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SEISMIC RESPONSE OF A BLOCK-TYPE

NUCLEAR REACTOR CORE

Richard C. Dove, Joel G. Bennett, and Jean L. Merson

ABSTRACT

An analytical model is developed to predict seismic response of

large gas-cooled reactor cores.

The model is used to investigate

scaling laws involved in the design of physical models of such cores,

and to make parameter studies.

I. INTRODUCTION

The use of a large number of graphite elements
to form the core of a nuclear reactor is not new.
However, a recent core design for a large gas-cooled
reactor contains a very large number of graphite
blocks, and in accord with present practice the
seismic response of this core must be accurately pre-
dicted. Such a system of blocks does not constitute
a structure in the usual sense, and hence the theory
and experimental data available for the prediction
of seismic response cannot be directly applied. This
paper describes an analytical model that has been
developed to predict the response of a system of
blocks (representative of a simplified reactor core)
to general seismic input. This model was then used
to investigate scaling laws developed as part of a
program to physically scale reactor cores of this
type. A parameter study was made to determine the
relative importance of material properties, design
features, and test conditions associated with a given

core design.
II. THE PHYSICAL SYSTEM

Nuclear reactor cores that consist of graphite
blocks of various shapes have been described by
several authors. The physical system of interest

in this investigation is one described by Neyland

and Gorholt.1 This core system, for use in large
high-temperature gas-cooled reactors (HTGR's),

was developed by the General Atomic Company of

San Diego, California. The core consists of a

large number of hexagonally shaped graphite blocks
with a great number of degrees-of-freedom (ultimate-
ly, six motion coordinates times ''n" blocks, or as
many as 23,664 degrees-of-freedom), and with compli-

cated boundary and support conditions.

I1I. THE ANALYTICAL MODEL

Ideally, the model should consist of a three-
dimensional array of elements that can be: 1) ex-
tended in number as required, 2) given any shape,
3) connected to each other by any means, 4) assigned
any physical property values, 5) supported and res-
trained on the array's exterior boundaries by any
means, 6) excited by three independent axial motions
representing three earthquake components, and 7) for
which the six components of motion and all forces
can be computed for each element. Such a general
model is not practical,and the simplified model dis-
cussed below incorporates the most important govern-
ing characteristics of the real system. The clements
are taken as cubic in shape (this is not required
as part of the simplification), and are connected
to each other by dowels in sockets. They are con-

tained in a surrounding structure, which, although



having a finite stiffness on contact with the core
blocks, moves as a unit under the influence of seis-
mic excitation. The model can be driven by inde-
pendent motion inputs, but rotational response or
coupling between rotational response and linear
response is not considered. The core blocks can be
assigned desired values for physical properties
including stiffness (modulus), density, inelastic
energy loss, and coefficient of friction between
blocks.

Figure 1 is a free-body diagram of a core block
showing the forces that are allowed to act upon it.
A number of these blocks are then arranged in one-
or two-dimensional arrays and subjected to one or
two independent motion-time inputs. Figure 2
illustrates a two-dimensional array.

The significant difference between this model
and the usual structural model is that it uses
Coulomb friction rather than viscously damped
spring-masses. The analytical method uses the
component element method combined with an equili-

brium iteration procedure.

Figure 3 illustrates a flow chart of the equili-

brium iteration scheme used. The philosophy is to
trace the time history of each block through a
succession of equilibrium states, each new state

being based on the previous configuration.
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Fig. 2. Two-dimensional model,

The first step for this procedure is to deter-
mine the initial acceleration of each block from
equilibrium considerations (IF = Ma). This step
assumes that the temporal history of the boundary
displacement is known. The initial forces are
determined from force-displacement curves.

The accelerations from this step are extended
forward in time by predicting the acceleration that
will exist at the end of a small time increment.
This predicted acceleration is then integrated
twice using a time integration scheme such as the
Newmark B, or Wilson ©,or other methods. The
current program makes use of the Newmark method
with B = 0.25 for which the expressions for velocity
and displacement are simple finite difference ex-
pressions of the truncated Adams type.z Using these
displacements, the corresponding forces on all blocks
must be determined from known force-displacement
information.

The model can accommodate inelastic energy
loss during impact. Figure 4 illustrates a typical
loading and unloading path during the impact scquence,
where the area enclosed represents energy lost.

