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NUMERICAL SOLUTIONS OF THE FOKKER-PLANCK
CHARGED PARTICLE TRANSPORT EQUATION

by

Antonio Andrade

ABSTRACT

In this work, two numerical methods are developed to solve the

Fokker-Planck charged particle transport equation by simple and

efficient means, and without approximation to the collision term.

The first of these methods demonstrates that the kinetic transport

equation can be integrated to yield the time dependent distribution

function of test particles fa(r,~,t) in a fully implicit manner by a

combination of Sn methodology with a matrix factorization technique.

It is shown that the full three dimensional velocity space dependence

along with the radial configuration space dependence of the

distribution function can be obtained as a function of time by this

method if all of the phase space variables are treated as discrete.

In order to illustrate this technique, the energy deposited by fast

ions to geometrically spherical and cylindrical field-free Maxwellian

D-T plasmas is calculated. The results are shown to be in good

agreement with those previously published.

The second technique that is developed is an implicit Monte

Carlo method which is suitable for transport problems in field-free

and externally magnetized plasmas. Here the transport of test

particles in background Maxwellian plasmas is based on probabilities

derivable from the FP equation, such as the expected time for

deflection and the ,expected time of energy exchange. It Is shown

that this technique is comparable in efficiency to the first method

discussed above since large samples of particles are not necessary

because self-consistent fields are not calculated. This technique iS

illustrated by again calculating the energy deposited by fast ions to
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a background plasma. The results for problems in the field-free

transport case are compared to those obtained by the first methoa and

are found to be in good agreement. Since this Is a particle pushing

method, the tracks left by the test particles as they transport

through the background plasma can be followed in scatter plots.

Similarly, the way in which the orbits of test particles deteriorate

as they transport in a magnetized plasma can also be followed in time

and the energy deposition profiles for each of the background species

can be compared to those obtained in the field-free case. It is also

shown that a treatment of Coulomb-nuclear scattering, a process which

becomes important in the analysis of transport in high temperature

plasmas, can be successfullyincorporated within the framework of this

implicit Monte Carlo method.
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CHAPTER I

INTRODUCTION

In the study of charged particle transport in plasmas, numerical

techniques for solving the Fokker-Planck equation have been developed

which closely parallel those used in neutron transport. This was a

natural step in the development of solution methods in charged

particle transport (CPT) in view of the fact that the theory and

methods 12of neutron transport have been well developed s . Moreover,

since much of the pioneering work in CPT was carried out in

conjunction with the on-going effort to build controlled fusion

devices, the early methodologies developed to solve the transport

equation were made more applicable to those machines. In the well

known analysis of transport in mirror machines by Killeen, et al3 for

example, the calculations of spatial changes along the magnetic field

are based on an assumption that the distribution function of ions

remain approximately constant along a guiding center orbit; an

assumption which is sufficiently accurate and more appropriate for

low density mirror confinement systems.

Other authors have used expansion methods4$5 or diffusion theory

techniques to solve the transport equation. The diffusion

techniques require that sequential moments of the transport equation

be taken so as to generate a coupled set of equations, and further

require that a prescription for closing that set be given. The

transport problem is then reduced to the solution of that set.

In other methods7$8, the differencing and multigrouping

techniques of neutronics are directly applied to yield solutions to

the CPT equation by standard algorithms. In all of the methods
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mentioned above however, the Fokker-Planck collision term is usually

approximated in some fashion. The diffusion techniques, for example,

usually include only a treatment of collisional slowing down without

velocity space dispersion (“straight-line slowing down”). The Sn

techniques of Ref. 7 are also applied to a Boltzmann-like equation

in which only straight-line slowing down is considered in a

deceleration term. As will be shown in this work the exclusion of

velocity space dispersion may lead to very inaccurate results.

