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DYNAMICS OF FISSION AND FUSION
WITH APPLICATIONS TO THE FORMATION OF SUPERHEAVY NUCLEI

A. J. SIERK and J. R. NIX
Los Alamos Scientific Laboratory, University of California
Los Alamos, New Mexico, United States of America

ABSTRACT ‘

Within the framework of the liquid-drop model we study various aspects
of the dynamical evolution ~f nuclei: the effects of viscosity on the sepa-
ration of fission fragments, the fission of very large nuclei, and the fu-
sion of two heavy ions. The effect of viscosity on the post-scission motion
of fission fragments is calculated by assuming an irrotational flcw pattern
in spheroidal fragments. As the viscosity increases from 0 to » , the fis-
sion fragments remain prolste for a longer time, which increases the pcst-
scission fragment kinetic energy. This increase is about 13 MeV for tha
symmetric fission of 23°y.

We calculate the dynamical path from an initially spherical configura-

tion to scission for nuclei with fissility parameter x between 1.0 and
1.6 by use of the three-quadratic-surfece shape parametrization. The iner-
tias are calculated by means of the Werner-Wheeler approzimation for irrota-
tional flow. The motion is assumed nondissipative. As the Coulomb energy
increases, the scission configuration becomes more ard more elongated. As a
sggcific example, we calrulate the evolution of an initially spherical

184 nucleus, formed from two 22°U nuclei. It has been suggested that
this system might form a superheavy nucleus by asymmetric fission. At scis-
sion the calculated length of this nucleus is about 14 times the diameter of
the initial sphere. This result indicates that the nucleus would probably
fission into three or more fragments if this were allowed by the shape pa-
rametrization. To complement this calculation, we compute the static poten-—
tial energy of two tangent spheroidal fragments of the " 78184 nucleus cor-
rasponding to ¥%%116 and '7®Er. Configurations stable against fission of
the %116 nucleus have an energy over 100 MaV higher than the minimum
energy of two tangent spheroids and the enargy of the scission point in the
dynamical calculation. Single-particle effects lead to a small local mini-~
mum in the potential energy near the spherical heavy fragment with a barrier

®
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of about 4 MeV against prolate distortions. We conclude from these results
that the fusion-fission reaction of very heavy iuns is not likely to produce
superheavy nuclei.

We study the fusion reactions of two initially spherical tangent nuclei
at various incident energies above the interaction-barrier height. These
calculations also do not contain viscosity and use the same shape parame-
trization as the fission study. This parametrization is deficient in that
for most cases we are unable to follow the evolution to the point where the
nuclei refission. We calculate as a function of fissility parameter x the
amount of incident energy necessary for symmetric systems to fuse to a con-
figuration more compact than the liquid-drop-model saddle-point shape. As
sgecific examples we consider the symmetric reactions }!%pd + 1!%Pd and
230y 4 238y

1. INTRODUCTION

We have already seen in this symposium that dynamics plays an important
role in many phenomena in fission and heavy-ion reactions. These ‘nclude
the division of the total energy released in fission into fission-fragment
kinetic energy and internal excitation energy, and the amount of incident
kinetic energy needed to cause fusion in a heavy-ion reaction.

The most fundamental way to study nuclear dynamics is of course to use
a microscopic approach, as discussed earlier by Pauli [1] and others. How-
ever, because of the largc amount of computing that is required, it is not
yet feasible with such approaches to solve the equations of motion for the
time evolution of the system. We therefore use a much simpler macroscopic
approach, where the dynamics is treated in terms of classical hydrodynamical
flow. Previous studies of this type [2-4] have been limited primarily to
nonviscous irrotational flow and have been applied only to the fissio . of
nuclel with fissility parameter x 1less than 1.0. (The fissility parameter
is dcfined as the ratio of the Coulomb energy of a spherical sharp-surface
drop to twice the apharical surface energy.) Natural extensions of this
earlier work include the introduction of nuclear viscosity, the fission of
heavier nuclei, and the study of fusion reactions. Certain aspects of these
three extensions are considered in Secs. 2, 3, and 4, respectively.

