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TWO-DIMENSIONAL CROSS-SECTION SENSITIVITY AND UNCERTAINTY ANALYSIS

FOR FUSION REACTOR BIANKETS

by

Mark Julien Embrechts

ABSTRACT

Sensitivity and uncertainty analysis implement the information ob-

tained from a transport code by providing a reasonable estimate for the

uncertainty for a particular response (e.g., tritium breeding), and by

the ability to better understand the nucleonics involved. The doughnut

shape of many fusion devices makes a two-dimensional calculation capa-

bility highly desirable. Based on first-order generalized perturbation

theory, expressions for a two-dimensional SED (secondary energy distri-

bution) and cross-section sensitivity and uncertainty analysis were de-

veloped for x-y and r-z geometry. This theory was implemented by devel-

oping a two-dimensional sensitivity and uncertainty analysis code,

SENSIT-2D0 SENSIT-2D has a design capability and has the option to cal-

culate sensitivities and uncertainties with respect to the response

function itself. SENSIT-2D can only interact with the TRIDENT-CTR code.

A rigorous comparison between a one-dimensional and a two-dimen-

sional analysis for a problem which is one-dimensional from the neu-

tronics point of view, indicates that SENSIT-2D performs as intended.

A two-dimensional sensitivity and uncertainty analysis for the heat-

ing of the ‘ITcoil for the FED (fusion engineering device) blanket was

performed. The uncertainties calculated are of the same order of magni-

tude as those resulting from a one-dimensional analysis. The largest un-

certainties were caused by the cross section uncertainties for chromium.

xiv



1. INTRODUCTION TO SENSITIVITY THEORY AND UNCERTAINTY ANALYSIS

In a time characterized by a continuously growing demand for so-

phisticated technology it should not be surprising that the production

of fusion energy might materialize more rapidly than commonly predicted.

With fusion devices going into a demonstration phase there is a need for

sophisticated nucleonics methods, tailored to the fusion community. In

a relatively short time frame fusion nucleonics has established itself

as a more or less mature subfield. In this context sensitivity theory

has become a widely applied concept which provides the reactor designer

with a deeper understanding of the information obtained from transport

calculations.

Under the term sensitivity theory usually algorithms based upon

classical perturbation and variational theory are understood. The scope

of this work will be limited to cross-section and design sensitivity

analysis with respect to fusion reactors. Since fusion nucleonics do

not involve eigenvalue calculations, the mathematical concepts utilized

will be simpler than those required by the fission community.

Sensitivity theory determines how a design quantity changes when

one or more of the design parameters are altered. Uncertainty analysis



provides the error range on a design quantity due to errors on the de-

sign parameters. Sensitivity information can easily be incorporated

into an uncertainty analysis by introducing covariance matrices.

Cross-section sensitivity and uncertainty analysis will give error

estimates of response functions (such as tritium breeding ratio, heating

and material damage) due to uncertainties in the cross-section data.

Such a study will reveal which partial cross sections and in what energy

range contribute most to the error and will recommend refinements on

cross-section evaluations in order to reduce that error. Although those

results will depend on the particular response and the particular de-

sign, general conclusions can still be drawn for a class of similar

designs.
18

Sensitivity theory is a powerful design tool and is commonly

1-3applied to cross-section adjustment procedures. Design sensitivity

analysis is frequently used to reduce the ❑any and expensive computer

runs required during the development of a new reactor concept.

1.1 Motivation

The purpose of this work is to assess the state of the art of sen-

sitivity and uncertainty analysis with respect to fusion nucleonics,

fill existing gaps in that field and suggest areas which deserve further

attention.

At this moment the literature about sensitivity theory is scattered

between various journal articles and technical reports. Therefore, the

2



author considered it as one of his responsibilities to provide a con-

sistent monograph which explains, starting from the transport equation,

how analytical and explicit expressions for various sensitivity profiles

can be obtained. Current limitations with respect to the applicability

of sensitivity theory are pointed out and the application of sensitivity

theory to uncertainty analysis is explained. At the same time the scope

has been kept limited to those algorithms which are presently used in

calculation schemes.

Due to the particular geometry of fusion devices (toroidal geom-

etry, non-symmetric

code (and therefore

ally be inadequate.

plasma shape, etc.), a one-dimensional transport

a one-dimensional sensitivity analysis) will gener-

In order to mock-up a fusion reactor more closely,

a two-dimensional analysis is required. Although a two-dimensional

45
sensitivity code - VIP ‘ - already exists, VIP was developed with a

fission reactor in mind, and does not include an r-z geometry option,

nor a secondary energy distribution capability. To answer the needs of

the fusion community, a two-dimensional sensitivity and uncertainty

analysis code, SENSIT-2D, has been written.

A sensitivity code uses the regular and adjoint fluxes of a neutron

transport code in order to construct sensitivity profiles. SENSIT-2D

requires angular fluxes generated by TRIDENT-CTR.6’7 TRIDENT-CTR is a

two-dimensional discrete-ordinates neutron transport code specially

developed for the fusion community. Since SENSIT-2D incorporates the

essential features of TRIDENT-CTR, i.e., triangular

etry option, toroidal devices can be modeled quite

meshes and r-z geom-

accurately. SENSIT-

3



2D has the capability of group-dependent quadrature sets and includes

the option of a secondary energy distribution (SED) sensitivity and un-

certainty analysis. An option to calculate the loss term of the cross-

section sensitivity profile based on either flux moments or angular

fluxes is built into SENSIT-2D. The question whether a third-order

spherical harmonics expansion of the angular flux will be adequate for a

2-D sensitivity analysis has not yet been adequately answered.8 The

flux moment/angular flux option will help provide an answer to that

question.

As an application of the SENSIT-2D code, a two-dimensional sensi-

tivity and uncertainly analysis of the inboard shield for the FED

(~usion Engineering Qevice), currently in a preconceptual design stage

by the General Atomic Company, was performed.

1.2 Literature Review

The roots of cross-section sensitivity theory can be traced to the

work of Prezbindowski.9,10 The first widely used cross-section sensi-

tivity code, SWANLAKE,11 was developed at ORNT (Oak Ridge National Lab-

oratory). In order to include the evaluation of the sensitivity of the

response to the response function, SWANLAKE was modified to SWANLAKE-UW

by Wu and Maynard.77

was applied to fusion

practice to include a

Already early in its history, sensitivity theory

12-16
reactor studies. It has now become a common

sensitivity study in fusion neutronics.
17-23,54

4



The mathematical concepts behind sensitivity theory are based on

24-29variational and perturbation theory. The application of sensitiv-

ity profiles to uncertainly analysis was restricted not due to a lack

of adequate mathematical formulations, but due to the lack of cross-

section covariance data. An extensive effort to include standardized

30-34covariance data into ENDF/B files has recently been made.

The theory of design sensitivity analysis can be traced to the work

of Corm, Stacey, and Gerstl.14,26,35,40 The current limitation of de-

sign sensitivity analysis is related to the fact that the integral

response is exact up to the second order with respect to the fluxes, but

only exact to the first order with respect to design changes. There-

fore, only relatively small design changes are allowed. The utilization

42of Pad& approximants might prove to be a valuable alternative to

higher-order perturbation theory, but has not yet been applied to design

63sensitivity analysis.

The two-dimensional sensitivity code ~1p4,5
was developed by

Childs. VIP is oriented towards fission reactors and does not include a

design sensitivity option, nor a secondary energy distribution capa-

bility.

The theory of secondary energy distribution (SED) and secondary

angular distribution (SAD) sensitivity and uncertainty analysis was

43-45 46originated by Gerstl and is incorporated into the SENSIT code.

The FORSS47 code package has been applied mainly to fast reactor stud-

ies48,49
but can be applied to fusion reactor designs as well. Higher-

42,50-51,78order sensitivity theory still seems to be too impractical to

5



be readily applied. Recently however, the French developed a code

52
system, SAMPO, which includes some higher-order sensitivity analysis

capability.



2. SENSITIVITY THEORY

In this chapter the theory behind source and detector sensitivity,

cross-section and secondary energy distribution (SED) sensitivity, and

design sensitivity analysis will be explained. Starting from the trans-

port equation, expressions for the corresponding sensitivity profiles

will be derived. Those formulas will then be made more explicit and

applied to a two-dimensional geometry. The theory presented in this and

the following chapter is merely a consistent combination and reconstruc-

tion of several papers and reports.3,13,16,17,18,43-46,53

Since up to this time no single reference work about the various

concepts used in sensitivity and uncertainty analysis has been pub-

lished, the author uses the most commonly referred to terminology. In

an attempt to present an overview with the emphasis on internal consist-

ency, there might be some minor conflicts with the terminology used in

earlier published papers.