Recently, some researchers have attempted to solve the

Fokker-Planck (FP) equation without recourse to approximations. This

was done by either reformulating the FP collision term into a form

which matches the structure of a standard neutronics code9 such that

existing computer programs can be used directly for CPT, or by

deriving cross sections10 which siumlate the slowing down of ions to

be used in existing neutronics codes. The drawbacks that were found

to these approaches were that the large computer codes were

cumbersome to modify or as in the case of Ref. 9, the existing code

structure forced a semi-implicit differencing of the collision term

which subsequently led to long computer runs.

In this work, two numerical methods are developed to solve the

Fokker-Planck charged-particle transport equation by simple and

efficient means, and without approximation to the collision term.

The first of these methods demonstrates that the kinetic transport

equation can be integrated to yield the time dependent distribution

function of test particles fa(r,v,t) in a fully implicit manner by a

combination of Sn methodology with a matrix factorization technique.

It is shown that the full three dimensional velocity space dependence

along with the radial configuration space dependence of the

distribution function can be obtained as a function of time by this

method if all of the phase space variables are treated as discrete.

In order to illustrate this technique, the energy deposited by fast

ions to geometrically spherical and cylindrical field-free Maxwellian

D-T plasmas is calculated. The results are shown to be in good

agreement with those published in Ref. 9.
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The second technique that is developed is an implicit Monte

Carlo method which is suitable for transport problems in field-free

and externally magnetized plasmas. Here the transport of test

particles in background Maxwellian plasmas is based on probabilities

derivable from the FP equation, such as the expected time for

deflection and the expected time of energy exchange. It is shown

that this technique is comparable in efficiency to the first method

discussed above since large samples of particles are not necessary

because self-consistent fields are not calculated. This technique is

illustrated by again calculating the energy deposited by fast ions to

a background plasma. The results for problems in the field-free

transport case are compared to those obtained by the first method and

are found to be in good agreement. Since this is a particle pushing

method, the tracks left by the test particles as they transport

through the background plasma can be followed in scatter plots.

Similarly, the way in which the orbits of test particles deteriorate

as they transport in a magnetized plasma can also be followed in time

and the energy deposition profiles for each of the background species

can be compared to those obtained in the field-free case.

In Chapter II, the form of the transport equation to be solved

is developed. It is shown that by some simple tensor analysis, the

FP collision term can be written in a divergence form for which the

vector components in velocity space contain no third derivatives for

all geometries. This makes its form convenient for finite difference

analysis of any type since it would otherwise be difficult to

numerically compute third derivatives of functions. Chapter III

descpibes the Sn and matrix factorization techniques of the method

used to integrate the FP transport equation for the time dependent

distribution function and in Chapter IV the Monte Carlo technique for

transport problems in field-free and magnetized plasmas is developed

in detail. Further, in Chapter IV a means by which large angle

(Coulomb-Nuclear) scattering can be treated is demonstrated. Al1

quantities to be used herein will have MKS units while temperatures

will be given in keV.
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CHAPTER II

THE FOKKER-PIANCK TRANSPORT EQUATION

The kinetic equation which characterizes the transport of

charged particles in a plasma as they suffer collisions which result

in their deflection by small angles has come to be known as the

Fokker-Planck transport equation and is given by

~fa(~,y,t) afa Fext afa
+ v ● --– + =—~ . 1 a<+> afa afa—— ...~

at - & ~ “—=~)c
‘aaz %

(2-1)
— ‘a

where

afa
–) =

1
- (V ●(fa<Ay>) - $’VX:(fa<AvAv>)}

atcx —— (2-2)

is the collision term of the equation. <$> is the average

electrostatic potential at ~ produced by the particles at other

‘Xt is the force experienced by the plasma particlespositions while ~

at ~ due to externally applied electromagnetic fields. Eq.(1-1),

therefore, is artequation for the time evolution of the one particle

distribution function of particles of species ‘a’, as this

distribution is affected by internal and external forces and as it is

affected by collisions with plasma particles of all species ‘b’

within a given system, including collisions among its own species

‘a’.



