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ABSTRACT

Except for a slowly varying logarithmic factor, the diffusion
of a perfectly ionized gas at constant temperature across a magnetic
field has been given by’3% being proportional to 7. (Eigg).

Thé purpose of this paper is to find similarity solutioms to
this equation for one-dimensional geometries. The two geometries
considered in this paper are plane and cylindrical geometries. All
such solutions to this equation of the form n(x,t) = fl:xh(t)] g(t)
are found for the following two assumptions: B2 may be considered
as constant (as an approximation because of a low density); and B2,
because of static equilibrium, is non-trivially linearly dependent

on n., In other words, B2 = Bg(l -/9) where Bi is constant,







For the case of diffusion of a perfectly ionized gas with atomic
number 1, the following formula for the rate of diffusion across a

magnetic field has been given:

Flux =Kn g n (1)

where n refers to the electron or ion density and

m
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and b = max S H L .
min 3kT’ s A2mkT
The continuity equation then gives that

an

3t= v . [Knvn] « Substituting

B2=(1- ﬂ)Bozanleﬂ' nkT-= ﬁBo2,

%%‘V-[%% Vﬂ] (2)




where

2 2
e C / m /

Centering our attention on temperatures greater than 36 ev,

5
°°t Pmin “yTTWET ¢ Then

L . 9.hi8

5
————7——T3"210 [5.923 +3 10g T - log B - 3 log, ﬂ:]

where L is in cm?/sec, T in electron volts, and B° in gauss.

Teking "a practical case" where

T -.th and B° = lOu,

one gets

2
L =748 |1 -0.0631 log, ﬂ:] % .

Since ;9 is under a logarithm with a somewhat small coefficient,
a not too unreasonable assumption would be that 1L is constant, in
this case say about 7% cm?/sec.

In the case of a slab symmetrical geometry, (2) takes the form
= 2 _LJ%? 2.
%‘% 2% [:l- axﬂ] * (3)
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In the case of a cylindrically symmetrical geometry, (2) takes

the form
) 1 L
_£9t=; _lgx[x—é?l_ -2-” ‘9]. (&)

The only similarity solutions for either of these two equations

of either the form

Alx,t) = 2 [ () | st
or
Alx,t) =1 - ¢ [xh(t)] g(t)
are
A(x,t) = £(x) and B(x,t) = £(x/¥t).

These solutions will be discussed at the end of this paper.
Define P as 1—%73 . Then if 4 is small, we may consider P as

constant and obtain from (3) and (4) the following equations:

P-r 2| sEA] (5

$B-ta k4] ®

These equations are much easier to manipulate and seem to yield many

more similarity solutions than (1) and (2).




If ﬂ(x,t) = f[xh(t)] g(t), then

Zazﬂ=fg'+xh' gt"

%ﬁ: nf'g
2

-3—-2- ﬂ= h2f"g.

Iax

Upon substituting into (5) and dividing by h2g2,

gl hl
—§—§f+xh—3—-f' =P[ff" +f'f':l . (7
h g h™g

Similarly, (6) yields

% | %
& pixn-Blpr=p| I e e |, (8)
22 3 xh
h™g h-g

Therefore, for £ to be a function of xh(t) only for either (7)
or (8), it is necessary that ome of the following conditions holds:

(a) £(v) =0

(v) ve'(v) =0

(¢) The right hand side of the
equation is zero.




() g (t) and h'(tz

n2(t) g2(t) n3(t) g°(t)

are both constant.

Condition (a) leads to the uninteresting solution that ﬂ(x,t) = 0.

Condition (b) leads to the solution that ﬂ(x,t) = constant.

Since P is positive, condition (c) for equation (7) implies that
f(v) = 1/;‘7—';—'0— where a and b are constants. Then, inserting this
expression for f(.) into equation (7), it is found that either a = O
and /b—gn—)— is constant, or g(+) and h(*) are constant, or b = 0
and h(t) is proportional to l/g2(t). In either of these three cases,
B (x,t) would be independent of t. Condition (c) for equation (8)
implies that f(v) = 1/;_158—';; which again implies that B (x,t) is
independent of t.