In calculating the potential energy of the system, we include only the
surface and Coulomb energi=s of the liquid-drup model. Although single-
particle corrections to the potential energy are important in many specific
phenomena, they have a small influence on the average trends of dynamical
effects over the broad region of nuclei that we are considering. The equa-
tions of motion are solved classically because the DeBroglie wavelength of
the motion is usually much smaller than distances over which the potential
energy changes by an appreciable amount. Furthermore, we do not yet know
how to ircorporate dissipative effects into a quantum-mechanical aquation of
motion.

For small deformations, corresponding to the ground state and the re-
gion of the fission barrier, we know that the true nuclear inertia is sev-
eral times the value corresponding to classical hydrodynamical flow, and in
this region the treatment of nuclear dynamics in terms of classical hydro-
dynamical flow is seriously deficient. Howover, for larger distortionas,
such as those in the later stages of fission or near the point of first
touching in heavy-ion reactions, experimental values for inertias are poorly
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known, and values calculated by use of the cranking model are close to the
irrotational-flow values. This suggests that a classical hydrodynamical
treatment may be sufficiently accurate for these larger distortionms.

There are two general methods for computing hydrodynamical flow. One
method 1s to solve the complete Navier-Stokes equations for a viscous fluid
by means of finite-difference numerical techniques. A faster but more lim-
ited approach is to describe a nuclear shaje by a gmall number of coordi-
nates and to follow the time evolution of these coordinates. There have
been some attempts in nuclear physics to use the first method but no re-
sults have appeared yet. We choose the secund method because of its rela-
tive simplicity.

Because we are interested in both fission and fusion reactions, we
choose a shape parametrization that describes shapes occurring in both pro-
cesses. The shapes are restricted to axial symmetry and are formed by con-
necting smoothly two end spheroids with a central quadratic surface, which
may be either a spheroid or a hyperboloid of revolution. This parametriza-
tion contains three symmetric and two asymmetric degrees of freedom, but is
limited by uot being able to describe either multi-fragment fission or many
shapes encountered in heavy-ion fusion. However, even with these rescric-

tions, we are able to learn several interesting properties of fission and
fusion reactions.

2. EFFECTS OF VISCOSITY ON THE SEPARATION OF FISSION FRAGMENTS

One of our primary objectives is to study the effect of viscosity on
nuclear dynamics. We introduce viscosity by means of the Rayleigh dissipa-
tion function

1 : -»> . .
3 -'2-12 ﬂij(Q) qi qJ ’

where q, 1is the time derivative of the shape coordinate q, and where nij
is an element of the viscosity tensor. The viscosity tensor, which is a
function of the nuclear shape, is calculated by equating & to one-half the
rate of energy dissipation from collective modes to internal cnergy. The
equations of motion become the generalized Lagrange equations

g_(ax)_ax _ 23

’
de |\ 3q, 9q, 861
where the Lagrangian £ = T - V is also a function of q4 and qi . The ki-
netic energy is T, and V is tha potential energy. The introduction of vis-
cosity adds to the equations of motion terms linear in the first time deriv-
atives of §. Most of the inertial effects are included in terms containing

second time derivatives of 3, while the generalized forces are dsscribed
primarily by terms involving the zeroth time derivative of q.

Eventually we plan to solve the equations of motion with viscosity in-
cluded for the descent from the saddle point to scission. Then by comparing
the calculated most probable fission-frugment kinetic energies with experi-
mental values, we should be able to deduce an average value for the coeffi-
cient of nuclear viscosity appropriate to large distortions, which is pocrly
known at praesent ([5].
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We have not yet computed JF for our full parametrization but have stud-
ied instead the separation of two viscous fission fragments constrained to
spheroidal shapes. Although we are able to treat a more general case (un-
equal fragments rotating in a plane formed by their symmetry axes), we pre-
sent here results corresponding to the separation of equal coilinear frag-
ments. In this case the coordinates of interest are the center-of-mass
separation r and the semi-symmetry axis c¢ of the spheroids. The frag-
ments are taken to be initially at rest in the configuration of tangent sphe-
roids of minimum potential energy. The inertia and viscosity tensors are
calculated by assuming incompressible, irrotational hydrodynamical flow.
.This approximation is discussed in the appendix.

