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TRIANGULAR MESH METHODS FOR THE

NEUTRON TRANSPORT EQUATION

by

¥m. H. Reed and T, R, Hill

University of California,
Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87544

ABSTRACT

The methods that are developed in this paper for differencing the dis-
crete ordinates equations on a triangular x-y grid are based on piecewise p-ly-
nomial representations of the anguiar flux. The first class of methods dis-
cussed here assumes continuity of the angular flux across all triangle inter-
facas. A second class of methode, which is shown to be superior to the first
clase, allows the angular flux to be discontinuous across triangle boundaries.
Numerical results illustrating the accuracy anl stability of these methods ere
presentei, and numerical comparisons between the above two classes of methodw
are made. _.he effectiveness of a fine mesh rebalance acceleration technique

is also discussed,



I. INTRODUCTION

A two-dimensional (x,y) neutron transport code based on a triangular spa-
tial mesh is currently under development at Los Alamos. This code will offer
several advantages over present codes, all of which use an orthogonal mesh
grid. By an orthogonal grid, we mean a grid in which all mesh lines meet at
tight angles. Many nuclear reactors are designed with hexagonal elements;
these hexagonal geomatries can be represented exactly with a triangular mesh by
su)dividing each hexagon into four, six, or more triangles. Furthermore, com-
plicated curved geometries can be approximated easily and accurately with tri- ,I
angles, ?

The increased flexibility of a triangular mesh is not without added cost.
Description of the mesh is more --mplicated, because the » and y coordinates of
each vertex must be given. The order in which the mesh unknowns are solved is
no longar straightforward but involves determining the direction of flow across
triangle faces. Such determinations must be made repeatedly in the innermost i
iteration loops ¢f & transport code, and thuy may increase computation times. i

The purpose of this paper is to present some effective new schemes for ob-?w
taining finite-dimensional approximations to the transport equation on a trian-
gular grid, Difference schemes for the transport equatlon fall into two broad
categories, which we will refer to as implicit or explicit methods. In an im-

plicit method no attempt is made to solve in the direction of the characteris- |

|
1
;
I

tics of the equation, that is, in the direction in which neutrons are streaming.
Instead, variational methods or Galerkin methods are used to determine a set ofl
linear algebraic equutlons for all the unknowns., This set of equations is thnnr‘
solve ', usually by direct methods, to obtain the final solution. An explicit i
method, on the other hand, sweeps once through the mesh, solving for the un-
knowns in the direction in which neutrons are s.reaming. More properly .tatcd.j
an explicit method follows characteristics through phase space. Of course, |
this is also equivalent to solving a set of linear algebraic equations, but
here the matrix to be inverted is triangular, or at least block triangular.
Perhaps the clearest distinction between the two methods can be made in the |
following way. In an explicit method a particular mesh call is coupled only to’
those mesh cells visible when looking backward along the characteristics. An |
implicit method couples al) adjacent mesh cells with no regard for the direction
of tha characteristics, The diamond difference scheme is an explicit method;
examples of iluplicit mathods are givan in Ref. 1.

Although hoth explit ir ind implicit methods have been studied thoroughly
for rectangular meshes in x-y geometry, very few triangular mesh methods have

been suggestad, and even fewer have actually been tested. Ohninhi2 proposes a
Galerkin mettiod with piecawise l\inear trial functions for the apatial

|
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dependence of the flux coupled with a discrete ordinates treatment of the an-
gular variables, but he does not give numerical results supporting the method. |
Several explicit methods are given in Ref. 3. 4
Very good resu1t34 have been obtained with implicit methods for relatively
small problems, that is, for problems in which the total number of cells in the
space-angle phase space is about 1000 or fewer. Unfortunately, many real phys-
ical problems involve such complicated geometries that several thousand spatial
mesh cells are needed to describe accurately the system boundaries and inter-
faces. With a relatively crude mesh for the angular variables, the total num-
ber of cells in phase space can be on the order of several tens of thousands,
It is not known vhether implicit methods can solve problems of this size effi~
ciently., Furthermore, implicit methods require the storage of the complete an-
gular flux. Since each cell in phase space usually involves several unknown
function values, the number of storage locations required for the angular flux |
for a single energy group can exceed 100,000, The storage required for a
100,000 by 100,000 matrix of coefficients can exceed one million locations, _
assuming the matrix has a band width of about 10, These requirements exceed F
the fast and extended core capacities of all wmodern computers, so that disc |
storage must be used, even for a one-group problem. Present two dimensioral 2
codes such as TW’OTRAN5 l
flux end enough moments of the angular flux to generate the scattaring source.

which are based on explicit methods store only the scalar

Therefore, ull parameters rertinent to a single energy group <zn usually be con-
tained in fast core, so that a more efficient program is obtained and data

[

transfer problems are minimized.

