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ABSTRACT

Lattier gas models for maltiphase fluids and for maguetohydrodynamie fluids are

briefly deseribed.



1 Introduction

Lattice gas automata (LGA) are many-body dynamical system with discrete space
and time. The microscopic state of the systein is compietely specified by a few inte-
ger quantities at each lattice site. An update of the systeni is implimented according
to the dynamics of the lattice gas automata particles, which are usually dcterniined
only by local information. The first LGA model was introduced by Frisch, Hasslacher
and Pomeau (FHP){1]. It exhibits a fluid behavior and. in the low Mach number
limit, obeys the incompressible Navier-Stokes equations. Since the creation of the
FHP model, lattice gas research has developed rapidly, providing not only furtlier
insight into the relation between the microscopic processes and macroscopic proper-
ties, but also a new procedure for doing fast computations. Recently there have been
new models formulaived for improving various properties of the FIIP mmodel (2] or for
extending it to include other physical processes[3,4,5,6]. As a result, this research
has opened up brand new fields. already this research has had some impact on the
understanding of the macroscopic properties ot physics, in particular, the properties
of multiple fluid systems. Moreover, some important potential industrial applications
[7] are now being explored.

There are several reasons for the recent rapid growth in lattice gas researchi. The
method provides very bhigh resolution because it is very memory efficient. In the
shimplest algorithin, over 10 cells are stored in cach CRAY word.  Problems with
5 000,000,000 cells can now be run on a CRAY X/MP. The algorithi is quite fast,
300,000,000 cells can bhe updated cach second on a CIRAY X/MP using four heads and
about an order of magnitude higher speed caun be achieved on a Connectionr Machine

)

-

Also. the algorithm is totally parallel, This parallel feature 15 casily exploited



on existing computers. In addition, an enormous gain c:..» be made by constructing
dedicated hardware. Already. inexpensive dedicated boards are available which allow
small PCs to run lattice gas problems near CRAY speeds. Dedicated boards are
now planned for delivery in 1990 which are expected to be a thousand times more
powerful. It is possible to build with existing technology a dedicated machine which
has tlie complexity of existing CRAY's but which would execute lattice gas algorithnis
many millions of tiines faster. (Oue should interpret this impressive gain in computer
speed cautiously. For periodic problems on existing machines, lattice gas methods are
slower than spectral methods at least by an order of magnitude. But for complicated
boundary conditions, lattice gas methods can solve problems which are not solvable
by other methods, for example, flow tlirough porous media.)

Other advantages of the lattice gas algorithm include tlieir ability to conserve
energy and momentum exactly, their itiherent stability with no mesh tangling or time
step crashing, and their capability of implementing complex boundary conditious

quickly and easily.
2 The FHP Model

The basic 2-D FHP lattice gas model[l] consists of identical particles onn a hexago-
nal lattice with lattice constant ¢ = |. All particles have tlie samme 1,as8 and they
reside only on the sites of the hexagonal lattice. There are six different particle
monientumn states at cach lattice site which can be associated with the divections
e, = lcos(2ra/6). sin(2ra/6)] (a = 1.....6). An exclusion rule is imposed so that
1o more than one particle at a given site can have a given momentuin state, If we
use Vo (x) (o = 1..... 6) to denote the particle oceupation in state a at site x, thea
V, = 0 or |. There are two microscopic updating processes at cach time step: al

vection and collision, T the advection process, a particle in state ¢, moves from its



present site to nearest neighbor sites in the direction é,: ail particles have the same
speed (= 1) and the same kinetic energy. In the collision process, particles at each
site are redistributed among the 6 momentuin states at the same site in such a way
that the total particle number (= £8_, N,) and the total momentum (= Y6_, ¢, NV,)
are conserved. Since all particles have the same mass and speed, energy conservation
is equivalent to mass conservation. The particles behave like hard spheres with zero
radii. It can be shown that at cquilibrium the FHP lattice gas behaves like an ideal
gas (8,9, p = p/2, where p is the average particle density.