6

Rosenbluth, MacDonald, and Juddl first formulated the averages

<Ax> and <AvAv> in Eq. (2-2) in terms of the potential-like——

functions hab(~) and gab(~) as

CAY> = rabVvhab(V)
—

<A~Ay> = rabvvvvgab(y)
—.

where

hab(y) = u f (r,u,t)lv-ul-l
‘a + ‘bZ~~d_ b ––

Ab ——

(2-3)

(2-4)

(2-5)

Here rab = (Z~e4/4nm~E~)lnAand lnA = ln(~d/bo) where Ad is the Debye

i
length [ nbZbe2/kTb&o]=l/2 and b. is the impact parameter for

scattering at 90° which is equal to ZaZbe2/4rEopabV2. Defining the

integrals in Eqs. (2-5) and (2-6) as

%(V) = ~dufb(r,u, t) IV-UI-l— — —— —— (2-7)

Kb(~) = ~dg fb(r,u,t) Iv-ul (2-8)—— ——

the potential-like relationship between Eqs. (2-5) and (2-6) is

easily shown with
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‘:Kb(V) = 2Lb(V)
—

(2-9)

and

In this work, the effects of

fa will not be considered so that

be set equal to zero.

(2-lo)

internal forces on the evolution of

<~> in Eq. (2-1) can effectively

A Formulation of the Collision Term in———

Terms of the Riemann-ChristoffelTensor—.

In Ref. 1, it is shown that the collision term can be written

in covarient form by first noting that ~~<A~> and ~~<AyAy>

transform like a contravarient vector and tensor respectively. The

subsequent tensor extension of Eq. (2-2) is then given as

where

T#b= a“%ab su

and

(2-11)

(2-12)

(2-13)

and where the relationships between Kb(~) and Lb(y), i.e. Eqs.

(2-9) and (2-10) are now given as

—
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(2-14)

~a
% ~a$

= -#$nf
b“ (2-15)

.

Here the subscripts ,i indicate covarient differentiation with
.threspecc to the 1 component while the superscripts indicate either a

particular vector component or a tensor element. apv is the inverse

of the metric tensor apv which defines the space of interest.

For finite difference numerical analysis, it is naturally more

convenient to use a divergence form for the collision term such as

afa
—)at ~

= _J:i. (2-16)

From Eq. (2-11), it can be seen that the components Ji are given by

(2-17)

Eq . (2-16) will be called the Landau-Fokker-Planck collision term

since Landau2 first formulated a kinetic equation for small angle

Uoulomb scattering in this divergence form.

The analytic evaluation of the components Ji for simple velocity

space geometries is straightforward but the second term of Eq.

(2-17) gives rise to terms which contain third derivatives of the

function Kb(~), which are difficult to approximate numerically. It

is easy to show that for say, a spherical velocity space in which the

background distribution functions are either fully isotropic or only

azlmucnally syuxsetric,these third derivatives can be eliminated from

the components Ji by making use of the relations given in Eqs.

(2-14) and (2-15).
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In the course of this work it was found that the third

derivatives could be eliminated in any geometry and for distributions

in a general state, by tensorially reformulating the coilision term

as follows.

Using Eqs.

definitions of the

(2-8), Eq. (2-17)

(2-5),(2-6),(2-12), and (2-13) and by using the

functions Kb(~) and Lb(~j given in Eqs. (2-7) and

can be Wrzcten in the form

(2-18)

or since the covarient derivatives of tuneinverse metric tensors are

equal to zero, it can further be simplified to

A +A~
Ji = lrabz~{ aAb faai%b, a- #iaaj6(faKb,a8).j } . (2-19)

The second term of Eq. (2-19) can be expanded as

(faKb,a~),j = fa$jKb,~a+ ‘aKb96aj (2-20)

since Kb(v) is a scaler invariant. The Riemann-Christoffel censor—
Ry is defined as3.~aj