We are concerned in this paper with methods that are suitable for large !
complicated physical problems. For the above reasons, it appears that explicit
methods may be superior to implicit methods for such problems. Thus we consid-
er oniy explicit methods in this paper. i

Although the mathods developed in chis paper are applicable to a general

triangular mesh, we consider here only '"regular" triangular meshes., A regular
triangular mesh ls characterized by requiring that all vertices lie on horison—|
tal lines, so that horizontal bands of triangles are formei, and by insisting |
that each interior vertex be common to six adjacent triangles. An example of
such a mesh ig given in Fig. 1. Nota that we do not require that triangles be F
equilateral and that a non-rectangular domain is allowed. |
There are two reasons why we consider only regular nestes. First, speci-
fication of a regular ti'!anmilar mesh is much simplar than specification of a
general triangular mesh., Onl, three pieces of data are required: the mesh
spacings (Ay)j. the x coordinates of the vertices along each horiszontal line,
and tho orientation of the first triangle on each band, The orientaticn of the
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Fig. 1. A typical regular triangular mesh.

first triangle on each band can be specified by indicating whether the triangle
points up or points down. A regular'triangular mesh is determined uniquely

by the above data. L
The second reason why we consider only regular triangular meshes is relat-;

ed to our decision to consider only explicit methods. Explicit methods neces- i
sarily sweep the mesh in the direction of the characteristics, so that there is
a definite order in which the triangles must be solved. This order deperds T
upon the direction of neutron flow across triangle boundaries and is not |
straightforward as for an orthogonal mesh, Thus the direction of flow across
bourdaries must be determined and decisions made as to how to progress through --
the nash, Thesc decisions are much more complicated and time-consuming for a
general triangular mesh than for a regular triangular mesh. Since the order in?
which the mesh is swept differs with each discrete ordinate direction, these |
decisions must be made repetitively in the innermost loops of a transport code,
1f complicated, such decisions would ba prohibitively expensive., We restrict :
to a regular <riangular grid to simplify these decisions us much as possible {
while retaining rost of tha flexibility of a general megh,

I, THEORY
The one velocity neutron transport equation can be written in x-y geometry -

|
1) 2 + % + 0@,y ) = 8(x,y,n,T) ’ (1) i!
|

vhere we have written the scattering, fission, and inhomogeneous sources li.mply5
a8 8. In a multigroup contaxt, 8 would also include sources due to scattering
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and fission in other groups. We will utilize the standard discrete ordinates
approximation te the above equation, thus we write

oy 3*
be 5t L W + oy (x,y) = 5 (x,y) (2)

where the angular flux Wm(x,y) is an approximation to W(x,y.p.m,'%) and a set of

M quadrature points (p.m.lh) have been selected. For a detailed description of -

the standard quadratures used in two-dimensional discrete ordinates codes see
Ref. 5. This reference &lso contains a good description of how the sources
which we have written as Sm(x.y) are generated. We assume the reader has a
basic familiarity with standard discrete ordinates codes and take the liberty
of omitting some of these details. l

Our task is now tha development of a discrete (in x and y) approximation
to Eq. (2) on a triangular mesh., Since we consider only evplicit methods, this
task reduces to the problem of generating an approximation to * (x,yY) over a
single triangle, assuming that W (x,y) is known on the triangle boundaries
visille when looking along the direction 0 determined by L and qm There are;
two cases that must be considered: one or two faces may be visible depending
on the orientation of the triangle, These two cases are depicted in Fig. 2.

i
|

'-Q'm
/
/ .
. \Q-m/
Orientation | Orinntation 2

(one face visible) (two foces visible)