The advantage of this model is that the energy lost
can be specified as a percentage of the energy

stored during the loading sequence. In practice
this is done by specifying the percentage energy

loss, which defines the unloading modulus D through
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Fig. 3. Equilibrium iteration scheme.

the relationship.

D = g- . Energy Loss
00 b

The disadvantage of this model is that it does not
take into account the accumulating permanent deforma-
tion. It should be recognized that this method can
be used equally well for nonlinear force-displace-
ment elements. However, the more sophisticated the
force-displacement information, the more costly the
time-history analysis will be.

All forces

are now applied to the blocks and their

determined from computed displace-

ments

Stress

Strain

Inelastic energy loss model.

Fig. 4.

corresponding accelerations determined from equili-
brium considerations. These new accelerations are
compared to the values predicted, and if they agree
within a given tolerance, a dynamic equilibrium
state has been attained. In this case, time is
incremented and the equilibrium state is recorded as
the time history of the system.

For the case where agreement with predicted
values is not obtained,the accelerations found by
applying the force-displacement information are
used as a new prediction, and the integration step
is repeated. This iteration process is continued
until agreement is obtained.

The program3 used for the solution of the
equations of motion has the following characteris-
tics:

a. The input motions to the axes are in-
dependent.

b. The input motions may be in the form of
analytic functions (sinusoidal, etc.),
or externally generated motiorn-time records
(simulated or real earthquake time histo-
ries).

c. Computer generated movies can be used to
display position versus time information.

d. For each block in the system the displace-
ment time-, acceleration time-, and the
force time-histories are available.

IV. DEVELOPMENT OF THE SCALING LAWS

Because the reactor cores are large and massive,




it is necessary to perform seismic testing on scale

models. For this reason the appropriate scaling
laws for the block-type core under consideration
have been developed. For the systems shown in Fig.

2 we may write:
X =9 (XB’ t, d, ¢, p, Q, El 2:--n> Dy FARRS ¥
2 2
01,2...n, g),

where the terms are defined as follows.

X = response motion of any point, a function
of time (t)

X, = input motion, a function of time (t)
= time

= block dimension

clearance

= block material density

O ©° 0 o w
¥

= any external force applied to a block
(including friction)

Ey 2...p = moduli of elasticity of the block
Dy 2...n = unloading moduli
?

0y 2...n = stress levels used to define the stress
’ versus strain characteristics of the
block material

g = gravitational constant

As many values as are necessary to define the shape
of the stress-strain curve may be assigred for E,
D,and . Inelastic energy loss is accommodated by
allowing the unioading curve to differ from the
loading curve.

The input (XB) cogld be in terms of velocity
(XB) or acceleration (XB) without affecting the
analysis that follows; likewise, the response (X)
of the system could be in terms of velocity, accel-
eration,or block contact forces. These 14 terms

can be arranged into 11 dimensionless groups that

give
X 2 2 2 BE o
X . ¢ B pd E)d gt ™n n
a' ] (d’ a'_, 'tTE’ Q > g El, El,
% D Dy
o1’ Ey’ Dy

as the governing equation for this system.*

*See Ref. 4 for a general discussion of dimensional
analysis and similitude theory.

From this governing equation we can determine
' the scale factors necessary to design a model, and
relate model response to prototype response. Having
selected the materials for both the model and the
prototype, two scales are fixed. First, the density

scale Np is given by

p
N = —E,
[ n
where
Py = prototype density » and
Py = model density -

Likewise, the modulus scale is

E
Ng = Eﬁ
where
Ep = prototype modulus , and
Em = model modulus .

Equation 2 requires that d
(a) the length scale (Nd = aEJ be Nd =
m

2z

E
N—‘,
p

t
Y 3 = _E )
(b) the time scale (Nt tm) be L &, and

(c) the force scale (NQ = gﬁa be NQ = NENdz'
E o o D D
In addition, the five terms (ﬁ, Elll-, 0—'11-, E—rl‘-, and n
indicate that the material used for the model must
have stress-strain characteristics similar to the
prototype material.

These scales and design conditions are very
restrictive. For example, the simplest way to
insure that model and prototype materials have the
required similarity is to use the same material
for both. However, this gives a value of unity for
both density scale and modulus scale (Np =1,

NE = 1) that in turn dictates that the length scale
be unity. Hence, a scale model is not possible
unless some way is found to adjust the mass inde-
pendent of material density.

