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IMPROVEMENTS TO SOIL (AN EULERIAN HYDRODYNAMICS CODE)

By

Cecil G. Davis

ABSTRACT

Possible improvements to SOIL, an Eulerian hydrodynamics
code* that can do coupled radiation diffusion and strength of
materials, are presented in this report. Our research is based on
the inspection of other Eulerian codes and theoretical reports on
hydrodynamics. Several conclusions from the present study suggest
that some improvements are in order, such as second-order advec-

tion, adaptive meshes, and speedup of the code by vectorization
and/or multitasking.

I. INTRODUCTION

SOIL is an Eulerian hydrodynamics code with provisions to do coupled
radiation diffusion and strength of materials. In this report we discuss
possible improvements to SOIL based on the inspection of a variety of other
Eulerian codes and theoretical reports on hydrodynamics. Discussions of
improvements in the other areas of computational need, such as the radiation
transport and material strength, will be reserved for future reports. Our
general conclusions from this study are that improvements such as second-order
advection, adaptive meshes and speed up of the code by vectorization and/or
multitasking are in order. To add the more sophisticated aspects of turbulent
diffusion and Gudonov shock treatments for instance would be unnecessary in
our present application of the code.

In Section II we discuss the present algorithms in SOIL and their
limitations. In Sections III to VII, we describe new advection schemes,
strong shock treatments, adaptive meshes, mixed cell treatments, and viscosity
consecutively. Section VIII contains a summary and our recommendations for

improvements in the hydrodynamic portion of SOIL.

*SOIL, "Splitting in Eulerian Coordinates” property of C3 (Computer Code Consultants) Los Alamos, NM




ITI. PRESENT SOIL ALGORITHMS

SOIL (Johnson 1971a)! uses a splitting technique in order to solve the
two-dimensional set of Eulerian hydrodynamic equations. The solution is also
obtained in two phases, a Lagrangian phase followed by a REMAP to the Eulerian
mesh. The Lagrangian phase is fairly standard as in the early one-dimensional
codes FFF?. 1In the advection phase an extrapolation on velocity is used which
makes the code approach second-order accuracy. Shocks can be treated using a
combination of quadratic and linear pseudo-viscosity terms; the added
viscosity can be used in the expansion phase as well as in compression. The
zoning is strictly rectangular but with variable size zones in the r and z
directions. The code can also be used in x, y geometry. The differential
equations approximated by finite differences forms and solved in (PHl) the

Lagrangian phase and (PH2) the Eulerian Phase (from Ref. 3), are

du
P e T E
PH1 (L)
3 _
3t (a¢+E) = -PVeu .

The equations solved in the Eulerian Phase (PH2) are

92 4 e (pT) = 0

at !
_ PHe (2)
p%% + p(uev)u = 0 .

]
N

The advection, or phase 2(PH2) differencing scheme can be derived from

the following considerations (see Fig. 1).
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Fig. 1. Advection scheme for SOIL.



All quantities in SOIL are cell centered so,

Ug + Ugy
u -

T e

and a quantity A is the transmitted flux defined as

and

a - ui i (3)
- At
L. (e s ]
Ax

This is the algorithm used in SOIL for advecting the velocity. The
method is approximately second-order accurate. Other considerations for
improvements to SOIL are in the methods used in treating shocks, mixed cells
and the question of vectorizing and/or multitasking the code. At present we
believe that the Tillotson approach to the EOS is reasonable for geological
materials, though the EONESS routine currently in CHARTD may eventually be
preferable.

The pseudo-viscosity treatment used in SOIL, to treat shocks, is

standard. The Qs are formed in subroutine, PTWO in the following manner,

q = qpclAu] + qo p(AW)2 (4)
where the sound speed c can either be constant or stored in an array as

determined in the equation-of-state routine. The sound speed is determined

from

¢ = (v2/p) /% or (ap/ap) /2




The use of pseudo-viscosity in SOIL differs somewhat from conventional
wisdom. Generally the g is set to zero on expansion but in SOIL it can be
used both in expansion and compression. The value for the linear contribution
of (q, = 0.1) produces fairly smooth profiles behind the shock front.

