

nucleons cannot come very close together.

The forward scattering amplitude f(w,k,p) is

obtained from a theory enalagous to that of Chew and

LOW.16 The most important problem here is unitarity.

To treat this problem properly,we have to go to

real values of k, hence complex values of IAJ.This

introduces certain modificationsin the Chew-Low

theory. However, it is shown that the main feature

of the Chew-Low theory, the “effective range approx-

imation,” is preserved, and we get a 33-resonanceat

about the same energy as for free nucleons. After

performing the calculations,we can transformback

to real energy u and complex k, and obtain the final

result for forward scattering [Eq. (3.31)].

The Pauli principle for the nucleons in nuclear

matter is importantbecawe it excludes certain fi-

nal states in the quasi-elasticscattering of the

pion by a single nucleon. It is taken into account

by solving the Lippman-Schwingerequation (Sec. IX

and App. A). It is helpful in this connection that

f is only needed for nucleons at the top of the Fer-

ml sea.

The (real part of the) pion momentum in nuclear

matter is large. This leads to large energy loss of

the pion in quasi-elasticcollisionsonce the finite

mass of the nucleon is taken into account. Like the

Pauli principle, this reduces the probabilityof

quasi-elasticscattering, and hence the imaginary

“damping” term which this process introduces into

the elastic scattering amplitude. The combined ef-

fect is about a factor of 1.28 in this damping (Sec.

V and App. B). Also the form of the damping term is

changed. In this respect, our theory differs from

the simple model
19

in which the pion changes the

nucleon temporarilyinto a A; in other respects,

this model is most similar to our theory.

The behavior of pions is rather different at

low energy where the damping by inelastic scattering

is small. The standard theory
5,9,10

of pionic atoms

is found justified. At kinetic energies up to about

30 Mev, k(p,uO is calculated algebraically(See. VI);

it is mostly imaginary.

At energies above 30 MeV, a simple model of our

theory is calculatednumerically (Sec. VII). The

wave nuder k remains moderate for all densities, so

that the Kisslingerl syndrome [Eq. (1.6)] is avoided.

The real part of k is always much larger than the

imaginary part, again in contrast to the Kissinger

theory. The effective absorption cross section at

resonance is consideredly less than the free-nucleon-

pion cross section.

Effects near the nuclear surface are considered

in a very approximateway (Sec. VIII). Then the

scatteringby a finite nucleus is treated in the

eikonal approximation (Sec. IX). The elastic scat-

tering of resonance pions is essentially determined

by the part of the nucleus where the density is a-

bout a quarter of nuclear density. Because at this

low density the Kissinger (and similar) theories

are valid, this explaina the fact that these theo-

ries have given good numerical answers for elastic

scattering. A reason is given why the “local” form

of that theory [Eq. (8.7)] may be especially success-

ful.

The center of the nucleus is black to resonance

pions. To get information on the interaction of pi-

ons with high-densitynuclear matter, we must use

pions of lower energy, perhaps 30-80 MeV. Our theo-

ry is not yet ready to describe these because we

have not yet dealt properly with the effects of

changing density (surfaceeffects).

The width of the resonance in our theory is ap-

preciably greater than for free nucleons (Sec. X),

in contrast to some recent theories.

The position of the resonance should not be de-

fined by the maximum of the reaction cross section,

and even less of the total cross section, because

these are secondary effects. The only proper defi-

nition is as the energy at which the real part of

the nuclear scattered amplitude is zero. This can
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be experimentallymeasured by the Coulomb interfer-

ence. Experimentsshow that the so-defined reso-

nance is shifted downward from the free-nucleon

resonanceby 20 i 20 MeV. Our theory predicts a

downward shift by 10 MeV, which is the sum of a

slight upward shift according to the calculationsof

Sec. VII, plus a somewhat larger down shift due to

the contributionof the “small” waves in pion-nucle-

on scattering. We do not consider this agreement as

satisfactory.

The eikonal method is used for a simple quanti-

tative calculationof elastic scattering (Sec. XI).

