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1. Introduction

Early efforts to decompose programs for parallel machines were very difficult and not always successful [1,2].
There were many possible paths that could be followed to partition a scientific code for parallelization. For exam-
ple. early researchers [3,4] in compiler methods of parallelization proposed a clustering scheme that atempted to
tanslate a Fortran program into its most basic form—a directed graph of dependences where nodes represent ele-
mentary operations and edges show the flow of data. One would then tind clusters of nodes that could be computed
independendy, coalescing the clusters and increasing granularity until some desired degree of parallelization was
reached. This apprcach was difficult to automate effectively, and so was never very useful.

Another method that sezmed more nccessible was to parition a code by hand based on some high-level knowledge
of the application. This approach, based on a proposed “top-down" methodology [5], required the use of snme sort
of dependency analysis tools for success on any large, realistic scientific code. At that time, nearly five years ago,
there were only a few such tols, mosuy in the research stage [6,7). These tools were cumbersome and difficult to
use, parly because their conservative approach required them to present as dependences anything that was in any
way questonable, crearing more information than one could understand or use. It was clear that for truly successful
partitioning of codes for parallel processing, tools not only had to accomplish this analysis automatically, but had to
present the results of the analysis in a graphical, understandable "ormat. This problem still continues. Although
there are many more tools available today than five years ago, many still suffer from the problems mentioned above.
Researchers and wol-builders still debate what to give the user and how to present the information [8].

This paper will discuss one of these automatic tools that has been developed recently by Cray Research, Inc. for use
on its parallel supercomputers. The tool is called ATEXPERT; when used in conjunction with the Cray Fortran
compiling system, CF77, it prcduces a parallelized version of a code based on loop-level parallelism, plus informa-
tion 10 enable the programmer to optimize the paralielized code and improve performance. The information
obtained through the use of the 100l Is presented in an easy-to-rend graphical format, making the digesuon of such a
lurge quanuty of data relauvely easy and thus, improving programmer productivity.

In this paper we address the issues that we found when we took a large Los Alamos hydrodynamics code, PUEBLO,
that was highly vectorizable, but not paralielized, and using ATEXPERT proceeded to parallelize it. We show that
thiough the advice of ATEXVERT, botienecks in the code can be found, leading 10 improved performance. We
also show the dependence of performance on problem size, and finally, we contrnat the speedup predicted by
ATEXPERT with that measured on a dedicated eight-processor Y-MP.

2. Overview of PUEBRLO

The PUEBLO code is used to numerically model point explosions int space. The code uses a three-dimensional,
dime-explicit Lagrangian tinite-difference 1tumercal technique it which nll hydrodynamic varinbles iticluding velo-
cities, are cell-centered. This i1cchnique is based on a torm of the Gudunov method, which tises a first-order
Riemann solver. [t also uses n Gamma-law Equaton-of-Stte. The hydrodynamics cycle |s split inio a Lagrangian
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pbase and a rezone-advection phase in which conserved quantities are transterred from the Lagrangian mesh to an
arbitrarily specitied mesh,

The problem that we analyzed used two different mnesh sizes: these were *2x32x32 and 64x64x64. In the code the
three dimensions of the mesh are merged into a single one-dimensional data structure, so that the primary loop
lengths are on the order of the cube of one dimension of the mesh. The problem that was run on the smaller mesh
size involved both the Lagrangian phase and the rezone-advection phase. The problem that was run on the larger
mesh invoived only the Lagrangian phase.

3. Overview of CRI Tools

3.1. SCOUNT

SCOUNT is a benchmarking utility that counts the number of times each statement in a Fortran program is exe-
cuted. SCOUNT produces a source listing with an execution tally next to each line of code. We used SCOUNT to
ensure that during the initial phases o1 optimization, the concentrauon of effort was on those loops that our problem
actually executed,

3.2, PROF and PROFVIEW

Through # method of timing by address range, the PROF utility indicates how much time is spent in various seg-
ments of code within routines. At regular intervals, the operating system records the address of the instruction being
executed. Addresses arc grruped in "bins" or "buckets," whose size is selectable; these bins can be associated with
labels internal to a program.

The PROFVIEW utility generates reports in various formats from the raw data generated by PROF. Since the
UNICOS 6.0 operating systeni release, PROFVIEW lias provided an X-Window interface.

