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ABSTRACT

Except for a slowly varying logarithmic factor, the diffusion

of a perfectly ionized gas at constant temperature across a magnetic

field has been given bya~being proportional to v. (~).
B’

The purpose of this paper is to find similarity solutions to

this equation for one-dimensional geometries. The two geometries

considered in this paper are plane and cylindrical geometries. All.

such solutions to this equation of the form n(x,t) = f[xh(t)] g(t)

are found for the following two assumptions: B’ may be considered

as constant (as an approximation because of a low density); and B’,

because of static equilibrium, is non-trivially linearly dependent

on n. In other words, B’ = B:(1 -~) where B: is constant.
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For the case of diffusion of a perfectly ionized gas with atomic

number 1, the following formula for the rate of diffusion across a

magnetic field has been given:

where n

K=

where b
n

Flux = Kn~n

refers to the electron or ion density and

[1
/2

kT
ax= 4We2 n

[

e2
%

and bmin = max
~;

J~12mkT “
L

The continuity equation then

9an
Z=V” [

KnV’n}.

B2=(l-#)

?j$.v.
[

-1

B02 and 16 lf

‘A ‘@]

-1

gives that

Substituting

nkT=flBo2,

(2)
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where

‘=%/2= 10ge ‘bmal/bmin)-

set

Centering ow attention on temperatures greater than 36 ev,

b
-fl

min=~” ‘hen

.. 9.448x 105
c
5.923+: logloT - logloB. - ; loglo 1B~3/2

where L is in cm2/see, T in electron volts, and B. in gauss.

Taking “a practical case” where

T =.104 and B. = 104,

one gets

Since # is under a logarithm with a somewhat small coefficient,

a not too unreasonable assumption would be that L is constant, in

In the case of a slab symmetrical geometry, (2) takes the form

(3)

-6-



In the case of a cylindrically symmetrical geometry, (2) takes

the form

(4)

The only similarity solutions for either of these two equations

of either the form

#(x,t) = f [X@ ‘(t)
or

are

#?(x,t) = 1-
f[’d ‘(t)

19(’,t)=f(x) and #(x, t) = f(x/fi).

These solutions will be discussed at the end of this paper.

‘efinepas*“
constant and obtain from

Then if # is small, we may consider

(3) and (4) the fonoting equations:

— —

P as

(5)

(6)

These equations

more similarity

are much easier to manipulate and seem to yield many

solutions than (1) and (2).
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If fl(x,t) = f[X@dg(t), then

Upon

$/ = hf’g

substituting into

13’ f+xh~f’
h2g2 h3g

Similarly, (6) yields

I@’

(5) and dividing by h2g2,

=P
[ 1ff” +f’f’ .

[ 1—f+xh~f’=P :+ ff’’+f’f’ .g’

h2g2 h3g

(7)

(8)

Therefore, for f to be a functionof xh(t) only for either (7)

or (8),it is necessary

(a)

(b)

(c)

that one of the following conditions holds:

f(v) =0

Vf’(v)=0

The right hand side of the
equation is zero.
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(~) _JM,Q_ h’(t)
and

h2(t) g2(t) h3(t) g2(t)

are both constant.

Condition (a) leads to the uninteresting solution that #(x,t) ~ O.

Condition (b) leads to the solution that ~(x,t) a constant.

Since P is positive, condition (c) for equation (7) implies that

f(v) = #av+b where a

expression for f(.) into

and /’ is constant,

and h(t) is proportional

and b are constants. Then, inserting this

equation (7),it is found that either a = O

or g(*) and h(e) are constant, or b = O

to l/g2(t)e In either of these three cases,

B (xjt) wo~dbe independent of t. Condition (c) for equation (8)

implies that f(v) = ~ which again implies that #(x,t) is

independent of t.

Since conditions (a), (b), and (c) imply time independent solutions,

it is sufficient to consider only condition (d) because condition (d) is

satisfied by letting g(=) and h(.) be constant.

h’(t)

1fh3(t) g(t)
constant so either

If
h’(t)

h3(t) g(t)

Therefore, letting

which is constant.

g’(t) is
Z O, then h(o) is constant. Then —

gz(t)
g(”) is constant or g(t) is proportional to l/t.

()
1

#O, then g(t) is proportional to l/h2(t) .

r+@(t)= l/h2(t), ‘: , is proportional to &

Therefore, for some constant c, ~=c$g

Integrating and taking the exponential of both sides of the

equation, ~’ = c1 ~c where c1 is some constant not equal to zero.

-9-

—



1
c-1

If c ~ 1, then $(t) = constant t .

Ct
Ifc = 1, then $(t) =constante 1

Therefore, by remembering that ~(t)

~’ and that g(”) and h(”) maybe scaled,

real number and express g(-) and h(”) as

h(t) = tA

or

h(t) =eAt

h’
Note that the cases where — z O are

h3g
~ =Oin each of the above expressions.

