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IMPROVEMENTSTO SOIL (AN EULERIANHYDRODYNAMICSCODE)

By

Cecil G. Davis

Possible improvements
*

code that can do coupled

ABSTRACT

to SOIL, an Eulerian hydrodynamics
radiation diffusion and strength of

materials, are presented in this report. Our research is based on
the inspection of other Eulerian codes and theoretical reports on
hydrodynamics. Several conclusionsfrom the present study suggest
that some improvementsare in order, such as second-order advec-
tion, adaptive meshes, and speedup of the code by vectorization
and/or multitasking.

1, INTRODUCTION

SOIL is an Eulerianhydrodynamicscode with provisions to do coupled

radiationdiffusion and strength of materials. In this report we discuss

possible improvementsto SOIL based on the inspectionof a variety of other

Eulerian codes and theoreticalreports on hydrodynamics. Discussionsof

improvementsin the other areas of computationalneed, such as the radiation

transportand material strength,will be reserved for future reports. Our

general conclusionsfrom this study are that improvementssuch as second-order

advection,adaptive meshes and speed up of the code by vectorizationand/or

multitaskingare in order. To add the more sophisticatedaspects of turbulent

diffusionand Gudonov shock treatmentsfor instancewould be unnecessary in

our present applicationof the code.

In Section II we discuss the present algorithms in SOIL and their

limitations. In Sections III to VII, we describe new advection schemes,

strong shock treatments,adaptivemeshes, mixed cell treatments,and viscosity

consecutively. Section VIII contains a summary and our recommendationsfor

improvementsin the hydrodynamicportion of SOIL.

*SOIL, “Splitting in Eulerian Coordinates” property of C3 (Computer Code Consultants) Los Alamos, NM
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II. PRESENT SOIL ALGORITHMS

SOIL (Johnson1971a)luses a splittingtechnique in order to solve the

two-dimensionalset of Eulerianhydrodynamicequations. The solution is also

obtained in two phases, a Lagrangianphase followedby a REMAP to the Eulerian

mesh. The Lagrangianphase is fairly standard as in the early one-dimensional

codes FFF2. In the advectionphase an extrapolationon velocity is used which

makes the code approach second-orderaccuracy. Shocks can be treated using a

combinationof quadratic and linear pseudo-viscosityterms; the added

viscosity can be used in the expansionphase as well as in compression. The

zoning is strictly rectangularbut with variable size zones in the r and z

directions. The code can also be used inx, y geometry. The differential

equations approximatedby finite differencesforms and solved in (PH1) the

Lagrangianphase

au
P~= -VP

R (a#+E)-

and (PH2) the Eulerian Phase (fromRef. 3), are

s

}

~

-PVOG .

The equations solved in the Eulerian Phase (PH2) are

iy+vo (pIi) -0 ‘
at

aii
P~ +p(ii.v)G-o .

The advection,or phase

the followingconsiderations

2(PH2) differencingscheme can be derived from

(see Fig. 1).

I
I

T
I

-Ax-
[

+A-
I
I

K+l

(1)

(2)

i-l i+l

Fig. 1. Advection scheme for SOIL.
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All quantities in SOIL are cell centered so,

‘K + ‘K+l
u. -
1 2’

and a quantity A is the transmittedflux defined as

A= iiAt ,

then,

~-ui+ (-A) w
Ax )

and

ui
u=

[ 1~+[%+1-Ukpt“
(3)

Ax

This is the algorithmused in SOIL for advecting the velocity. The

method is approximatelysecond-orderaccurate. Other considerationsfor

improvementsto SOIL are in the methods used in treating shocks, mixed cells

and the question of vectorizingand/or multitaskingthe code. At present we

believe that the Tillotson approach to the EOS is reasonablefor geological

materials, though the EONESS routine currently in CHARTD may eventuallybe

preferable.

The pseudo-viscositytreatmentused in SOIL, to treat shocks, is

standard. The Qs are formed in subroutine,PTWO in the followingmanner,

q- qLPclAul+ q~ P(lh)2 ,

where the sound speed c can either be constant or stored in an array as

determined in the equation-of-stateroutine. The sound speed is determined

from

(4)

c - (’yP/p)’/2 or (i3P/6’p)’/2 .

3



The use of pseudo-viscosityin SOIL differs somewhat from conventional

wisdom. Generally the q is set to zero on expansionbut in SOIL it can be

used both in expansion and compression. The value for the linear contribution

of (qL- 0.1) produces fairly smooth profilesbehind the shock front.