Fig. 2, The two pussible orinntafionl of a triangle with
respect to a direction

hoosn

All methods developed in this paper assume that the angular fiux over each

tria.gle is given by a low-order polynomial. That is,
N N-1
Tatem = D z; gy iy (3)
=0 jJm

vhere T- ~ V. over a given triaagle and N is the order of the polynomial,

"
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The form of the approximate solution ?; over the entire system is completely
determined by specifying the continuity conditions across triangle boundaries. |

The two methods considered in this paper differ only in the degree of continuity

imposed on the approximate solution. The first method requires that the ungu-
lar flux be continuous across all boundaries but does not require continuity of
"any derivatives of the sclution. The second method .mposes nc continuity re- |
quirements whatsoever across triangle boundaries, that is, the angular flux is
allowed to be discontinucus across all triangle bhoundaries. The flux on the
boundgry is to be the limit of the angular flux as one approaches the boundary
in the direction Qm. The jump then occure on the other side of the boundary.
We reiterate that the two methods considered 1. this paper are explicit
methods which utilize pjecc ise polynomial representations of the angular flux,
The order of tha polynomials is arbitrayiv, and the effectiveness of higher '
order polynomials such as cubics and quartics is investigatad numerically in
the next section of this paper, , : |
There are, of course, many ways in which a polynomial in x and y can be ;
expressed. The representation of Eq. (3) ie certainly the most common, but it ;
is inconvenient for our purposes because the coefficients Aij have little phys-i
ical meaning. We prefer, instead, to use a Lagrange repreaentation of the i
polynomials with which we work. Let us assume that a set of K ® w '
distinct points (xi.yi) have bzen placed on the triangle of interest, where N i
is the order of tha polynomial to be cepresented. The placement of these |
|

points is discussed below. We use K points because there are K linearly in-

dependent polynomials of order less than or equal N. We define the polynomial

L (x,y) as the unique polynomial of order less than or equal N that is uanity

at the point (x ) and is zero at the other XK - 1 points. We refer to the K |

171

polynomials L1 so defined as Lagrange polyncuials., If the points (xi.yi) have -

been chosen properly, then the Lagrange pclynomials are linearly indeperndent E
and form a basis for tho space of polyromials of orier less thau or equal N,

Thus we can ruylace Eq. (3) by the following equation with no loss of content!

X , |

Ten =Y Tnem o ) ‘[
im]

|

wvhere ve have suppressed the subscript m. IXIn the abovo equation, the coeffi-
cients '1 can be 1nt¢rprotcd as the vealue of V(x.y) at the point (xi.yi).
hence the notation 'i Tt 4r this phylical interpretation for !1 which leads
us to the Lagrange representacion for V(x.y). :
There are many arrangements of K points on a triangle that will guarantee :
uniqueness and linear independence of the Lugrange polynomials. We cloose a |

3\.\-l
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"' particular placement of these points which makes the treatment of the triangle
boundaries simple. For an M'th order polynomial, we place N+l points on each
face of the triangle, with a point at each vertex. The remaining points are
distributed uniformly in the interior of the triangle. Figure 3 illustrates

the placement of these points for a few low order polynomials.

-
N=I N=2 |
o
d . :
N=3 N=4q

Pig. 3. The triangular point arrangement for a few
low order polynomials.

Because a polyromial in x and y of order N is determined on a straight line
uniquely by N+l1 distinct points on the line, the boundary f£lux can be deter-
mined by the N+l points on the boundary, without regard for the other points.
Furthermore, the boundary flux is given by the unique one-dimensional poly-
nomial which passes through these N+1 points.

We have now given a complete description of the form of the approximate
solution for the two methods, continuous and dimcontinuous, that we discuss in
this paper. What remains to be describad is *he manner in which this approxi-
mate solution is generated in each case. We ccasider firs: the continuous
mathod .

The point arrangement indicated in FPig. 3 and the representation of Eq.
(4) for ?Yx.y) over a triangle allow continuity to be imposed upon ?zx.y) vith
little efforct. We simply assume that ;;\on all incoming boundaries of a tri-
angle are known Zrom prior calculation in adjacent cells or from system bound-
ary data, An incoming boundary is a triangle boundary across which the neutron

flow is into the cell. Of course, an incoming boundary for one cell is an out-

going boundary for the adjacznc cell, awd the definition of an incoming bound-
ary depends upon the direction Qm under consideration. S8Since there can be one
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or two incoming boundaries, either N+l or 2N+1 of the coefficilents ?; of Eq.
(4) are determined from continuity at the boundaries. This leaves a total of