If a different material is used for the model
it must have a smaller modulus (E) to density (p)
ratio than the prototype material (graphite, in the
case of a reactor core). At first glance, this

does not seem to be a difficult condition to fulfill,




and indeed a number of plastics have ratios of E to
p that result in models of between 1/5 and 1/10 the
size of the graphite prototype. However, if
stresses in either the model or the prototype exceed
values beyond which the material behavior can be
described in terms of a single modulus value (E,),
there is no assurance (without further analysis)
that the model and prototype will exhibit the re-
quired similarity.

If the gravitational constant (g) is omitted
frog the governing variables in Eq. (1), the term
(95—9 does not appear in Eq. (2). For this case
the length scale (Nd = g&a can be selected as any
desired value,since it is independent of the density
scale (Np) and the modulus scale (NE). For this
case (g, omitted) where the same material is used
for the model and prototype, the time scale (Nt)
is equal to the length scale (Nd). The question
is: Does the behavior of the system depend upon
""g"? The force of gravity does affect this system
if frictional forces are important, since frictional
forces are proportional to normal forces which are
dependent on the block weight (hence, "9"), and any
vertical acceleration. To omit ""g" is to distort
all frictional effects, and rhese may be the major

damping mechanism.

V. USE OF THE ANALYTICAL MODEL

The analytical model described has been used to
investigate the scaling laws developed above and to
conduct a parameter study. The purpose of these
investigations has been to prepare for physical
model testing.

In order to investigate the scaling laws the

one-dimensional system shown in Fig. 5 was consid-

ered. Four different systems having the parameters
SPECIFIED
¥, iz Rs Xa MOTION
Xll X2| X3| X4I
BLOCK BLOCK BLOCK BLOCK
| 2 3 4
2L L L L
Fig. 5. One-dimensional model.

shown in Table I were run. All three of the
"models' are designed with a length scale (Nd)
of 4, but differ greatly in other ways. The
"true model" is designed to satisfy all of the scale
relationships dictated by the laws of similitude.
Figure 6 shows the acceleration response of
block #1 in the prototype system to a + 19, 5-Hz
excitation. Figure 7 shows the acceleration response
of block #1 in the true model system to a + 1g, 10-Hz
excitation (since model times are scaled by dividing
by 2, i.e., Nd’ frequencies are doubled). Inspec-
tion of these two acceleration time-histories shows
2), the

true model predicts the prototype acceleration time-

that when properly scaled (Ni =1, Nt =
history. The prediction is most accurate during
early times, and as time progresses,cumulative
computational errors produce some divergence of
results.

The next system considered is referred to in
Table I as a "distorted model.”" This model is
distorted in the following way: having picked a
length scale (Nd) arbitrarily, the same material is
used for the model as for the prototype. As a
result, the material modulus of the model equals the

material modulus of the prototype (Em = Ep). Since,

-for equal material density, weight varies as the
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Fig. 6. Prototype response.
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cube of the dimension, then Wm = wp/Nda' The result
is a model that is tgo light for its stiffness if

tested in the same gravitational field as the proto-
type.
equal to the length scale (Nt = Nd) and an accelera-
tion scale equal to the reciprocal of the length

scale (Ni = l/Nd).

response of block #1 in this distorted model system

These choices also result in a time scale

FPigure 8 shows the acceleration

to a + 49, 20-Hz excitation (model accelerations are

four times prototype accelerations and since model
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Fig. 8. Distorted model response.

times are scaled by dividing by 4, frequencies are
multiplied by 4).
Prototype system acceleration response (Rig. 6)

Comparison of this record to the

indicates how this system response differs from the
prototype. We note that in the distorted model the
impacts are more uniformly spaced in time, and that
although the peak accelerations occur at different
times, the distorted model predicts (when properly
scaled) the peak values with reasonable success.
However, study of the displacement versus time -
histories shows that this distorted model responds
with a completely different displacement time-history
from the prototype.