Since conditions (a), (b), and (c¢) imply time independent solutions,
it is sufficient to consider only condition (d) because condition (d) is

satisfied by letting g(-) and h(.) be constant.

% %

If —3—3‘—(—9— = 0, then h(*+) is constant. Then &) o
n’(t) g(t) g2(t)
constant so either g(*) is comstant or g(t) is proportional to 1/t.

%
%
Ifr _3._1.1_..(_t.2__ # O, then g(t) is proportional to(l/h2(t)) .
nh°(t) g(t)
" t
Therefore, letting §(t) = l/h2(t), %—,—%7 is proportional to 2g 5

" l} g
which is constant. Therefore, for some constant ¢, %; =c %—.
Integrating and taking the exponential of both sides of the

equation, §' = ¢y Qc where ¢y is some constant not equal to zero.




1

If ¢ # 1, then §(t) = constant £t

clt

If ¢ = 1, then §(t) = constant e .

Therefore, by remembering that ¢(t) = l/h2, g is proportional to
b' and that g(+) and h(+) may be scaled, we may let A stand for a

real number and express g(*) and h(°) as either

n(t) = t g(t) = t72A-1
or

h(t) = et g(t) = e'2)\ t

]
Note that the cases where~ll— = 0 are taken care of by setting

h7g
A = O in each of the above expressions.

Putting these values of h(°+) and g(°*) into equations (7) and (8),

we get the following equations where v = xh(t):

(2 + 1) £(v) + AvE'(v) = P [f(v) £'(v) + £'(v) f'(v)] (9)

-2Af(v) + AvE'(v) = P [f(v) £'(v) + £'(v) f'(v)J (10)

(204 1) £(v) + AvE'(v) = p[f—(l)—vﬂ"—) + £(v) £(v) + (V) £ (v] (11)

—2 A £(v) + AVE'(V) = p[f—‘l)-v-i-’if"—) + £(v) £"(v)
+ £'(v) f'(v)] . (12)
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Equations (9) and (10) are for slab symmetry and equations (11)
and (12) are for cylindrical symmetry. Equations (9) and (11) are for
h(t) = t* ana equations (10) and (12) are for h(t) = e"t.

It seems that most of the solutions of these equations cannot
be expressed by simple combinations of standard functions. However,
if we integrate them and then divide by either f(v) E?quations (9) and
(10):] , or by vf(v) [:equations (11) and (12):[ , we may get them in a
more easily computable form. Also, by inspection, some qualitative
observations may be made.

Ir B(x,t) for a slab is £(xt) t 221, then

% £(v) = % [}w L &= (3)\;(‘1’.; .Lf(v) dv:l. (9*)

The integral in this equation is an indefinite integral and ¢
denotes a constant of integration. If ¢ - (3A+ l)Sf(v) dv is non-
zero when f£(v) = O, then f£(+:) will have an infinite slope at that
point. In fact, £(+) will go to zero as the square root of a function
with a finite non-zero slope. Such an abrupt cutoff could be explained
by walls. On the other hand, if this integral term is zero at f£(v) = O,
f(°+) would have a finite slope and this point could be thought of as
the front of a freely flowing plasma.

A necessary and sufficient condition for symmetry in the sense that

£(v) = £(-v)

-11-




is that

v
¢ - (3A+ 1>Sf<v) av = - (3A+ 1)S £(§) a$ .
(o]

We shall define "the constant is positive (or negative)" to mean that
this integral expression is greater (or less) than for the symmetrical
case. Since if f(v) = §(v) is a solution to this equation, f(v) = ¢(-v)
is also a solution, we see that negative constants give the same types
of solutions as do positive constants. When we speak of constants
being large or small, we will be referring to their magnitude ir-
respective of sign.,

If A > O, this solution (for small constants) is for contracting
absorbing walls. For certain sized constants, one of the walls is
.stationary and for a sufficiently large constant, one of the walls is
expanding, although still absorbing. For non-zero constants, the more
rapidly contracting wall has a higher density of plasma built up near
it.

If A= 0, we get a symmetrical solution for a pair of stationary
absorbing walls. The constant merely locates the center of symmetry.