The equations of motion for the symmetric spheroids are

. _ 9V
Py or
and ) . -
b = - v . Pe M, - bR, WP, .
c ac oM 2 dc M 2
c ¢

where the two conjugate momenta are p_ =M_t and p = ME ¢ and where
the two elements of the diagonal inertla tefisor are
1
M -3 o
and
1

-1 1 3
M, =5 MIl + 3 R/ .

The quantity M, 1s the mass of the origina' spherical nucleus, Ro is its
radius, and u 1is the coefficient of nuclear viscosity.

We show in Fig. 1 the center-of-mass separation r and the fragment
elongation 0 of two symmetric fragments resulting from the fission of a
nucleus with fissility parameter x = 0.7. The points are given at equal
time intervals for varying values of viscosity. The coordinates r and ¢
[6]) are generalizations of r and c¢ which are useful for the more complex
shapes that we consider late:. If we hisect a reflection-symmetric shape at
its center and define (f ) &ao tho average value of the function £ over
one-half the mass distribution, then r = 2(z) and o = ((2?) - (g2 )2)k .
For two separated spheroids, o is nxactly /Y5 .

In Figs. 1 and 2 the viscosity is given in terms of the natural unit
[2,3] y
0 -
™ -[Mo E£ )] Ry~ .

When the second set of liquid-drop-model constants of Myers and Swiatecki
[7] 1s used for a nucleus with fissility parameter x = 0.7 along Green's
approximation ?9 the line of’beta atabilif; (8], t?e resylting value is

o = 6.73 X 10°" MeV sec cm™" = 1.08 X 10" ° gm cm™" sec™ (poise). It is
worth noting that a direct comparison of the magnitude of nuclear viscosity
with that of familiar macroscopic systems is misleading because of scaling
effects.
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The effect of viscosity on this system, as shown in Fig. 1, 1is qualita-
tively similar to that on a one-dimensional harmonic oscillator. For small
values of viscosity, the shape oscillations continue with damped amplitude.
As the viscosity increases to a critical value, the fragments approach
spherical shape nearly exponentially. For vary large values of viscosity
tlhe fragments approach the spherical shape much more slowly.

We show in Fig. 2 the change in post-scission kinetic energy relative
to nondissipative motion for fragments with different amounts of viscosity.
Because two prolate spheroids have a higher Couiomb interaction energy than
two spheres with the same center-of-mass separation, the kinetic energy for
very viscous fragments is larger than that for no dissipation. For small
values of viscosity, the fragment energy is less than that for no viscosity
because of the increased time the system spends with a significant oblate
deformation relative to the time with a prolate shape.

3. FISSION OF VERY LARGE NUCLEI

Heavy-ion reactions that might produce superheavy nuclei lead to sys-
tems with fissility parameter x greater than 1. It 1is therefore important
to know the fission properties of such systems, which are already being pro-
duced in heavy-ion reactions.

We calculate the dynamical evolution of nuclei with x 3zreater than
1.0 by use of the three-quadratic-surface shape parametrization. The ef-
fective masses for irrotational flow are calculated by means of the Werner-
Wheeler method, where the flow is approximated by circular layers of fluid
which move along the symmetry axis and change their radii but do not lose
their disk-like shape [2,3]. Viscosity is not included. The initial condi-
tions correspond to starting at a spherical shape with zero kinetic energy
(at t = - @), 1In Fig. 3 we show the division of the energy released in fis-
sion as a function of x. The energy is divided into translational kinetic
energy (acquired before and after scission) and deformation energy of the
fragments at infinite separation. The Cculomb forces cause an increase in
deformation energy at scission for large values of x, with more than half
of the energy release going into deformation energy for x greater than
1.42. However, this large deformation energy is partly a result of our
method of parametrizing the nuclear shape. Since we restrict the sstem to
binary fission, it canaot reduce its large deformation energy by fissioning
into three or more fragments.