The fourth system considered is referred to as
a "friction-corrected distorted model" in Table I.
This system results from the observation that since
the distorted model is too light, and hence friction-
al forces are too small in a 1g field, a correction
should be possible by increasing the coefficients of
friction.* Accordingly, both the static and kinetic
coefficients of friction (us and uk)have been in-
creased by a factor of four. Figure 9 shows the
acceleration response of block #1 in this "corrected"
system to a + 49, 20-Hz excitation. Comparison of
Fig. 9 to Fig. 6 shows that this corrected model
predicts the prototype acceleration response
exactly (model results must, of course, be scaled,
i.e., X_= X_/4, t,=4xt).

P ‘m
allows the model to accurately predict prototype

This correction also
displacement time-histories. Whether this simple
type of correction would be physically possible or
completely effective in a three-dimensional model
subjected to three orthogonal motion inputs is
still unknown.

A parameter study was also conducted using
the analytical model applied to the one-dimensional
system shown in Fig. 5. This one-dimensional model
is characterized by the following functional equa-

tion (a less general form of Eq. 1).

X=19 (XB’ t, d, c, W, Us, uk, E, D, 9) (3)

in which
X = acceleration of a block
XB = amplitude of sinusoidal motion applied to

the base

*Alternatively, the model might be tested in an
artificial higher "g" field.
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t = period of input sinusoidal motion or any
significant time
d = characteristic block dimension
c = clearance between blocks
W = weight of block
vy = static coefficient of friction
uy = kinetic coefficient of friction
E = modulus of block, loading
D = modulus of block, unloading
g = gravitational constant.

This functional equation can be rewritten using di-
mensionless groups as follows:
X xB ¢ Ed?2 Ys

X_oy (B ¢ Ed w s E
g—w(d’d’ w,k, > p?

4)
Designating each dimensionless group as a "Pi'" term
we can write:

T = ¥ (1[2, w3, Wy, M5, Tg, Ny, 1[8). (4&)
Many other groupings are possible, but this set was
chosen to make it easier to vary one "Pi" term while
holding the remaining ''Pi'" terms constant.

In making the parameter study the terms on the
right-hand side of Eq. (3) were assigned values, and
from these the '"base" value of each dimensionless
group (7 term) on the right-hand side of Eq. (4)
was computed. Computer runs were then made in
which the value of one m term was varied while all

0.5

others were held at their base values.

The first investigation was to determine the
effect of varying static friction (breakaway
friction), M- The data shown on Fig. 10 indicates
that variation in g has little effect on the block
accelerations .* As a result of this finding,
static friction (us) may be eliminated as an inde-
pendent governing parameter. Figure 11 shows the
importance of the clearance gap (c) on block
It is clear that block acceleration

The effect of

acceleration.
is strongly dependent on clearance.
varying the coefficient of kinetic friction (uk)
is shown in Fig. 12. The importance of the kinetic
friction effect in limiting acceleration is clear.

The effect of energy loss due to inelastic
The

results shown in Fig. 13 indicate that the effect

impact was studied by varying P (E/D).

of internal energy loss on block accelerations is
relatively small.

From the dimensionxzl analysis (Eq. 4) we see
that the effect of block stiffness (E) and block
weight (W) can be investigated simultaneously by
varying L (E%EJ. The results of this investiga-
tion are shown in Fig. 14.

The purpose of this parameter study was to
gain a better physical understanding of the four
block one-dimensional model in particular, and
block-type nuclear reactor core models in general.

It is also possible to use this parameter
study to extend the investigation of the scaling
laws. By assuming that the function () in
Eq. (4) is a product form we may rewrite Eq. (4)

as

*
Provided that the exciting force is large enough
to insure that the blocks do break away.

T T T
(7]
x 7
2> GO0 ——= © o
® 8
¥
%8 500F -
(=]
=4 . . .
0 0.2 04 06 0.8
Static Coefficient of Friction- Hg
Fig. 10. Effect of static coefficient of friction.
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With a model distorted by using the same
material for model and prototype,only the term

2
(5—3—) need be distorted; so we can write:

%}2 v B ;
@ VG,
9'm m

since the function y" is identical for both model

and prototype. The '"prediction factor," 8, is

(%]

v

>

$

§ 700 L ¥ 1)

2

8 600} _
<

% 500[ .
2

@ 400 .
5

E 300F .
5

= 200 ' : '

0 02 04 06 08

Kinetic Coefficient of Friction p

Fig. 12. Effect of kinetic coefficient of friction.