If - % < A L0, the symmetric case is for expanding absorbing
walls. With a proper choice of the constant, the plasma will be freely
flowing on one side and absorbed by a wall on the other.

For a single stationary absorbing wall, A= - T]f and f(v) = 8.2 1/7

- v2/6P where a is a constant, In this case, ,B average EE: % %ﬁm.

-12-



For a plasma of initial width of wo and average ﬂ of Iéo to flow to

a width of W and average ﬂ of /9_ , it will take a time equal to

2 2 22
LS (Wh ) - W lgo _ l)

lBPpo

If A= - %, the solution for the symmetric case is f(v) = 8.2 - %1-5
where a 1is a constant. This is a case of a freely flowing plasma so
a0
d 2 2
that 3+ Sﬂ(x,t) dx = 0. In this case,ﬂ:x 3 B .. The time for
a paraboli: "blob" of plasma to expand from an initial width and

average 18 of W_ and ﬂ‘o to W and Ié is

wo_ R3 -1 - wo_ '6,0
36?ﬁo R°3 36Pﬂo 33

For the non-symmetric case, there is a wall on one side and ﬂ decreases
as 1/ | x| 1in the other direction.

If - % £ A £ - %, then for a small constant, f(v) tends to zero
as 1/ |v| as | v[ tends to infinity. For a certain sized constant, we
would get free flow in one direction and hyperbolic tapering off in the
other. For a sufficiently large constant, we would have a wall on one
side and this tapering off in the other direction.

If A= - %, the symmetric case gives ﬂ as constant in both spa..ce
and time. For small sized constants, we get a flow of plasme from one

limiting level to another. In other words, f(v) approaches a positive

-13-




constant as v tends to plus infinity, and approaches another positive
constant as v tends to minus infinity. For a certain sized constant,
we get a free flow from a limiting level into a vacuum. For large
constants, we get a flow from a limiting value to a wall,

It AL - %, we get a flow from an infinite 4 at infinity. For
a small constant, f(v) approaches infinity as lvl tends to infinity.
For a certain sized constant, plasma is flowing freely into a vacuum.
For a sufficiently large constant, the plasma is flowing from infinity
into an absorbing wall. If A ¢ - 1, the rate of increase of f(v) as
v tends to infinity is greater than linear. For -1 < A £ - %, the
rate is less than linear. For \ = -1, a special solution is
£(v) = av + aaP where a is a constant. This gives B(x,t) = ax + a.aPt.
Therefore, the velocity of such a linear front is P times - 9ﬂ ,@x. It
is easy to show that whenever &(x,t) = O and -gé; is finite and con-

tinuous, the velocity of such a freely flowing front will be -P Qé

ax
if P 1is continuous.
At, -2At
If F(x,t) for a slab is f(xe” ”) e , then
d _1 c-3)\5f(v)dv *
v f(v) = P [AV + £(v) ] i (10)

If )\ > O, this solution is for contracting absorbing walls. For
non-zero constants, one wall is contracting faster than the other, and
for sufficiently large constants, both walls will be moving in the same

direction.
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If A\=0, then B(x,t) = ¢/ex + b where a and b are constants.
This result implies that for the steady-state flow from a density of
y. 1 , o ﬂ2 across a distance W, the flux in terms of 4 will be
g‘ﬁ (8 12 B '322)’

If A< O, we get a flow from an infinite ﬂ at infinity. For a
small constant, f(v) approaches infinity as Iv, tends to infinity. For
a certain sized constant, plasma is flowing freely into a vacuum. For
a sufficiently large constant, the plasma is flowing from infinity into

an absorbing wall.

If ld(x,t) for a cylinder is f(xtx) t'2)"1, then
Lev) =3 [Av + oo ;f%‘),)j"f“') d"]. (11

For a continuous (positive) f at v = O, the indefinite integral
term, ¢ - (LA+ 1) Svf(v) dv, must be zero at the origin. We shall
define "the constant is positive {(or negative)," to mean that this
term is larger (or smaller) than for the above case.