2.1 Definitions

2.1.1 Cross-section sensitivity function, cross-section sensitivity
profile and integral cross-section sensitivity

rate, e.g.,

set and the

Let I represent a design quantity (such as a reaction

the tritium breeding ratio), depending on a cross-section

angular fluxes. The cross-section sensitivity function for a particular

cross section Ix at energy E, F1 (E), is defined as the fractional
x

change of the design parameter of interest per unit fractional change of

cross section lX, or

aI/IFz (E)=% “
x

(1)

In a multigroup formulation the usual preference is to work with a

sensitivity
prOfile %x’

which is defined by

(2)

where Aug is the lethargy width of group g and Z: is the multigroup

cross section for group g. The sum over all the groups of the sensi-

tivity profiles for a particular group cross section l:, multiplied by



the corresponding lethargy widths, is called the integral cross-section

sensitivity for cross section lX, or

‘z = lP; *Aug,
x gx

=fdEFzx(E) . (3)

The integral cross-section sensitivity can be interpreted as the

percentage change of the design parameter of interest, I, resulting from

a simultaneous one percent increase of the group cross sections Z: in

all energy groups g.

2.1.2 Vector cross section

The term “vector cross section” describes a multigroup partial

cross-section set with one group-averaged reaction cross section for

each group. Such a cross-section set can be described by a vector with

GMAX elements, where GMAX is the number of energy groups. The term

vector cross section was introduced by Gerstl to discriminate it from

the matrix representation of a multigroup cross-section set. Differ-

ential scattering cross sections can obviously not be described in the

form of a vector cross section.



2.1.3 Geometry related terminology

Under the term region we will understand a collection of one or

❑ore zones. A zone will always describe a homogeneous part of the reac-

tor. We will make a distinction between source regions, detector

* and perturbed regions, and as a consequence between source,

detector and perturbed zones. We will introduce the term blank region

for a region that is neither a detector, source or perturbed region. A

zone will further be divided into intervals.

The source region will describe that part of the reactor which con-

tains a volumetric source. The detector region indicates the part of

the reactor for which an integral response is desired. In the perturbed

region changes in one or more cross sections can be made.

A source or a detector regions can contain more than one zone, and

each zone can be made up of a different material. Due to the mathemat-

ical formulations a perturbed region can still contain more than one

zone, but in this case all the zones have to contain identical materials.

If there is more than one perturbed region, all those regions should

contain the same materials.

The geometry-relatedterminology is illustrated in Fig. 1. In this

case, there are six regions; a source region, two perturbed regions, one

detector region and two blank regions. The source region contains three

zones (identified by ~, ~, and ~). The first zone, ~, is a vacuum,

while the other two zones are made up of iron. Note that both perturbed

regions satisfy the requirement that the zones in these regions contain

10



n

REG1ON I ~GION 11 ~GION III REGION IY

Source Blank Perturbed BlanR
Region Region Region Region

-

I
I

-

REGION V REGION VI

Perturbed Detector
Region Region

MATERIALS ZONES

vacuum a,e,f—--

Figure 1. Illustration of the terminology: blank region,
source region, perturbed region and detectar
region
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identical materials. This requirement does not have to be met for

source and detector regions.

2.2 Cross-Section Sensitivity Profiles

2.2.1 Introduction

Perturbation theory is most commonly applied in order to derive

analytical expressions for the cross-section sensitivity profile. We

therefore will follow in this work Oblow’s approach.
11,25

Based on the

analytical expression, an explicit formula for the cross-section sensi-

tivity profile in discrete ordinates form for a two-dimensionalgeometry

will then be derived.

During the last few years there has been a trend towards using gen-

5,55,61 General-
eralized perturbation theory for sensitivity studies.

ized perturbation theory has the advantage that it can readily be

applied to derive expressions for the ratio of bilinear functional and

that it can be used to

expressions, based on

59,60study nonlinear systems. Also, higher-order

generalized perturbation theory, have been de-

rived.57,58,61

The differential

bation theory and has

by Oblow.
28

A more

approach is closely related to generalized pertur-

been applied to cross-section sensitivity analysis

rigorous formulaticm of the differential approach

50,51was made by Dubi and Dudziak. Although higher-order expressions

12



for cross-section sensitivity profiles can be derived,50,51 the practi-

cality of its application has not yet been proved.50,51,78

The evaluation of a sensitivity profile will generally require the

solution of a direct and an adjoint problem. Such a system carries more

information than the forward equation and it is therefore not surprising

that this extra amount of information can be made explicit (e.g.,

through sensitivity profiles).

The higher-order expressions for the cross-section sensitivity pro-

files derived by Dubi and Dudziak involve the use of Green’s func-

tions.50,51 The Green’s function - if properly integrated - allows one

to gain all possible information for a particular transport problem. It

therefore can be expected that higher-order sensitivity profiles can be

calculated up to an arbitrary high order by

tion. For most cases, the derivation of

tremely complicated, if not impossible. It

evaluating one Green’s func-

the Green’s function is ex-

therefore can be argued that

the Green’s function carries such a tremendous amount of information

that it is not surprising that higher-order expressions for the sensi-

tivity profile can be obtained, and that while the use of Green’s func-

tions can prove to be very valuable for gaining analytical and physical

insight, they will not be practical as a basis for numerical evaluations.

From the study done by Wu and Maynard,78 it can be concluded that a

first-order expression allows for a 40% perturbation in the cross sec-

tions (or rather the mean free path) and will still yield a reasonably

accurate integral response (less than 10% error). Larger perturbations

give rapidly increasing errors (the error increases roughly by a power

13



of three). Expressions exact up to the second order allow a 65% per-

turbation, and a sixth-order expression allows a 190% perturbation, both

for an error less than 10%. Also, for higher-order approximations, if

was found that the error on the integral response will increase drastic-

ally once the error exceeds 10%. It can be concluded therefore that the

higher-order expressions do not bring a tremendous improvement over the

first-order approximation (unless very high orders are used), while the

computational effort increases drastically. Higher-order sensitivity

analysis can only become practical when extremely simple expressions for

the sensitivity profiles can be obtained, or when a suitable approxima-

tion for Green’s functions can be found.79

2.2.2 Analytical expression for the cross-section sensitivity prefile

Consider the regular and adjoint transport equations

L.@=Q ,

and

(4)

(5)

A
.

where @ and @ represent the forward and the adjoint angular fluxes, L
.%.,

and L are the forward and adjoint transport operator, Q is the source,

14



and R is the detector response function. The integral response, I, can

then be written as

I = <R,@>

or

(6)

* *
I = <Q,@ > , (7)

where the symbol < , > means the inner product, i.e., the integral over

the phase space. In a fully converged calculation I* will be equal to

I. For the perturbed system, similar expressions can be obtained:

LoPP=Q ,

A J.
L-O” = R ,
PP

I = <R,@p> ,
P

.1. -L
and I“ = <Q,O”> ,

P P

where

(8)

(9)

(lo)

(11)

15

(12)



# = J+ d ,
P

and I =1+61 .
P

From Eqs. (9), (13), and (5) we have

L:.&h*= (L* - L;).@* .

(13)

(14)

(15)

Further, we have from Eqs. (14), (11), (6), (12), and (9)

61=1-1 ,
P

= <R,c$ - 0> ,
P

= <R,&$> ,

or 61 = <L~,&b> . (16)

Using the definition of the adjoint transport operator and Eqs. (15) and

(16) transforms to

&

61 = <@p,L~&”> ,

or

61 = <@P,(L* - L~)O*> . (17)

16



It is assumed that the perturbed differential scattering cross

section can be expressed as a function of the unperturbed differential

scattering cross section by

Z~p(~,~_’,E+E’ ) = C.Zp(r,_@’,E+E’) , (18)

and similarly for the total cross section

ZTp(~,E) = C.~(~,E) , (19)

where C is a small quantity, which can be a function of E and (1. Defin-

ing 6C= C - 1, we have

+ (~,E) - XT(~,E) 2s (r,Q%2’,E+E)- 2&~_’,E+E’)
6C =

———

~(~,E) = 2&,&&’, E+E’ )
(20)

so that

(21)

The cross-section sefisitivityfunction F~ (E) is defined by
x

.,,:

(22)
I
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and can be approximated by

The sensitivity function Fx (E) represents the dependence or sensi-
X

tivity of a design parameter of interest to a particular cross section

xx at energy E. The first term is usually referred to as the loss term

27and the second term is called the gain term.

The cross-section sensitivity profile P: is then defined as
x

E
g-1

P:=LJ dEFZ (E) .
x Aug E x

g

(24)

The scaling factor Aug is the lethargy width of group g and is intro-

duced as a normalization factor in order to remove the influence of the

choice of the group structure.

Remarks

1. In the previous section Xx represents a partial cross section for

a particular ❑aterial. Ix can be an absorption cross section, a

total cross section, a differential scattering cross section, a re-

action cross section, etc. Therefore Xx has a suppressed index

18



which indicates the specific partial cross section. When evaluat-

ing the cross-section sensitivity profile for a partial cross sec-

tion only the appropriate part, either the loss term or the gain

term, will have to be considered in Eq. (23). When the partial

cross section is not related to the production of secondary parti-

cles (e.g., a differential scattering cross section) the sensitiv-

ity profile in the multigroup form is referred to by Gerstl as a

vector cross-section sensitivity profile. Obviously such cross

sections contribute only to the loss term.

2. It is possible to define a net or a total sensitivity profile,

which can be obtained by summing the loss and the gain terms for

various partial reactions. The net sensitivity profile can be used

to determine how important a particular element is with respect to

a particular response.

