
●

‘,.

LA-4836

.1 ._

10

Correspondence between the

Time- and Criticality -Eigenvake

Problems for a Bare-Slab Reactor

\

(J:sa
scientific laboratory

d of the university of California

Iamos

J
LOS ALAMOS, NEW MEXICO 87544

/\

UNITED STATES

ATOMIC ENERGV COMMISSION

CONTRACT W-7408 -ENG. 36



This report was prepared as an account of work sponsored by the United

States Government. Neither the United States nor the United States Atomic

Energy Commission, nor any of their employees, nor any of their contrac-

tors, subcontractors, or their employees, makes any warranty, express or im-

plied, or assumes any legal liability or responsibility for the accuracy, com-

pleteness or usefulness of any information, apparatus, product or process dis-

closed, or represents that its use would not infringe privately owned rights.

This report expresses the opinions of the author or authors and does not nec-

essarily reflect the opinions or views of the Los Alamos Scientific Laboratory.

Printed in the United States of America. Available from

National Technical Information Service

U. S. Department of Commerce

6285 Port Royal Road

Springfield, Virginia 22151

Price: Printed Copy $3.00; Microfiche $0.95

..

.



10

)

(

Iamos
scientific laboratory

of the University of California
LOS ALAMOS, NEW MEXICO 87S44

/\

LA-4836
UC-32

ISSUED: December 1971

Correspondence between the

Time- and Criticality -Eigenvake

Problems for a Bare-Slab Reactor

by

W. L. Hendry

—

ABOUT THIS REPORT
This official electronic version was created by scanning
the best available paper or microfiche copy of the 
original report at a 300 dpi resolution.  Original 
color illustrations appear as black and white images.

For additional information or comments, contact: 
Library Without Walls Project 
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544 
Phone: (505)667-4448 
E-mail: lwwp@lanl.gov




CORRESPONDENCE~ TNE TIME- AND CRITICALITY-

EIGEN’fAXdJEPROBLEMS FOR A BARE-SLAB REACTOR

by

U. L. Hendry

ABSTRACT

The time- and criticality-eigenvalueproblem! are
discussed, end a correspondencebetween time and crit-
icality eigenvalues(and eigenfhnctions)is established.
The “critical flux” end lowest time eigenfiction are
shown to be positive, and the associatedeigenvaluesare
shown to be simple.

I. INTRODUCTION

Nundreds of papera have been published which

present analytical studies of the neutron transport

equation for idealizednuclear reactor models.1 In

the inevitableconflict betieen tractabilityand gen-

erality, the one-velocity,bare, homogeneous-slab

model has frequentlybeen chosen. This is the only

model that retains continuous apace, angle, and the

dependence,and is at the seinetime alnmst completely

understood. The omission of energy dependence is

unfortunate,but is at least consistentwith the cum

rent tendency emong writers of transport codes to

put primary emphasis on refinements in the treatment

of the space and angle variables, and to carry energy

dependencealong by the multigroup approximation.

In saying that the transport equation for a slab

is “’almostcompletelyunderstood,” we mean that nmst

of the important facts exist in the literature. Ac-

tually, it seems that relatively few reactor physi-

cists avail themselvesof this information. The

purpose of this note is to mention briefly some of

the importantwork that has been done on this prob-

lem, and to apply it to a discussion of the associ-

ation between the criticality-and time-eigenvalue

problems.

II. PREVIOUS WORK ON TRANSPORT IN A BARE SLAB

‘$hefirst (and most) i~ortsnt analysis ap-
2,3

peared in two papers by Lehner and Wing, and may

also be found in Wing’s book.k Lehner and Wing

found the spectrum of the transport operator, proved

the existence and uniqueness of the solution to the

initial-valueproblem, and displayed the general

form that thie solution takes. A characteristicof

these papers is the fact that the proofs of the

various theorems contain a great deal of information

that the authors did not choose to state formeJly.

The result is, of course, that these facts are not

very well known.