The mixed cell treatmentof SOIL is also quite basic and relates to the

Simple Line InterfaceCalculation (SLIC)method describedby B. Noh (1975).4

First a NUMF (see Johnson 1971b) array is carried that identifiesthe

materials in the cell. A mixed cell has a negative number for NUMF. The

volume fractions (f) are calculatedfrom pressure iterationsin the mixed

cell. Consider two materials in the cell with masses M. and ~. Using a

simple iterationtechnique (secant)the volume fractions (f) and internal

energies (I) are changed until, through the EOS of each material, pressure

equilibrationis attained.

In the transportof material from cell K to cell KA, the cell above, to

or from a pure cell a simple decision of flow directionand adjacent like

material is used. If both cells are mixed, the decisionsare more complex as

seen in Fig. 1, where cells K and KA are mixed and the flow is in the

direction of KA. To remove preferentialtreatmentof the mass transport,a

look ahead feature is used based on the mass flows across boundaries of cells

KA+l. The material that is moved first is the same material as that in the

accepter cell.

At present, SOIL is neither vectorizednor multitasked,but because of

the splitting techniqueused in solving the hydrodynamicequations, the

ability to improve SOIL in this regard is fairly straightforward.

III. ADVECTION SCHEMES

Generally, the problem of advectiondoes not come up in the discussionof

Lagrangiancodes except in the process of rezoning the mesh when obtuse

trianglesor bow ties occur. We will not discuss this aspect of advection in

terms of the Lagrangian section of SOIL. In an Eulerianmesh, material can be

advected from cell to cell by a simple first-orderupwind scheme. In the Lax-

Wendroff scheme for instancematerial from cell i is advectedwith the

velocity from cell i +1 in the combination

n+l
u -u in [ 1-(At/Ax)F; ; ~f~ - Fin+ 1’2 ,
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where

~n + 1/2
i + ~/2 [ 1 [ 1-1/2 Ui : ~ = U: - (At/2h) Fi :1 - Fi .

This is a two-stepprocess that is stable but produces a lot of

artificialdiffusion. Other first-orderschemes such as those due to

McCormick (1971)5and Rusanov (1962)5have been applied with various degrees

of success. SOIL uses the upwind scheme described in Section II which is

marginally second order.

In this discussionof advection schemes,we will assume an ideal gas

equation of state, i.e.

e=P/(-y -1) ,

in order to simplify the equations. The first order schemes we will consider

are

1. Lax-Wendroff (two-step),

2. General upwind methods, and

3. FCT.7

In the Lax-Wendroffscheme, the first step is a provisionalone with Un

based on the Un+l/2 from the first .Step. The step 1+1/2, i-1/2 is called a

leapfrog step. There is some built in numericalviscosity but additional

viscosity may be needed to smooth out ripplesbehind the shock front. Further

discussionsof Lax-Wendroffschemes can be found in the literature (Richmyer

and Morton for instance).8

In the last decade, an interestingscheme was developedby Boris and Book

at NRL called flux corrected transport (FCT). A quick look at the explicit

version will help to understand this method. First, a highly diffusive step

is taken:

; (t + 6t) = pj(t) + $t;j(t + 6t/2) ,

[[
+ v.

J + 1/Q Ipi+~(t)-pi(t)]-Vj-,,2[pj(t)-pj-~(t)],
5



the adjusted fluxes are

$j + ‘/, [
F. (t + 6t)

1‘Vj + 1/, J + 1/2 - pj(t + 6t) ,

where v~+l,z is the diffusioncoefficient. The heart of the FCT method is

in the limits on the fluxes that are corrected from overshootingby

14 1)j + 1/21)‘j + 3/2sgfij+ 1/2 )

where

ii.
J + 1/2 -Fj + 1,2 (t + 6t)-;j(t + 6t) .

In the anti-diffusionstep, the mass fluxes

; (t + 6t)
j

=pj(t+6t) - #. +q5.
J+l/2 J

same scheme is then used to advect the

We have also looked into the following

are then

- ‘/2 “

This

advectionphase, for possible improvementsto SOIL:

momentum as well as the energy.

2nd-orderschemes, in the

1) Gudonovg,

2) AcceleratedCompressionMethod (ACM)1°or FilteringRemedy and

Methodology (FRAM)llpostprocessors,and

3) Monotonic, (Van Leer).12

The Gudonov scheme has been found to be difficult to implement in two-

dimensionsand also has had energy conservationproblems in its applicationin

some two-dimensionalcodes. In the applicationof Gudonov’s scheme, a fast

Riemann solver is needed. In the last couple of years, new approaches to

solving the Riemann equations for real equations-of-statehave been developed.