3. Note that while deriving an expression for the cross-section sensi-

tivity profile, we implicitly assumed that the response function

was independent from the partial cross section for which a sensi-

tivity profile is desired. If this assumption does not hold, an

extra term has to be added to the previously obtained expressions.

When the response function is also the cross section for which a

sensitivity profile is sought, the sensitivity function will take

the form

19



(25)

where L
Zx

represents that portion of the transport operator that

contains the cross-section set {2X]. In this expression the first

term is a direct effect and the second term is an indirect effect.

If the direct

be negligible.

Table I.

effect is present,

A summary of the

the indirect effect will usually

various possibilities is given in

4. The spatial integration

perturbed regions only.

in Eq. (23) has to be carried out over the

2.2.3 Explicit expression for the cross-section sensitivity profile in
discrete ordinates form for a two-dimensionalgeometry represen-
tation

Coordinate system

The coordinate systems for x-y and r-z geometry are shown in Figs.

2a and 2b.53 In both geometries $ was chosen to be the angle of rota-

tion about the ~-axis such that do = d~.d~, and since (2 + 1.12+ V2 = 1,

we have
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TABLE I: FORMULAS FOR THE SENSITIVITY FUNCTION

Case

a.

b.

c.

I = <R,O>,where xi # R

I = <R,O>, where Z. = R
1

and Ii$L

I = <R,c$>,wherez: = R
A

and ~iCL

Sensitivity Function

%i
= <@I*,Lz@>/I

‘x: = <R,Q>/I

%:
= <R,@>/I + <L$*,LZ1$>/I

.“
&

direct
effect

.L

indirect
effect

The direct
dominant

effect is usually

< > indicates the inner product over the phase space ~

L stands for the transport operator

‘1. represents that portion of the transport operator which
1 contains cross-section {Zi}

c means is included in

~ means is not included in
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Figure 2. a. Coordinates in x-y geometry
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Figure 2. b. Coordinates in r-z geometry
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~= (1 - p2)%.sin$ ,

and

n= (1 - pz)+.cos$ .

Therefore both the x-y and the r-z geometry representation will

lead to identical expressions for the sensitivity profile, with the

understanding that in x-y geometry the angular flux is represented by

@(x,Y,P,$), and by @(r,z,p,$) in the case of r-z geometry.

We now will derive an expression for the sensitivity profile in an

x-y or in an r-z geometry representation.

Method

Before deriving an expression in a discrete-ordinates formulation

and a two-dimensional geometry for Eq. (23), a brief overview of the

methods used is outlined.

Gain term:

I* order to represent the differential scattering cross section in

a multigroup format, the common approach to expand the differential

scattering cross section in Legendre polynomials is used. The num-

ber of terms in the expansion is a function of the order of aniso-

tropic scattering. The Legendre polynomials are a function of the

scattering angle p. (Fig. 2). Introducing spherical harmonics

24



functions and applying the addition theorem for spherical har-

monics, the dependence on p. can be replaced by p’s and $’s. The

angular fluxes are expanded in flux moments. The integrals are

replaced by summations. Defining multigroup cross sections an

expressions for the gain term can be obtained.

Loss term:

An explicit expression for

angular fluxes or based on

the loss term

flux moments.

can be derived based on

In order to check the

internal consistency in SENSIT-2D both methods will b< applied.

The derivation of an expression based on angular fluxes is

straightforward: the integrations are replaced by summations and

the appropriate multigroup cross sections are defined. An expres-

sion as a function of flux moments can be obtained by expanding the

fluxes in flux moments, using spherical harmonics functions. The

orthogonality relation of spherical harmonics is applied, the

integrations are replaced by summations and appropriate multigroup

cross sections are defined. Finally an expression for the loss

term is the result.

Analytical derivations

Expand the differential scattering cross section in Legendre poly-

nomials according to
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LMAX

Zx @-&’,E+E’) =1
x,s(Po~E+E’) = z ~p2(Po)z~,2(E+E’) , (26)

9

where the P2(po)’s are the Legendre polynomials and LMAX the order of

anisotropic scattering. Here, the scattering angle p can be written as
o

= Q.()’lJo –– = Qxq + QYQ; +-Q !2’Zz’

or

P. =pp’ + flrl’+~g’ ,

= pp’ + (1-p2)%(l-p’2)% cos$ COS$’ + (1-p2)%(l-p’2)%sino sin$ ,

or

P. = w’ + (1-1.hl-l-l’+ Cos($-($1’).

The spherical harmonics addition theorem states that (see e.g., Bell and

Glasstone62)

Q
P2(I.JO) (~-k)! p~(p)pfi(p!)cos[k($-$’)] ,= Pg(P)pg(I.J’)+ 2 k~l (g+k)! (27)

=

where the P~(p)’s are the associated Legendre polynomials. The above

expression can then be reformulated as

26



We define

and

so that

P9(PO) = : {R;(P,I$)I@,I$’)+Q;(P,Ij)Qj(P’,w)} .
k=O

(28)

(29)

(30)

(31)

The Q terms will generate odd moments which will vanish on integration,

thus the Q terms will be omitted in the following discussion. The R:

terms are the spherical harmonics polynomials. Using the above expres-

sion for P (p ) in the expansion of the scattering cross section, we
10

have
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where LMAX is the order of anisotropic scattering.

The second term of the sensitivity profile, Eq. (24), becomes

1
. R~(P,O)@(~,~,E) . 2 J dp’ ~ d$’R~(p’,$’)&@,E’) . (33)

-1 0

Note that

and therefore the angular flux can be expanded according to

Oa
@(Q,E) = 2 (21+1) : Rk@k(E) ,

2=0 k=o 2 Q

where O;(E) = } dP}dOR&(~,E)/2n ,
-1 p

28
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(35a)

(35b)



and similarly for the adjoint angular flux

(36a)

(36b)

Introducing these expansions in the sensitivity profile, the gain term

becomes

l?,
. 2 @;(E)O;k(E’) ,

k=O
(37)

where GMAX is the number of energy groups. Defining

E
g’-l ‘g-l

(E+E’Y$E)O;RE’) ,~::;’ ~;go;kg’
={ dE’ J dE 1s ~ (38)

E 9
g’ g

and discretizing over the spatial variable we have
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GMAX IMAX , 9 IPERTp: z (29+l)z7~ z E ViO~g(i)O~g’ (i) , (39)
x,gain IAug g’=1 9=0 ‘ k=O i=l

where IPERT is the number of perturbed spatial intervals and i indicates

the spatial interval. If there is no upscattering, and introducing

IPERT
Y;g‘ = 4X : (29+1) 2 *kg’(i) ,Vi@~g(i)OQ

k=O i=1

we have

(40)

(41)

The loss term of the sensitivity profile is given by

E
g-1

= A ~ dE Jd~2 } dpfd$ @b(p,$,E)2xT(E)@*(p,$,E)] ,
IAug E v -1 0 9

g
(43)

E-
= -471 MM

—J- g 1 dE;d~+(E) ~f Wm@(Pm,@m,E)@*(Pm,$m) , (44)
IAug E =

g
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where @m = tan-l(l - p: - tl~)4/p forpm>O,
m

(45)

(46)

and MM is the number of angular fluxes per quadrant.

Define

ml Eg-1 MM
~J dE ~x,T(E)o@(Pm,$m,E)e@*(Pm,$m,E) = 2~,T 2 O~& , (47)
m=l E

g
m=1

so that

IPERT MM
~: =*I:T I v. Z wm@~(i)O~(i) .
X,loss IAug ‘ i=l 1 m=l

Introducing

IPERT MM
Xg =4X1 v. 2 wm@~(i)O~g(i) ,

i= 1 1 m=l

we have

q = A- q # .
X,loss IAug ‘

(48)

(49)

(50)

Note that the gain term was e~ressed as a function of flux moments,

while the loss term was expressed in terms of angular fluxes. When the

gain term is expressed as a function of flux moments, a very useful
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relationship between the Y’s and the x’s will be obtained. For this

case, substituting Eqs. (36) and (38) into Eq. (42), the loss term can

be expanded as

(51)

Using the orthogonality relations Eq. (34) and defining the multigroup

total cross section for group g by

LMAX2 LMAX 9 ‘g-1
22 z: ~op(~)o;kg(~) = z ~ J dE Zx ~(E)d$(~,E)@~k(~,E)
J2=0 k=O ‘ 9=0 k=O E 9

g
(52)

we have after discretizing the spatial variable, E, and truncating the

summation over 2,
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Introducing

(54)

the expression for the loss term reduces to Eq. (50) again.