(2]

T LON § 1 | 1 T T 1 T f T T ‘ooo :>|°<.

i 4 800 5
(o—s . > - 600 5
- {500 &
B 4 400 §
- {300 <
Note: r.,:E/o . 200 §

3 % Energy lou-Eé—D X100 @
g

E

1 11t 1 1 3 11t 1 1 1 100 =
50 30 20 108 654 3 215 | 2

Inelastic Energy Loss € %

" Fig. 13. Effect of inelastic energy loss.

defined as*
o= gt )

hence,
3 =8 () _.
Pp = ° @
From the parameter study (Fig. 14) the effect of

2
the term Ed” on block acceleration (X) can be ex-

W
. 2 _G
X = 425#(%) x 10

pressed as
Using this expression for y' and substituting in

Eq. (5), we can write
__fEd? Ed
6 _J(—w—)p / &S,

*The procedure for establishing a 'prediction
factor" that may be used with a distorted model is
described in Part II (Distorted Models), Similitude
in Engineering, by Glenn Murphy.
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Fig. 14. Effect of modulus to weight ratio.




To test this method of approach, 6 was computed
from the values of E, d, and W assigned to the

'"prototype" and "distorted model" systems shown in

Table I.
E(d/Nd)2
°= JL‘ (wN)

The "distorted model" was then tested as if it had
been a true model (i.e., XB = + 0.9944/4cm, fB =

10 Hz), and the results multiplied by the predic-
tion factor (@) to predict prototype response. Fig-
ure 15 shows the acceleration response of block

#1 in the distorted model system when driven as if
15 with
Pig. 6 indicates that when model accelerations are

multiplied by a prediction factor (8) of 2, the

it were a true model. Comparison of Fig.

prototype acceleration is predicted for homologous
time = .
imes (tp 2 tug

during early times, but as time progresses, cumulative

The prediction is most accurate

computational errors produce divergence of results.
"Compensated distortion"* is also possible;

that is, two or more = terms may be distorted

(one or more deliberately in a controlled manner)

so as to produce a net prediction factor (8) of

unity. The “coefficient of friction correction of

*Mu:g:y, Similitude in Engineering, pp. 107-108.
BLOCK *I

% il h” M‘ ”

U

TIME - SEC.

Fig. 15. Distortion factor test.

the distorted model" discussed previously is an
example of this approach.

Tests in which the exciting force was suddenly
reduced to zero indicate that with reasonable values
of coefficient of friction, the effective damping
is large in this system. Figure 16a-b shows the
acceleration-time response for block #1 during two
tests. In both cases the system was driven with a
+ 1g, 5-Hz, excitation for 0.4 sec (two cycles),
after which the excitation was reduced to zero.

As shown in Fig. 16b, where the value of the
kinetic friction (uk) is 0.16, block impacts cease
This

indication of large effective damping indicates that

very soon after the excitation goes to zero.

the system has little memory of past acceleration-
time history. Therefore, for some purposes the
model may be appropriately tested using only
selected abbreviated portions of a simulated earth-
quake time history.*

The analytical model has been applied to the
two-dimensional system (Fig. 2) to investigate the
effect of the core blocks' pin connections. Values
used as "base" data for this model are given in
Table II.

Output available for each block (in both
tabulated and plotted form) includes: horizontal
acceleration, contact force on block side walls,
pin force, vertical acceleration, and contact force
on block bases, all as functions of time. Figure
17 is an example of a one-second run using base data.

Vertical accelerations and forces are not shown,

*An exception to this is when the total number of
block collisions is desired (as for a fatigue
damage study), rather than maximum values of
accelerations or forces.
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Fig. 16a. Undamped system.
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Fig. 16b. Effect of Coulomb damping.

since the vertical input (YB) was zero for this
case.

The general behavior of the pin-restrained
two-dimensional system can be explained in terms of
these figures. Although block #9 receives 61
acceleration pulses (Fig. 17a), only two of these
are due to side wall impacts (Fig. 17c). The
remaining pulses result form pin-slot closure.
Those applied to the base of block #9 are shown
in Fig. 17b, and those applied to the top of block

#9 are available as the equal but opposite reactions

for the lower pin forces on block #13.

A series of runs has been made in which pin
clearance (h) and pin stiffness (Kp and Ks) have
been varied from the base values. The results may
be summarized as follows:

a. Side contact between blocks is eliminated
in all horizontal rows below which the
accumulated pin gap clearance is less than
the gap between blocks.

b. Smaller pin/slot clearances (lower "h")
produce more numerous, but less intense
pin/slot impacts.

c. Stiffer pins (higher values of K_or K)
produce more numerous and more iRtense
pin/slot impacts.