The microdynamical evolution of the FHP system is also completely determined by
the above two processes, which can be described exactly by the following microscopic

equation everywliere on the lattice:
No(Xx+ €ayt + 1) = No(X,t) + Agi a=1,...,6;

wliere A, represents the creation or annihilation of the particle occupation N,(x.t)
at tlie momentum state €, due to collisions, which only depends on the information
at the site x at tiine t. The particle and momentum conservations are satisfied by

61 Aa = 0 and Y8_,é,A, = 0. The explicit expression of A, depends on the
detailed collision rules[8,9]. Ensemble averaging the microscopic equation we obtain

the lattice Boltzmanu equation for large scale space and time beliavier([9],
(‘)!fll(x|t) + Eu ' Vfa(x|t) = Q.“

where f, = (N,) is the distribution function, 2, = (A), and *( )" denotes the
ensentble averaging. Using the standard definition for the fluid density p = T4_, £,
“

and velocity v = 30_ 6, .. and after the Chapman-Fuskog expension, it can be

shown that the FHP system obeys the following fluid equations{l N]:

('),/) v V. (pv) =0,



8(pv) + V-[pg(p)vv] = -V +vV?(pv),
1
p = 3lp-s(p)V’]
where g(p) = (p — 3)/(p -- 6), and v is the viscosity. Therefore the incomp-essible

Navier-Stokes equations are recovered in the low Mack number limit by rescaling the

time, since in the density p is a constant in this limit.
3 Realistic Equations of State

Another important development is the formulation of lattice gas models for arbitrary
equations of state, including multiphasc systems. It is known that the equation of
state for FHP system approximates an ideal gas law. To simulate systems with
nonideal gas equation of state, the particles must have more than one speed in order
to have a realistic energy equation. Also the particle interacticns must be generalized
to include potential energy, which can depend on density and temperature. A simple
model which has these minimal properties was recently proposed[15] and was shown
to exhibit first-order phase transitions.

In addition to the FHP rules. this model allows at each site x another hLind of
particle (“bound pair™), with occupatior. Ny(x) (= 1, 0). A square-well pairvise

potential energy is introduced between any two bound-pairs at distance r:

m-):{ —¢, f0<r<ec

0 otherwise
where ¢, = const. > 0. (This constant can be set equal to unity without loss of
generafity.) ‘That is, a bound-pair ouly bas noun-zero potential energy with those
bound-pairs at its 6 nearest neighbor sites. These bound-pairs possess a total potential
cnergy, b o= —-%«,, 3o Yo(X) Vol x + ¢,). which varies according to the distribution of
the bound pairs. A transition between bond pairs and free pairs process is includisl,

such that the ratio of the probabilities for the system to change from oue state to



another is proportional to exp(—3AFE), where AE is the potential energy difference
between the two states. Since the evolution of the system is a Markovian process, it
can be shown that the canonical ensemble is an invariant measure for the system in
equilibrium with temperature 1/3 [16].

In this simplest model, the following transitions are allowed: 1) a pair of oppo-
sitely directed free particles may form a bound-pair with zero net momentum, and
2) a bound-pair may become two oppositely directed free particles. The mass of a
bound-pair is twice that of a free particle. The potential energy change associated
with a binding transition at a site is AE(X) = —€, L%, No(x + é,). With constant
temperature everywhere, the updating rules are specified as follows: To avoid mul-
tiple transitions the lattice is divided into 3 independent sublattices, each of them a
hexagonal lattice but with the lattice constant Vic particles on the same sublattice
are separated by more than one lattice unit and hence not mutually interact. At each
time step, the updating of the system associated with the transition process is done
in parallel in 3 steps, each step involving only one sublattice. A binding probability
¢ = dexp(—-BAE)/(1 + exp(—PAE)) (A <1) is assigned at each site of a sublattice.
The unbinding probability @ for particles is A(1 — ¢). A transition is not allowed if it
leads to a state which violates the exclusion constraint of no more than one particle
per microstate. For example, if No = |, ¢ is sampled and, if successful, one of the
three paired momentum directions is chosen with equal probability. Au uubinding is
allowed ouly if there are no free particles in the chosen pair of directions. If Vo = 0.
one of the three paired momentum directions is chiosen with equal probability. If the
chosen pair of the {ree particle states is occupied, ¢ is sampled and, if successful, a
hinding oceurs such that the pair of free particles form a bound-pair and Ng becomes
one, For fixed 3, A = 1 leads to the shortest time seale for the system to reach