If the constant is negative, then f(v) would tend to infinity at
the origin as 1/-__1_3g—v . This could be explained by plasma being
fed in at the origin. (The ignoring of 1 - ﬂ in the denominator
couldn't be explained.) Since the area per unit length of the cylinder,
x=€>0 , tends to zero as &€ tends to zero, onme would need an infinite

flux at the origin to maintain a finite flow. If the constant is
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slightly positive, we would get a flow into an absorbing wall near
the origin,

I )\ > 0, this solution is for contracting absorbing walls. For
certain sized negative constants, we may get a free flow towards the
origin. These are the only A's (where h(t) = t-)\) where, by taking a
proper sized constant, one can get a behavior at the origin which is
different than one of the three cases given in the two previous
paragraphs. Of course, these three cases are still realizable for
A > 0 as is true for all other A 's.

If A
If - ]l; X4 /\< 0, this solution is for expanding absorbing walls.

0, this solution is for stationary absorbing walls.

If A= - ]]I', the solution for the case where the constant is zero
is £(v) = a® - 55 where a is a constant. This is a case of a freely

flowing plasma so that

-4

d —

In this case, 3 = % ,3 . The time for a parabolic "blob" of plasma

to expand from an initial radius and average ﬂ of Ro and ,6’0 to R and

——

,Bis

2 2
l(Re_Ro)zRo (Ru_l).
16P A 16P,8° ROE

=16-




For a negative constant, there is an expanding absorbing wall on the
outside which absorbs plasma at the same rate at which it is fed in at
the origin. For a positive constant (plasma absorbed near the origin),
f£(v) tapers down towards zero as the function l/v2 as v tends to
infinity.

If - % 4 A'(-»%, the solution for the cases where the constant is
small or non-negative has f(v) tend to zero as the function l/v2 as v
tends to infinity. For a certain sized negative constant, plasma is
freely flowing outward. For a sufficiently large negative constant,
one gets an absorbing, expanding well which does not absorb plasma as
fast as it is being poured in at the origin.

If A= - %, when the constant is zero,/g is fixed in both space
and time, For constants which are small or non-negative,,ﬂ tends to
a positive limiting value as v tends to infinity. For a certain
negative constant, we get a free flow of plasma outward. For sufficiently
large negative constants, we get expanding absorbing walls which do not
absorb plasma as fast as it is being poured in at the origin.

If AL - %, for constants that are non-negative or not too large,
1
E:
f(v) approaches infinity at less than a linear rate while for A £ -1,

f(v) tends to infinity as v tends to infinity. For -1 &4 A 4 -

f(v) approaches infinity at greater than a linear rate. For a certain
sized negative constant, we get free flow outward. For large negative
constants, we get expanding absorbing walls which do not absorb plasma

as fast as it is being poured in at the origin.
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If ;?(x,t) for a cylinder is f(x e , then
L r(v) =4 [v R “v;(g’(") v ] (12)

If A\ > O, this solution is for contracting absorbing walls. As
with A D> O for (ll*) , & certain sized positive constant may give a
free flow towards the origin,

If A= 0, the case where the constant is zero gives /9 as fixed in
space and time. For non-zero constants, £ (x,t) = 4/a log bx where
a and b are constants. This equation implies that for the steady-state
flow from a density /Qi at radius rl to a density /9% at radius r2, the

flow in terms of ,3 will be

P 11( ,812 - ,32%

llos (rl/r2)| |

If A ¢ O, a positive constant has plasma flowing from an infinite
;9 at infinity to a wall, If the constant is zero, plasma still flows
from an infinite [3 at infinity, but there is no wall at the origin.
For small negative constants, plasma flows from infinite values at
both the origin and infinity. For a certain sized negative constant,
plasma is being fed in at the origin and freely flowing outward. For

sufficiently large negative constants, plasma is being fed in at the

origin and being absorbed by an expanding wall.
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One may find that for both equations (3) and (4), there are
similarity solutions of the form /§= f(x/‘q/z) and ;?= £(x). These
correspond to A =-% of equations (9) and (11) and A = O of equations
(10) and (12).