The mixed cell treatment of SOIL is also quite basic and relates to the
Simple Line Interface Calculation (SLIC) method described by B. Noh (1975).°
First a NUMF (see Johnson 1971b) array is carried that identifies the
materials in the cell. A mixed cell has a negative number for NUMF. The
volume fractions (f) are calculated from pressure iterations in the mixed
cell. Consider two materials in the cell with masses M. and M,. Using a
simple iteration technique (secant) the volume fractions (f) and internal
energies (I) are changed until, through the EOS of each material, pressure
equilibration is attained.

In the transport of material from cell K to cell KA, the cell above, to
or from a pure cell a simple decision of flow direction and adjacent like
material is used. If both cells are mixed, the decisions are more complex as
seen in Fig. 1, where cells K and KA are mixed and the flow is in the
direction of KA. To remove preferential treatment of the mass transport, a
look ahead feature is used based on the mass flows across boundaries of cells
KA+1l, The material that is moved first is the same material as that in the
accepter cell,.

At present, SOIL is neither vectorized nor multitasked, but because of
the splitting technique used in solving the hydrodynamic equations, the
ability to improve SOIL in this regard is fairly straightforward.

III. ADVECTION SCHEMES

Generally, the problem of advection does not come up in the discussion of
Lagrangian codes except in the process of rezoning the mesh when obtuse
triangles or bow ties occur. We will not discuss this aspect of advection in
terms of the Lagrangian section of SOIL. In an Eulerian mesh, material can be
advected from cell to cell by a simple first-order upwind scheme. In the Lax-
Wendroff scheme for instance material from cell i is advected with the

velocity from cell i +1 in the combination

n+1 n n+ 1/; n+ 1/,
u -uy - (At/Ax)[Fi 17, Fi ,



where

n+ 1/, 1 n _ n n
Upopoay, T /2(Yy o T Yy - (AE2800F ) - Fy

This is a two-step process that is stable but produces a lot of
artificial diffusion. Other first-order schemes such as those due to
MacCormick (1971)> and Rusanov (1962)% have been applied with various degrees
of success. SOIL uses the upwind scheme described in Section II which is

marginally second order.

In this discussion of advection schemes, we will assume an ideal gas

equation of state, i.e.
e-P/(’Y'l) ’

in order to simplify the equations. The first order schemes we will consider

are

1. Lax-Wendroff (two-step),

2. General upwind methods, and

3. FcT.’

In the Lax-Wendroff scheme, the first step is a provisional one with U»

based on the U™1/2 from the first step. The step 1+1/2, i-1/2 is called a

leapfrog step. There is some built in numerical viscosity but additional
viscosity may be needed to smooth out ripples behind the shock front. Further
discussions of Lax-Wendroff schemes can be found in the literature (Richmyer
and Morton for instance).®

In the last decade, an interesting scheme was developed by Boris and Book
at NRL called flux corrected transport (FCT). A quick look at the explicit

version will help to understand this method. First, a highly diffusive step

is taken:

p (t + 6t) = NOR Sch(c +6t/,)

YA IR O I O ) B N LN O R T O | I




the adjusted fluxes are
é - p. t + 6t) - p.(t + 6t ,
SIS 1/'z[pJ v 1/5¢ ) -y )J

where Vis2 is the diffusion coefficient. The heart of the FCT method is

in the limits on the fluxes that are corrected from overshooting by

-~

¢j + 1/, = SBO 's‘j , 1, MAX {O,MIN['S'j £ 1,580 L1

I¢j + 1/2Iv 6j + 3/2SgnAj + 1/2]} ’
where

-~

. - p t + §t)-p.(t t
By w1y, TP g w1y, (B ¥ B8Ry (e 80D

In the anti-diffusion step, the mass fluxes are then

p,(t + 6t) = p.(t + 6t) - &, + 4.
Pj( ) PJ( ) ¢J + 1/2 ¢J _ 1/2
This same scheme is then used to advect the momentum as well as the energy.

We have also looked into the following 2nd-order schemes, in the

advection phase, for possible improvements to SOIL:

1) Gudonov®,

2) Accelerated Compression Method (AcM)° or Filtering Remedy and
Methodology (FRAM) 1! postprocessors, and

3) Monotonic, (Van Leer).12

The Gudonov scheme has been found to be difficult to implement in two-
dimensions and also has had energy conservation problems in its application in
some two-dimensional codes. In the application of Gudonov’s scheme, a fast
Riemann solver is needed. In the last couple of years, new approaches to

solving the Riemann equations for real equations-of-state have been developed.