equilibrivm, Streaming and clastic collision processes also occur at cach time step.
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The FHP model is a special case with 3 = —oo.
The microdynamic evolution of this simple system can be formulated as a set of

local binary microscopic equations:

Ni(x+é,t+1) = N(ot)+A, +1,; a=1,...,6,

No(x,t +1) = No(x,t)+ I,

where .\, reprecents the usual FHP contribution from pure elastic collisions for the
free particles(8,8]. II, (a = 0,...,6) is the additional contribution from the transition
processes:

M, = BX(1 — Na(x,t)) = BoNa(x,t) (a=0,...,6)

where B} and B, (= 0, or 1) are the creation and aunihilation operators for N,
(a =0,...,6) due to the the transition processes, respectively. They are functions
ot the particle occupations at site X as well as the occupations of the bound pairs at
ne 6 nezrest neighboring sites. This form of II, guarantees the particle occupation
at every state is either 0 or 1. It can be seen[15], from the explicit expressions for B,
and B} (a =0....,6), that inass and momentum are conserved: ¥5_, 1, +2[1, =0
and Zf::, ¢.ll, = 0.
Using the mean field approximation, it can be shown that,

1

a = - ' =1,... 969
fe = T epa v v W
an
1
Jo=1 + cxp(2a — Je)’
where f, (a = 1,....6), fo represent the free particle distribution and bound-pair

distributions. respectively, ¢ is the mean-field potential energy per bound-pair. The

fhid equation for this model is:

d(pu) + Y (g(phuu) = -V(p + hi(pu?) + 1% (pu).

-1



where g(p) = (p%(p; — 3))/(ps(ps — 6)). py is the free particle density. The explicit
form of h(p) has not yet obtained in closed form. p is the kinetic pressure determined
from the equation of state. By a simple mapping, it can be shown that the invariant
measure of the bound pairs is equivalent to that of the Ising model on a triangular
lattice with an external magnetic fizcld dependent on density and temperaiure. There-
fore the equation of state of this model contains first-order phase trausitions, with
the inverse critical temperature 3. = 1.09. Dynamic properties of this simple model
have been studied both analytically and numerically.

Many possible applications and extensions of this simple model can be made. For
example, we may be able to study multi-phase flows by extending this model to allow
moving bound-pairs. Moreover, unlike FHP and other models[2,8], this simple model
provides the important capability of simulating supersonic flows. Near the critical
point, the sound speed ¢, (= \/dp/dp ) = 0. This is observed in computer models
which show that moderate flow velocity will be supersonic.

Other extensions include generalizing the particie interaction energy to be a nisotropic,
so that liquid crystal fiuids with rodlike particle structures can be simulated. Another
extension incorporates an interaction energy which includes a lattice energy; enabling

problems related to melting may be studied.
4 Hydrodynamic and Magnetohydrodynamic LGA.