The work of Lehner and Wing gave a nearly coui-

plete mathematicalresolution of the initial-value

problem, but it did not offer a convenientbasis for

computations. Moreover, it was difficult to see how

the standard approximate solutions, such as that

given by diffusion theory, differed from the exact

solution. Progress in this direction had to await

the developmentof a new tool, Case’s method of sin-

5’6 Using a combination ofgul.areigenfunctions.

Case’s method and the abstract results of Lehner end

Wing, Sowden and Williams completed the analysis of

the initial-valueproblem.7 They showed that
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asymptotic diffusion theory provided & lowest order

approx~tion to the exact 8olution,deuxmatrated

how the solution could be conaiatentlyimproved,al

developed algorithmsby which the eigenfunctions

and eigenvaluescould be calculated.

In another applicationof Cafie’s method, Mitsis
8,9

solved the critical problem for a slab. Again,

the rigorous foundationfor Mit8is’ re~ts is to

be found in the work of Lehner and Wing, although

Mitsis made no reference to those papers. As in the

time-dependentproblem, asymptoticdiffusion theory

was shown to be a natural lowest order approxima-

tion, and ~s in which this approximationcould be

improved were indicated.

In the years since the above works, many ex-

tensions have appeared. Inhomogeneouscross sec-

tions, anisotropic scattering,several energy groups,

end various boundary C0ndikiOn8have all been

treated with various degrees of success and rigor.

Of special note is Kaper’s inclusion of delayed
10

neutrons in the time-dependentproblem. As a

rule, significantdepartures from the simple prob-

lem posed by Lehner and Wing yield a drastic re-

duction in the number of results obtained, end those

results that are obtained are no longer very “nice.”

Unfortunately,only the nice results are easily re-

membered end readily used to bolster the physicist’s

understandingof real.systems.

III. EIGENVALUEPROBLEMS

Consider a slab extending from -a to +a on the

x-axis, and surroundedby vacuum. Let the mean

number of secondaryneutrons emitted per collision

be denoted by c, and put the velocity and

cross section equal to unity. Define the

operators:

LJ=-p&~;

+1
S*=J $(x,p)c$l.

-1
..

.,

PhysiceJly, the criticalityproblem is to

smallest number, c, and the corresponding

where-positiveflux, rp(x,~),such that

(L+; S)@ = o,

total

fol-1.owing
.

(1)

(2)

find the

every-

(3)

subject to the boundary conditions

fp(+a,~) = O, Pso. (4)

This leads us t.athe “criticality-eigenvalue”prob-

lem. Find eigenvaluesyn and correspondingnon-

tfi~~-elgenfunctions Qn(x,v) such that

(L+: S)cpn= o,

subject to

Qn(*a,p) = O, I.lso.

(5)

(6)

The initial.-valueproblem is to find the flux

~(x,p,t) satisfyingthe equation

,.

(7)

subject to the boundary condition
. .

~(+a,~,t)= O, pso t>o, (8)

end the initial condition

*(WJ,O) = f(%w), (9)

where f is required to satisfy the same boundary

condition as $. Ifwe put

~(x,~,k) =’f-e-it t(w,t)dt,
o

(lo)

then

(L +

‘l!his

Find

a Laplace transformationof M. (7) yields

;s)~.Ai-f. (u)

lecds us to the “time-eigenvelue”problem.

eigenvaluesin and corresponding.nontrlvia.l

eigenfunctionsXn(X,W) such that .,

. ,..

(12)

aub~ect to ,~

4

Yn(+a,v) .= O, 11$o. (u)

To be precise, we need to introducea function

space, togetherwith specificationsfor the domains

of our operators. However, ta avoid introducing

2
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too much technicu jargon at this point, we defer

this to the last section,where it is needed in the

proof of a theorem. Here we proceed forma.1.ly,and

simply inform the mathematicallyminded reader that

the justificationsfor our 8tatement8are to be

found (sometimes implicitly)in Ref. b. For our

present purposes, let it suffice to hay that our

underlying space is a Hilbert space, ti,of functions

that are squexe-integrablein the two variables

(X,v). Note that this space is selected for math-

ematical convenience,rather then physical appro-

priateness. Physically, it would make more sense

to demand that our functionsbe merely integrable,

because it is only integralsof the flux weighted

with cross sections that are ever observed.