As a specific example, we consider the *76184 system, which can be
formed from the fusion of two 2%V nuclei. We investigate this problem from
two complementary points of view: the dynamical evolution of an initially
spl.arical " 76184 nucleus, and the s:atic potential energy as a function of
fragment deformation for twnr tangent spheroidal fission fragments from the
same nucleus.

In Pig 4 we present the sequence of shapes followed by an initially
spherical 184 nucleus with 1 MeV of energy in the fission degree of free-
dom at time intervals of 10~2! mec. The Coulomb forces cause a very large
fragment elongation, to a maximum length of more than 14 times the initial
diameter of the sphere. This fact suggests that multi-body fission would
occur in a less restricted shape parametrization. The fission of a 236y
nucleus, started from the liquid-drop-model saddle point with 1 MeV of
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kinetic energy in the fission direction is also shown in Fig. 4 for compafi-
son with the result for “7184. The inclusion of viscosity in these cal-
culations could cause the results to change significantly. In particular,

large viscosity might cause the fragments to be much less elongated at
scission.

In Fig. 5 we show a potential-energy map for two tangent spheroids,
where the coordinates are the ratios c/a of the semi-symmetry to the semi-
transverse axes for the two fragments. The energies are calculated by use
of the droplet model [9]), which contains primarily surface and Coulumb ener-
gles, but also includes higher-order corrcctions in A-1/3 gand [(N~2)/A)2
than are retained in the liqu.d-drop model; the constants are taken from the
January 1973 analysis of Myers and Swiatecki [10]. The two fragments are
taken to be *°°116 and !7%Er, a division which approximately conserves the
charge density of the “76184 parent system. The minimum energy of the sys-
tem with the heavy nucleus spherical corresponds to a light-fragment semi-
axis ratio c/a = 12.6 and is 126 MeV higher than the absolute minimum-
energy configuration. This latter configuration corresponds to a light-
fragment semi-axis ratio c/a = 2.1 and a heavy-fragment semi-axis ratio
«/a = 11.9., Both of these minima are artifacts of the spheroidal shapes
chosen, as the fragments would undergo fission if allowed to form a neck.

In Fig. 6 we show the potential energy of the tangent spheroids as a
function of deformation of the superheavy fragment with the light fragment
held fixed at the semi-axis ratio c/a = 12.6. To the droplet energy we add
the single-particle corrections calculated for the 3°°116 nucleus isolated
from external interactions [11], which gives an estimate of the maximum ef-
fect of shell and pairing corrections. The single-particle effects lead to
a local minimum in the potential energy, but the energy at this minimum is
stil]l more than 100 MeV higher than the energy of the configuration with the
very elongated superheavy fragment and the energy of the scission configura-
tion for the dynamicel fission calculation described above. Because of this
large energy difference, the probatility for the large fragment to be formed
with a semi-axis ratioc less than the saddle-point value of 1.2 is extremely
small.

In private discussions Vandenbosch has suggested that the presence of
the Coulomb forces from the second fragment could possibly prevent the heavy
fragment from undergoing fission by driving it toward a spherical shape. We
estimate the importance of this effect by calculating the maximum elongation
of the superheavy nucleus which could be driven to a spherical shape by a
spherical light fragment initially in contact. This maximum elongation oc-
curs at a semi-axis ratio for the 3°°116 fragment of c/a = 2.0, This value
represents an upper limit because In this estimate the positions of the cen-
ters of mass of the fragments are held constant instead of being allowed to
separate, and the light fragment is spherical instead of a more probable
prolate spheroid.

We have shown chat the production of superheavy nuclei from the asym-
metric fission of nuclei with mass number A ™~ 500 is highly improbable.
This conclusion has been recached only for nonviscous motion; the rasult
would be modified if very viscous flow resulted in fragment elongation at
sciosion with a semi-axis ratio c/a significantly less than 2.0. For vis-
cous flow the value would need to be less than 2.0 because the large frag-
ment would not be able to respond quickly to the Coulowb restoring force of
the lighter fragment before the two nuclei separate.
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4. FUSION OF HEAVY IONS