Ry
.6ajKb’Y = Kb,6aj - Kb,~ja

and is a tensor of rank 4 which

vector Kb,y. It can be computed

(2-21)

aoes not tiepenaon tne choice of che

as
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Ry
. Baj = 3a(y.t3j}- 3j(Y,Ba}

+ {Y, js){s,6j} - {Y,m}{s,$a> (2-22)

where the symbols { } are the Christoffel symbols of the second kind”

With this definition Eq. (2-20) can be replaced as

(faKb,a~),j = ‘a$jKb$~a + fa[Kb$~ja + R~6ajKb,y] (2-23)

and Eq. (2-19) can then be rewritten as

~ +tib
1 iaaj6[fa,jKb~Ba2{.?___faai~,a - 2Ji = ~~abzb Ab

+ faKb~$ja + faRy6ajKb,y]] . (2-24).

Consider the second term of Eq. (2-24) which will be called term II.

Using (faKb~8j),a = fa,~b,~j + faKb>~ja3 term II becomes

+ aiaajB(faKb,6j)$aII = #aiaajsfa, jKb,~a

- aiaaj‘fa~#b ~dj + aiaaj ‘faR!8~jKb YY] ● (2-25)

By changing the dummy indices in the second term of Eq. (2-25) and

then using the Poisson-like relation given in Eq. (2-14), II becomes
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II = ~[aiaaj8fa,jKb,Da + 2aijfaLb,j + aijaa%b, a~fa,j -

aiaaj ‘fa~ &b~ ~j + aiaaj‘faR!SajKb~Y1 “ (2-26)

By changing dummy indices again, it is seen that the third and fourth

terms will cancel and that two Lb,a terms will also cancel when

Eq. (2-26) is substituted b ck into Eq. (2-24) so that the collision
!!fal .

term will now take the form
xc

= -J~i as before but with

‘i= jrabz~{$faai%b,.-

#iaaj6[fa, jKb,@a+ faR~~ajKb~yl) “ (2-27)

It is to be noted that Eq. (2-27) will involve only the second

Kb(v) making it satisfactory forderivatives of the function _

numerical analysis in any geometry, and that it also simplifies the
.

analytic evaluation of the components J1.

In the chapter to follow, a spherical velocity space is chosen

for the example problems which demonstrate the numerical methods

developed there. This choice is made because of the convenience of

determining whether a plasma is Maxwellized in terms of only one

variable, the magnitude of the velocity 1~1. In Appendix A, the

components Ji are evaluated analytically for a spherical velocity

space by using Eq. (2-27).

A Scaling of the Fokker-Planck Equation

.



It is often convenient in numerical work to scale the variables

of interest in order to avoid using large numbers. In a laser fusion

Dellet vlasma, for example, it is not uncommon to encounter particle

densities on the order of 1028/m3. Although many different scaling

systems can be applied to the Fokker-Planck equation, here it is

chosen to scale densities, velocities, and time as

Ii=.1 $=:
No co

f.L
‘o

(2-28)

where No and To are chosen to suit the problem at hand and where Co

is defined to be (2kTo/mo)l/2. k is Boltzmann’s constant, To is a

standard kinetic temperature and m. is the mass- corresponding to 1

AMu. With these scalings the scaled distribution function is related

to the unscaled distribution by

i = fC~/n (2-29)0.

By further defining the scaled length as ? = r/CoTo and the scaled

acceleration by Z = aTo/Co and then substituting the relations of Eq.

(2-28) into Eq. (2-l), it is found that the Fokker-Planck transport

equation retains its original form if the traditional rab is replaced

by rabNoTo/C~. The final working form of the Fokker-Planck equation

is then given by

afa(r,v,t) afa afa.— + aext.
at

= -v ●J
3; Y–+y”~ – _

—
(2-30)

where
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(2-31)

and where the barred scaling notation has now been dropped since it

is understood that this is a scaled equation.