33, ATEXPERT

ATEXPERT is a tool developed by Cray Research, Inc. for accurately measuring and displaying information on the
Autotasking performance of a job that is run on an arbitranily loaded system. It predicts speedups that would result
during ‘Jedicated execution from data collected while running a code on a nondedicated system. |t provides a
wenlth of information on the code under consideration enabling the programmer to find those spots in the code that
may he contributing to performance buitlenecks. ATEXPERT movides an X-Window interface as well as an
umerucuve and batch ASCII intertuce,

ATEXPERT is actually more than a single command; it is composed of three phases:
(1) aninstrumentation phase,

(2) adata-gathering phase, and

3)  un analyris phase.

During the instrumentation phase, the FMP preprocest or (from the CF77 compiling system) adds additdonal timing
code 10 the regions of the code determined to be paraliclizable, that 1s then compiled into a user's program. Figure |
shcws schemutically how this is done. During the data-gathering phase, the program s executed and raw timing
informatir 1 is gathered. In ndditdon, the instrumentaton also records the number of unitasked scalar iterations for
cach loop, the number of concurrent itzrations for each parallel loop, plus other relevant informaton associated with
cach loop, When the program ierminates, this information is written to n file. In the analysis phase, this file is read
by ATEXPERT which then displays through its X-Windows graphica interface program the Autowsking perfor-
mance data thus collected. An ASCH! “.splay tormat is also nvailable.



-3-

Timings
bp - time required to begin a paraliel region
bes - time to begin a control structure

top of ioop - time necessary to get to the top of a control siructure
bot of loop - time necessary to get to the bottom of a control siructure

Is - time required to do loop synchronization
il- time to get the naxt control structure started; interioop time
ap - time required to end a paraliel region

Top of subroutine

—1— top of loop _ 1 iop of loop
. - -
K bot of loop <\\ bot of loop
Is L
: e |
-——-1 top of loon . top of lcop

MASTER ~MAGTER-

Figure 1. Schemauc of timing-call inserion by ATEXPERT.

ATEXPERT decompuses the exccution ume of it program tiito parliel region time and preceding seaul ume (time
spent outside of paraliel regions). Parallel region timing is obtained for unitasked execition of each parallel region
us well as multitasked ~xecution of the region. Multitasked execution is fuither decomposed into measureinent of
distribution of work among processors and measurement of overhead costs for paraliel execution.

Overhead. in this case, 13 detined [ 7] as the difference in spcedup between that predicted hy Amdahl’s Law and wat
measured or projected from an actual Autotasking rur. Amdabl's Law |8), as quantified by the Ware model [9), and
extended to multiprocessing is given by

Sr=(h =7 pn+fpvP)!

where
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S(P) = maximum expected speedup from multitasking,
p = number of proccssors available for multitasking,
f) = fraction of program that can execute in parallel, and

I - f(p) = fraction of program that is serial (=f (s)).

ATEXPERT obtains the fraction that can execute in parallel (f (p)) from expliited parallelism rather than from
exisung parallelism. This is an imponant difference because it is a measure of the detected parallelism rather than
of potenual parallelism. ATEXPERT cannot currenuy detect potential parallelism. due in pant to CF77s inability to
carry out interprocedural analysis. A user can change this fraction from notental to detected parallelism by use of
tuserted directives. Uverhead thus calculated (or projected) is further decomposed intw various contributing factots
associated with the Cray Autowasking S:stem, such as Begin Parallel overhead, Slave Arrival overhead, Convoy
Time, and others. 1t is interesting to note that this idea of overhead as the difference in predicted versus measured
speedup was first proposed as a extension to the Ware model by Buzbee [10] in 1984.

4. Results

The goal of this project was to take the serial, but highly vectorizable program, FUEBLO and using various CRI
tools to parallelize the code, obtaining the best possible speedup through the use of informauon provided by the
100ls. A constraint was not to change the algorithm and to allow only the minimum changes in the code necessary
for successful execition. We will first detail the results from the 32x32x32 mesh problem and then give results
rom the larger mesk.