K = (M1) or K = (28+1) unknown coefficients 71 per triangle, depending upon
the orientation of Fig. 2. Let NN equal the number of unknowns in a given tri-
angle. This parameter is tabulated in Table I for a few cases. We: see from
Table I that for linear polynomials and a triangle with two incoming boundaries
there are no unknowns to be determined. We believe this situation to be un-
desirable and thus restrict our attention to polynomials of order greater than

or equal two for the continuous method,

TABLE I
THE NUMBER OF UNKNOWNS NN IN A TRIANGLE
AS A FUNCTION OF ORIENTATION AND ORDER OF POLYNOMIAL

ORIENTATION ORDER OF. POLYNOMIAL
1

O O A i )
W DR WwN

We must now derive a set of NN equations for the NN unknowns on the given
triangle. This is accomplished in the following manner. The assumed form of
the solution is inserted in the discrete ordinate equation for the particular
direction Om under consideration. The resulting equation is then multiplied
saccessively by each of a set of NN weight functions and integrated over the
triangle. For the moment the weight functions are arbitrary and are denotei
qu(x.y). With a proper choice of linearly independent weight functions, the
above procedure gives the desired sat of NN equations. This set of equations’
takes the form

ZK: ’“m ("J' '::':i> * (“J' ;;;1_)

im]
+ O(Wj .Li)i Ti " (",1 osm) ’ (5)

j'l.Z....NN ’

NI 180 v 10w



where the inner product (a,b) represents the integral of ab over the triangle
of interest. Note that some of the coefficients @& appearing on the left side
of Eq. (5) are known from boundary data, so that in reality this equation re-
presents an NN by NN linear algebraic system of equations for the uanknown
fluxes. With a proper choice of weight functions this system is nonsingular
and can be solved routinely by any method appropriate for small linear systems,
such as Gaussian elimination. |
A good choice of weight functions is crucial to the success of the above

method. We believe that the best weight functions are the polynomials of order

AN

less than or equal N-1 or N-2, depending upon whether the triangle is of orien-
tation 1 or 2, respectively. One can easily verify that there are precisely NN
of these polynomials in either case, so that we obtain the same number of weight
functions as we have unknowns. Another possible choice of weight functions are
the Lagrange polynomials that are unity at the unknown points. Numerical re-
sults in the next section indicate that the method does not perform as well with
these Lagrange weights as with the low order polynomial weights. It is, of

- course, possible to choose weights so that the resulting method i35 unstable, in
the sense that errors are amplified as one sweeps through the mesh. We have no
theoretical results bearing on this problem, but we have never observed an in-
stability with either of the above two choices of weights.

We consider next the second method in which the flux is allowed to be dis-
continuous across triangle boundaries., We again use the Lagrange repreeentation
of Eq. (4) for the flux and the point arrangement of Fig. 2, In this case, how-
ever, points lying on the tr.angle boundaries a:e thought of as actually lying
in the interior of the tr.langle b. t arbitrarily close to the boundary. In this
manner each boundary point splits inuto two or more points which are each asso-

" clated with different trijangles. We attempt to illustrate this point arrange-
mant in Fig. 4. For this method the total number of unknowns is larger than
that for the coantinuous method. It is clear that the number of unknowns per
direction is in fact equal to K times the total number of triangles in the mesh.

WO Dy Wy

Fig. 4. A typical point arrangement for the discontinuous
method. Boundary points are actually arbitrarily
close to the boundary.,



We now proceed in precisely the same manner as in method one. The assumed
form of the solution in a given triangle is inserted in the transport equation,
vhich gives a smooth function plus a Dirac delta function at the incoming
boundaries due to the jump discontinuity at these boundaries. The resulting
equation is multiplied by NN = K weight funciions and integrated over the tri-
angle. Again we obtain an NN by NN linear algebraic system for the NN unknowns
in each triangle, and with a proper choice of weight functions these equations
are nonsingular and can be solved for the unknowns. Note that for this method

i

the number of weight functions required is equal to the number of linearly in-
dapendert polynomials of order less than or equal N, Our choice of basis is
therefore immaterial, and any set of functions spanning the space of polynomi-
als of order less than or equal N will give the same answer when used as weight
functions. We have not investigated the use of more complicated non-polynomial
weight functions for either of our methods., Again, we find experimentally that
this discontinuous method is stable when polynomial weight functions are used.