6



Collela (1982)13 haS found a ~aY of ~implifyingthe equationsand by utilizing

a fast iterationmethod can solve them efficientlyusing tables or fits to

real equations-of-state. Duckowitz (1985)14,on the other hand, finds that a

formulationbased on the McQueen form of the EOS, i.e.

U-us+s.u
P’

admits a solutionwhere

Gudonov in Section IV.

no iterationsare necessary. More will be said about

It may be possible to use the Gudonov scheme in only

one direction, in the two-dimensionalmesh, and obtain energy conservationat

the expense of flexibility. Before we would want to adopt this approach for

SOIL, more work will be needed.

The ACM method was developedby Harten in 1977. The method adds a flux

term to the equations in the form

Ut + f(u)x = o +Ut+ (f(u) + g(u,t))x= o ,

where g(u,t) is an artificialcompressionflux. In the FRAM method, Chapman

(1981),a diffusion term is added to the equations to dampen the oscillations

produced by higher-orderschemes. The change to the advection equation looks

like

where

Take, for instance, the usual leapfrog scheme

then add a second-orderV.F term such as Crowly’s

7



The diffusion coefficientwould be

@.# 2At
- Uy .

This addition results in a strong nonlinear damping. One could envision using

an unstable scheme for advectionand then adding the diffusion term for

stability. Gudonov effectivelyreversed the emphasis; instead of building

solutions from smooth small-amplituderesults,he builds his solutionsby

piecing together discontinuoussolutions. For shocks, his method is exact but

problems do result in the smooth flow region of the solution (morewill be

said about this in the discussionof hybrid methods). As mentioned, the

Riemann solver computes the nonlinear interactionof two constant states of

the fluid. The narrow shock structureproduced can reside in the larger, more

uniform zoning structureof SOIL. We will discuss a second-orderversion of

Gudonov’smethod in the next section. Barton and Norman’s schemes are

basicallyways of improvingon the Gudonov method, but at the added expense of

more computer time. Barton selects a variety of slopes so as to locally

maintain the ‘highestorder” of approximation,which is consistentwith the

requirementof monotinicity. Norman, on the other hand, insures local

conservationof specific energy and angular momentum, and his method can be

applied to any advection scheme.

Finally, in the applicationof these first- and second-orderschemes to

advection, the idea of a hybrid scheme occurs. A first-orderscheme gives the

best reproductionof the shock jump conditionsbut the results usually

oscillatebehind the shock. A combinationof first-orderfor the shock and

higher-orderschemes for the smooth flow is appropriate. Zalzek (1979)15used

this approach in his improvementsof FCT (Borisand Book 1978).

A recent sequence of events in the improvementof advection treatmentsin

Eulerianhydrodynamicof compressibleflows follows from Gudonov through Van

Leer and Woodward. Van Leer’s second-ordertreatmentof the Gudonov method is

called Monotonic Upstream-CenteredScheme for ConservationLaws (MUSCL),while

Woodward’s improvementsare called PiecewiseParabolicMethod (PPM)15. We have

already discussed the Gudonov method and in this section we will concentrate

on the second-ordermethods of Van Leer and Woodward. These two methods have

found wide use in recently developedcodes of compressiblehydrodynamics.

There are actually two new methods applied in MUSCL, one, the usual Lagrangian

8



step with a REMAP to the Eulerian coordinatesystem and two, a method due to

Collela (1986) that takes a direct Eulerian step. As indicated,MUSCL is a

second-orderimprovementto Gudonov with the addition of gradient information

from the local field. As in Gudonov, the Lagrangianstep is carried out using

a Riemann solver but in MUSCL the slopes used in the advection are not zero.

To insure monotinicity,the slopes are limited appropriatelyin each slab.

The limiting techniquesuppressesunwanted numerical oscillationsto some

degree. MUSCL and PPM use the time-splittingtechniquesthat are so useful if

one wants to use algorithmsdeveloped in one-dimensionalmodels. The problem,

as with SOIL, is that this approachbegs the question of rotational

conservation,and only experiencesupports this approximation. As a further

improvementto MUSCL, Woodward developedPPM. The PPM has been carried to

fourth order with subsequentlyimprovedmodeling of turbulentflow as it

occurs in convectioncells and the formationof jets. At present, we do not

believe we need this kind of capabilityin SOIL for our geologic modeling.