To study the criticality-eigenva.lueproblem,

it is convenientto put

+1
@n(x) = f f2n(x, v)dJl = Smn.

‘ -1
(14)

Using Eq. (5), it is easy to solve for on in terms

Oft:
n

L rx:nn(x,ll) =ab exp[-(x-y)/vlon(y)@, p Z 0.
Ta (15)

Integratingthis equation over F yields, after some

manipulations,

7a
9n(x) = & -r E1(\X-Y{)Pn(Y)W,

-a
(16)

(17)

is the exponentialintegral of the first kind.

Lehner and Wing showed that the kernel El is square.

integrableand positive definite. U thatIt follows

there exists a denumerable infinity of positive

eigenvalues,

(3<7 <7
0- 1:72:”””’

(18)

and eigentictions, pn, satis~ing ECI.(16). From

Eqs. (lb) and (15) it follows that there is a one-

to-one correspondencebetween the pn and the Qn.

The criticality-eigenvalueproblem, Eqs. (5) and

(6), is therefore resolved. (Methods for computing

the eigenvaluesand eigenfunctionshave been given

by Mitsis.8) We note in passing that while the Pn

are complete in S2[-a,+a], the functionson are not
12

complete in M. Going back to our original.phy8-

ical problem, Eqs. (3) and (4), we see that it re-

mains to show that the eigenvalue YO is simple,

that is, the inequality70 s Y1 is strict: YO c 71.

Further, we want to show that the unique eigen-

functionCOOcan be chosen nomegative. Positivity

theorems such as this have been proven for a great

mam.yreactor models, but a fairly extensive search

failed to turn up the result for a bare slab.

Therefore the theorem, which is an easy corollary

to a known theorem in mathematics, is proven in the

next section. For the remainder of this section,

we shall.assume the validity of this fact: the

eigenvalue 70 is simple, O < 70 < 71, and the cor-

respondingunique eigenfunctioncan be chosen non-

negative.

Now the criticalityproblem, Eqs. (3) and (k),

is resolved. One chooses c = Yo.

The time-eigenvalueproblem has been di8cussed

in detail by Lehner and Wing.2)3’4 Rather than

simply stating their results, we reproduce part of

their argument here, because it will be needed in

establishingthe desired associationbetween the

critical- and time-eigenvalueproblems. Lehner and

Wing deal with a slightly different operator from

our L, but we will restate their results so that

they apply here. First, they show that there are

regions of the complex k-plane in which the eigen-

values cannot lie. There can be no eigenva.luesto

the left of the line Rek s -1, and no eigenvalue

can have an imaginarypart different from zero.

Moreover, k = -1 cannot be an eigenvalue. Thus,

all eigenvaluesmust lie on the real axis to the

right of the point A = -1.

As in the case of criticality eigenvalues, it

is useful to first convert the system, Eqs. (12)

and (13), to an integral equation. The result is

wn(x) = : j’a El[(l+ ~n)lx - Yl]wn(y)dy, (19)
-a

where we have put

+1
Wn(x) = J xn(x,@iJ1.

-1
(m)

3



To find those values of kn for which Eq. (19) has

nontrivial solutions, it is convenient to study an

auxiliary problem. For fixed 13>0, find those

eigenvalues,an, for which

-y!% - Yl)cn(Y)dY,Un$.p) = J’a (21)

has nontrivial solutions~n. The kernel is again

square-integrableand positive definite, and there

exist a denumerable infinity of positive eigen-

va.1.ues,

Again, as is shown in the

inequality is strict:

< al.‘O

Lehner and Wing were able

of the an as functions of

(22)

next section, the second

(23)

to discuss the behavior

f3>0 quite thoroughly.