Since the FHP model(l] was introduced for simulating lLiydrodynamics, lattice gas
research has developed rapidly. Many lattice g=+ models have been formulated as ef-
forts to to simulate various kiuds of pliysical processes[3.4,5.6]. All these were realized
by introducing new microscopic degrees of freedom and by modifying the lattice gas
wmicro-dynamical rules, ‘There are also attempts at generalizing the space and time

by introducing “dynamical lattices”[11]. By adopting very different microscopic vp



dating processes such as the random walk process, it has shown that the 1-D Burgers
equation can be simulated[5]. Furthermore, by attaching to the lattice gas particles
additonal degrees of freedom like color or spin, physical processes such as the evolution
of a passive scalar[10], temperature field[2] and others can be simulated. For example,
it is possible to use these additional degrees of freedom to simulate fluids consisting
multispecies such as the oil and water mixtures[6]. The particle interactions are ~ble
to be generalized due to the additional degrees of freedom so that the cohesion force
and the cheniical reaction can be represented[6,12]. Recently, it is found that this
kind ot models have important industrial applications. However, the earliest attempt
of using lattice gas to model different fluids was due to Montgomery and Doolen for
magnetohydrodynamics (MHD)(3].

The incompressible MHD fluid is usually described by the fcllowing equations:

Ov+v Vv = =Vp+(VxB)xB+ vV, (1)
dB+v-VB = B:-Vv+uV?B, (2)
V.v=V.B = 0, (3)

where v and B are velocity and magnetic field, respectively. p is the kinetic pressure.
The magnetic vector potential A is related to B by V x A = B. Equation ( 1)
is referred to as the momentum equation while equation ( 2) is referred to as the
magnetic induction equation. The magnetic field modifies the nmotion of the fluid in
tlhe momentum equation through the Lorentz force, (V x Bj x B. Iu the 2-D case
. onecan choose A = Az. and the induction equation can be replaced by a scalar

equation for the magnetic vector potential,
WA+ v - VA =0V

The Montgomery and Doolen (MD) lattice gas model for MIID was based on the

fact that the maguetic vector potential in the 2-1 case can be treated as a sealar,



In. order to represent the magnetic vector potential in the lattice gas system. an
additional scalar quantity was introduced. In addition to the FHP rules, each lattice
gas particle carries a magnetic potential ‘quantum number’ o = 1, -1, or 0. Parti:les
carrying different quantum numbers are distiuguishahle. The vector potential 1 is
related to o by pA = ¥, ,0f7, where f7 is the distribution function for particles
with quantum number o at state é,. Collisions exactly conserve the net value of o in
each site of the lattice. It has been shown that the evolution of this magnetic vector
potential obeys the scalar equation (2). Since, in 2-D case, the Lorentz force in the
MHD momentum equation can be expressed as —VAV?A, this force is included in
the model by introducing a force, whose average is constrained to equal the Lorentz
force. However, this average requires ‘supercell averaging'. Because of fluctuations,
the supercell size must be large enough to have a sufficient smooth representation
of the Lorentz force. Their implimentation required a finite difference proczdure for
calculating A.

An alternative lattice gas model for simulating MHD was later introduced by Clien,
Matthaeus and Klein using different concept[4,13]. The advantage of their altcruative
model is that the update of the system, similar to FHP, is local. This 1s done by
generalizing the particle advection, utilizing the symmet.y structure of the MIID
equations and Elsasser[l14] variables z*¥ = v & B. In the Elsasser representation, the
MID equations have the form 8.z% = —z¥ - Vz* (ignoring pressure and dissipation).
Thus. instead of representing the magnetic field by the vector potential A. oue treats
the mmagnectic field on an equal footing with the velocity field. In order to generalize
advection. model introduces six additional unit vectors related to the magnetic ficld
quanta: (= [cos(2rb/6), sin(27b/6)]; b= 1.....6). A microstate (a.b) at . ite can
be defined as a state in each particle has aolefined momentuim quantum, ¢,. and a