—
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CHAPTER III

CHARGED PARTICLE TRANSPORT IN A FIELD-FREE PLASMA:

AN INTEGRATION OF THE FOKKER-PLANCK TRANSPORT EQUATION

Solution For A Spherical Plasma———

A symmetric, field-free, spherical plasma configuration

particularly simple system in which new techniques for solving

is a

the

transport equation can be tested. Since results of benchmark
1calculations in this type of system exist in abundance , comparisons

can easily be made.

To this end, consider the time evolution of a distribution

fa(r,v,u,t) of test particles in a fully symmetric state in a

spherical configuration space and in a spherical velocity space in

which the distribution function will only be constrained to be

azimuthally symmetric. In Appendices A and B the charged particle

transport equation, Eq. (2-30), is developed for these geometries as

afa(r,v, u,t) afa

at
+ ‘fl~(r2fa) +

=2&
$p[(l-F)fal = ~ )C

where

(3-1)

(3-2)
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(3-3)

(3-4)

Here the functions Kb and Lb of the background distributions fb will

remain isotropic for all time and the sums over the species ‘b’ will

not include the species ‘a’ so that the treatment of Eq. (3-1) will

become fully linear. The background Maxwellian distribution

functions in scaled variables have the form

fb(u) = n~+XP(-U2 /v:b)
~3/2v:b

(3-5)

where vob = (Tb/Ab)l/2.

With the definitions of Kb and Lb given by Eqs. (2-7) and

(2-8), the derivatives in Jv and JUcan be computed as

ah
— = “~~v112fb(U)dU
av V* o

(3-6)

(3-7)
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a2Kb v 2U4
— = 4n~ –—fb(u)du + 4n~:#fb(u)du .
avz o 3V3

Defining the standard integrals in Eqs. (3-6)-(3-8) as

Hbl(v) = ~%fbdu
v

Hb2(v) = ~;2fbdU

Hb~(V) = ~vU4fbdU ,
0

(3-8)

(3-9)

(3-lo)

(3-11)

it is seen that the Landau-Fokker-Planck components can then be

rewritten as

Jv .
1

Hb2(V)
-4~ rab!!!@z~{5!fa

~: Ab ~2

lafa Hb3(V)
—(‘3av V3 + Hb~(V) )}

and

(3-12)

(3-13)
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Since the background distributions are Maxwellian, the integrals

Hbl, Hb2, and Hb3 are easily evaluated as

nb

Hbl(v) = exp(-v2/v$~
2m3Aob

nb

—[

#/2
Hb2(v) =

=3/2 4
erf(v/vob) - V-exp(-v%lg)

2kob

(3-14)

(3-15)

nbv~b3T1/2
Hb3(V) = ~[-~-erf(v/vob) - &(~ + ~)exp(-v2/v~~ ]. (3-16)

‘ob

The Difference Approximation

Equation (3-1) can be solved by a direct finite difference

method which is similar in many repects to the Sn technique used in

neutron transport. In this method the angular dependence of the

distribution function is not expanded via a complete set of functions

but rather is treated as discrete. The way in which the methodology

presented in this chapter varies from the standard Sn method is in

the treatment of the collision physics. Here the collision effects

will be solved for separate from the streaming effects.

An operator K which will discretize all of the arguments of

fa(r,v,P,t) through the transport equation is

K = ~~s+ldt ~i+l’2r2dr ~g+l’2v2dv /%+1’2dp
s ‘i-l/2 vg-1/2 ‘n-l/2

(3-17)
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where B = At~(Ar~/3)(Av~/3)A~n and At~ = t~+l - t~, Ar~/3 = (r~+l/2 -

r3~_l/2)/3, Av#3 = (V~+l/2 - &/2)/3, AIJn= %+1/2 - %-1/2” In
this analysis the intervals on a mesh will be centered at integer

values of the indices s,i,g and n and the distribution function fa

will always be defined at t = ts+l i.e., implicitly, unless specified

by a subscript to be otherwise.