We use the shape parametrization described in Sec. 3 and the dynamical
equations in Ref. [3] to study the fusion of two initially spherical nuclei
with zero relative angular momentum. In Fig. 7 we show the evolution of
two 11%Pd nuclei interacting to form 22% at various energies above the
liquid-drop interaction barrier. (All energies are in the center-of-mass
system.) Two 238 nuclei. are shown in Fig. 8 interacting at various ener-
gles to form a “7%184 system. These two examples are qualitatively differ-
ent: The 22°U system has a fission barrier with a 1iquid-drop-model saddle-
point energy of about 5 MeV and would thus form a compound system for a
significant range of collision energies (ior nonzero viscosity), whereas the
“75184 nucleus is unstable with respect to small spheroidal distortions and
therefore has no fission barrier. In comparing Figs. 7 and 8 with Fig. 4 we
see that the time scale for fusion reactions is much shorter than for fis-
sion.

These figures show the limitations of our shape parametrization for
describing fusion reactions. For low enerries, after the spheres touch the
surface energy causes a rapid filling-in of the neck, which results in a
shape with flattened ends and a high surface energy. This surfac:> erergy
and the Coulomb forces cause the end bodies to rapidly become prolate and to
intersect in a manner that forms a cusp at the middle of the shape. The in-
clusion of viscosity may slow down the motion tc a point where this phenom-
enon does not occur. The situation would also be improved by including the
effects of the finite range of the nuclear force on the macroscopic energy
(instead of representing the energy in terms of surface tensiorn), as dis-
cussed in this symposium by Krappe [12]. This improvement would greatly
reduce the rapidity with which the neck grows after first contact. For
higher energies the fusion continues until the system approaches a pure
spheroidal form. Shapes close to a spheroid are not handled adequately by
our parametrization, and the integration terminates when this condition oc-
curs. For even higher energies, the end-flattening of the system, which is
apparent at lower energies, proceeds to the point where the ends attempt to
become concave, a type of shape that 1is not describable in any parametriza-
tion of the form p = p(z). This end-flattening is a result of the rapid
growth of the neck; the assumption of incompressible and nearly irrotational
fluid flow requires that the material filling the neck comes primarily from
the ends of the body. ile conclude that a complete investigation of fusion
reactions requires an unconstrained shape description.

Even within these limitations imposed by our coordinates, we learn a
significant amount from these calculations. In a two-dimensional space
described by the coordinates defined in Sec. 2 for reflection symmetric
shapes (center-of-mass separation and the second central moment of the frag-
ment shape), we present in Fig. 9 the paths followed by two colliding 180ng
nuclei, which is a possible choice for producing the superheavy nucleus
300720 by a symmetric collision. We see that more than 100 MeV of energy
over the interaction barrier (which is approximately 400 MeV high) is needed
to drive the system to a nearly spherical shape, an indication of a lower
limit to the additional energy required to produce a superheavy nucleus from
such a collision, if such production is possible. Of course, for viscous
flow even more energy would be required.

A recent paper by Lefort et al. [13] reports a very small probabillity
for complete fusion when 29981 nuclei are bombarded with ®“Kr ions of
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500-MeV energy, which 1is (35%9) MeV over the calculated interaction barrier
in the center-ofi-mass system [12]. We have not yet calculated fusion reac-
tions for such asymmetric systems, but some qualitative comparisons may be
made. The 293119 system resulting from the above reaction is similar to the
300520 system considered in our symmetric dynamical calculation. For this
calculation, more than 100 MeV of energy over the interaction barrier is re-
quired to bring the nuclei close enough for a2 long encugh time tu allow a
significant mass transfer between the interacting nuclei. We expect the
energy required for fusion to be somewhat less for an asymmetric system than
for a symmetric one, but still of the same order of magnitude. The observed
lack of fusion at the 35-MeV energy may be due either to the tendency of the
nucleil to quickly re-fission because of the large Coulomb forces and the
distribution of energy into degrees of freedom other than center-of-mass
motion, as indicated in Fig. 9, or because large nuclear viscosity prevents
mass transfer between the nuclei, or to a combination of these effects. The
disruptive effect of angular momentum appears to be too small to account for
the very small cross sections observed [13].