The most promising scheme, which we believe should be easily adapted to

SOIL, is the monotonic method of Van Leer and subsequent investigators

(Woodwards,Collela, Norman, etc.). By developingslope algorithms for the

consenative quantities (p, u, e) that are properly limited, one can envision

simple second- and higher-ordermethods of advection. The actual approach is

called linear hybridization,where a low-orderscheme is used to resolve the

shock structure and higher-orderscheme to resolve the smoothflowssurrounding

the shock structures. This hybridizationmethod is the approach used by

Zalesak (1979) in his improvementsof Flux CorrectedTransport (FCT). Fluxes

of conserved quantities-mass,momentum and energy, are computed at zone

interfacesusing both a low-orderand high-order differenceschemes. Weight

functionsare then used which may be non-linear functionsof the local

conditionsof flow. Normally, the mass flux for instance is advected during a

time cycle as

n+l
MF.

n+l

[

n+l
u.

J + 1/z
1

At A ,
‘Pj + 1/2 J +1/2

9

where A is the area perpendicularto the assumed flow u, across which the flux

is transferred. Usually p is assumed to be constant in the cell. Insteadjwe

form dp from a set of slope algorithms. To insure stability and reduce



oscillations,a minimum slope is set to zero, reducing the advection to first

order. A simple such scheme would be

‘j =‘j * ‘sign+1“0)’2”0‘

where

sign= sgn (s(a))osgn(s(b)) ,

s(a) -
[ 1‘j - ‘j - 1 “2”0’Axj ‘

s(b) -
[f’j+ 1 - ‘j 1

●2.0/Ax. ,
J

and

‘j= [j 1 [ 1sgn s (a) ● min Isj(a)l,lsj(b)l,lsj(c)I .

Slopes depending on i and j as well as in the cross directionswould be

checked. If the slopes on one extensivequantity,say p, changed value, then

all the consemed quantitieswould be treated as first order. Having slope

values at the boundaries of the cells would also make it easier to apply

proper boundary conditionsto the mesh. The addition of the slope routine to

SOIL with the addition of the logic for slope selection in the advection

phases would be a recommendationfor an improvementto SOIL.

n?. STRONG SHOCK TREATMENTS

The study of shocks forming in the hydrodynamicalsimulationshas been

studied since the advent of numericalmethods and high-speed computers. We

have looked into the use of improvedschemes for the treatmentof shocks in

SOIL. A shock is described as a discontinuityeven though there is some

energy dissipationwhich results in a finite, though very small, shock front

thickness. The basic jump conditionsare well known,

Mass: [u] -f [P]/w ,

Momentum: [plfl’= - [r] , and

Energy: [e] = - ~[r] ,

10



where, [q] = q* - qs, jumPin q across the shock. The exact shock structure

cannot be completelydeterminedby the jump conditionsalone; an entropy

conditionmust also be applied.

In effect we have two gammas, r(r,e) = c=/Pp ,

and

-y(r,e)= Pr/e +1 .

For a polytropic gas, gamma is the ratio of specificheats and y-r. W

above is the Lagrangianwave speed across the front (a slope in the P-u

plane). In the very early treatmentof shocks, in finite differencecodes,

there were two basic approachesused: one, the characteristicmethod and two,

the pseudo-viscositymethod. These are well described in the literature

(Courantand Fredricks17,or Richtmyer and Morton). It is difficult to apply

the characteristicmethod in complex flows and the pseudo-viscositymethod is

approximateat best. For possible applicationsto SOIL, we want to look into

the Gudonov and similar methods. The heart of the Gudonov method is in the

use of a simple Riemann solver. To solve the Riemann shock tube problem, for

every zone boundary, is expensive. The one-dimensionalshock tube problem can

be described as a discontinuityin p, i.e.,

pl P1 po Po

where we want the velocity (u*) and pressure (p*) at the interface. For an

ideal gas, the solution is analytic. First we define the variables as;

Wr = neur,the normal velocity, Pk = Ek = 1/2 ‘k””k, the total energy, the

density and Pk = p(Pk,pk) the pressure at k. From the Rankine-Hugoniot(R-H)

conditions,

AWs - A
[
- APs/AVs

1
‘/2 AVS ,

Aes = -
[1~/= ps+ p* AIJs ,

11



where

AW~ - W* - W~ ,

and

AV= - V=* - V~ .