Collela (1982)'% has found a way of simplifying the equations and by utilizing
a fast iteration method can solve them efficiently using tables or fits to
real equations-of-state. Duckowitz (1985)1“, on the other hand, finds that a

formulation based on the McQueen form of the EOS, i.e.

u=u, + SOUp )

admits a solution where no iterations are necessary. More will be said about
Gudonov in Section IV. It may be possible to use the Gudonov scheme in only
one direction, in the two-dimensional mesh, and obtain energy conservation at
the expense of flexibility. Before we would want to adopt this approach for
SOIL, more work will be needed.

The ACM method was developed by Harten in 1977. The method adds a flux

term to the equations in the form

u. + £(U), = 0> U+ (£(U) + g(U,t)), =0 ,

where g(u,t) is an artificial compression flux. In the FRAM method, Chapman
(1981), a diffusion term is added to the equations to dampen the oscillations

produced by higher-order schemes. The change to the advection equation looks
like

3¢ - 8¢ -
8 3t + Vegdu = 0 - 3t + Veu = VF ,

where

F=¢ %;L

Take, for instance, the usual leapfrog scheme

n+1l n u n
¢- -¢'+_[¢j+l-¢j<l]=¢,
Ax

then add a second-order VeF term such as Crowly’s

n n n
Ax?



The diffusion coefficient would be

¢ - fix

2

2At
u—3

This addition results in a strong nonlinear damping. One could envision using
an unstable scheme for advection and then adding the diffusion term for
stability. Gudonov effectively reversed the emphasis; instead of building
solutions from smooth small-amplitude results, he builds his solutions by
piecing together discontinuous solutions. For shocks, his method is exact but
problems do result in the smooth flow region of the solution (more will be
said about this in the discussion of hybrid methods). As mentioned, the
Riemann solver computes the nonlinear interaction of two constant states of
the fluid. The narrow shock structure produced can reside in the larger, more
uniform zoning structure of SOIL. We will discuss a second-order version of
Gudonov'’s method in the next section. Barton and Norman’s schemes are
basically ways of improving on the Gudonov method, but at the added expense of
more computer time. Barton selects a variety of slopes so as to locally
maintain the "highest order" of approximation, which is consistent with the
requirement of monotinicity. Norman, on the other hand, insures local
conservation of specific energy and angular momentum, and his method can be
applied to any advection scheme.

Finally, in the application of these first- and second-order schemes to
advection, the idea of a hybrid scheme occurs. A first-order scheme gives the
best reproduction of the shock jump conditions but the results usually
oscillate behind the shock. A combination of first-order for the shock and
higher-order schemes for the smooth flow is appropriate. Zalzek (1979)*° used
this approach in his improvements of FCT (Boris and Book 1978).

A recent sequence of events in the improvement of advection treatments in
Eulerian hydrodynamic of compressible flows follows from Gudonov through Van
Leer and Woodward. Van Leer’s second-order treatment of the Gudonov method is
called Monotonic Upstream-Centered Scheme for Conservation Laws (MUSCL), while
Woodward’'s improvements are called Piecewise Parabolic Method (PPM)IS. We have
already discussed the Gudonov method and in this section we will concentrate
on the second-order methods of Van Leer and Woodward. These two methods have
found wide use in recently developed codes of compressible hydrodynamics.

There are actually two new methods applied in MUSCL, one, the usual Lagrangian

8



step with a REMAP to the Eulerian coordinate system and two, a method due to
Collela (1986) that takes a direct Eulerian step. As indicated, MUSCL is a
second-order improvement to Gudonov with the addition of gradient information
from the local field. As in Gudonov, the Lagrangian step is carried out using
a Riemann solver but in MUSCL the slopes used in the advection are not zero.
To insure monotinicity, the slopes are limited appropriately in each slab.

The limiting technique suppresses unwanted numerical oscillations to some
degree. MUSCL and PPM use the time-splitting techniques that are so useful if
one wants to use algorithms developed in one-dimensional models. The problem,
as with SOIL, is that this approach begs the question of rotational
conservation, and only experience supports this approximation. As a further
improvement to MUSCL, Woodward developed PPM. The PPM has been carried to
fourth order with subsequently improved modeling of turbulent flow as it
occurs in convection cells and the formation of jets. At present, we do not
believe we need this kind of capability in SOIL for our geologic modeling.