I1I1. NUMERICAL RESULTS

A one-group, isotropic scattering, discrete ordinates code was written to
implewent the methods of Sec., II, In this section, we present numerical results
obtained with this code for several simple problems. An S2 angular quadrature
vas used in all calculations.

The first test problem was designed to exhibit the accuracy that can be ob-
tain,d with these methods. It consists of a one mean free path square contain-
ing a pure absorber. The source is isqtropic and constant over the square, and
boundary conditions are vacuum. Calculations were performed using the 200 tri-
angle mesh of Fig. 5 and a similar 800 triangle mesh for both the continuous
and discontinuous mathods with the polynomial order N varying from one to four,
Because we emphasize in this paper the spatial differencing of thc‘tranlpor:
equation, we choose to compare our computed results with the exact solution of
the Sn equations, thus eliminating from consideration any errors introduced in
the Sn approximation itself. The exact solution of the 82 equations can be ob-
tained easily for this simple homogeneous problem. In Table II we present the
percentage difforence between the total absorption computed from our numerical
solutinns and the total absorption computed from the exact s2 solution., We
note from the results of this table that the percent error decreasec rapidly as
the polynomial order is increased and that high order polynomial wethode appear

NI e Siv 15y o

to be more efficient for obtaining answers accurate to many <ecimal places than
low urder polynomial methods.

We also note from the results of Table II that the high order polynomial
methods are no more than second order accurate, This is seen in the following



Numboer of
Triangles
200
200
200
800
800
800

200
200
200
200
800
800
800

Fig. 5. Pure absorbing square 200 triangle mesh.

|l cm
.: 0'0

TABLE 11

e |0

PERCENTAGE FRRORS IN TOTAL ABSORPTION
FOR A PIKCEWISE POLYNOMIAL APPROXIMATION

TO THE SOLUTION OF THE TRANSPORT EQUATION

FOR A PURE ABSORBER IN'A SQUARE WITH UNIFORM
SOURCE. WEIGHT FUNCTIONS ARE LOW ORDER POLYNOMIALS.

Method

Cont inuoue
Continuous
Continuous
Continuous
Cont inuous
Cont inuous

Discontinuous
Discontinuous
Discontinuous
Discontinuous
Discontinuous
DPiscontinucue
Discontinuous

Order of

Polynomial

H W W >

W W s W o M

Cinutltion

Time (CDC-7600)

0.52 sec
1.30 sec
4.12 aec
1.90 eec
3.45 sac
13.57 eec

o867 eec
1,84 sec
4.79 sec

1).44 sen
2.6) eac
6.90 sec

17,30 see

! !I‘!O!‘

+005202
+000314
.000062
+001134
000086
+700012

006563
+000294
.00017%
000044
+001330
+000063
+000027
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manner. An increase in the number of triangles from 200 to 800 represents a

halving of mesh spacings. We see from Table II for any order of polynomial

that such a halving of mesh spacings yields about a factor of four reduction in

the percent error. Thus all these methods are second order accurate in their
predictions of total absorption rates, A closer examination of the flux shapes

for this problem yields the result that these methods are in fact only first

order accurate in their prediction of point values of the scalar flux but are

second order accurate when predicting any integral parameter such as the total
absorption or an eigenvalue. : -

The results of Table II were obtained using low order polynomials as
weighting functions, Use of the Lagrange polynomials as weighting functions in
the continuous method yields errors in the total absorptiun at least twice as
large as those reported in Table II., For the discontinuous method, the choice
of low order or Lagranga weights is immaterial.

The results of Table II do not indicate a clear superiority of either the
continuous methods or the discontinuous methods., Although the discontinuous
methods are somewhat more accurate for a given polynomial order than are the
continuous methods, the latter utilize substantially fewer unknowns and require
much less computation time., Nevertheless, we do believe that the discontinuous
methods possess advantages which recommend their use. In particular, we find
that the discontinuous methods are more stable than the continuous methods and
that the acceleration method known as coarse mesh rebalance works better with
the discontinuous methods. These claims will be substantiated by the next few
test problems.