Applying the operator ~ to Eq. (3-1) yields the difference

approximation

f(ri,vg,~,ts+l) - fs ~Av;/4
..—— + ~v~[Ai+l/2fi+l/2 ‘Ai-l/2fi-l/21At~

ig

4

V ~~~3’[~+1/2fn+l/2
+ ._.__l? _

- an-1/2fn-l/21
ing

+; —[J:+l/2 - J:-1/21}
n

(3-18)

where Vi = Ar~/3, Ai+l/2 = r!+l/2j and where the angular streaming

term has been difference as in the Sn methodology of neutronics2 in

order to preserve conservation of particles for finite sized

intervals Aun. The subscript ‘a’ of the test distribution has been

dropped since it is understood that this is an equation for fa.

By using the definitions
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No TOZ;

1Bg = Aa ‘ab ~3 AbHb2(Vg)

o

i

Hb3(vg) + V$bl(vg))
1 l’1%?07:(.

cg=~ abC3
o ‘g

NoTOZ:

i
Dg x rab

~3v3[Hb2(vg) ‘&b3(vg) ‘:vgHb~(vg))
(3-21)

Og %

(3-19)

(3-20)

in Eqs. (3-12) and (3-13), the components of ~ in the collision term

of the difference approximation become

fg+l - fg
J~+l/2 = - .24“ {Bg+l/2fg+l/2 “g+l/2[ Avg+l,2 ‘] (3-22)

vg+l/2

J;-1/2 (~-~~~)}=-_z4.!._{Bg-1,2fg_~/2 “g-l/2 & 1,2 (3-23)

“g-1/2 g-

‘n+l - ‘n
J:+l/2 }_ _2mDg{(@+1/2) AUn+l/2

fn - fn-l

JIL/2
= -2mg{(l-i-l/2) Aun 1/2 }.

(3-24)

(3-25)

The velocity grid interval edge values fg?l/2 in the J~?l/2



components can be related to

interpolating relations of Chang

‘g+l/2 = (1 - ~g+l/2)fg+l +

21

the centered values fg by the
3and Cooper as

~g+l/2fg

fg-1/2 = (1 - ~g-1/2)fg + ~g-1/2fg-l

1
[exp(~gtl/2) - 11

and

*vgBgzl/2
‘g*l/2 = ‘-—-—

cgkl/2 “

(3-26)

(3-27)

(3-~8)

(3-29)

By using these relations in Eqs. (3-22) and (3-23), the collision

term of Eq. (3-18) can be rewritten as the sum of two terms as

-=
q Cv+<p (3-30)

where

-v cg-1/2= -{fg-l ‘Avg-l/2
- Bg-1/2~g-l/21q

43

cg-1/2 cg+l/2
+ fg[Bg+l/2~g+l/2 - Bg4/2(1 - ~g-1/2) -

‘“g-l/2
1

~g+l/2

cg+lM}+‘g+l[Bg+l/2(L- ~g+@ + -h (3-31)
g+l/2
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and

(1 -
- ‘*[

k+l/2)
+

‘%+1/2

(1 - &l/2)

‘%-l/2
1

(1 - u:+l/2)
+ fn+l.—

‘%+1/2
}.

Note that ~ is a sum of two 3-point difference terms.

By further defining the quantities

Av~/4
c= ...———

ViAv~/3

1A = ~nA~[Ai+l/2fi+l/2 - ‘i-l/2fi-l/2

and the combining

transport equation

f- ~At~ = fs

In this equation , .. .. .

(3-32)

(3-33)

+ [~+1/2fn+l/2 - %-1/2 fn-l/2I (3-34)

Eqs. (3-30) and (3-18), it is seen that the

can be written in the simple form

~AAt8
-—— —0

Apn

it is seen that the collision terms are now on the

(3-35)



—

●

23

L.H.S. while the streaming terms have been separated off into the

R.H.S. This formulation suggests that a splitting procedure may be

used to solve for the effects of collisions and streaming on the

distribution separately and then combined in some self-consistent

fashion to yield an updated distribution.