For a direct analysis of experimentaldata, one may

analyze for the complex phase shifts of those par-

tial waves which correspond to impact parameters

near the nuclear radius; only 2 or 3 values of 1

will be needed. For the small values of l..the nu-

cleus may be consideredblack (Sec. XI).

The proposed experiment to determine the “neu-

tron halo” of “8Ca is very promising. The apparent

nuclear radius for scattering of m- is about 4%

larger than form+ (Fig. 13). Charge-exchangescat-
4ECa is also promising.tering by

A conspicuous feature of pion physics in nucle-

ar matter is the large refractive index, Re n ~ 2 at

about 50 MeV. Pions of energies between about 30

and 120 MeV which try to emerge from the interior of

the nucleons are apt to suffer total reflection.

Therefore there should be few inelasticallyscattered

pions in this energy range. At low energies, z 30

MeV, inelasticallyscattered pions may escape from

the nucleus. In many cases, however, inelastic

scattering in the interiorwill lead to subsequent

capture of the pion in the same nucleus. Some ex-

periments are proposed to study these phenomena

(Sec. XII).
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APPENDIX A

PAULI DAMPING FOR P
3/2

SCATTERING

.

,

.

.

on

For a p state, the K matrix element depends
3/2

the initial and final directions not only of the
4(,

momentum, but also of the spin, thus,

<~ m’lKl~m> = - 81T2K0x

(A.1)

~~ <m’Iy
3/2M(;)> ‘V3/2M(~)lm> 9

‘hereyjM is the generalizedepherical harmonic.

Equation (Al) euggests that we write the T matrix

in the form

<Pm! lTlt m> = X Cm’ly~/2~(~)>
M

(A.2)

<~ MITl~ ~> “

Equation (4.5) is modified merely by adding the

spin variables mi, m, and mf in the matrix ele-

ments. Inserting Eq. (A.1,2),we get

Z ‘mf kf~/2~(kf)A > <k MITl~i mi>
M

A 6

- ‘8n2K0 ~ ‘mflVs/2 M(kf)’ ‘y3/2 M(ki)lmi’
(A.3)

x

J
A

+ikuKoZ d(coe x) fi~ ~ cmfly3/2M(kf)>
m
..1

<Yq/2M(;)[-~‘m[Y3/2~(~)><k~lTltimi> .
Clearly,we can pick out the coefficientof

A

‘mflY3/2 M(kf)>

on both sides, and thereby reduce the sum over M to

one term. Next

and sum over m.

‘3/2 M
(i) =2

n

we calculate the integral over $

We note that

(A.4)
A

C (in, % M-n;B/2 M) Y~(k)lM-n>,

,!

where the C’s are Clebsch-Gordancoefficients,

Y’s are ordinary spherical harmonics, and [M-n

the

>

is the spin function of m = M-n. Then
s

J
IM= d~Zcy ~/2M ‘;)lm> ‘mlY3/2~(~)zm

= ~C(l M-m, ‘%lll;3/2 M) C (1~-311j k; 3/2 i)

Jd$Y ‘-m (i)* yti-m (~) .
(A.5)

1 1

The integral over $ is zero unless M’ = M. Then

IM= X C2(ln, ~M-n; s/2 M) 2mlyln(i)12 ,
n (A.6)

A

2711Yll(k)12 = 3/4 sin2X ,

2TIY1”(;)[3= 9/* COS2X ,

C*(l M-%, %+, 3/zM) =%+M/3,

C*(lM+%, % -%, 3/2 M) =% -M13

(A.7)

(A.7b)

and (A.8a)

. (A.8b)

Because M’ = M, Eq. (A.3) reduces to an equa-

tion for the single unknown z k MITliimiz,which is

A

<k MITl~imi> = - 8T2K” < ‘3/2 M (ki)[m>

a (A.9)

J
+ lkwK. c k MITl~imi> d(cosx) IM(x)

-1

and is eaaily solved for T. According to Eq. (A.7),

we clearly need the integrals [see also Eq. (4.20].