The Hugoniot curves are APs = flWslAW~. Assume a rightward

and a leftwardwave a rarefaction;then,

P*-PL - -

P* -PR -

VJAWL ,

WRIAWR ;

eliminate P* and then IWRIAWR+ IVLIAWL+pR -pL = O must be

s PL and P* > PR. As per Duckowitz (1987)we suppose that

Iw~l= ~~ (as + AsIAWSI) ~

the Mcqueen approximation,and,

APS = PS (as + AsIAWSI)AWS ,

then one can solve the values for

the equation above come from

us = as+ A U
SP’

where

wave as a shock

consistentwith P*

W* and P* at the interface. The terms in

12



and

A~= Lim/lAW~{/a~+ a = [P*/P~/(P*/P#] .

For SOIL, as and As are available in the Tillotson formulationof the

EOS.

v. ADAPTIVE MESHES

There have been many recent improvementsin the resolutionof Lagrangian

codes using the methods of adaptivemeshes, Davis and Davison (1978)18,Winkler

(1976)19,and Lund (1978)20,to name a few. The methods are designed to

resolve regions where importantphysics is going on such as the ionization

shock front or chemical reaction fronts as in the case of Lund’s HCT code. In

two-dimensionalmesh codes, the problem is much more difficult. Moving Finite

Element (MFE)methods have been discussedby Miller and Miller (1981)21and

particle trackingmethods by Glimm (1965)22. For SOIL, we are consideringsome

recent ideas by Rodrique and Hedstrom (1984)23,Brackbill and Saltzman

and Berger and Oliger (1984)25. The methods are usually consideredas

continuousrezones. Another possible second-orderscheme is that due

Duckowitz and Kodis (1987)26.

The idea, as mentioned, for adaptivemeshes is to put the zonal

(1982)2L

REMAP or

to

resolutionwhere the action is; in our case, this is usually at the shock

front, Generally, in the use of high resolutionmeshes it is necessary to

solve the equations implicitlyto avoid the CFL limit. ConsiderWinkler’s

approach in ID, and his use of compressionand expansion algorithms. He

indicates that he can resolve jumps the order of 101° or so in an active mesh.

This is a great deal more resolutionthan we will need in our applicationsof

SOIL. If we could say get even 10 times more zones in the moving shock front,

we would expect the jump conditionsto be more nearly correct and eliminate

pseudo-viscosity. Certainly,we would not need a Gudonov method if we had an

adaptive mesh scheme. In the ALE (ArbitraryEulerian-Lagrangian)methods, it

is possible to prescribe a motion to the mesh that from previous experience

follows the important flows.

13



VI. MIXED CELL TREATMENT

When using Eulerian codes, we have a problem in treating the materials in

mixed cells. In a Lagrangiancode, there is no problem since the material

remains in the zone boundaries. Utilizing PIC, the particle in cell

treatment,the interface is followedby the locationof the particles in the

cell. In a pure Eulerian code, usually a volume fraction treatment is used,

as in SOIL where the NUMF array describes the materials in the cell and the

function F the fraction of that material in the cell. To transfermaterial

from cell to cell a descriptionis needed as to what material moves first, the

filling of the cell, and possibly the location of the interfacein the cell,

SOIL utilizes the so called SLIC method which is based on the movement of

squares. Obsene Fig. 2, a typical Eulerianmesh with an inferredmaterial

interface. An improvementto SOIL may be to use boxes on configurationof

materials as shown below.

UEEl (1,1) (1,1)

(1,0) (0,1) (1,0) (0,0) (0,1)

Possible Configurations

i

Fig. 2. EulerianMesh with inferredmaterial interface.
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.

One straightforwardimprovementto this scheme is to simply assign

priorities to material motion at the start of the problem. This idea will

retain some memory of the initial layeringbut it will be problem-dependent.

SOIL does not attempt to recognize the initial layeringbut does take into

account preferentialtreatmentof like materialsmoving first. If cell 6, for

instance,contains only material 1, then material 1 will be moved

preferentiallyfrom cell 5 to 6 assuming the flow (u) is in that direction.

More complicatedschemes that tend to track the interfacesthrough the cell,

such as that in HELP for instance,act again as Lagrangiancells and mesh

tanglingcan occur (or particle chain tangling). It is possible to determine

slope interfacesin each cell, from the volume fractionsand flow directions,

but it is nearly impossibleto connect up these interfacesfrom cell to cell.