=

1 LMAX GMAXp:=—-z; T)(g+z 2 2:+;’Y;g’,
x 1.Aug 9 Q=o g’=g ‘

(55)

where

2: ~ = total macroscopic cross section for reaction type x,
9

~~; ‘ = J?’thLegendre coefficient of the scatteringmatrix element for
9 energy transfer from group g to group g’, as derived from the

differential scattering cross section for reaction type x,

IPERT 1
y:g‘ = 4x(22+1) 2 2 Vi@~g(i)@~kg’(i)

i=l k=O

= spatial integral of the product of the
expansions for the regular and adjoint

Xg
IPERT MM

=47t z v. z @g(i)@~g(i)w m
i=l 1 m=l m

(56)

spherical harmonics
angular fluxes,

(57)

= numerical integral of the product of forward and adjoint
angular fluxes over all angles and all spatial intervals de-
scribed by i=l . . ., IPERT,

LMAX
= z Yjg . (58)

2=0
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Note that expression (55) is identical with the expression for the

46
cross-section sensitivity profile in a one-dimensional formulation.

The flux moments can be expressed in terms of angular fluxes corre-

sponding to

and

(59)

(60)

Rfi(Q) = spherical harmonics function

v. = volume of rotated triangles
1

Aug = lethargy width of energy group g

= in (Eg/Eg+l),where Eg and Eg+l are upper and lower energy
group boundaries

= integral response as calculated from forward fluxes only

IDET IGM
= z 2 ViR~$~g(i)

i=l g=l

R= spatially and group-dependentdetector response function.
i

2.3 Source and Detector Sensitivity Profiles
46

Source and detector sensitivityprofiles indicate how sensitive the
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L

integral response I or 1“ is

or to the detector response

lated

flUX,

from

equal

from the forward flux,

according to Eq. (64).

to the energy distribution of the source,

R. The integral response I can be calcu-

according to Eq. (63), or from the adj~int

When the integral response is

the adjoint flux it will be denoted as I*. Ideally,

to I*.

calculated

I will be

The sensitivity of the integral response to the energy distribution

of the detector response function or the source can therefore be ex-

pressed by the sensitivity profiles

E
g-1

P~=~ d~~ _ __,_,dE JdL?R(~,E).@(r C?E) / I.Aug

‘d ‘g

and

(61)

(62)

where R(~,E) is the detector response and Q(r,C?,E)is the angular source,——

and V and Vs are the volumes of the detector and the source region. I
d

was used in the denumerator of P% and I* was used in the denominator of
R

P; for internal consistency. It is obvious that the integral source and

detector sensitivities, SQ and SR, will be equal to one.
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It is possible to derive an expression similar to Eq. (61) for the

sensitivity of the integral response to the angular distribution of the

source. The derivation of explicit expressions for P; and P: is

straightforward. The detector sensitivity profile as a functton of the

scalar fluxes becomes

IDET
P: = 1 Vi.R~.@~g(i) I I.Aug ,

i=l
(63)

where the O;g(i) are the scalar fluxes for group g at interval i, IDET

is the number of detector intervals g, and Ri is the detector response at

interval i for group g.

For the source sensitivity profile in case of an isotropic source

Eq. (62) transforms into

I SRS
~: = z Vi.Q~.@~g(i) / l*.Aug ,

i=1
(64)

where Q: is the voluminar source for group g at source interval i.

In the case of an anisotropic source we defined Qg(x,Q) by

E
g-1

dE Q(r,O,E).@X(r,C?E) ,Qg(r,O).@~’g(E,~)= { _ _ _ _$-—

%

(65)

36



and expand the angular source according to

IQAN
Qg(s,Q) = Qg(WJ,@) = & (29+1) : R&@).Qp(@/2n , (66)

k=O

where IQAN is the order of anisotropy of the source.

Substituting Eqs. (65) and (66) in Eq. (63), discretizing the

spatial variable and using Eq. (36), the expression for the source

sensitivity profile becomes

ISRS IQAN Q
pg=z. ~ ~.

Q
Z (2Q+1) Z Q~k(i)@~gk(i)/l*.Aug

i=l 1 Q=O K=o

As in Eq. (61) we can also define an angular source sensitivity func-

tion. The angular source sensitivity function indicates how sensitive
A

the integral response 1“ is to the angular distribution of the source,

or

(68)
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2.4 Sensitivity Profiles for the Secondary Energy Distribution and the
Secondary Angular Distribution

The theory of the secondary energy distribution (SED) and the sec-

ondary angular distribution (SAD) sensitivity analysis was originated by

Gerstl.
43-46

Physically the only difference between a secondary energy

distribution and a cross-section sensitivityprofile is the way in which

the integration over the energy variable is carried out. The “hot-cold”

and the “forward-backward” concepts lead to a simple formulation of

secondary sensitivity theory and can easily be incorporated in an uncer-

tainty analysis. Even when both those concepts are a rather coarse

approximation they have the advantage that they are simple and can be

physically understood.

A more rigorous formulation might be possible, but its simple

63
physical interpretationwould be lost. The primary restriction on the

application of secondary energy distribution and secondary angular dis-

tribution sensitivity profiles is the lack of cross-sectionuncertainty

information in the proper format.

2.4.1 Introduction

The expression for the sensitivity profile for the differential

scattering cross section is part of the gain term of the cross-section

sensitivity profile and takes the form
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x RZ (r,Lk&’,E+E’) ,
x,gain – –

where R
I (E,~_’,E+E’) is a shorthand notation for
x,gain

(r,K?+fl’,E+E’)=O(r,Q,E)Zx J~,$&fJ’,E+E’)4J(:,~’,E’)‘z ––– ——
x,gain 9

and similarly,

‘2 (r,~’%J,E’+E)=@(r,O,E)Z x s(~,$J’~,E+E)4J*(~,~,E).——
x,gain – – 9

Equation (70) gives the contribution to the integral detector

(69)

(70)

(71)

re-

sponse, I, from the particles born at position ~ with energy E’, travel-

ing in direction Q’, since

I = <@,L*@$’>= <@*,L@> . (72)

Similarly,
‘z (z,~_’,E’+E) gives the contribution to the integral
x,gain

detector response from the particles born at position r, with energy E,

traveling in direction Q.—

As it turns out, up to this point there is no difference in the

physical interpretation of Eqs. (70) and (71). The way the integrations
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are carried out will distinguish between the differential scattering

cross-section sensitivity profile and the secondary energy distribution

and secondary angular distribution sensitivityprofile.

2.4.2 Further theoretical development

In this section we will elaborate on the physics behind the deriva-

tion of SEDS and SADS. Consider

‘z (E,E’) = @OKUW R~x ~ainH+!?’J+E’) “
X,s 9

(73)

In this expression
‘z

represents the fractional change in the inte-
X,s

gral response per unit fractional change in the differential scattering

cross section 1 (E+E’); i.e.,
X,s

it is the fractional change in the in-

tegral response when the number of particles that scatter from E into E’

is increased by one percent. Obviously this will always be a positive

effect and will therefore be included in the gain term.

Similar to Eq. (73),

E
g-1

~:
=;{ dE~dE’ ~dQjdQ’RZ (r,fM’,E+E’)———

X,s 0
g

x,gain
(74)
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represents the fractional change in the integral response when the num-

ber of particles that scatter from group g is increased by one percent.

The tilda in Eq. (74) is introduced to distinguish from a lethargy nor-

malized sensitivityprofile.

In the adjoint formulation the equivalent of Eq. (73) will be

%xs(E’,E) =F SED(E’,E) ‘:~d3~d~~d!?RZx gain(ztQ’W,E’+E) ,
9 9

(75)

which represents the fractional change in the integral response per unit

fractional change in differential scattering cross section 2X s(E’+E),
9

i.e., it is the fractional change in the integral response when the num-

ber of primary particles that scatter from E’

percent, or for that matter that the number of

were scattered from E into E’ were increased

to E is increased by one
.

secondary particles that

by one percent. Again,

this will always have a positive effect and will therefore constitute a

gain term in the sensitivityprofile.

Define

E
g-1

;g=l
SED ~{ dE ~ dE’ J d$2~d~’RZ (r.C?’-@,E’+E) . (76)

o
——

g
x,gain

While there is no difference in the physical ❑eaning of Eqs. (73)

and (75), the formulations (74) and (76) are different. Equation (74)



represents the fractional change in the integral response when the num-

ber of secondary particles that were scattered into group g have been

increased by one percent.

It is clear from these examples that, depending on the way the

integrations are done, several different sensitivity profiles can be

constructed. In order to study the secondary angular distribution, we

can introduce

This expression gives the fractional change in the

when the number of secondary particles scattered from

into final direction C!is increased by one percent.

be clear that

(77)

integral response

initial energy E’

It will therefore

is the fractional change in the response function when

secondary particles which were scattered into direction !2

by one percent.