A
Jc = 3/2

J
coe2x d(cosx) = % (1 + X3) (A.10a)

-1

a

JS= 3/,J ai.nzxd(cosx) = % (1 + A) (2+A-A2).
-1 (A.10b)

Using Eq. (A.8),

“(A.ha)A
JM =J d(coax) %(x) = Ja if M =3 3/2

-1
and

JM = 2/3 Jc+ 113 Js if M=~~ .

~ (A.llb)
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Then Eq. (A.9) has

cIcMITI~imi> =

the solution

-8r2Ko < Y312

and

tM - (1 - ik&JM)-l .

Inserting in Eq. (A.2),

.

We

tering,

%

(A.12)

(A.12a)

. (A.13)

are chiefly interested in the forward scat-
.

if = ki. Define

+ aama with -M . (A.14)

Recalling Eqs. (A.4) and (A.8),we find fOt

mi=m = +
f

‘3/2
= 82TIY1112= 3 sin2xi

and

(A. 15A)

[ 1F+= 8T 2/31Yl”12+l/31Yll{2 = 3 COt2Xi+l o

(A.15b)

For ml = -$, the same results are obtained. For

mi = %, m = -~ (spin-flip),it is easy to show that

the contributionsof M = ++ end -% to Eq. (A.13)

just cancel; they have the same ‘cM. Thus we find

<~im’ lT]tim>= ‘116mJK. ~ tM ‘M (A.16)

where the sum goes only over the ~ values M = 3/2,

1/2, and FM is given in Eq. (A.15).

APPENDIX B

CALCULATIONOl?A

The assumptionsof the model are stated in Eqs.

(5.23) and (5.24). We first calculate the angle Xf

of a pion which enda up at Uf = UC and kf = ki = k=.

RememberingEq. (4.lla),Eq. (5.7) gives

Coaxi - COSxf = M*(ui - uc)/Pkr . (B.1)

From our estimate in Eq. (5.22), it is clear that

nearly always

Cos)( > - 1 .
f

The only exception occurs if P is very small, cos a

N-1 inEq. (5.22), i.e., ti nearly opposite tO ~.

We @hall come back to this case.

In the usual case, i.e., if Eq. (B.la) is true,

we have to consider two ranges of integration,viz.,

38

MODEL

a. from ~ to Xf; herek ie conetant -ki and

u changes with X, from w
i
to w=.

b. from Xf to m; here u - Wc is fixed, and k

changes with X, from ki to km (minimum k)

which we shall calculate.

In range a, we get u from Eq. (5.7) which we

write in the form

(B.la) WIth

u = k32+ (P/M*) k COSX

U =W
i
- (P2+ki2 -pF2)/2Mfi .

2

(B,2)

(B,3)

If we assume ki = pF, aa in Eq. (5.24), tht ht

term in Eq. (B.3) ia about P2/21@. tinaverase Value

of P2 is P: + k2, then using Eq. (5.26)

.

*



I

P2/2M* = 0.83 P .

If (oiis the resonance energy,

Further, in Eqs. (5.9) and (B.2),

again,

~ = P/(M+ui) = 0.316 ,

P/M* = C6 , and

C = (M + fJ)i)/Ff* = 1.82 ,

We insert Eq. (B.2) into Eq.
49

consistentlyall terms of order

ing.

(B.3a)

(B.3b)

using Eq. (5.26)

(B.4)

(B.4a)

(B.4b)

(5.11), neglecting

B2, in the follow-

X=k’cosx’=kcosx -ws (B.5)
2

We solve thie for k cos x and insert in Eqs. (B.2)

and (5.14)

lJ=u2+Bcx, and (B.6)

u’ = (J2+ f3(c-l)x . (B.6a)

This shows that u’ is a function of the scattering

angle, i.e., of x, aa noted below Eq. (5.15). The

reason is partly the smell effective mass of the nu-

cleon [see Eq. (B.4b)]. From Eq. (5.13),

k?2, = ~z
-2 S1122X . (B.7)

Therefore, es x changes (k = constant)

d(k’2, = 213u22dx . (B.7a)

As we stated above Eq. (5.21),we uaek’2 in-

stead of k’2 COS2 X’ in the integral in Eq. (5.19).