Solution of the Difference Approximation by

Consistent Splitting with

Eq. (3-35) can be split into

equations of the form

[f - {At]’ = [fs - ~~]t=t
n s

and

GAAts
f+————

Apn
= <*At5 + fs .

Matrix Factorization

two, separate fully implicit

(3-36)

(3-37)

Here Eq. (3-36) is seen to be an equation which modifies the

distribution function f for collision effects while using the

streaming terms as a constant known source term evaluated with

quantities defined at the previous time step while Eq. (3-37) is an

equation which corrects f for streaming and uses the result f* of

Eq. (3-36) as 4* = ~(f*) as a constant. When Eqs. (3-36) and (3-37)

are solved together within a given time step, the distribution

function f(ri,vg,~,ts+~) is then determined for all i,g, and n.

Consider first Eq. (3-36) and recall that ~ was defined as the

sum of two 3-point ‘termsin Eqs. (3-30)-(3-32). As such, Eq. (3-36)

resembles the difference 2-dimensional Poisson equation which has

the form
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(3-38)lq) = s‘i~~lk+ ‘ng lk ng

1 = n-l,n,n+l

k = g-l,g,g+l

where the matrices E and G contain the coefficients of the two

3-point terms ~v an: ~V re~pectively and where Sng corresponds to the

source term on the R.H.S. Elkof Eq. (3-36). ng and G& are actually

supermatrices with the properties

where the first pair of upper

of an elemental matrix in the

indicate an element in the

the forms

E:; .

((
x

x

\

x

)xx

xx NGxNG

(
xx

xx

x

(3-39)

(3-40)

and lower indeces indicate the position

supermatrix and where the second pair

elemental matrices. Hence E and G have

x

x

()
xx

xxx

xx

/

(3-41)

.
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( )(
x x

x x

x x NGxNG

(xxx)(x)<
)( )

x

x x

x x NNxNN

where NG is the number of intervals

number of intervals on the n grid.

the forms

()()
x

x

JcG

()
x

x

x

()
x

x

x NN

sng

on the g grid

The supervectors

The notation of Eq. (3-38)

[1()
x

x

XG

()
x

= x

x

ox

x

x NN

(3-42)

and NN is the

$lk and Sng have

(3-43)

can be simplified somewhat if the

index g is taken to be vector index so that it can be rewritten as

Etn+ G~il= ~n (3-44)

This equation merely indicates that each multiplication of a superrow
+

of Eqs. (3-41) and (3-42), by a supercolumn of +, will be treated

separately. The f~llowing treatment of Eq. (3-44) is based upon a

method given by Buzbee, et. 4al. .
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In general the matrix E will not be symmetric tridiagonal but a

matrix D can be found that will symmetrize E through a similarity

transformation E = DED-l. If D is allowed to operate on Eq. (3-44)

from the left, it then takes the form

(3-45)

It is easily shown that D has a diagonal form such that it commutes

with G: as indicated.

The symmetric matrix E has a complete set of eigenvectors given

by ~;a= ~a~a so that the vectors D; and D: can be expanded as

(3-46)

(3-47)

Using these expansions in Eq. (3-45), it is found that it can be

rewritten as

(3-48)

Eq. (3-48) is recognized to be a tridiagonal system in the

coefficients ala for each index a. This equation can be solved

readily by a factorization of the tridiagonal system into upper and

lower off-diagonal matrices. This is a standard technique in matrix

analysis, the details of which will not be given here. For an

excellent presentation of this technique, the reader is refered to

Ref. 5.

Once the coefficients ala are determined, the solution of

Eq. (3-45) can be constructed using Eq. (3-46) as
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(3-49)

This is the ‘intermediate’distribution function f* which has been

modified for collision effects. It is noted that for the case in

which the background plasma remains Maxwellian, the coefficients in

Eq. (3-45) remain unchanged Such that the eigenvalues and

corresponding eigenvectors need be computed only once. But the

construction indicated in Eq. (3-49) must be performed at every time

step since the ala will differ as the source term (and therefore the

bna) of Eq. (3-45) changes in time. This procedure is carried out

for every zone ri in a given time step.