Results from several specific runs are summarized
in Table III.

g 2004
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'é'ﬁ 04
2003 Y 'Y o8 o8 10
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Fig. 17a. Acceleration, block 9; two-dimensional

system.
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Fig. 17b. Lower pin forces, block 9; two-dimensional

system.
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. 17c. Wall contact forces, block 9; two-dimen-
sional system.

VI. CONCLUSIONS

The analytical model described above has been
useful in investigating the behavior of this unique
system. Clearly the model must be verified, and
tests are now being planned that will progressively
compare one- and two-dimensional physical systems
to the corresponding analytical model. The analy-
tical model is currently being used to determine
the effect of vertical acceleration on the response
of the two-dimensional system., Simulated earthquake
acceleration time-histories are being used as driving

functions.
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PROTOTYPE

0.381 m (15 in)

0.381 cm (0.15 in)

0.200

0.160

13.79 x 10° N/m*

2 x 10% psi)

975.94 N
(219.4 1b)
+0.9944 cm
(+0.3915 in)
S Hz

Xy = 19
SCALES:
LENGTH - Nd
TIME - NT
ACCELERATION - N;
FORCE - NQ
STRESS - NO

E:I Em

UPROTOTYPE!" AND "MODEL!' STUDY PARAMETERS

TRUE_MODEL

0.381/4 m
.381/4 cm
.200

(=2 =)

0.160

+0.9944/4 cm

5 xaft = 10Hz
1g

DISTORTED MODEL

0.381/4 m
0.381/4 cm
0.200

0.160
13.97 x 10° N/m?

975.94/43 N

+0.9944/4 cm

5 x 4= 20Hz
49

1/4

DISTORTED MODEL

0.381/4 m
.381/4 cn
0.2 x 4

o

0.16 x 4
9 2
13.97 x 10° N/m

975.94/43 N

+0.9944/4 cm

5 x 4= 20Hz
49
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TABLB 1I

BASE VALUES USED IN THE STUDY OF THE TWO-DIMENSIONAL MODEL

Item

Block Size
Block Weight
Block Stiffness
Horizontal direction
Vertical direction
Connector Stiffness
Pin
Slot
Gap Bétween Block
Clearance Between Pin and Slot
Friction Between Horizontal
Surfaces
Static Coefficient
Kinetic Coefficient
Base Motion - Horizontal
Frequency
Amplitude

Base Motion - Vertical

Symbol

£ A

e

»_ =
> O T

Base Value

0.38 m (15 in)
794 N (178.5 1b)

1.89 x 10° N/m (10.8 x 10% 1b/in)
2.84 x 10° N/m (16.2 x 10° 1b/in)

.084 x 10° N/m (6.19 x 10° 1b/in)
.084 x 10° N/m (6.19 x 10% 1b/in)
.38 cm (0.150 in)
.127 cm (0.050 in)

o O = -

0.20
0.16

1g




TABLE III

EFFECT OF PIN CLEARANCE AND STIFFNESS

cl.. @
Description

1-D System
(block 1,2,3,4
only), no pins

2-D System
(block 1-16)
no pins

2-D System
Base Values

2-D System
"h" decreased to
'0.0254 em (0.010 in)

2-D System
"h" increased to
0.254 cm (0.100 in)

2-D System
Kp and K5 increased
to 1.75 x 109 N/m

2-D System
K, and Kg decreased
t6 0.7 x 109 N/m

Max Block Max. Side

Acceleration (9)

345 274 x 10°
(61,677 1b)
3
377 299 x 10
(67,281 1b)
3
178 131 x 10
(29,520 1b)
72 0
(no side contact)
3
327 260 x 10
(58,344 1b)
3
219 128 x 10
(28,820 1b)
3
164 130 x 10

Contact Force (N)

(29,200 1b)

2A11 values are as given in Table II, except as noted.

Max. Pin
Shear Force (N)

140 x 10°
(31, 597 1b)

57 x 10°

(12,879 1b)

169 x 10°

(38,006 1b)

173 x 103

(38,966 1b)

115 x 10°
(25,907 1b)

13
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