Omitting the factor U-2 and wing Eq. (5.20),we

have from range a.

x;

I=
J

u’ k’3 d(cosx’).,
Xf

x
.
J

1

x
2

= k2

[ 1[uz +6(C-l)X] (k2-2!?u2x)dx>+x(-26w2dx)

x
(02 X ++6 [k2(C-1)- W22] X2 I 2

x
1

neglecting again a term 62. The limits on

follows [see Eqs. (B.5), (5.7), and (B.1).

x = ki COS Xi - U326
1

=%P - U213+ (kz - PF2)/2P = 1.18 u

x -x = (M*/p) (~i-~c) = 1.51 (~i-.~c)
1 2

= 1.81

x =- 0.63 P
2

X,2 - x 2 very
2

?J,

, and

small .

9

(B.8)

x are as

(B.9)

*

(B.1O)

(B.10a)

(B.10b)

me ket term in Eq. (B.8) is therefore negligible;

the bracket in this term is also rather small, and

so is the factor % 6 = 0.16. In M. (B.1O),we have

used u = 1.2 p (kinetic energy 30 MeV). Thus we
c

have essentially

I=k2u (x-x)=
21 2

=k2u
i*

(M*/p) (~i- Uc) = 15.6 Bq . (B.11)

A more accurate calculation,
48

keeping terms of or-

der B’, gives 13.5 v*.

In region b, we have u = w=, k variable, P

fixed, so Eq. (5.7) gives

coax = (2P)-1 (k- B/k) , and (B.12)

B = ~*(Wi - Wc) + pF2 - P* . (B.13)



In general, B > O; for exception,see below. The

maximum value of cos x iS cos Xf, [Eq. (B.1)1. The

minimum is -1, which is reachedwhen

k=

With the

B=

%
km=(P2+B) -P . (B.14)

values previously used,

7.2 U2, k = 1.07 v .
m

(B.14a)

It is important that k cannot go to zero, but km
< ki. In this range, we use k as the independent

variable, rather than x.

We have

k’ COSX’ = (2P)-1 (k’ - B) - UC6

OJ’-w B-k2
c+2(M+wi) ‘

/2=k k2(l - L) + BE , and

s (B.15)

(B.16)

(B.17)

(B.17a)

with our values of the parameters. The integral

correspondingto Eq. (B.8), but over range b, is

then given by

‘i

J4P(MtIJJi)II= [(K+Wi)uc+~-%k’] x
km

(B.18)

X [kz(1-c) = B(l+C) + 2P2C] dk’ .

Because k:,~k~ [Eq. (B.14a)],we neglect k$. Neg-

lecting some small terms, we get

4P(M+02i)I = [(M+ui)wc+ M*(ui-uc)

+ %pF2-%.P2~ki2] X

X [2M*(UIi-OJc) (l+C) + lJF2 (l+c) - (Pz- kiz) (1-c) 1.

(B.19~

In the flrat bracket, we use Eq. (B4b). We neglect

k:, p: .in both brackets, and L and P2 in the second

bracket, and get

II = (M*/2PC)ki2(Wi-Wc) [mciwi-uc-P2/2M*] ~ (B#20)

From the second bracket in Eq. (B.19) it iS Clear

that the result may be smaller if P is large, e.g.,

near its maximumpF+ k. I and II have the same

form and can be added.

I + 11 = (M*/2P)kiz(wi-uc) x

x[(2+C-1) (LOi-P2/2M*)+ (l-C-l)IIJC]

after using Eq. (B.4b). For our Parameters,

1+11= 22.5uq .

The correct result
49

happens to be also 22.5

‘(B.21)

(B,22)

Pb, by

a cancellationof errors. See Eqs. (5.27) and

(5.28) for discussion.

This

With

We now discuss two exceptional cases.

1. If P is very small, Eq. (B.la) does not

hold.

will happen if

P z PI = - k+ ~k2+2M*(oi-k@ . (B.23)

our parameters,P, _ 1.91 P. l!hismeane that
L

roughly 1/5 of the permitted range of P2 ia in-

volved inEq. (B.23).