After some initial information-gathering runs using SCOUNT that provided information about which loops were
actually being executed by our problem, we began our analysis with the use of PROF and ATEXPERT. The initial
PROF runs showed that a routine named ISMIN took 11.7% of the runume. When we allowed the compiler to
replace ISMIN wita a more efficient version from the Cray scientific library, SCILIB, the time spent in ISMIN
dropped to an insignificant amount and the total execution time improved by 10%. This improved version was rua
through the CF77 compiling system to enable automatic paraliclization, called Autotasking. A Profile from this step
shows in Figure 2 that the subroutines RIEMAN and ADVECT are the most heavily used routines, This chows us
where we need to look first to improve paralielism. In this code, RIEMAN dominates in both serial and parallel
mode; it is clearly an important subroutine in the code.

Next we ran the code using ATEXPERT. The results of this eftort are shown in Figure 3. Notice in the plot on the
left side of the figure that the predicted speedup is only 2.5 out f a possible 4.8, (assuning 8 processors) using the
Arndahl's Law calculation described above. Since & highly vectorizable code implies many loops that should be
unenable to paralielization, this resuit is both puzzling and disappointing. Further investigation ol the plot in Figure
3 shows us that the problem begins when more than three processors are used. By inspecting additional infcrmaiion
provided by ATEXPERT, we find that loop 20 in the most heavily used subroutine, RIEMAN, is performing poorly.
Clicking on "Source Files" In the command menu allows us to bring up a window containing source code for RIE-
MAN, zeroing in on loop 20. Figure 4 shows the fragment of code representing this loop. This fragment makes the
problem obvious. The Autntasking system, by default, tries 10 vectonze inner loops and multitask outer loops. The
outer loop in this piece of code has an upper limit of 3. The inner loop, however, has an upper limit of 32768 (for
the small problem)! If we could sun the inner loop as concurrent vector, that is, sending "chunks" of the inner-loop
vector W each of the processors, the performance would improve. Checking our Autotasking manual, we see that
there is a Cray microtasking directive that lets us do just that By inserung a directive of the form cmic$ do parallel
vecior we get the long inner loop partitioned across the eight processors, thus allowing both vectorization and full
parallelizauon, improving our granularity and giving a better speedup.

Sittce PUEBLO is a three-dimensional code, the upper limit of three on outer de -loops should be quite common, and
a check of other subroutines that contribute hewvily to the runtime is probably a good idea. Douing 5o shows several
more tistances of the same problem. Adding directves to these subroutines gives us the resulls seen in Figure 5.
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PROFVIEW

REPORT FUNCTIONS adesnaaatas
BRErrirassmmemcnans: PRESS MOUSE BUTTON *** MODULES US'NG THE MOST TIME ***
Summary WHILE INSIDE
Modules PIE SLICE TO VIEW
Detatts GREATER DETAILL.
Bucke|’ atjacdadaas
Symbots
Environment
Options
GRAPHICS FUNCTIONS | ALL OTHERS
Activily Graph
Memory Graph
Remove Graph PERCEL.TAGE MODULE

20.94 RIEMAN
SPECIAL FUNCTIONS 18.00 ADVECT

11.50 LAGHYD
Quit 8.90 VOLUME
Help 8.03 “%SQRT%

J32.64 ALL OTHERS

Figure 2. Graphical output from profiprofview showing where the percentage of exectition time is spent in the intial
run of PUEBLO.

Note that the speedup is now 6.4 out of a possible 7.2, or 90% of the Amdahl's Law prediction. By the judicious
use of these directives, we have improved both the predicted parallelism and the measured paralielism. Remember,
however, that the fraction of the code that can execute in pamilel is obtained from detected parallelism rather than
from potential paratlelism. The box at the bottom of Figure 5 (left side) provides us with some potential problems
that niny be inhibiting parallelism in the code. By making use of this additional information we may be able v con-
tinue to improve the Amdahl's prediction as well as the actual speedup.

ATEXPERT uses measurements, sophisticated projection algcrithms, and cipert systems heuristics to arrive at the
vilrious sutustics that it provides. In order 10 iest the accuracy of this sysitem, we ran PUEBLO on i dedicated
YMP3/8128 using various numbers of processors iind mcasured the actual speedup using the CF77 compiling sys-
tem nnd autotasking. When we compared the results of this test with what ATEXPERT predicted, we found that at
ill levels of optimization, the differences were less than 10%. For example, at the highest level of optimizauon that
we achieved (Figure 5), ATEXPERT predicted a speedup of 6.4, and we measured a speedup of 6.1 based on the
sequential code using our version of ISMIN and 5.9 with the SCILIB version of ISMIN. This is a diffe ence of $%
and 8%, respectvely. The variation from what is predicted probably siems trom several causes. One is there is a
varinble wnount of work done in some of the loops in PUEBLO. This is known 10 affect the accuracy of the predic-
tions from ATEXPERT. Another is the magnitude of the effect of memory contenton, which is also known to be
present in the code. The first effect could cause ATEXPERT ‘o predict either higher or lower than what is meas-
wred; the sevond effect would cause the tieasured time to always be higher and therefore the specedup wonld be
lower.