magnetic field quantui, ¢, To mimimize memory requirements. only one particle at
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a site can have the saime value for #, and é,. Using N,,(x) to represent the particle
occupation at state (a, b) at site x, we have Ny (x) = 1 or 0. If the particle occupation
everywhere in the lattice is known, the system is completely determined. This model
introduces a “bidirectional random walk” process. That is, a particle at state (a,b)
will advect from one site to one of its 6 nearest neighboring sites in the direction
€. with probability 1 — |P,,|, or to one of these sites in the direction sign(P,;)é,
with ' robability |P,;|. The parameter P, (]Pss| < 1) is a function of (a,b) only.
As a consequence, the evolttion of this MHD lattice gas system is descr.bed by the

following modified Boltzmann eq.iation:
a!fab(xv t) + {(1 - IPabI)éa + r‘abéb} ! Vfab(xv t) = Qab»

where f,, = (N,) is the particle distribution. €, is the term associated with colli-
sions, which are chosen to conserve the total mass, momentum and magnetic ficld at
each site.

The macroscopic number density p and magnetic ficld B are defined

p= E fa.b»
a.b

/)B = Z{Qab?‘b -+ Rubéa}fum

a.b

while the fluid velocity, v. is defined by

pv = z{(l - “)ubl)éu + "-lb(.'b}fllb-

a.b

The parameters Pup, Qup and I, are chosen to satisfy such that the MHD equations,
Because the systein is invariant under a proper or iiproper rotations, it can be show
that these parameters only depend on [a — b, Because the velocity field s a vector
ficld and the B is pseudo veetor, the time evolution of the magnetic field in the NI

systent is unclianged if the velocity field is veversed. This property is wnarameed by



requiring that Puy = —P,p43, Qab = Qas+3 and R,y = —R,p43. Hence, there are only
6 independent parameters in this model after. These are selected to be P,,, Pias1,
Qaay Qaa+1;, Raa and Ruay.
Using a Chapman-Enskog, it can be shown that p, v and B approximately obey
the following equations:
Op + V-(pv) =0,
a(ov) = — VICiE - 2g(p)(Cav? - C3B)
— V. pg(p)[Cavv = C3BB| + vV?(pv),
d(pB) = — (D) — D3)V - [pg(p)Bv] + (D3 + D3)V - [pg(p)vB]

+ D3V(pg(p)v - B] + uV*(pB),

where g(p) = (p — 18)/(p — 36). The coefficients C,, Cq, C3, Dy, Dy, D;, v and
u depend only the six free parameters. By selecting the values of the 6 parameters
under the conditions C3 = D, = D3 2 0, D3 = 0 and C; > 0, together with the
rescaling of the tinie by the g(p) factor, the MHD equations are obtained in the low
Mach number limit[13]. It can be argued that V- B = 0 can be satisficd statistically
in the weak magnetic field case[l3].

A additional property of this alternative MHI) LGA model is that it can casily

be extended to three diineusions.
5 Discussion

It is important to generalize the existing lattice gas models to inchide varions Kinds
of many-body physical systems. Although many models have been fornulated such
as those mentioned above, there are significant number of physical svstems vet to be

modeled by lattice gas automata, There are other major research direetions in the
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lattice gas automata siudy not mentioned above. For example, it is crucial to have
the existing models improved so that they represent more realistic physics. One of
the centrul problems in this regard is to see if the incompressibility condition for FIIP
and related lattice gas models could be relaxed significqantly without increasing too
much complications. There are important prograsses in this attempt[2], however, it
is limited so far to the weak compressible domains.

The success of the FHP model for simulating incompressible Navier-Stokes equa-
tions has led to considerable interest in the use of lattice gas automata for the sti:dy
of fluid and fluidlike systems. There are at least two important reasons for this in-
terest. First, lattice gas models suggest a fundamentally new way of doing numerical
computations. It has no roundoff errors and can be massively parallel. Second, by
formulating lattice gas models we may find insights into the relationship between the
microscopic and the macroscopic world. A successful lattice gas model indicates that
the relevant macroscopic behavior critically depends on only a few simple microscopic
properties. Therefore, the tlicoretical importance of lattice gas inodels inay be that

they provide siinplified but fundamental pictures of the realistic physical systems.
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