If Eq. (B.23) holds, the entire angular range

- 1 < Cosx < Cosxi (B.24)

leads to value5 of Uf > Uc; thus we have OnlY “range

a“ to consider (ace above). Neglecting the (rather

small) effect of the center-of-maaatransformation,

we then need only to consider the Pauli effect.

This

Thus

givea, similar to Eq. (4.25),

L/L’.= Z(l+A) = ki-P/4k . (B.25)

the largest value of L is obtained for P = Pi;

it Is about 0.7 L:. ForP CP1, Eq. (B02S) indi-

cates a decrease of L. Likewise, for P > Pl,

,

.

\

,

,
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,

Eq. (B.21)holds and shows that L decreaseswith in-

creasing P.

2. If P is very large, then B in Eq. (B.13)

becomes negative. Then Eq. (B,12) shows thst cos x

can never become negative. (For B = O, cos x can

just reach O at k = O.) Instead, cos x reaches a
m

minimum when

k = k2 = (-B)* = (p2-D2)+
* (B.26a)

COS~in= (-B)%/P , and (B.26b)

D2 = ~*(ui-Uc) + pF2 .
(B.26c)

For smaller k, cos x increases again, and reaches

+1 at

k=k’=P-D
m

(B.27)

which is the same as Eq. (B.14), except for a re-

versal of sign; clearly, k: < kz. The angular

range frOmx.n to $ Is covered twice, with two

different values of k correspondingto each x.

(This is similar to the claseical scattering of a

heavy particle by a light target.) We believe that

the integrand in Eq. (B.8) should thenbe changed to

ldcosx’1 .

The contributionof the range from k: to k2

large, and the result is not much different

(B.21).

(B.28)

is not

from Eq,

Finally,we discuss the effect of using k’z in-

stead of 3 k’z COS2 x’, or of (3/2) k’2 sin2 x’.

Equations (B.9) and (B.10a) show that the important

region~ involves generally small values of cos X’,

hence in this region

3 k’2 coszx’ C k’2

(B.29)

3/2 k’2sin2X’> k’2 .

Therefore the actual “COS” integral [Eq. (5.19)],

which corresponds to J= in Eq. (A.10a),should be

smaller than the L we have calculated,whereas J

in Eq. (A.10b) is larger. From Eqs. (B.9) and (:.7),

Cos x
i
= 0.56. Using Eqs. (All) to (A.16), it can

then be seen that the effective damping ie slightly

larger than our L.

/@~)ENDIxc

PAULI PRINCIPLE AND UNITARI’N

FOR THE NEDIUN IN THE

LIPPNAN-SCHWINGERTHEORY

Here we give a justificationfor our basic nu-

clear matter equations [Eq, (3,11) and (4.5)]. Al-

though we use a specific model, the essential con-

clusionswould presumably follow from a more general

approach.

Aasume

nucleon can

T(u) =

that the interactionof a pion with a

be describedby an equation of the form

V(w) + V(w) G(u) T(u) , (Cl)

where V(w) is a kernel end G(u) is a propagator for

the positive frequency components of the intermedi-

ate pion and nucleon. For the purpose of this ap-

pendix, we shall assume that the mass of the nucleon

is infinite (we relax this assumption in Sec. V).

We take V(u) of the form

where

given

<? Iv(ldll> - -’”v(q~v(’)w-+’+f
P33(3,’bv(q’ ,q;w) (C.2)

V(q’,q;u) is a

in order to do

quantity which would have to be

a specific model calculation.
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The particular choice of factors in Eq. (C.2) coin–

tides with Eq. (3.4).