They showed that a. ~+= as f3~0 and an ~kn with

O<kn<~, asO~Ofor n>O. Asb~_,an+O

for every n. Between these two limits, a.1..l.the an

are strictly decreasing functions of 0. This ia

pictured in Fig. 1. AI.80 pictured in Fig. 1 is a

graphical method of determiningthe in. Because c

is fixed, one merely draws a horizontal line a

distance 2/c above the p axis. The interceptswith

the graphs of the an yield values of ~ for which

nontrivial.solutions exist for a given c. Call

these pn. Then,

kn=p -1.n

d I
(24)

Note that for any c >0 there will be only a finite

number of kn’a. Lehner and Wing also proved that

the half-plane,Rel S -1, is continuous spectrum.

‘l!hus,as c increases,eigenvslues“emerge” from the

continuous spectrum and then move to the right

along the real axis.

Now we show that there is a kind of one-to-one

correspondencebetween the time eigenvalue8and the

criticality eigenvalues. Referring to Fig. 1, we

see that for very small c >0 there will be only

one time eigenvalue,Lo, lying just to the right

of k = -1 in the complex i plane. As c increases

so will ko, and it will eventually take the value

zero. We state that the correspondingvalue of c

will then be just 7., the lowest criticality eigen-

value. If not, we would have either O < c < Y. or

70 < c. In the former case, Eq. (1.2)would have a

nontrivial solutionwith its RHS equal b zero,

implying a criticality eigenvalueof less than lo)

which is impossible. In the latter case, Eq. (5)

would have a nontrivial solutionwith k. <0, lJU-

p3ying a time eigenvaluegreater than ko, again

impossible. We also have

PO(4 = ~o(x), (25)

when k. = O. Hence, owing to the one-to-one cor-

respondencebetween C.nand @n, and between UJnand

xn’

Qo(x,d = YJ%w)j

when i
o
= o.

Increasing c still fiu%her,

reasoning for i , i , .... etc.,
12

is zero when c = Yn, and that

Pn(x) =Wn(x),

Pn(%v) =~n(%P),

(26)

and with Silllil~

we find that kn

(27)

(28)

whenkn= O. (If two or more eigenvtiuesare equal,

the validity of these equations depends on our hav-

ing made the same ordering of criticality end time

eigenflmctions.) Of course, as in moves to the

right of k = O, these equalitieswill no longer be

valid.

.

L

+

“.

Fig. 1. Determinationof time eigenvaluea.
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Iv. PROOFS

We can no longer avoid a careful.statement con-

cerning our space, and the domains of our operators

in the space.

Let N be the Hilbert apace of complex-valued

functions f(z,p) defined and Lebesque square-in-

tegrable over the rectangle (xl-a ~ x s +a)x

{p\-l ~~ ~+1). Define the inner product of two

elements f,g in M by the relation

(f,g) = :adx
-a

(the bar means

norm of f by

??Ilf:l= (f,f) .

Put

70
B= L+TS.

r+ldp f(x,ll)g(x,ll)
‘-1

(29)

complex conjugation),and define the

(30)

(31)

The domain of the operator B, i(B), is a linear

manifold of functions f(z,~) in M satisfyingthe

following conditions.

Now

the

1. f(z,$) is absolutelycontinuous in z for

every wc [-1,+1]and 3f/az~ M.

2. f(z,~) is integra~& in y for every

z C [-a,+a]and “r f@~ N.

3. -$~(+a}y) = o for v > 0.

we can state and prove the theorem mentioned in

last section.