(78)

the number of

was increased
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2.4.3 Secondary energy and secondary angular distribution sensitivity
profiles

A double secondary energy distribution (SED) sensitivity profile is

defined by

E E
g-1 g’-l

pg’g= 1 ,J
SED

dE J dE’ J dr jdQJd~’RZ (r,O’+fJ,E’+E),
IAugAug E

— —
E

g g’
x,gain – –

(79)

The energy integrated SED sensitivity profile becomes

d~‘RI (r,fl’-KJ,E’+E). (80)——
x,gain

The differential

of secondary particles

sensitivity profile for the angular distribution

scattered from initial energy E’ is

E
g’-l m

PgJ$J) = Js dE’ JdE ~dr JdQ’RZ (~,Q’~,E+E’) (82)
IAug E o–

g
x,gain

An energy integrated SED sensitivity profile can be defined by
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p~m(g) =;~dE’~dE~d~~d$J’R2 (r,!2’-KJ,E+E’) .
0 0 s,gain – –

(82)

2.4.4 Integral sensitivities for SEDS and SADS

In order to make the sensitivity and uncertainty analysis for

secondary energy distributions and secondary angular distributions less

tedious, Gerstl introduced the concepts of the “hold-cold” SED and the

“forward-backward”SAD integral sensitivity:

and

‘SAD = s
forward

d~psw(~) - J
backward

d~ ps~(~) .

angles angles
(P>o) (IJ<o)

(83)

(84)

The forward-backwardSAD integral sensitivity can be interpreted as

the fractional change in the integral response when the number of sec-

ondaries which were scattered forward is increased by one percent, while

the number of secondaries that were scattered backwards (p<O) is de-

creased by one percent. The integral SAD sensitivity is a positive

number which is labeled “forward” or “backward” depending whether the

first or the second term in Eq. (84) is the larger one. Physically,
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that positive number indicates how much more sensitive the response

function is to forward scattered particles than to backward scattered

particles, or vice versa.

For the hot-cold integral SED sensitivity, the concept of the

median energy has to be introduced. In the multigroup formulation, the

median energy defines the energy boundary which roughly divides the

cross-section profile into two equal parts. The ❑edian energy and the

43integral SED sensitivity are illustrated in Fig. 3. Note that the

median energy g’ is a function of the primary energy group g’. For that

reason also the integral SED sensitivity will depend on g’.

The hot-cold integral SED sensitivity expresses the fractional

change in integral response when the number of secondaries which scatter

in the “hot” part of the secondary energy distribution is increased by

one percent while the number of secondaries scattered into the “cold”

part is decreased by one percent. The integral hot-cold SED sensitivity

is a positive numberj labeled “hot” or “cold” depending on which term

dominates in Eq. (83). That number indicates how much more sensitive

the integral response is to particles scattered into the hot part of the

secondary energy distribution than to particles scattered into the cold

part, or vice versa.
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Figure 3. Definition of median energy and integral

E (}le\’)out

,lc&ll

SED sensitivity
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2.4.5 Explicit expressions for integral SED sensitivity prefiles in a
two-dimensionalgeometry representation

The expression for the double SED sensitivity profile, Eq. (79), is

similar to the gain term of the cross-section sensitivity profile, Eq.

(24). By comparing Eq. (79) with Eq. (24) and using Eq. (41), the ex-

plicit expression for the double SED sensitivity profile becomes

(85)

From Eqs. (85) and (80), it follows that the energy integrated SED sen-

sitivity profile for the case of no upscattering can be represented by

p:ED = ---L #+~ Y:’% .
IAug g’=1 2=0

s,Q (86)

Using the definition for the integral SED sensitivity (83), it becomes

clear that

/z*(%’) GMAX
# = =
SED Aug .P~ED - Z Au%.p~ED ,

%=g‘ %=%m(%’)+l

where gm(g’) is defined in Fig. 1.
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2.6 Desire Sensitivity Analvsis

Design sensitivity analysis provides a method to estimate changes

in integral response for a slightly altered design. The results are

exact up to the second order with respect to the corresponding flux

changes, but only exact up to the first order with respect to design

changes. The theory presented in this section is applicable only when

the design changes can be expressed in terms of macroscopic cross-

section changes. Methods based on generalized perturbation theory have

been applied to design sensitivity analysis.
14,37

The integral response for the perturbed system can be expressed by

Eq. (88) for the adjoint difference formulation,
35

lAD= <R,@> - <c#,MI$>= I - 61N ,

and by Eq. (89) in the forward difference formulation

J.. ..L.L
n #.

%D=<Q’l>-<o’&o>=l - 61FD . (89)

Proceeding in a ❑anner similar to the derivation of the cross-

section sensitivity profile, the second-order term in the right hand

side of Eqs. (88) and (89) canbe written as

48



+ ~ dE’ ~ dfl’@(~,fJ’,E’)6ZxJr,fl’+Q,E’+E)@*(~,~,E)] , (90)—-—
0 9

and

+ ~ dE’ ~ dQ’0(r,0,E)62x J~,fJ&’,E+E”’)@*(~,Q’,E’) . (91)——
0 9

In the above expressions we used

and

(92)

(93)

where Z refers to a perturbed cross section and I to a reference cross

section.

A design sensitivity coefficient X can be defined as the ratio of

the integral response for the altered design over the integral response
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for the original model. Depending whether the forward or the adjoint

difference method are used, the design sensitivity coefficient equals

‘AD= Iw/I = 1 - 61~/I ,

or

‘FD= IFD/l*= 1 - 61~/1* .

(94)

(95)

Note that respectively, I and I* were used in the denominator of Eqs.

(94) and (95) for internal consistency. Numerically 61m and 61FD are

35
identical; I and I*, however, can be different. Gerstl and Stacey in-

dicate that the adjoint formulation is more accurate for perturbations

closer to the detector, while the forward difference method gives better

results for perturbations closer to the source. If both reference

fluxes @ and Q* are completely converged, Eqs. (94) and (95) will give

identical results.

Explicit expressions for Eqs. (94) and (95) canbe formulated. The

procedure for the evaluations of 61~ and 61FD is similar to the deriva-

tion of the cross-section sensitivity profile and leads to the equations

(96)
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3. APPLICATION OF SENSITIVITY THEORY TO UNCERTAINTY ANALYSIS

Sensitivity theory can be used to do an uncertainty analysis by

introducing the concepts of cross-section covariance matrices and frac-

tional uncertainties for SEDS. In this chapter we will explain how sen-

sitivity profiles can be used in order to calculate the uncertainty of a

reaction rate due to the uncertainties in the cross sections.

3.1 Definitions

Let I represent a design parameter depending on a multigroup cross-

section set {Zi}, so that

I = I(Zi) , (98)

where the index i can reflect a group, a partial cross section or a

material.
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The variance of I is defined as the expected value of the square of

the difference between the actual value of I and the expected value of

I, or

Var(I) SE{(61)2] =E{(I -E{I})2] .

The standard deviation of I is the square root of the variance,

AI ~ [Var(I)]% . (loo)

The covariance of a and b is defined as

C9m

Cov(a,b) ~E{6a”6b] = ~ J da.db.(a - E{a]).(b - E{b}).f(a,b) ,
-m -0

(101)

where f(a,b) is a joint probability density function. A nonzero covar-

iance between the quantities a and b indicates a mutual dependence on

another quantity. Obviously we have

Cov(a,a) = Var(a) ,

since f(a,a) = 1.

A relative covariance element is defined by
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R(a,b) s Cov(a,b)/a.b . (103)

3.2 Cross-Section Covariance Matrices

During the experimental evaluation of cross-section data, statis-

tical errors arise from the fact that two similar experiments never

agree completely. Also a systematic error reflects the fact that no

equipment and no evaluation procedure is perfect, and that - among other

factors - reference standards are used.

Cross-section covariance data describe the uncertainties in the

multigroup cross sections and the correlation between those uncertain-

ties. A nonzero nondiagonal covariance matrix element indicates that

there was a common reason why an uncertainty in two different (e.g.,

partial cross sections or energy range) cross section was introduced.

The evaluation procedure for covariance data is tedious and requires a

sophisticated statistical analysis.2,30,31

Multigroup cross-section covariance data are ordered in covariance

matrices. Such a covariance matrix contains GMAX rows and GMAX columns,

where GMAX is the number of energy groups. A covariance matrix can

contain covariance data of a particular partial cross section with

itself over an energy range , with a different cross section for the

same element, or with a partial cross section of a different element.

It has become a common practice to include formatted uncertainty

data in the ENDF/B data files. Even though the uncertainty files are
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still missing for many materials in ENDF/B-V, extensive work is underw-

ay. Based on these uncertainty data, covariance libraries can be con-

32,33strutted. A 30-group covariance library based on ENDF/B-V which

contains most of the elements commonly used in reactor shielding has

been constructed by Muir and LaBauve.
33 The covariance data in this

library were processed into a 30-group format by using the NJOy

code 64,65
. In this particular library, called COVI?ILS,the multigroup

cross sections and the relative covariance matrices for lH, 10B, C, 160,

Cr, Fe, Ni, Cu, and Pb are included. Another covariance library was set

up by Drischler and Weisbin.32

3.3 Application of Cross-Section Sensitivity Profiles and Cross Section
Covariance Matrices to Predict Uncertainties

Using first-order perturbation theory, the change in the integral

response I, 61, as a consequence of small changes in Zi can be approxi-

mated by
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or

Var(I) = Z && Cov(zi,zj) .
i,j i j

From Eqs. (100) and (106) it now becomes obvious that

[1AI 2
Cov(zi,z.)

r ~5= ‘. %i%. 2.2. 9
i9J J lJ

I II

(106)

(107)

where P~ and PZ are sensitivity profiles, and the subscript xs refers
i j

to reactor cross sections.