The pion propagator in nuclear matter is given

l.nEq. (2.1). This propagatesboth positive and

negative frequency components. To obtain G(q,w)

from it, we write

2wk
G(k,u) = ~, & , (C.3)

where% is a solution of the equation D-’(k,wk)= O,

i.e.,

U: - k’ - U2 +lI(k,wk) = O . (C.4a)

In Eq. (C.4a) k is real because the intermediatein-

tegrationin Eq. (Cl) ranges over a complete set of

pi.onstates; Uk is thereforecomplex. ‘l’henormali-

zation N(Ic)

D(k,o+)

21Jk

mm =

‘-’.‘-l in Eq. (C.3) is the

The factor 2% is necessary if we

of Eq. (C.1) to coincidewith the

[Eq. (3.4)].

residue of

(C.4b)

want the solution

Chew-Low amplitude

In nuclear matter, nucleon “particles”contrib-

ute to the positive frequency propagator and “holes”

to the negative frequencypart. A more correct the-

ory would therefore replace Eq. (C.3) with

(C.5)

The Pauli operator Q is defined in Eq. (4.7).

We have assumed, in writing Eq. (C.3) and

(c.5), that Eq. (C.4a) haa only one (dominant)POsi-

tive frequency solution ~ for real valuea of k.

If, in a particularmodel, this assumptionshould

prove to be false, then Eq. (C.1) is etill a correct

equation, provided that we add to the right-hand

side of Eqa. (C.3) and (C.5) more terms of the same

form, corresponding to the additional solutions.

Let us asaume that the solution to Eq. (Cl)

haa tha form of Eq. (3.4),

(c.6)

<~ lT(fJ)[&=
()

-41V(q’ )V(q) 4al/Jq-+

P33(a,;)T(q’;q;Ql) .

It then follows from Eqa. (Cl), (C.2), and (c.6)

that

m
T(q’,q;U) = v(q’,k;u) - ; J v(q’,k;w) X

o

X -) T(k,q;w) (C.7)

using the fact that P3~ is normalized so that

J
df2kP3#’ ,~) P33(i,~) = 4mk2P33(~ ,~) . (c.8)

If we had used Eq. (C.5) for G(k,u), then Twould

not have the simple angular dependence

UWITARITY

Define T+(q) and T-(q) as follows

+(q) :Lim T(q,q;W)
.

tiq* i&

of Eq. (c.6).

(C.9)

Unitarity provides a (nonlinear)relation between
+
T and T- along the contour of real q. We make uee

82
of the following theorem.

If TA and TB are defined in terms of V, GA,

and G ,B

‘A”V+VGATA

and

(C.10a)

TB-V+VGBTB (C.10b)

then TB may be expreased in terms of TA and the dif-

ference GB - GA,

TB = TA+ TA (GB-GA)TB . (c.10C)

.

,

,
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$

Taking GB ~ G(k,uq + irl)and GA = G(k,u - irl)wits
83

q
cleon scattering,Ilzp-wave, etc. We may neglect

G(k,m) given by Eq. (C.3),we find easily the k-dependent factor vz(k) because in realistic

cases it is different from unity only for very large
Zuk

‘B — (21’ri)&(wq-wk) .
- ‘A = - N(k) (C.11) ‘“

If we keep the first two terms of Eq. (C.15) and

use Eq. (C.4a), then

Next, using the definitionsin Eqs. (c.6) and (c. sl) ,

and the theO~em Of Eq. (C.1O),we easily find the

[

u$-k2-p2+RO(uk)

desired unitarity condition ~ (k,wk) = 2ti2(wk) = 2k 1.kz
(c,lf5)

T+(k)
- ‘(k) = 4ik’v2(k’[N(k)W’<(k);(k) It now follows from Eqs. (C.14) and (c.16) that

(Cl?)

dw

[

wkz-uz+l$(~)
In the absence of the medium Eq, (C.12) reduces N(k) & = 2k 1 (C.17)

k
to the familiar condition of Eq. (3.7). But in the

presence of the medium, Eq. (C.12) is just the con-- so Eq. (C.13C)becomes

dition we need to obtain the result in Eq. (3.li).
a

To see this, refer to Eq. (3.10) and note Fa((AIk)= -2iksv2(k)~

(

kz

‘k
)Wkz-uz+rto(wk)“

(c.18)

(c.13a)
A simpler but less correct expressionwould be to

neglect the derivative~ in Eq. (c.14). This iS
+

where ga and g; are defined in analogy to T
+

and T- justified only for large k or small density; it

in Eq. (C.9). But using Eq. (3.8) and identifying leads to a result more like that of Barshay et al.

h~(~) with Tt we find We find, then,

A

( 1 1Fa(~). #___.—
k _r+(k) T-(k))

and, using Eq. (C.12),

(C.13b)
dwk

N(k) ~= 2k and

a
Fa(wk) = -2i’3V2 (k) : .