The most promising scheme, which we believe should be easily adapted to
SOIL, is the monotonic method of Van Leer and subsequent investigators
(Woodwards, Collela, Norman, etc.). By developing slope algorithms for the
conservative quantities (p, u, e) that are properly limited, one can envision
simple second- and higher-order methods of advection. The actual approach is
called linear hybridization, where a low-order scheme is used to resolve the
shock structure and higher-order scheme to resolve the smoothflows surrounding
the shock structures. This hybridization method is the approach used by
Zalesak (1979) in his improvements of Flux Corrected Transport (FCT). Fluxes
‘of conserved quantities-mass, momentum and energy, are computed at zone
interfaces using both a low-order and high-order difference schemes. Weight
functions are then used which may be non-linear functions of the local
conditions of flow. Normally, the mass flux for instance is advected during a

time cycle as

n+1 n+ 1 n+ 1
MF. = p. . At A ,
i+ 1/ P54 1y, [UJ + 1/2 }

where A is the area perpendicular to the assumed flow u, across which the flux
is transferred. Usually p is assumed to be constant in the cell. Instead, we

form 3p from a set of slope algorithms. To insure stability and reduce



oscillations, a minimum slope is set to zero, reducing the advection to first

order. A simple such scheme would be

n
1
n

I _j * (sign + 1.0)/2.0 ,

where

sign = sgn (s(a))e+sgn(s(b)) ,
s(a) = [pj - pj ) 1] 02.0/ij ,

s(b) = [pj 1 pj ] 02.0/ij ,

and

v
1

j sgn[sj(a)}o min[lsj(a)l,lsj(b)l,lsj(c)l}

Slopes depending on i and j as well as in the cross directions would be
checked. If the slopes on one extensive quantity, say p, changed value, then
all the conserved quantities would be treated as first order. Having slope
values at the boundaries of the cells would also make it easier to apply
proper boundary conditions to the mesh. The addition of the slope routine to
SOIL with the addition of the logic for slope selection in the advection

phases would be a recommendation for an improvement to SOIL.

IV. STRONG SHOCK TREATMENTS

The study of shocks forming in the hydrodynamical simulations has been
studied since the advent of numerical methods and high-speed computers. We
have looked into the use of improved schemes for the treatment of shocks in
SOIL. A shock is described as a discontinuity even though there is some
energy dissipation which results in a finite, though very small, shock front

thickness. The basic jump conditions are well known,

Mass: (ul] = £ [PI/W ,
Momentum: [P}/W2 = - [7] , and
Energy: [e] = - plr] ,
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where, [q] = q* - 5, jump in q across the shock. The exact shock structure
cannot be completely determined by the jump conditions alone; an entropy

condition must also be applied.
In effect we have two gammas, I'(r,e) = c2/Pp

and

v(r,e) = Pr/e + 1

For a polytropic gas, gamma is the ratio of specific heats and y=I'. W
above is the Lagrangian wave speed across the front (a slope in the P-u
plane). 1In the very early treatment of shocks, in finite difference codes,
there were two basic approaches used: one, the characteristic method and two,
the pseudo-viscosity method. These are well described in the literature
(Courant and Fredricks!’, or Richtmyer and Morton). It is difficult to apply
the characteristic method in complex flows and the pseudo-viscosity method is
approximate at best. For possible applications to SOIL, we want to look into
the Gudonov and similar methods. The heart of the Gudonov method is in the
use of a simple Riemann solver. To solve the Riemann shock tube problem, for

every zone boundary, is expensive. The one-dimensional shock tube problem can

be described as a discontinuity in p, i.e.,

p1 P1 po Po

where we want the velocity (u*) and pressure (p*) at the interface. For an
ideal gas, the solution is analytic. First we define the variables as;