By use of plots similar to the one in Fig. 9 for different nuclei we
find the minimum-energy collision whose trajectory passes inside the liquid-
drop-model saddle point. This gives an estimate of the lower limit to the
energy needed to cause a complete fusion. In Fig. 10 we show this critical
energy as & function of the fissility parameter. For values of x less
than 0.72 no energy over the interaction barrier 1is needed. Above this val-
ue, the critical energy rises steeply to about 0.15 Es(o), which is needed
to reach the saddle-point shape for x = 0.9. For a nucleus along the line
of beta stability, this energy is about 110 MeV above the interaction bar-
rier. For larger values of x, we are not able to determine the critical
energy because the calculated paths terminate before reaching the saddle
point. This criterion of passing inside the liquid--drop-model saddle point
18 necessary but not sufficient to form a compound system. This is because
a8 nonviscous system will ultimately re-fission since its total energy is
higher than its saddle-point energy. Some dissipation must be present in
order to form compound nuclei from heavy-ion reactionms.

5. SUMMARY AND CONCLUSION

We have investigated several aspects of nuclear dynamics on the basis
of the liquid-drop model, including the effect of viscosity on the separu-
tion of fission fragments, the fission of very large nuclei, and symmetric
fusion reactions involving systems of different masses and interaction ener-
gles. We find that for small viscesities the often-suggested fusion-fission
reaction method is highly unlikely to lead to the formation of superheavy
nuclei. Although our nuclear shape parametrization has deficiencies for
fusion reactions and the fission of large systems, it still provides some
worthwhile information.

A major objective of this type of study is to calculate cross sections
for fusion reactions. Ideally, one would like tu do this by solving the
full Navier-Stokes equations for unconstrained shapes, but even within our
restricted shape parametrization there are threce extensions to be made: the
consideration of viscosity, the inclusion of angular momentum, and the cal-
culation of the macroscopic energy by including the finite range of the
nuclear force instend of by using surface tension. We are now in the proc-
ess of calculating most~probable fission-fragment kinetic energies for vis-
cous flow. By comparing these calculations with experimental results we



hope to deduce an average value for the coefficient of nuclear viscosity
that is appropriate to large distortions. Once the coefficient of viscosity
is known, it should be possible to estimate fusion cross sections for heavy
systems by performing similar dynamical calculations with the inclusion of
vicsocity, angular momentum, and the finite range of the nuclear force in
the macroscopic energy.

APPENDIX. EFFECT OF VISCOSITY ON THE INERTIA AND VISCOSITY TENSORS FOR
THE SMALL OSCILLATIONS OF A CLASSICAL LIQUID DROP

The effect of viscosity on the inertia and viscosity tensors is com-
puted from the exact solution tc the Navier-Stokes equations for small mo-
tions about a spherical shape. For small values of viscosity the flow re-
mains nearly irrotational, so irrotational flow gives a very good approxima-
tion to the correct inertia and viscosity tensors. The normal modes for
nearly-spherical shapes for all values of viscosity are the quantities ay,
where the surface of the axially symmetric drop is given by

R -] -
R(O) = r° [1 + ) a, (t) P, (cos 8) .
1=2 o

The diagonal elements nj4 of the viscosity tensor are monotonically in-
creasing functions of the coefficient of viscosity u; the ratio nqyy4/u de-
creases from the irrotational flow value at H = 0 to a fraction of this
nunber as u *> @, For the 1 = 2, 3, and 4 modes, respectively, the ratios
nii/u at infinite viscosity are 75%, 69%, and 63% of the values at U = 0.
The elements of the inertia tensor are also monotonically increasing func-
tions of u; the 1 = 2, 3, and 4 elements reach 105%, 1112, and 117% of

their nonviscous values as | *+ ® , We see that the irrotational-flow
values pruvide a good estimate for the inertia and viscosity tensors for the
small oscillations of classical liquid drops. The fragment distortions con-
sidered in Sec. 2 are somewhat larger than the small oscillations studied
here, but the inaccuracies infroduced by the larger distortions are no larger
er than those caused by viscosity. We ro-emphasize that we are considering
the effect of classical viscusity on the inertia and viscosity tensors, and
not the potentially large changes caused by single-particle effects.
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FIGURE CAPTIONS