Transport theory methods based on continuous representations of the flux
have great difficulty treating optically thick regions without using a fine
mesh spacing. The diamond difference scheme can be derived by using a plecewise
linear, continuous representation of the flux, and the tendency of this method
to preduce flux oscillations in such regions is well known. Transport codes
basud on this method always include soma type of fixup scheme to eliminate these
oscillations and the negative fluxes thay produce, whenever possible. To examine
the behavior vf the discontinuous methods under such conditions, the first prob-
lem was repeatad with a hundred-fold increase in the total cross mection. The
linear, discontinuous methnd, using the 200 triangle spatial mesh of Fig. S,
gave an error in the total absorption of 0.0027%. The TWITRAN code (based on '
the continuous, diamond difference scheme), uoing a 100 rquare mesh, gave an ‘1
error in the total absorption of 0.29X. The scalar flux along one half of the
center plane is plotted in Fig. 6. The TWITRAN solution is obsarved to
oscillate about the infinite medium sclution (0.01), whereas the discontinuous,
triangular mesh solution rapidly damps to the infinite medium solution. The
oscillation in the TWATRAN solution would be more apparent if cell edge fluxes

Sw oSy T
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Fig. 6. Center plane scalar flux for Problem 2.
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were plotted.

The stability of the discontinuous method is demonstrated again by Problem
3, diagrammed in Fig, 7. The triangular mesh calculations were performed with
a 200 triangle mesh identical to Fig. 5. The TWATRAN mesh consisted of 225
equally spaced squares. Scalar fluxes along on: half of the center plane are
plotted in Fig, 8. The continuous triangular mesh scheme exhibits large, slowly
damped oscillations. Although the linear discontinuous method results in nega-
tive fluxes, they are relatively small in magnitude and rapidly damped. Ths
negative flux fixup in TWATRAN eliminatas the difficulties of negative fluxaes
and oscillations in this case.

pove ——

es1.0 0yn095 Ss10

o * 100
gg* O
S0

e 0.6 cM ———

Fig. 7. Geometry for Problem 3.

The ability of a triangular mesh to treat curved boundaries accurately is
illustrated by Problem 4, diagrammed in Fig. 9. The orthogonal TWHTRAN mesh of
Fig. 10 gives a poor approximation to the curved boundary of the interior re-
gion, The triangular meshes shown in Figs. 11, 12, and 13 approximate the cir-
cular boundary in a rauch more accurate fashion. The total absorption for the
various models is tabulated in Table III. The errors given are the errors in
the absorption from the most accurate model, namely the 648 triangle mesh with
the discontinuous, cubic difference schema. We see that the continuous
quadratic scheme gives significantly less acnurate absorption rates than the
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Fig. 8. Center plane scalar flux for Problem 3.



the discontinuous, linear scheme. The TWATRAN square equivalent in Table III
is the result for the problem in which the circular erea is converted to a
square of aquul area. Both TWATRAN res.lts indicate the inability of a rela-
tively coarse orthogonal grid to treat curved boundaries accurately.

Convergence of the inner or within-group iteration in a transport code can
be slow 1if optically thick regions with scattering ratio near unity are present,
In such situations the use of an acceleration tachnique is essential for rea-
sonable computation times. One of the most effective acceleration methods is
coarse mesh rcbalanccos This method multiplies the fluxes in each coarse mesh
zone by a factor for that zone chosen so that nsutron balance over all zones is
obtained. By neutron balance, we mean that for every zone the leakage plus
absorption must equal the source. It is known that this acceleration can yield
a divergent algorithm in some cuu.6 The convergence of the accelerated
iteration appears to be related to the stability of the difference method, with
the more stable schemas yielding the more rapidly convergent accelerated algo-
rithnl.6 For this reason we expect our discontinuous methods to couple nicoly
vith the rebalance acceleration technique to yield a rapidly convergent algo-
rithm in almost ¢.l cases. The next problems are designed to test this hypoth-
esis.

Problem 5 1. a 10 mean free path square with a scattering ratio of 0.999, a
unit source throughout the region, and vacuum boundary conditions. The linear
discontinuous method and the 200 triangle mash of Fig. 5 were used for the tri-
angular mesh calculations. A 121 square mesh was used for the TWATRAN calcula-
tions. The number of iterations and CDC-7600 computation time required for a
point-wise flux convergence to 10-8 are given in Table IV Jor several rebalance
schemes,

These schemes differ only in their definition of a coarse mesh zone. Each
triangle is a separate coarse mesh zona in what we call fine mesh rebalance. 1In
vhole system rebalance the entire system comprises a single coarse mesh zone,
and each band is a zone in band rebalance.