Putting these values of h(”) and g(*)

.

/= 1 h2, g is proportional

we may let h stand for a

either

g(t) = t
-2A -1

-2A t
g(t) = e .

to

taken care of by setting

into equations (7) and (8),

we get the following equations where v ~ xh(t):

r--(2A +1) f(v) + Avf ’(v) =P f(v) f“(v) +f’(v) f’(v)
1

-2Af(v) + ~vf’(v) = P
[ 1

f(v) f“(v) + f’(v) f’(v)

(9)

(10)

-(2A+1) f(v) +~vf ’(v) =P
i
-+ f(v) f“(v)+ f’(v)f’(v) (11)

1

[
-2A f(v) +Avf’(v) = P f(v)vf’(v) + f(v) f“(v)

+ f’(v) f!(v)1
. (12)
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Equations (9) and (10) are for slab symmetry and

and (12) are for cylindrical syumetry. Equations (9)

h(t) = tA and equations (10) and (12) are for h(t) =

equations (n)

and (11) are for

It seems that most of the solutions of these equations cannot

be

if

expressed by simple combinations of standard functions. However,

we integrate them and then divide by either f(v) ~equations (9) and

(10)], or byti(v) Iequations (u) and (12)], we may

more easily computable form. Also, by inspection, some

observations may be made.

If #(xjt) for a

.&f(v) =;

slab is f(xtA) t-2A-1, then

get them in a

qualitative

The integral.in this equation is an indefinite integral

denotes a constant of integration. If c -
J

(3A+1) f(v) dv

zero when f(v) = O, then f(e) will have an infinite slope at

(9*)

and c

is non-

that

point. In fact, f(=) will go to zero as the square root of a function

with a finite non-zero slope. Such an abrupt cutoff could be explained

by walls. On the other hand, if this integral term is zero at f(v) = O,

f(=) would have a finite slope and this point could be thought of as

the front of a freely flowing plasma.

A necessary and sufficient condition for symnetry in the sense that

f(v) = f(-v)
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is that

1C - (3.A+l) f(v) dv =- (3A+1)
1
‘f(<)d~ .
0

We shall define “the constant is positive (or negative)” to mean that

this integral expression is greater (or less) than for the symmetrical

case. Since if f(v) = $(v) is a solution to this equation, f(v) = +(-v)

is also a solution, we see that negative constants give the same types

of solutions as do positive constants. When we speak of constants

being large or small, we will be referring to their magnitude ir-

respective of sign.

If A> O, this solution (for small constants) is for contracting

absorbing walls. For certain sized constants, one of the walls is

stationary and for a sufficiently large constant, one of the walls is

expanding, although still absorbing. For non-zero constants, the more

rapidly contracting wall has a higher density of plasma built up near

it ●

If h= O, we get

absorbing walls. The

If-; < A.<o,

walls. With a proper

a symmetrical solution for a pair of stationary

constant merely locates the center of symmetry.

the symmetric case is for expanding absorbing

choice of the constant, the plasma will be freely

flowing on one side and absorbed by a wall on the other.

For a single stationary absorbing wall, ~ = - *and f(v) =a2fi

V2/6P where a is a constant. In this case,~average zj = ; s~pm.
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For a plasma of initial width

a width of W and average~

of W. and average P

P
of -, it will.take

of
/
-0 to flow to

a tim equal to

If A= - ‘$ the solution
3

V2
for the symmetric case @ f(v) = a2 - ~

where a is a constant. This is a case of a freely flowing plasma so
m

d
‘hat E 5

p(x,t) dx = o. In this case,fl= ~ #-. The time for

a parabol~~ ’’blob”of plasma to expand from an initial width and

average ~ of W. and fl-oto W and
P
- is

For the non-symmetric case, there is a wall on one side and # decreases

as 1/ Ixl in the other direction.

If-$<~<-~ 3? then for a smald.constant, f(v) tends to zero

as 1/ IVI as IVI tends to infinity. For a certain sized constant, we

would get free flow in one direction and hyperbolic tapering off In the

other. For a

side and this

If~=-

sufficiently large constant, we would have a wall on one

tapering off in the other direction.

1
~, the s~tric case gives # as constant in both space

and time. For small sized constants, we get a flow of plasma

limiting level to another. In other words, f(v) approaches a

from one

positive
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constant as v tends to plus infinity, and approaches another positive

constant as v tends to minus infinity. For a certain sized constant,

we get a free flow from a limiting level into a vacuum. For large

constants, we get a flow from a limiting value to a wall.

If A<-;, we get a flow from an infinite ~ at infinity. For

a small constant, f(v) approaches infinity as Iv tends to infinity.

For a certain sized constant, plasma is flowing freely into a vacuum.