The concept of covariance data and sensitivity profiles leads to a

simple way to evaluate the error in I.

requires sensitivity profiles and is

The first part in the summation

highly

second part requires cross-section uncertainty

lem independent.

When trying to apply the theory presented

problem dependent. The

information and is prob-

here, very often covari-

ance data will be missing for certain materials. One way of going

around this problem would be to substitute the covariance file of the

missing material by

cross sections are

problem would be to

a covariance file for another material for which the

less well known.
45 Other methods to eliminate this

16,17
make very conservative estimates.

The most conservative method would be to assume that the error in

the cross section is the same for all groups and equal to the largest

16,17
error for any one group. In that case it can be shown that
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3.4 Secondarv Enerev Distribution Uncertainty Analvsis

(108)

For evaluating uncertainties in the integral response due to un-

certainties in the secondary energy distribution we will follow Gerstl’s

44,46
approach and introduce the spectral shape uncertainty parameter for

the hot-cold concept.

When the total number of secondaries scattered from group g’ are

held constant, then necessarily

(109)

Therefore f
!3’

quantifies the uncertainty in the shape of the SEDS and is

44
called the spectral shape uncertainty parameter (Fig. 4) .

It now becomes possible to express the relative change in integral

response due to the uncertainty in the secondary energy distribution in

a form similar to Eq. (107):

(110)
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),

u
2+g= =g 12=gm

I

E
‘reedian

Eout(MeV)

& I+f if g<gm

Cg -f if g~gm

Figure 4. Interpretationof the integral SED uncertainty as
spectrum shape perturbationsand definition of the
spectral shape uncertainty parameter “f” (ref. 44)
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SubstitutingEqs. (87) and (109) inEq. (110), it follows that

[161T =2 #

SED g’
SED ‘g’ “

(111)

Denote fg, by f., where the index j refers to a particular nuclear
J

reaction, e.g., (n,2n), at specific incident energy g’, and let fi rep-

resent some

uncertainty

ties of all

different reaction/primary energy combination. Then the

in integral response corresponding to correlated uncertain-

SEDS for a specific isotope is

[1AI 2 = Var(I)
T SED - 12 ‘E~~\=E{~~~EDs~EDfifj\

or

[1AI 2
T

= z S:EDS:ED Cov(fi,fj) .
SED i,j

(112)

(113)

If the spectral shape uncertainty parameters for a specific par-

ticle interaction, identified by the subscript 2, are assumed to be

fully correlated
67

, it can be shown that

Cov(fi,fj)cor(+ll= [Cov(fi,fi)]% “ [Cov(fj,fj)]+ , (114)

so that
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(115)

or,

HI 4
T

(116)=Z lS&~’l[Var(fgg,)l .
2 g’

If N independent measurements of the same SED are available, the

values for Var(f ,) can easily be evaluated.Qg
For each cross-section

evaluation, weights, Wn, are assigned> then

%OT - %OLII
f:,= ~a 9 for n = 1,2...N

with

N
E{f;,] = 2 wnf;, = O .

n=1

The variance of f will be
g’

N (“&jT- O:OLD)
Var(fg,) =E{f:,} = ~ Wn

n=l [E{o]]2

(117)

(118)

(119)

Var(fg,) is called the fractional uncertainty for the secondary energy

distribution and is identified by the symbol F. A short program which

66
evaluates the values of F has been written by Muir; the results for

the 30-group neutron structure
45

is shown in Table II.
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3.5 Overall Response Uncertainty

The overall response uncertainty will be of the form

where

[1

AI 2 [1
2

T
=Z q

SED i SED,i

and

(120)

(121)

(122)

The index i reflects the uncertainties in the various materials.

It was assumed that the effects from SED uncertainties for all possible

reactions which generate secondaries are uncorrelated. It is also

assumed that the uncertainties due to the SEDS are uncorrelated with

other uncertainties due to reaction cross sections (XS), and that the

uncertainties between the reaction cross sections themselves are un-

correlated.
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Remarks

1.

,2.

To be absolutely correct, a term reflecting the uncertainty in

the secondary angular distribution should be included. Due to

the difficulty in generating uncertainty data from ENDF/B-V in

the proper format, we do not include that term.

In

in

on

is

order to evaluate the sensitivity profiles, we should keep

mind that the form of the sensitivity

the particular reaction cross section

desired (Table 1).

profile will depend

for which a response
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4. SENSIT-2D: A TWO-DIMENSIONAL CROSS-SECTION AND DESIGN SENSITIVITY

AND UNCERTAINTY ANALYSIS CODE

4.1 Introduction

The theory explained in the previous chapters has been incorporated

in a two-dimensional cross-section and design sensitivity and uncertai-

nty analysis code, SENSIT-2D. This code is written for a CDC-7600

machine and is accessible via the NMFECC-network (National Magnetic— —

~usion Energy ~omputer ~enter) at Livermore. SENSIT-2D has the capa-

bility to perform a standard cross-section and a vector cross-section

sensitivity and uncertainty analysis, a seconds-:yenergy distribution

sensitivity and uncertainty analysis, a design sensitivity analysis and

an integral response (e.g., dose rate) sensitivity and uncertainty

analysis. As a special feature in the SENSIT-2D code, the loss term of

the sensitivity profile can be evaluated based on angular fluxes and/or

flux moments.
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SENSIT-2D is developed with the purpose of interacting with the

TRIDENT-CTR6 code, a two-dimensional discrete-ordinates code with tri-

angular meshes and an r-z geometry capability, tailored to the needs of

the fusion community. Angular fluxes generated by other 2-D codes, such

as DOT, TWODANT, TRIDENT, etc., cannot be accepted by SENSIT-2D due to

the different format. The unique features of TRIDENT-CTR (group de-

pendent quadrature sets, r-z geometry description, triangular meshes)

are reflected in SENSIT-2D. Coupled neutrun/gamma-ray studies can be

performed. In contrast with TRII)ENT-CTRhowever, SENSIT-2D is re-

68
stricted to the use of equal weight (EQn) quadrature sets, symmetrical

with respect to the four quadrants. Upscattering is not allowed.

Many subroutines
46

used in SENSIT-2D are taken from SENSIT or

TRIDENT-CTR. SENSIT-2D is similar in its structure to SENSIT, but is an

entirely different code. Unlike SENSIT, SENSIT-2D does not use the

BPOINTR69 package for dynamical data storage allocation, but rather uses

a sophisticated pointer scheme in order to allow variably dimensioned

arrays. As soon as an array is not used any more, its memory space

becomes immediately.available for other data. SENSIT-2D does not in-

clude a source sensitivity analysis capability and cannot calculate

integral responses based on the adjoint formulation. This has the dis-

advantage that no check for internal consistency can be made. There-

fore, other ways have to be found in order to determine whether the

fluxes are fully converged. One way for doing so would be to calculate

the integral response based on the adjoint formulationwhile performing
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the adjoint TRIDENT-CTR or the adjoint TRDSEN run, and compare with the

integral response based on the forward calculation.

SENSIT-2D requires input files which contain the angular fluxes at

the triangle midpoints multipled by the corresponding volumes, and the

adjoint angular fluxes at the triangle midpoints. A modified version of

TRIDENT-CTR, TRDSEN, was written by T. J. Seed
70

to generate these flux

files. A summary of these modifications was provided by T. J. Seed and

is included as Appendix B. After a TRIDENT-CTR run, the TRDSEN code

will use the dump files generated by TRIDENT-CTR, go through an extra

iteration, and write out the angular fluxes in a form compatible with

SENSIT-2D. Both SENSIT-2D and TRDSEN use little computing time compared

with the time required by TRIDENT-CTR.

The features of SENSIT-2D are summarized in Table III. The SENSIT-

2D source code is generously provided with comment cards and is included

as Appendix A.

4.2 Computational Outline of a Sensitivity Study

A flow chart (Fig. 5) illustrates the outline for a two-dimensional

sensitivity and uncertainty analysis. From this figure it becomes imme-

diately apparent that a sensitivity analysis requires elaborate data

management. The data flow can be divided into three major parts: a

cross-section preparation module, in which the cross sections required

by TRIDENT-CTR and SENSIT-2D are prepared, a TRIDENT-CTR/TRDSEN block,
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TABLE III: SUMMARY OF THE FEATURES OF SENSIT-2D
(PART I)

SENSIT-2D: A Two-Dimensional Cross-Section and Design

Sensitivity and Uncertainty Analysis Code

Code Information:

* written for the CDC-7600

* typical storage, 20K (SCM), 80K (LCM)
* number of program lines, 3400
&. used with the TRIDENT-CTR transport code

* typical ru,ltimes, 10-100 sec

Capabilities:

A.
. computes sensitivity and

integral response (e.g.,

uncertainty of a calculated

dose rate) due to input cross

sections and their uncertainties
* cross-section sensitivity
+ vector cross-section sensitivity and uncertainty

ac.?lysis

* design sensitivity analysis
4.. secondary energy distribution (SED) sensitivity and

uncertainty analysis
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TABLE III: SUMMARY OF THE FEATURES OF SENSIT-2D
(PART 2)

SENSIT-2D

TRIDENT-CTR Features Carried Over into SENSIT-2D:

* x-yor r-z geometry

* group-dependentSn order

* triangular spatial mesh

Unique Features:—

* developed primarily for fusion problems
&,, group dependent quadrature order and triangular mesh
.&. can evaluate loss-term of sensitivity profile based

on angular fluxes and/or flux moments

Current Limitations:

* can only interact with TRIDENT-CTR transport code
&a not yet implemented on other than CDC computers

* based on first-order perturbation theory

* upscattering not allowed
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where the angular fluxes in a form compatiblewith SENSIT-2D are gener-

ated, and a SENSIT-2D module, which performs the calculations and manip-

ulations necessary for a sensitivity and uncertainty analysis.