W, = neu., the normal velocity, Py = Ey = 1/2 ug ey, the total energy, the
density and Pk = P(pk,pk) the pressure at k. From the Rankine-Hugoniot (R-H)

conditions,

AV = i[- APS/AVS]I/QAVS ,

e = - 1y [P + P*]Av
€s T 2{"s s

1l




where
*
AW =W -V
s
and

AV =V -V
s

The Hugoniot curves are APs = X|W_[AW,. Assume a rightward wave as a shock

and a leftward wave a rarefaction; then,

*
P -P = - |V |AW,

*
P" -Pp = |Wp|AW

eliminate P* and then W |AWR + |V |AW; +Pp -Py = 0 must be consistent with P*
< P; and P* > Pp. As per Duckowitz (1987) we suppose that

[Wgl= pg (aS + ASIAWSI) ,
the Mcqueen approximation, and,

APg = pg (ag + Ag|AWg|)AWg

* * . .
then one can solve the values for W and P° at the interface. The terms in
the equation above come from

US - agt AsUp ,

where

12



and
Ag = Lin/|8Wg|/ag + @ = [6%/0 /(0" /p4-1)]

For SOIL, ag and As are available in the Tillotson formulation of the

EOS.

V. ADAPTIVE MESHES

There have been many recent improvements in the resolution of Lagrangian
codes using the methods of adaptive meshes, Davis and Davison (1978)18, Winkler
(1976)19, and Lund (1978)20, to name a few. The methods are designed to
resolve regions where important physics is going on such as the ionization
shock front or chemical reaction fronts as in the case of Lund’s HCT code. 1In
two-dimensional mesh codes, the problem is much more difficult. Moving Finite
Element (MFE) methods have been discussed by Miller and Miller (1981)%! and
particle tracking methods by Glimm (1965)22. For SOIL, we are considering some
recent ideas by Rodrique and Hedstrom (1984)23, Brackbill and Saltzman (1982)2“
and Berger and Oliger (1984)2°. The methods are usually considered as REMAP or
continuous rezones. Another possible second-order scheme is that due to
Duckowitz and Kodis (1987)326,

The idea, as mentioned, for adaptive meshes is to put the zonal
resolution where the action is; in our case, this is usually at the shock
front. Generally, in the use of high resolution meshes it is necessary to
solve the equations implicitly to avoid the CFL limit. Consider Winkler's
approach in 1D, and his use of compression and expansion algorithms. He
indicates that he can resolve jumps the order of 10!° or so in an active mesh.
This is a great deal more resolution than we will need in our applications of
SOIL. If we could say get even 10 times more zones in the moving shock front,
we would expect the jump conditions to be more nearly correct and eliminate
pseudo-viscosity. Certainly, we would not need a Gudonov method if we had an
adaptive mesh scheme. 1In the ALE (Arbitrary Eulerian-Lagrangian) methods, it
is possible to prescribe a motion to the mesh that from previous experience

follows the important flows.

13




VI. MIXED CELL TREATMENT

When using Eulerian codes, we have a problem in treating the materials in
mixed cells. In a Lagrangian code, there is no problem since the material
remains in the zone boundaries. Utilizing PIC, the particle in cell
treatment, the interface is followed by the location of the particles in the
cell. In a pure Eulerian code, usually a volume fraction treatment is used,
as in SOIL where the NUMF array describes the materials in the cell and the
function F the fraction of that material in the cell. To transfer material
from cell to cell a description is needed as to what material moves first, the
filling of the cell, and possibly the location of the interface in the cell.
SOIL utilizes the so called SLIC method which is based on the movement of
squares. Observe Fig. 2, a typical Eulerian mesh with an inferred material
interface. An improvement to SOIL may be to use boxes on configuration of

materials as shown below.
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One straightforward improvement to this scheme is to simply assign
priorities to material motion at the start of the problem. This idea will
retain some memory of the initial layering but it will be problem-dependent.
SOIL does not attempt to recognize the initial layering but does take into
account preferential treatment of like materials moving first. If cell 6, for
instance, contains only material 1, then material 1 will be moved
preferentially from cell 5 to 6 assuming the flow (u) is in that direction.
More complicated schemes that tend to track the interfaces through the cell,
such as that in HELP for instance, act again as Lagrangian cells and mesh
tangling can occur (or particle chain tangling). It is possible to determine
slope interfaces in each cell, from the volume fractions and flow directions,
but it is nearly impossible to connect up these interfaces from cell to cell,
The SLIC method works quite well for four materials and with a process called
"gluing" can be extended to say ten materials in a cell. "Gluing" attempts to
combine like materials in a combination again of four final masses that are
moved across the cell boundaries and then redistributed into the ten

materials. Usually, conservation of pressure is attained in the reconstructed

cell.