For the case of band or fine mesh rebalaice, a linear algebraic system of
equations must be solved for the rebalance factors. An iterative method is

used to solve these equations, and ¢ is the convergence precision of these

rebal
iterations. 8Since a tight convergence on the rebalance factors is unnecessary
for the earlier inner iterations, a var}ablo rebalance precision was axamired in

which ‘rcbal vas chosen as

=00l #max |1-f] |,

.rnbnl 1

with



-1 -8
x
10 ~ =2 € ebal 10 .

The fi are the fine mesh rebalance factors from the previous inner iteration.
An extrapolation procedure on the rebalance factors was also investigated
whereby a corrected fine mesh rebalance factor is taken as

corr
£

Osas1l .

Choice of a = 1 corresponds to fine mesh rebalarnce and o = 0 corresponds to no
rebalance. An appropriately chosen o tends to dampen the oscillation of the
rebalance factors from one inner iteration to the next.

Problem 6 is identical to Problem 5 except that the scattering ratio is
unity and the square is 100 mean free paths wide. A comparison of the rebalance
technqiues for this problem is shown in Table V.,

Tables IV and V indicate that a large reduction in the number of inner
iterations may result from the application of fine mesh rebalance. In particu-
lar, the gains appear to be much larger for the discontinuous dif{ference schomes
as opposed to the continuoue difference scheme of TWATRAN. For these problems
the variable rebalance precision offers no savings in computation, whereas the

extrapolation procedure effects a significant reduction in the number of inner
iterations.
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Fig., 9. Geometry for Problem 4,

TWOTRAN Mesh
100 cells

Fig. 10, TWATRAN mesh for Problem 4.
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Fig. 11. Problem 4 50 triangle mesh

180 triongle mesh
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Fig. 12, Prodlem 4 150 triangle mesh
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Fig. 13. Problem &

648 triangle mesh



TABLE III

TOTAL ABSORPTION FOR PROBLEM 4

MODEL ABSORPTION X ERROR
TWATRAN, 100 square uesh 0.1064 3439 ~0,282%
TWHTRAN Square equivalent, 1600 square mesh  0.1059 4559 ~0.,233%X
50 triangle mesh, Continuous, Quadratic 0.100) 7122 +0,344%
150 triangle mesh, Continuous, Quadratic 0.1030 5362 +0.056%
648 triangle 0.1033 8129 40,0232
50 triangle mesh, Discontinuous, Linear 0.1029 0304 40,0712
150 triangle mesh, Discontinuous, Linear 0.1034 5378 40,016%X
48 triangle mesh, Discontinuous, Linear 0.1037 1294 ~0,010%

648 triangle mesh, Discontinuous, Cubic 0.1036 1253 -

TABLE IV
INNER ITERATIONS REQUIRED FOR CONVERGENCL OF PROBLEM 5
' COMPUTATION
ACCRLERATION METHOD _ITERATIONS TIME (SEC)
TWATRAN Mesh
Whole systen rabalance 82 1.96
¥Yine mesh rabalanco 47 6.60
¥ine mesh altarnating with whole systom rabalance &4 2.80
Triangular Mesh ;

No rebalance 306 23.02
Wicle syston redbalance 87 6.72
Band rebulance 80 6,24
}ine mesh rebalance, €.\, * 10-3 42 3.97
Pine mesh alternating with vhole system rebalance 41 J.60
Pine mesh, variadble € abal 54 7.25
ai 2.70

Pine mesh, variadle €rabal’ * * 0.70
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* TABLE V

INNFR ITERATIONS REQUIRED FOR CONVERGENCE OF PROBLEM 6

COMPUTATION
ACCELERATION METHOD ITERATIONS TIMNE (SEC)
TWATRAN, Fine mesh alternating with whole system rebalance > 1200 - ,
' o«
Triangular Mesh -
No rebalance : 892 66,94
Vhole system rebalance 455 34.32
Band rebalance ' & -
Pine mosh rebalance, ¢ ..., * 1073 ' 1 7.99
¥Yine mesh alternating with whole system rebalance 75 6.90
Pine mesh rebalance, variable Crebal’ ® " 0.70 75 12,39

.Il:cn tions diverge
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