4.2.1 Cross-sectionpreparation module

There are many possible ways to generate the multigroup cross-

section tables required by SENSIT-2D and TRIDENT-CTR. The flow chart

of Fig. 5 illustrates just one of these possibilities. All the codes

mentioned here are accessible via the MFE machine. Basically, three

codes are required: NJOY, TRANSX, and MIXIT. Starting from the ENDF/B-V

data file, the NJOY code system
64

generates a multigroup cross-section

library (MATXS5) and a vector cross-section and covariance library

(TAFE1O). A covariance library can be constructed by using the ERROR

33module in the NJOY code system.

From the ❑ultigroup cross-section library (MATXS5), the desired

72isotopes can be extracted by the TRANSX code and will be written on

a file with the name XSLIBF5. The MIXIT

rials by mixing isotopes from the XSLIBF5

used in SENSIT-2D have to be written on a

code73 can make up new mate-

library. The cross sections

file called TAPE4. The cross

sections used in TRIDENT-CTR and TRDSEN will be on file GEODXS. SENSIT-

2D and TRIDENT-CTR include the option to feed in cross sections directly

from cards.
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4.2.2 The TRIDENT-CTR and TRDSENS block

SENSIT-2D requires regular angular fluxes at the triangle center-

points, multipled by the corresponding volumes, an{ adjoint angular

fluxes at the triangle centerpoints. TRIDENT-CTR does not write out

angular fluxes. Therefore the TRDSEN version of TRIDENT-CTR was written

by SEFD. TRDSEN makes use of the flux moment dump files, generated by

TRIDENT-CTR. These dump files will be the starting flux guesses for

TRDSEN. TRDSEN will perform one more iteration and write out the

angular fluxes. In this discussion we will represent the dump file

families by DUMP1 for the regular flux moments, and DUMP2 for the

angular flux moments. Except for a different starting guess option,

TRDSEN requires the same input as TRIDENT-CTR.

4.2.3 The SENSIT-2D module

The SENSIT-2D code performs a sensitivity and uncertainty analysis.

When vector cross sections and their covariances are required, they have

to be present on a file with the name TAPElO. If the cross section data

are read from tape, they have to be written on a file called TAPE4. The

regular angular fluxes at the triangle centerpoints multiplied by the

corresponding volumes (TApEll, TApE12,...) and the adjoint angular

fluxes at the triangle centerpoints (TAPE15, TAPE16,...) can be quite

voluminous. Writing out large files can be troublesome on the MFE
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machine when there is a temporary lack of continuous disk space. There-

fore TRIDENT-CTR and SENSIT-2D have the built-in option to specify the

maximum number of words to be written on one file. This limit has to

be set high enough to ensure that all the flux data related to ane group

can be written on one file. 1 000 000 words per file is usually a

practical size and is the default in TRIDENT-CTR.

1.

2.

3.

4.

SENSIT-2D can generate four more file families:

TAPE1, which contains the regular scalar fluxes at the triangle

centerpoints.

TAPE20, TAPE21,..., which are random access files and contain the

adjoint angular fluxes at the triangle centerpoints,

TA.PE25, TAPE26,..., containing the regular flux moments at the

triangle centerpoints, multipled by the corresponding volumes,

TAPE30, TAPE31,..., which contain the adjoint angular fluxes at the

triangle midpoints.

SENSIT-2D has the option of not generating those file families, but

using those created by a former run. The flux moments are constructed

from the angular fluxes according to the formula

where the Win’sare the quadrature weights, the R~’s the sphericai har-

monics functions, and MN the total number of angular fluxes.
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4.3 The SENSIT-2D Code

In this section the structure of the SENSIT-2D code, its options

and capabilities will be explained in more detail. SENSIT-2D is

powerful sensitivity and uncertainty analysis code. The description

this code from the user’s point of view is given in the user’s manual.

a

of

71

4.3.1 Flow charts

The overall data flow within the SENSIT-2D module is repeated in

Fig. 6. A simplified flow chart is illustrated in Fig. 7. The main

parts of the flow

The control

read in.

chart include these steps:

parameters and the geometry related information are

The quadrature sets and the spherical harmonics functions required

to generate the flux moments are constructed.

The adjoint angular fluxes

on random access files,

fluxes are extracted.

at the triangle centerpoints are written

flux moments are generated and scalar

A detector sensitivity analysis is performed;

tainty analysis is done.

The X’S and $’s which form the essential parts

if desired an uncer-

of the cross-section

and secondary energy distribution

lated for each perturbed zone and

zones.

sensitivity profiles are calcu-

for the sum over all perturbed
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QTAPE1O

Q

TAPE.i

QTAPE1l
TAPE12
...

QTAPF.15TAPE16
...

Vector cro6s-sections and covariance data

(only required for vector cross-section

●ensicivity and uncertainty analysis)

Cross sections in L4SL format (only required
if cross sections are intended to be rud
from cross-aeccion file)

Angular fluxes at triangle midpoints
multiplied by the corresponding volumes

Ad joint angular fluxes
at triangle midpoints

/,

KEN-’-l-l
/ II

Q

TAIY27

TAPE28

. . . QTAPE2

●joint flux moments

●t triangle center-
points

psi’s
●n d
chi’s

/ -Q‘f,&JD~1

\

scalar fluxes ● t

triangle midpc. ints

@@

●djoint ●ngular regular flux nocer. ts a:

fluxes at triangle triangle centerpol:. ts
midpoints rclt iplied by the

(random access file) corresponding vol”nes

Figure 6. Data flow for the SENSIT-2D module
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* Read

* CALL

* CALL

* CALL

* CALL

the input parameters.

EDKD: Read in the neutron and ganma-ray structure
and calculate the lethargy width/group.

CEO)4: Read and edit the geometry.

SHCON: Read quadrature Information and calculate

E~-acts.

TAPAS: Assign files to the fluxes.

i
yes

do for forrard and adjoint fluxes

t

* CALL PNCEN : Calculate spherical hitnaonics functions.

* CALL PLL?XYO?f: Calculate flux moments.
Extract scalar fluxes.

I

[ Continue )

1

* CALL DETSEX: Calculate detector response and detector
aensitivlty profile.
If desired a detector uncertainty analysis
is performed.

* CALL CHIS : Calculate CM’S based on angular fluses if
desired,

* CALL MIS : Calculate the psi’s based on flux mo~ents

and store in L(X.
If desired chi’s based on flux moments will
be calculated.

Figure 7. F1ov?chart for SZNSIT-2D (part 1)

75



4 :Sl:c::::-seccionsensltlvlty and uncertainty

4
I● In the case that ● SID uncertainty●nalysis is required.

read in the SLD uncertainty data.
I

● (XLL SUS5 :

● CALL SUS5 :

● CALL SUS6 :

Read in cross sections.
Convert to macroscopic cross sectionsvia
nur.berdensities.

Resd in srcond cross-section set inthe case
that ● desisn sensitivity ●nalysis is desired.

Extract vector cross sections ●nd scstterins

mstrix from the full cross-section table.
In case of s desisn sensitivity ●nalysis

calculate delts sigms.
Cslculate u.croscopic scattering cros~ sections.

l--+ do for all perturbed zones snd for the sum
over all perturbed zones )

i
● CALL TIXT or TtXtA: Print ●ppropriate definitions when this

section is passed for the first tine.

II ● CALL ?01S?8 : Set pointers in order to choose proper chi’s

and psi-s.

II ● CALLSLD8 : Calculates●nd ●r!its final results of sensitivity

●nalysis if it is not a SED analysis.

● CALL SL%lI : Cslculstes ●nd ●dits final results for ● SXI’J
sensitivity ●nd uncertainty ●nslysis (neucroc

Sroups only).

r-+$?
● CALL SLZ9 : Read covariance dsta ●nd provide !mcer:a:ntlcs

in the intesral response for the fully correlated
and the non-correlated case.

no

Figure 7. Flow chart for SENSIT-2D (part 2)
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nD

This section performs a complete sensitivity and uncertainty
analysis for vector cross sections.
The code requires a covariance file to be given in LASL error-
file format which contains pairs of vector cross sections with
their corresponding covariance matrix.

t
do for all successive cases

I*
* CALL SUB5V : Reads cross-section ID from input file.

Reads number density from input file.
Reads relative vovariance data (via COVAP3)
Generates macroscopic cross sections.
Reads cross sections (via COYARD).