For a sufficiently large constant, the plasma is flowing from infinity

-14-

Into an absorbing wall. If ~

v tends to infinity is greater

rate is less than linear. For

%where a isaf(v) = av + a

4- 1, the rate of increase of f(v) as

than linear. For -14~<-~, the’

A= -1, a special solution is

constant. %.This gives #(x,t) = ax + a

Therefore, the velocity of such a linear front is P times - ~~~X. It

is easy to show that whenever ~(x,t) = ()and X# is fintte and con-

tinuous, the velocity

if P is continuous.

If #(x,t) for a

—

of such a freely flowing front will be -P 44
>X

slab is f(xe~ t) e-2At, then

(lo*)

If ~ > 0, this solution is for contracting absorbing walls. For

non-zero constants, one wall is contracting faster than the other, and

for sufficiently large constants, both walls will be moving in the same

direction.



If A= O, then #(x)t) = ~~where a and b

This result implies that for the steady-state flow from

#l to #, across a distance W, the flux IIIterms of #

are constants.

a density of

will be

If ~< O, we get a flow from an infinite ~ at infinity. For a

small constant, f(v) approaches infinity as Ivl tends to infinity. For

a certain sized constant, plasma is flowing freely into a vacuum. For

a sufficiently large constant, the plasma is flowing from infinity into

an absorbing wall.

If~(x,t) for a cylinder is f(xt~) t-2A -I.
, then

L [,v+ c - (,~>;;:vf(v) q.~ f(v) =~ (n’)

For a continuous (positive) f at v = O, the indefinite integral

term, c - (4A+ 1) (W(v) dv, must be zero at the origin. We shall
J

de-fine“the constant is positive (or negative),” to mean that this

term is larger (or smaller) than for the above case.

If the constant is negative, then f(v) would tend to infinity

the origin as ~-~v . This could be explained by plasma being

at

fed in at the origin. (The ignoring of

couldn’t be explained.) Since the area

x=~>O, tends to zero as & tends to

flux at the origin to maintain a finite

1 -#in the denominator

per unit length of the cylinder,

zero, one would need an infinite

flow. If the constant is

-15-
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slightly positive, we would get a flow into an absorbing wall near

the origin.

If ~ > 0, this solution is for contracting absorbing walls. For

certain sized negative constants, we may get a free flow towards the

origin. These are the only ~’s (where h(t) = t-5 where, by taking a

proper sized constant, one can get a behavior at the origin which is

different than one of the three cases given in the two previous

paragraphs. Of course, these three cases are still realizable for

~ > Oas is true for all other ~’s.

If

If

If

is f(v)

flowing

In this

A = O, this solution is for stationary absorbing walls.

- ~ <~< O, this solution is for expanding absorbing wslls.
.

A.= - ~, the solution for the case where the constant is zero

2 v’
=a- 13F

plasma so

case,@ =

to expand from an

z is

where a is a constant. This is a case of a freely

that

*
d

J!EO
27T-X (X,t) dx = o.

; P=” The time for a parabolic “blob” of plasma

initial radius and average ~ of R. and /?O to R and

2R 2

( )

R2 ~k

& >-~ (“&zpo ~ )
-1 .
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For a negative constant, there is an expanding absorbing wall on the

outside which absorbs plasma at the same rate at which it is fed in at

the origin. For

f(v) tapers down

infinity.

a positive constant

towards zero as the

If-$ < ~<- ~, the solution

small.or non-negative has f(v) tend

(plasma absorbed

function l/v2 as

near the origin),

v tends to

for the cases where the constant is

to zero as the function l/v2 as v

tends to infinity. For a certain sized negative constant, plasma is

freely flowing outward. For a sufficiently large negative constant,

one gets an absorbing, expanding wall which does not absorb plasma as

fast as it is being poured in at the origin.

If A=-:, when the constant is zero,~ is fixed in both space

and time. For constants which are small or non-negative,~ tends to

a positive limiting value as v tends to infinity. For a certain

negative constant, we get a free flow of plasma outward. For sufficiently

large negative constants, we get expanding absorbing walls which do not

absorb plasma as fast as it is being poured in at the origin.

f(v)

f(v)

f(v)

If ~<- ~, for constants that are non-negative or not too large,

tends to infinity as v tends to infinity. For -1 ~~ ~-~,

approaches infinity at less than a linear rate while for ~ 4 -1,

approaches infinity at greater than a linear rate. For a certain

sized negative constant, we get free flow outward. For large negative

constants, we get expanding absorbing WSLIS which do not absorb plasma

as fast as it is being poured in at the origin.
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At, =-2 At,
If #(x)t) for a cylinder is f(xe then

A[v+c-4&(trhw].* f(v) = ~ (12*)

If ~ > 0, this solution is

with ~ > 0 for (1.1*),a certain

for contracting absorbing walls. As

sized positive constant may give a

free flow towards the origin.