The success that we had in parallelizing PUEBLO came without nearly as much etfort as had hecen required in the
past and we decided to try newrly the same problem on a larger tnesh size. The advantages of this would be that
lii-ger mesh sizes should give us longer vecior lengths and better speedups. We used the same optimization direc-
tives that had been used on the smaller problem. We first used the ProtView tool 1o determine that the relntive
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Figure 3. Graphical output from ATEXPERT showing the predicted speedup of 2.5 for the Initial Autotasking run
of PUEBLO. This figure also shows the overheads associated with running the code.

subroutine usage had not changed. The resuits of that are shown in Figure 6, and we see that subroutine RIEMAN
is still the most beavily vsed routine. However, because we are no longer doing the rezone-advection phase of the
calculation, subroutine ADVECT is replaced by LAGVEL., which calculates ihe Lagrangian venicx vclocities, as the
second most heavily usea routine. The results of the 64x64x64 size are shown in Figure 7, Note that both the
Amdahl's Law prediction and the ATEXPERT prediction for specdups have improved. This is due, of course, to
the fuct that the vector lengths ure now 262 144; thus a larger percentage of the execution time is speint in the paraliel
parts of the code. These longer vector lengths also enable us to amortize more of the overhead associated with mul-
titasking, and we see a decrease in predicted overhead from 0.8 cpus for the smaller problem to 0.6 cpus for this
one, 2 25% improvement. When we ran this version of the code on a dedicated system (again, a YMP8/128), the

measured speedup for eight processors was 6.6. Again, this measured speedup is within 10% of the speedup
predicted by ATEXPERT.



X view
do 10 I=1,lendv(ir)
w(1,1) = 0.5e0"ss(l)/ra(l)
w(1,2) = rho(l)*ra(l)
10 continue

do 20 m=1,3
men = len(m,ir)
do 20 I=lstrt(ir),lendv(ir)

c compute the normal projections of the call-centered velocities.

unl = ((uc(l+men,1)*fn(l,m,1) + ue(l+men,2)*fn{i,in,2))
& + uc(l+mcen,3)*in(l,m,3))
unr = ((uc(i,1)*tn(l,m,1) + uc(l.2)*tn(l,m,2))
"+ uc(,3)*in(l,m,3))

c solve for the pressure and normal veiocity of tha face.
umax = unl + w(l+men,1)
umin = unr - w(l,1)
pimin = pr(l+men) - w(l+men,2)*w(l+men,1)**2

prmin = pr(l) - w(l,2)"w(l,1)**2
bl = w(l+men,2)

br = w(l,2)

a = (br - bl)*(prmin - pimin)

b = br*umin**2 - bi*‘umax**2
c = br*umin - bi*'umax

d = br*bi*(umin-umax)**2

d = sqrt(max(0.e0,d - a))

Figure 4. Code fragment from subroutine RIEM AN showing a loop that contributes to low-perforinance figure.

5. Conclusions

The conclusion that one can draw from this is that based on our experiences with PUEBLQ, ATEXPERT does an
cxcellent job of assisting in parallelizing a large code. The fact that this code is nearly 100% vectorizable helps
because the analysis needed to determine vectorizability is essentially the same as that needed to determine loop-
based parallelism. ATEXPERT's analysis provides the niser with more information than previous tools have pro-
vided. Furthermore, this information is presented in several easily-understood forma... We were able (o take a
lurge sequental, but higbly vectonizable code, and with a modest amount of etfort parallelize the code obtaining
predicted speedups of beiween 6.1 and 7.2. When the code was run on an actual eight-processor YMP, the speed-
ups obtained were within 10% of those predicted by ATEXPERT. The effort that would have been required before
the CF77 system and the advent of tools such as ATEXPERT would have been much greater. The information pro-
vided by ATEXPERT has also givett us i better understanding of the performunce characienstics of PUEBLO.
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