* CALL POINT8: Set appropriate pointers for chi’s and psi’s,
* CfiL SL~8\, : Conputes and edits sensitivity profiles snd

folds then with the covariance mmtrix in order
to obtain the relative integral response.

1

* CALL SLB9V : Computes partial sums of individual response
variances.
Reads SUNSTP.T and SL?KXD (variances to be surxned)
assuming no correlation between individual vector
cross-section errors, the total variance and the
relative standard variation are computed.

i

Figure 7. Flow chart for SENSIT-2D (part 3)
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Up to this point, all the subroutines used are different from those used

in the SENSIT code. The remaining calculations are done with SENSIT sub-

routines.

-k

*

A
.

*

.2-
0s

Cross sections are read in.

Vector cross sections are extracted.

Sensitivity profiles are calculated used in the appropriate $’s and

X’s.

If desired to do so, an uncertainty analysis is performed.

A vector cross-section sensitivity and uncertainty analysis can be

performed and partial sums of individual response variances can be

made.

4.3.2 Subroutines used in SENSIT-2D

Table IV summarizes the subroutines used in SENSIT-2D and indicates

their origin in case they were taken over or adapted from another code.

The essential difference between SENSIT and SENSIT-2D is the way that

the geometry is described and how the $’s and the x’s are calculated.

Basically, all the subroutines are called from the main program with a

few exemptions when subroutines are called from other subroutines. The

subroutines for SENSIT-2D which were not taken over from other codes

will now be described. For the SENSIT subroutines we refer to the

46
user’s manual.
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TABLE IV: LIST OF SUBROUTINES USED IN SENSIT-2D

Name Subroutine Origin If Taken From Another
Code, Were Changes Made?

EBND

GEOM

SNCON

TAPAS

PNGEN

FLUXMOM

DETSEN

CHIS

POINT4B

PSIS

POINT8

SUB5

SUB6

TEXT

TESTA

SUB8

SUB11

SUB8V

SUB9

SUB9V

SUB5V

COVARD

SETID

SENSIT-2D

SENSIT-2D

TRIDENT-CTR

SENSIT-2D

TRIDENT-CTR

SENSIT-2D

SENSIT-2D

SENSIT-2D

SENSIT-2D

SENSIT-2D

SENSIT-2D

SENSIT

SENSIT

SENSIT

SENSIT

SENSIT

SENSIT

SENSIT

SENSIT

SENSIT

SENSIT

SENSIT

SENSIT

yes

yes

yes

no

no

no

yes

yes

no

no

no

no

no

no
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1. Subroutine EDNB. Neutron and gamma-ray energy group structures

are read in from cards and the lethargy widths for each group are

calculated.

2. Subroutine GEOM. Geometry related information is read in and

edited.

3. Subroutine SNCON. This routine was taken and adapted from the

TRIDENT-CTR code. The EQn cosines and weights are calcualted. The

quadrature information is edited whenever IOPT is 1 or 3.

4. Subroutine TAPAS. Files are assigned to the various flux data.

The filenames for the angular fluxes are read from the input file.

Those filenames will have to be of the form TAPE=, where XY will.

be the input information. Filenames in the same format will then

be assigned to the adjoint angular fluxes (on sequential files in

this case), and the flux moments. The maximum number of words to

be written on each file is controlled by the input parameter

MAxwRD. Groups will never be broken up between different files.

5. Subroutine PNGEN. This subroutine originates from the TRIDENT-

CTR code. Spherical harmonics functions, used for constructing

flux moments, are calculated. For the adjoint flux moment calcu-

lation the arrays related to the spherical harmonics will be re-

arranged to take into account the fact that the numbering of the

angular directions was not symmetric with respect to the four

quadrants in TRIDENT-CTR.

6. Subroutine FLUXMOM. The adjoint angular fluxes will be re-

written on a random access file. The direct and adjoint flux
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moments are constructed and written on sequential files. In the

case that the input parameter IPREP1, it is assumed that those

manipulations are already performed in an earlier SENSTT-2D run.

In this case one has to make sure that the parameter MAXWRD was not

changed. While creating the regular flux moments, the scalar

fluxes will be extracted and written on a file named TAPE1.

7. Subroutine DETSEN. From the scalar fluxes, the integral re-

sponse for each detector zone is read from input cards. The detec-

tor sensitivity profile is calculated and edited. In the case that

the input parameter DETCOV equals one, a covariance matrix has to

be provided, subroutine SUB9 will be called and a detector response

uncertainty analysis is performed.

8. Subroutine CHIS. The x’s are calculated for each perturbed

zone and for the sum over all perturbed zones based on angular

fluxes. In the case that the parameter ICHIMOM equals one, this

subroutine will be skipped and the x’s will be calculated based

on flux moments via the

9. Subroutine POINT4B.

flux moments which will

$’s.

This subroutine sets LCM pointers for the

be used in SUB4B.

10. Subroutine PSIS. The $’s are calculated for each of the per-

turbed zones and for the sum over all perturbed zones based on

flux moments. In the case that ICHIMOM is not equal to zero also

the x’s will be calculated from flux moments. In the case that

parameter IPREP equals one, the $’s will be read in from file

TAPE3.
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11. Subroutine POINT8. This subroutine sets pointers for the

appropriate x’s and $’s, used in subroutine SUB8.
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5. COMPARISON OF A TWO-DIMENSIONAL SENSITIVITY ANALYSIS WITH A ONE

DIMENSIONAL SENSITIVITY ANALYSIS

Before applying SENSIT-2D to the FED (fusion engineering device)

inboard shield design, currently in development at the General Atomic

Company, it was necessary to make sure that SENSIT-2D will provide the

correct answers. One way for checking on the performance of SENSIT-2D

is to analyze a two-dimensional sample problem, which is one-dimensional

from the neutronics point of view, and then to compare the results with

a one-dimensional analysis. In this case 0NEDANT74 and SENSIT46 are

used for the one-dimensional study, while TRIDENT-CTR, TRDSEN, and

SENSIT-2D are used for the two-dimensionalanalysis.

Two sample problems will be studied. The first sample problem uses

real cross-section data, while the second sample problem utilizes arti-

ficial cross sections. Computing times, the influence of the quadrature

set order, and the performance of the angular fluxes versus the flux

moments option for the calculation of the chi’s will be discussed.
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5.1 Samvle Problem 1}1

The first sample problem is a mock-up of a cylindrical geometry

(Fig. 8). There are four zones present: a source zone (vacuum),a per-

turbed zone (iron), a zone made up of 40% iron and 40% water, and a

detector zone (copper). The reaction rate of interest is the heat gen-

erated in the copper region. The source was assumed isotropic and had a

neutron density of one neutron per cubic centimeter (1 neutron/cm3).

The source neutrons are emitted at 14.1 MeV (group 2). The left bound-

ary is reflecting, and on the right there is a vacuum boundary condition.

Thirty neutron groups were used with a third order of anisotropic scat-

tering. The

energy group

In the

cross sections were generated using the TRANSX72 code. The

boundaries are reproduced in Table V.

two-dimensional model (TRIDENT-CTR) two bands--each 0.5-cm

wide--are present. In order to be consistent with the one-dimensional

analysis the upper and the lower boundaries were made reflective (Fig.

9). Each band is divided into 35 triangles (5 triangles for the source

zone, 10 triangles for each of the other three zones). The automatic

mesh generator in TRIDENT-CTR was used. The convergence precision was

-3set to 10 . A convergence precision of 10-3 means here that the aver-

age scalar flux for any triangle changes by less than 0.1% between two

consecutive iterations. A similar criterion is used in ONEDANT. The

calculation is performed with the built-in EQn -8 (equal weight) quad-

rature set. The mixture densities are given in Table VI. For the ad-

joint calculation the source is in zone IV and consists of the copper
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Figure 8. Cylindrical geometry representationfor sample
problem #1
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TABLE V: 30-GROUP ENERGY STRUCTUIW

Neutrons
E-Upper Group E-Lowe r

(tkv) (UeV)

1.700+01 1

1.500+01 2

1.350+01 3

1.200*01 4

1.000+01 5

7.790+00 6

6.070+00 7

3.680+00 8

2.865*OO 9

2.232+00 10

1.738+00 11

1. 353*OO 12

8.230-01 13

5.000-01 14

3.030-01 15

1.8&0-01 16

6.760-02 17

2.480-02 18

9.120-03 19

3.350-03 20

1.235-03 21

4.540-04 22

1.670-04 23

1. 500+01

1.350+01

1 .200+01

1 .000+01

7.790+00

6.070+00

3.680+00

2.86S+00

2.232+00

1.738+oo

1.353+00

8.230-01

S.000-ol

3.030-01

1.840-01

6.760-02

2.k80-02

9.120-03

3.350-03

1.235-03

4.540-04

1.670-04

6.160-05

E-Uppr r Group E-Lowe r

( rlev ) (tk-v)

6.140-05 26 2.260-05

2.260-05 25 8.320-06

8.320-06 26 3.060-06

3.060-06 27 1.130-06

1.130-06 28 4.140-07

4.140-07 29 1.520-07

1.520-07 30 1.390-10
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