If ~= O, the case where the constant is zero gives # as fixed in

space and ti=. For non-zero constants, #(xjt) = #~ where

a and b are constants. This equation implies that for the steady-state

flow from a density #“ at radius rl to a density #n at radius rO, the

flow in terms of F will be

constant has plasma flowing from an infinite

If the constant is zero, plasma still flows

If ~ < 0, a positive

~ at infinity to a wall.

from an infinite # at infinity, but

For small negative constants, plasma

both the origin and infinity. For a

plasma is being fed in at the origin

sufficiently large negative constants, plasma is being fed in at the

origin and being absorbed by an expanding wall.

there is no wall at the origin.

flows from infinite values at

certain sized negative constant,

and freely flowing outward. For



I

One may find that for both equations (3) and (k),

similarity solutions of the form ~= f(x/fi) and#=

correspond to A=-; of equations (9) and (1.1)and ~=

(10) and (12).
—

there are

f(x). These

O of equations

If we apply #(x,t) = f(x/#t) to equation (3), the slab equation,

and integrate, we get

&f(v) S* [- v++,]

For a zero constant,~ is fixed in space and time. For small constants,

f(v) approaches a limit between O and 1 as v tends to plus infinity

and another such limit as v tends to minus infinity. For a certain

sized constant, we get free flow in one direction and a limiting value

towards infinity in the other direction. For sufficiently large

constants, we get absorbing walls, in some cases receding amd in other

cases approaching the plasma, while f(v) tends to a limiting value as

v tends to infinity in the other direction. For sufficiently large

constants (I don’t know whether such a constant would need to be

large enough to produce absorbing wtis or not),

instead of a value between O and 1, as v tends

Ifwe apply #(x,t) = f(x/ -) to equation

f(v) approaches 1,

to infinity.

(4), the cylindrical

equation,and integrate,we

*f(v) =

get
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For a zero constant,# is fixed in space and time. For positive

constants, there is an absorbing wall near the origin which is

expanding into the plasma. For negative constants, f(0) = 1 and

plasma is being fed in at the origin. For either non-negative or

small, negative constants, f(v) approaches a limiting value between

O and 1 as v tends to infinity. For a certain sized negative

constant, there is free flow away from the origin. For sufficiently

large negative constants, there is an expanding, absorbing wall on

the outer side of the plasma.

Ifwe apply #(x)t) = f(x) to equation (3), the slab equation,

we get

e4(l-/3)=e=+b

where a and b are constants. This equation gives that for the

steady-state flow from a density of #?l to #?2 across a distance W,

1-HZ
the flux in terms of # will be ~ (#2 - #l + log ~

4 “
If we apply fl(x,t) = f(x) to equation (4), the cylindrical

equation, we get

where R is the radial position of an absorbing wall and a is an

arbitrary constant (see Figure 1). This equation gives that for the

-20-



steady-state flow from

radius r2, the flow in

a densityfll at radius rl to a density~2 at

terms of # will be

211L

I ‘2I

If rl = 0, then ~1 = 1 and the above expression for flow is

indeterminate. For the case of flow from the origin to an absorbing
R

wall at x = R, define @ as ~ j/
R2 O

x dx. Choose a positive real

number p (which is ~) and set

4fiL
Then the flow of plasma is ~. Inserting a few specific values for

p, one may get the following results:

~(l) = e -2 = 0.71828

X(2) = ~ (e2 - 5) = 0.5972G

7(3) . $ (e3 - 13) = 0.52485

Z(4) = & (3ei - 103) = 0.47496

~(G) = ~ (5e6 - 1223) = 0.40851.
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If we consider the corresponding lowfl approximation,fl= c q

from A= O of equation (12), we see that the definition of # is a con-

vergent integral. Then the flow will be 8P~2. Ifweset P=—

1:~’
then it will be seen that this approximation overestimates the flow

for p = 1, 2, 3, 4, and 6 by the following amounts respectively:

16.6$, 12.*, 10.7$, 9.41$, 7.77$.

I strongly suspect that a statement of the following type is true:

Consider one of the previously described similarity solutions of this

paper and a bounded region of space. Then start with an arbitrary

initial distribution of plasma in this region which will be assumed

with P constant, depending on whether we are considering similarity

solutions to equations (3) or (4) or equations (5) or (6). Then apply

proper boundary conditions to this region. Such boundary conditions

might be of the form of fixing A on the boundary as is consistent

with the similarity solution, and in the case

cylindrical origin, of stipulating the flow.

of sources at the

The boundary could also

be made to move in a way consistent with the similarity solution. Then

the conclusion is that as time passes, the density distribution of the

plasma converges to that given by the similarity solution.
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Fig. 1 Steady-State Distribution of Plasma in a Cylindrical
Geometry with Source on the Axis and Absorbing Walls
p = 2/a.
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