If we apply ,B(x,t) = £(x/ 4/?) to equation (3), the slab equation,

and integrate, we get

%; £(v) = 1 -2£§v) [} v+ o2 S £(v) df}

£{v)

For a zero constant, ﬂ is fixed in space and time. For small constants,
£(v) approaches a limit between O and 1 as v tends to plus infinity
and another such limit as v tends to minus infinity. For a certain
sized constant, we get free flow in one direction and a limiting value
towards infinity in the other direction. For sufficiently large
constants, we get absorbing walls, in some cases receding snd in other
cases approaching the plasma, while f(v) tends to a limiting value as
v tends to infinity in the other direction. For sufficiently large
constants (I don't know whether such a constant would need to be
large enough to produce absorbing walls or not), f£(v) approaches 1,
instead of a value between O and 1, as v tends to infinity.

If we apply A(x,t) = £(x/ 4/ t) to equation (&), tbe cylindrical

equation, and integrate, we get

%; £(v) = 1 £ f [} % v+ St jhvfiv) dvil.

vE(v)
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For a zero constant,/f is fixed in space and time. For positive

constants, there is an absorbing wall near the origin which is
expanding into the plasma. For negative constants, £(0) = 1 and
plasma is being fed in at the origin. For either non-negative or
small, negative constants, f(v) approaches a limiting value between
O and 1 as v tends to infinity. For a certain sized negative
constant, there is free flow away from the origin. For sufficiently
large negative constants, there is an expanding, absorbing wall on
the outer side of the plasma.

If we apply A (x,t) = £f(x) to equation (3), the slab equation,
we get

eﬂ(l-ﬂ)=eax+b

where a and b are constants. This equation gives that for the
steady-state flow from a density of /91 to /92 across a distance W,
the flux in terms of £ will be % (B, - B + log _1—:—/‘3_3)'

If we apply lg(x,t) = £(x) to equation (4), the cylindrical

equation, we get

a
Aa-p) =@

where R 1is the radial position of an absorbing wall and a is an

arbitrary constant (see Figure 1). This equation gives that for the

-20-



steady-state flow from a density /31 at radius r. to a density /62 at

1
radius Ty the flow in terms of & will be

1-A
2nL /5 + 1o 2)
—————— - g e ————— s
1°8.il (:2 /%' 1-4
r

2

If rl = 0, then /gl = 1 and the above expression for flow is

indeterminate. For the case of flow from the origin to an absorbing

R
waell at x = R, define }3 as j% S /gx dx. Choose a positive real
R o

number p (which is g) and set

- 1
B =pe S 21 (1 - 2)2 e P% gz,
o

LITL

Then the flow of plasma is P ° Inserting a few specific values for

P, one may get the following results:

A(1) =e -2=0.72828
B(2) = T (e° - 5) = 0.59726
B3) = & (e3 - 13) = 0.52185

AB4) = 25 (3¢* - 103) = 0.47U96

A6) = 1§ﬁﬂ (5¢° - 1223) = 0.40851.
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If we consider the corresponding low /3 approximation,,£7= c Ylog g

from /\ = 0 of equation (12), we see that the definition of E is a con-

vergent integral. Then the flow will be 832?2. If we set P = I'}?
1 -
then it will be seen that this approximation overestimates the flow

for p=1, 2, 3, 4, and 6 by the following amounts respectively:

16.6%, 12.8%, 10.7%, 9.41%, T7.77%.

I strongly suspect that a statement of the following type is true:
Consider one of the previously described similarity solutions of this
paper and a bounded region of space. Then start with an arbitrary
initial distribution of plasma in this region which will be assumed
to satisfy -%‘f =L\7. (iQ:V«%) with L constant or %% =P V. (/5 V/e)
with P constant, depending on whether we are tonsidering similarity
solutions to equations (3) or (4) or equations (5) or (6). Then apply
proper boundary conditions to this region. Such boundary conditions
might be of the form of fixing /9 on the boundary as is consistent
with the similarity solution, and in the case of sources at the
cylindrical origin, of stipulating the flow. The boundary could also
be made to move in a way consistent with the similarity solution. Then
the conclusion is that as time passes, the density distribution of the

plasma converges to that given by the similarity solution.



l | | |
00— o3z 04 06 08 1.0

radius

Fig. 1 Steady-State Distribution of Plasma in a Cylindrical
Geometry with Source on the Axis and Absorbing Walls
p = 2/a.
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