THEOREM. The equationBtp= O has one, and

only one, solutionoo~ M(B). This function can be

chosen everywherenonnegative,and is then positive

almost everywhere.

e“ We stated in the last section that the

functionscon(x,~)were in one-to-one correspondence

with the thnction On(x), satis~ing Eq. (16). Given

on, we may recover @n using Eq. (15). ‘lo go from

~. (5) to ~. (16) tia EII. (15) rigorously requires

some attention to details, including a justification

of a change of order in an iterated integral. We
4

omit these details here, because Wing has given

them in only slightly different notation.

Therefore we shsJl begin by showing that the

s~est eigenvahe, 7., of ?@. (15) is simplej ~d

the correspondingeigenfunction,PO, is everywhere

positive. To do this we use an extension of

Jentsch’s theorem on integral equationa with

13 This extension states that ifpositive kernels.

our kernel is measurable and square-integrable,

and if for each c >0 there exists an integer N =

N(e) such that the iterated kernel K‘N)(x,y) takes

the value zero on a set of measure not greater

than c, then the followingexe true. The integr~

equation has a unique nonnegativeeigenfunction,

the correspondingeigenvalue is less in modulus

than any other eigenvalue,the eigentiction is

positive almost everywhere,and the eigenvalue is

simple.

That El(lx - Yl) is measurable end square-

integrablewas shown by Lehner and Wing.
2,3

The

second condition is easily verified by putting N =

1 and noting that E?) = El is everywherepositive

(seeEq. (17) withz >0).

Therefore the conclusionsof the theorem of

Krein and Rutman hold for Oo(x), YO. In fact, one

can show that p (x) is everywherepositive.
o

This

is shown by proving that o (x) is continuous.
o The

proof follows from the f=t that the singularity

in E~ is only logarithmic;although easy, it is a

little long in its details and is omitted here.

With Oo(x) positive, it follows from Eq. (15) that

OO(X,V) is nonnegative. (It takes the value zero

according to Eq. (13).) The functionTO(X,V) is

then positive almost everywhere,because the set

((x,~) IM = O)U((x,M) lx = +8) is of (plane) measure

zero.

COROLLARY. When c . Yo, the eigenvalue Lo in

Eq. (12) is equsl to zero, L1 >1., and the eigen-

function~(x,v) csnbe chosen nonnegative. It is

then positive almost everywhere.

Z!?$X” This follows from the correspondenceestab-

lished in the last section, Eq. (26).

REPERENES

1. W. L. Hendry, K. D. Lathrop, S. Vandervoort,
and J. Wooten, “Bibliographyon Neutral Par-
ticle Transport Theory,” LA-4287-MS, LOS AJ.smos
Scientific Laboratory (1970).

2. J. Lehner and G. M. Wing, Commun. Pure Appl.
Math. G, 217 (1955).

3. J. Lehner and G. M. Wing, Duke Math. J. 23,
1.25 (1956).

—

5



I
4. G. M. Wing, An Introductionto Tramp rt Theoryl

John Wiley & Sons, New York (1962).

5. K. M. Case, Ann. Phyn. ~, 1 (19@).

6. K. M. Case and P. l?. Zweifel, Linear Transport
Theory, Addison-We81eyPublishingCompany,
Reading, Massachusetts (1967).

7. R. L. Sowden and C. D. Williams, J. Math. Phys.
!5,1527 (19a).

8. G. J. Mitsis9 “Transport Solutions to the Mono-
energetic Critical Problems,”ANL-6787,Argonne
National.Laboratory (1963).

9.

10.

xl..

E.

13.

G. J. Mitsis, Nuc1. Sci. Ew. lJ, 55 (1963).

H. G. Kaper, J. Math. Anal..Appl. ~, 207 (I,967j.

F. G. Tricom.i,Integral Squations, Interscience,
New York (1965), p. 124.

B. Davison, Neutron Transport Theory, Oxford,
London (1958), p. 435.

M. G. Krein and M. A. Rutman, Linear Operators
Leaving Invariant a Cone in a Banach Space,
American MathematicalSociety TranslationNo.
26, pp. 77-79, American MathematicalSociety,
New York (1950).

.

*

6