VII. VISCOSITY

Naturally, an Eulerian hydrodynamics code does not need added viscosity
in the mesh to handle shocks. The artificial viscosity due to the material
diffusion is normally adequate. In SOIL though, viscosity is added in order
to improve on the description of the shock front in terms of its location and
strength. The form of the pseudo-viscosity is a combination of quadratic and
linear terms as shown in Section II.

The linear term helps to remove oscillations formed behind the shock
front. To treat the viscosity correctly, it is also necessary to carry the
zone-dependent speed of sound. A basic improvement to the viscosity in SOIL
would be to use a more nearly TENSOR form. A simple description of the use of
viscosity in hydrocodes will now be given.

In the merging of compression waves, a steep front develops that then
turns into a shock front at an undetermined location. If the location is
known beforehand, a characteristic ray treatment could follow the shock
movement exactly. Instead, we generally do not know where the shock will

develop and the idea of pseudo-viscosity was developed by Richtmyer and Von
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Neumann in 1943. This formulation treats the conversion of kinetic energy to
internal dissipation through a quadratic term conserving the jump conditions.
Usually, the process smooths the shock over 3-5 zones. The Gudonov method
described in Section IV would allow the jump to occur in one or two zones. A
linear form of pseudo-viscosity was developed by R. Landshof (1955)%’, which
corrects for the oscillations that occurred behind the shock when the
quadratic form is used. A combination of quadratic and linear is then useful
in tailoring conditions developed in following shocks.

Recently a considerable amount of study on the use of pseudo-viscosity in
the 1D Lagrangian form of the equations by B. Noh and others has occurred.
The result is that one should use a, the tensor equation viscosity, that may

be coupled with a form of heat flow term, such as,

r_ sy (2w v:U)3
¢ pa<AU [8r - 3 ]2 Ar

These results are confirmed in a simple test problem where a shock
converges in the center of a sphere with a density ratio of p/po = 64 and
energy and pressure jumps, as determined analytically, are obtained (see
summary by Noh 1985)28. In the same context, for a two-dimensional code, the
TENSOR formulation of Shultz (1956)29 should be implemented correctly, but for
Eulerian codes this is more difficult. Splitting is generally used in the
Eulerian phase and a one-dimensional description of viscosity is used, as in
SOIL. To add the TENSOR character in SOIL implies a cross term that conserves
rotation as well as total energy. The question of the correct form for the
TENSOR viscosity is fairly mute since it was found to make little difference
in the 1D Lagrangian codes tests made in real applications. Even so, the
viscosity should be formulated correctly in the codes if at all possible.
Generally, viscosity is turned off on expansion with the feeling that it will

affect the results unnecessarily.

VIII. SUMMARY AND RECOMMENDATIONS

Eulerian codes are very useful in many areas of hydrodynamic flow
simulations. Since the material flows through the mesh there is no problem of
mesh entanglement as occurs in Lagrangian codes. Eulerian codes do suffer

though from the artificial diffusion of the mass, which makes the tracking of
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interfaces and the treatment of shocks more difficult. The low-order
treatment of advection in SOIL tends to smear out features of interest., SOIL
is a very robust code and has been applied successfully to problems in
containment, hypervelocity impact, and ground coupling. We have approached
this study in the anticipation of making some possible improvements to the
SOIL code, based on recent theoretical and experimental studies and
comparisons with other Eulerian codes.

A first recommendation is the use of the second-order schemes of Van Leer
and others based on monotonic slope selection, in possibly a hybrid mode. The
Gudonov, or strong shock methods, appear to be more difficult to apply to an
existing code. Improvements in the viscosity and mixed cell treatment in SOIL
are also possible but with much less to gain than in the other areas mentioned
above. We have also looked into the question of adaptive meshes in 1D and
find their application to the 2D mesh of SOIL to be somewhat imposing. The
idea, as in the ALE codes, to prescribe a continuous motion to the mesh, may
be more easily attainable. Finally, the vectorization and/or multitasking
should be pursued especially if a production version of the code has been

reached.
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