Calculated fragment elongation J and center-of-mass separation r
for spheroidal fission fragments for a nucleus with fissility
parameter x = 0.7, The coordinate O 1is e//5 ,» where c¢ 18 the
semi-symmetry axis of the spheroidal fragments. The gaths are
Plotted at equal time intervals of 0.4 Tp = 1.8 % 107 2 gec for
five values of the viscosity M . The natural unit of viscosity is

uo = [MoEgo)];i Ro'2 . The shapes corresponding to selected values

of these coordinates, indicated by the plus signs, are shown in the
top part of the figure. The sloping lines give the configurations
of two tangent spheroids, and the horizontal lines give the con-
figurations of two separated spheres.

Calculated change in fragment kinetic energy due to viscosity as a
function of the fiscility parameter x for spheroidal fission
fragments. The energy change is plotted as [E(M) - E(O)]/E(

where Eéo) is the surface energy of the original spherical ®nucle-

us. The natural unit of viscosity is Mo ™ [Ho E:O)]k Ro‘2 .
Calculated division of the energy in fission for idealized nonvis-
cous nuclei as a function of the fissility parameter x. The total
energy available is the sum of the energy release E.,; and the
fission-barrier height Bg. This energy is divided into pre-
scission translational kinetic energy, post-scission translational
energy, and fragment vibrational (excitation) energy at infinite
separation. The results for x < 1 are taken from Ref. [3].

Calculated sequence of ahagea at time intervals of 10~2! sec for

the symmetric fission of * s184 and 236y, The “7°184 nucleus is
initially spherical and the 238y nucleus is initially at the
liquid-drop-model saddle point. Both nuclei initially have 1 MeV
of kinetic energy in the fission direction. The viscosity 1is zero.
The shapes are constrained to binary fission in the three-quadratic-
surface shape parametrization. The scission configurations are
shown dashed.

Static potential energy of tangent spheroidal fragments calculated
in the droplet model as a function of the ratios c/a of their semi-
symmetry to semi-transverse axes, The fragments are 2°°116 and
176Er formed from a 2°%U +2%%y + “76184 parent system.
Calculated potential energy of tangent apheroidal fragments as a
function of the semi-axia ratio c/a of the ’°°116 fragment. The
elongation of the 176y fragment is held constant at c/a = 12.6.
The macroscopic contribution to the energy, which is calculated in
the droplet model, is given by the dashed line. The total energy,
which is obLained by adding shell and pairing corrections for a
noninteracting 300716 nucleus, 18 given by the solid curve.
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7.

9.

10.

Calculated sequence of shages at time intervals of 5 x 10~2? gec
for the fusion of *!%°Pd + *°Pd., The energles given are the in-

cident kinetic energy (in the center-of-mass system) of the ions

above the liquid-drop-model irteraction barrier. The nuclei are

tangent spheres at t = 0,

Calculated sequence of shapes at time intervals of 1022 gec for
the fusion of 2%%y + 23%y, The energies given are the incident
kinetic energy (in the center-of-mass system) of the ions above

the 1liquid-drop-model interaction barrier. The nuclei are tangent
spheres at t = 0.

Calculated dynamical paths in the space of center-of-mass separa-
tion r and fragment elongation 0 (defined in Sec. 2) for two
colliding 150Nd nuclei. The nuclei are initially tangent spheres.
The energies labelling the paths give the initial kinetic energy
(in the center-of-mass system) above the liquid-drop-model inter-
action barrier. The terminations of the paths are caused by
deficiencies of the shape parametrization.

Calculated incident kinetic energy (in the center-of-mass system)
above the liquid-drop-model interaction harrier necessary for
complete fusion as a function of the fissility parameter x. The
criterion adopted as necessary (but not sufficient) for complete
fusion is that the trajectories of the fusing nuclei in the two-
dimensional space defined by r and ¢ pass inside the liquid-
drop-model saddle point. The center-of-mass coordinate r and
the fragment elongation coordinate ¢ are defined in Sec. 2.
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