The SLIC method works quite well for four materials and with a process called

“gluing”can be extended to say ten materials in a cell. “Gluing”attempts to

combine like materials in a combinationagain of four final masses that are

moved across the cell boundariesand then redistributedinto

materials. Usually, conservationof pressure is attained in

cell.

VII. VISCOSITY

Naturally, an Eulerianhydrodynamicscode does not need

the ten

the reconstructed

added viscosity

in the mesh to handle shocks. The artificialviscosity due to the material

diffusion is normally adequate. In SOIL though,

to improve on the descriptionof the shock front

strength. The form of the pseudo-viscosityis a

linear terms as shown in Section II.

viscosity is added in order

in terms of its location and

combinationof quadratic and

The linear term helps to remove oscillationsformed behind the shock

front. To treat the viscosity correctly, it is also necessary to carry the

zone-dependentspeed of sound. A basic improvementto the viscosity in SOIL

would be to use a more nearly TENSOR form. A simple descriptionof the use of.

viscosity in hydrocodeswill now be given.

In the merging of compressionwaves, a steep front develops that then

turns into a shock front at an undeterminedlocation. If the location is

known beforehand, a characteristicray treatmentcould follow the shock

movement exactly. Instead,we generallydo not know where the shock will

develop and the idea of pseudo-viscositywas developedby Richtmyer and Von



Neumann in 1943. This formulationtreats the conversionof kinetic energy to

internaldissipationthrough a quadraticterm conservingthe jump conditions.

Usually, the process smooths the shock over 3-5 zones. The Gudonov method

described in Section IVwould allow the jump to occur in one or two zones. A

linear form of pseudo-viscositywas developedby R. Landshof (1955)27,which

corrects for the oscillationsthat occurredbehind the shock when the

quadratic form is used. A combinationof quadraticand linear is then useful

in tailoringconditionsdeveloped in followingshocks.

Recently a considerableamount of study on the use of pseudo-viscosityin

the ID Lagrangian form of the equationsby B. Noh and others has occurred.

The result is that one should use a, the tensor equationviscosity, that may

be coupled with a form of heat flow term, such as,

4“=pa””[~-%’r-
These results are confirmed in a simple test problem where a shock

converges in the center of a sphere with a density ratio of p/p o = 64 and

energy and pressure jumps, as determinedanalytically,are obtained (see

summary by Noh 1985)28. In the same context, for a two-dimensionalcode, the

TENSOR formulationof Shultz (1956)29shouldbe implementedcorrectly,but for

Eulerian codes this is more difficult. Splitting is generallyused in the

Eulerianphase and a one-dimensionaldescriptionof viscosity is used, as in

SOIL. To add the TENSOR character in SOIL implies a cross term that conserves

rotation as well as total energy. The question of the correct form for the

TENSOR viscosity is fairly mute since it was found to make little difference

in the ID Lagrangiancodes tests made in real applications. Even so, the

viscosity should be formulatedcorrectly in the codes if at al1 possible.

Generally,viscosity is turned off on expansionwith the feeling that it will

affect the results unnecessarily.

VIII, SUMMARY AND RECOMMENDATIONS

Eulerian codes are very useful in

semulations. Since the material flows

many areas of hydrodynamicflow

through the mesh there is no problem of

mesh entanglementas occurs in Lagrangiancodes. Eulerian codes do suffer

though from the artificialdiffusionof the mass, which makes the tracking of

16



interfacesand the treatmentof shocks more difficult. The low-order

treatmentof advection in SOIL tends to smear out features of interest. SOIL

is a very robust code and has been applied successfullyto problems in

containment,hypervelocityimpact, and ground coupling. We have approached

this study in the anticipationof making some possible improvementsto the

SOIL code, based on recent theoreticaland experimentalstudies and

comparisonswith other Eulerian codes.

A first recommendationis the use of the second-orderschemes of Van Leer

and others based on monotonic slope selection,in possibly a hybrid mode. The

Gudonov, or strong shock methods, appear to be more difficult to apply to an

existing code. Improvementsin the viscosity and mixed cell treatment in SOIL

are also possible but with much less to gain than in the other areas mentioned

above. We have also looked into the question of adaptivemeshes in ID and

find their applicationto the 2D mesh of SOIL to be somewhat imposing. The

idea, as in the ALE codes, to prescribe a continuousmotion to the mesh, may

be more easily attainable. Finally, the vectorizationand/or multitasking

should be pursued especially if a productionversion of the code has been

reached.
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