(C.19)

(C.20)
..

‘Ukl‘1Fa(uk) = -4ik’v2(k)#[N(k).~J . (C.13C) For very little additional effort, computation could
k.-

be carried throughwith the exact expressions of Eqs.

We may simplify Eq. (C.13c). DifferentiatingEq. (C.17) and (C.18). We have chosen to use Eqs. (C.19)

(C.4a),we find
and (C.20) in this work, but expect the qualitative

features to be unchanged in the more exact case.

d%
N(k)~=2k-~ (k,uk) o (C.14)

PAULI PRINCIPLE

NOW, in our theory the dependence of II(k,u)on k is The concern here is to find the solution T(w)

completelyknown [see Eqs. (2.11),and (s.s1)1. of Eq. (Cl) with G(q,u) taken fromEq. (C.5). TO

Thus, we may write solve Eq. (2.2),we need T(w) for real w. Of

cOurse Eq. (Cl) is valid for any w, but to solve it

II(k,w)= ~b(W) + k2112(w)+... (C.15) we need the solution w Of Eq. (C.4a) because Eq.
q

(Cl) depends on Wq through the propagator [Eq.

(C.5)]. The solution of Eq. (C.5) requires, in turn,

with the coefficientsITO,J12,etc., known functions. T(wq). Therefore, to solve Eq. (Cl) for T(w), we

The contributionof 110is of course the s-wave n-nu- must first solve it for T(wq).



If we set w = Wq in Eq. (C,l), then G(k,~q) is

singular when ~ = III. Therefore it is necessary
q

to specify the path of integrationin Eq. (Cl).

To obtain the proper sign for the imaginary part of

kIq,we must add +irlto the denominatorof Eq. (C.5).

In this caae, G(k,wq) may be written as a principal

value and pole term,

2tik 2(J
G(k,mq) ‘~ P~-ill *Q ~(uq-wk) o

‘q-uk
(c.21)

me principal value propagatormay be used to define

a K-matrix

and

K(IJq) - V(Uq) +

the T-matrix may

K-matrix through the

“(C.1O). We find

P V(uq) G(wq) K(uq) , (C.22a)

be expressed in terms of the

help of the theorem of Eq.

modificationsin Eq. (C.22a) and therefore that the

K-matrix in l?q.(c.22c)may be taken to be tha free

K-matrix, Kf(u). The reasons are (1) the high mo-

mentum intermediatestatea dominate Eq. (C.22a),and

(2) the nuclear effects contributeonly over a rel-

atively small range of integrationat low momenta.

I{avingsolved Lq. (2.22c),we can solve Eq. (C.4a)

for wk and then Eq. (Cl) to get T(w) for real U.

However, there is a simpler way to proceed.

Let us assume the validity of Eq. (C.22C),with K

taken from the Chew-Low theory. In this case, the

dependenceof K on its variables is completely

known. If it ia true that only one mode @k ia im-

portant, and that no singularitiesare crossed in

moving the contour Wk to the real axis, then T(w)

is the analytic continuationof T(uk), obtained by

replacingWk everywhere in Eq. (c.22c)by U, and k

everywhereby kw. The result ie our Eq. (4.5).

8

.

Changing the variable of integrationfrom dk to

we find the equivalent expression
%’

i7T(2w ) qz dQk
<~’ lT(t13q)l~> = <~’ IK(wq)ltz- ~(q) dw

:!
— c; ‘ lK(wq)lI>Q(t,t)ctlT(wq) It> . (C.22C)
(21r)3

dq

awe may use either EqFor N(k)dk . (C.17) or Eq.

(C.19).

Equation (c.22c)may be solved for T(wq) if

K(uq) is known. We expect that the results of cal-

culationswill be insensitive to the nuclear matter

44
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