Eq. (3-37) remains to be solved. This equation is actually

equivalent to Eq. (3-18) i.e., the difference approximation except

that the collision terms on the R.H.S. are now known as q“* such that

f(ri,vg,~,ts+l) - fs
+ ~p[Ai+l/2fi+l/2 -Ats ‘i-l/2fi-l/21

viAv#3

Av;/4
+ v~UAv3,3[~+l/2fn+ l/2 - ~-1/2 fn-l/21=d* . (3-50)

ing

Eq.(3-50) has the form of the neutron transport equation which

has been difference for Sn treatment and as such, it can be solved

as in neutronics. To outline this method, note that Eq. (3-50) is an

equation in five unknowns f, ‘i?l/2s and ‘n&l/2” In general two of

these, say ‘i+l/2 and fn_l/2, can be determined from boundary

conditions or from a previous time step. The other three quantities

can be related by some scheme so that a system of three equations in

three unknowns can be formed.
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The diamond difference relations

2f = fn+l/2 + ‘n-l/2

2f = ‘i+l/2 + ‘i-l/2

(3-51)

(3-52)

are chosen for this purpose. It is seen in Fig. 1 that these

relations linearly interpolate between quantities defined on a

topologically rectangular mesh. Using these relations in Eq. (3-50)

and solving for f in terms of the known quantities fn-1/2 and ‘i+l/2

yields

‘1

P

Fig. 1.--The diamond structure of the interpolating
procedure shown on a partial r-~ mesh
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f = {~*At + f. - ‘~’’’j$~ [Ai+l/2 + ‘i-l/2 lfi+l/2
ig

AtAv$/4 .
+

ViA~n;v~/31%+1’2 + ‘-’’2 Jfn-”2]
(3-53)

+ %-1/2) - %( Ai+l/2 + Ai-1/2)J} “

solve for the updated distribution f for

boundary of the sphere by calculating

This equation can be used to

all zones i, starting at the

the cell centered distributions f and then extrapolating inward for

the cell edged distributions fi-1,2. Since the calculation proceeds

inward toward the center of the spere, it should only be performed

for angles directed inward to avoid the accumulation of numerical

error6 i.e., for the directions B such that -1 < u ~ O. A similar

equation can be derived for outward directions by considering ‘i+l/2
to be unknown and again using the diamond difference equations in

conjunction with Eq. (3-50) to yield

f= {ij*At+ f~ +
‘~~$[Ai+l/2 ‘Ai-l/21fi-l/2

ig

AtAv:/4
+ ‘[%+1/2 + %-1/2 lfn-1/2}
ViA~Av~/3

(3-54)
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The outward integrations can be started by using an isotropy

condition at the center of the sphere which is just

fr=O,n = ‘r=(),ninwardoutward

‘outward = NN+l-n.Inward “ (3-55)

This integration is done after all of the inward calculations have

been performed. In this way, f(r,v,v,t) is calculated at the updated
.

for all zones, speeds, and angles.‘lme t = ts+l

Two. codes have been developed which perform an integration of

the Fokker-Planck transport equation via the methods outlined in this

section. The first one, SFTRAN, calculates transport in the system

just discussed i.e., in a spherical plasma. The second code CYTRAN

calculates transport in a fully symmetric cylindrical plasma but with

full velocity space dependence such that fa(r,v,u,x,t) is calculated.

The methods and results obtained by CYTRAN will be the subject of the

last half of this chapter.

In the next section, some results obtained by the spherical code

are presented.

Results

The calculation of the energy deposited by fast test ions as

they slow down on a background plasma during the collisional

transport process is typical of the benchmark problems which have

evolved within the literature on charged particle transport. In a

pellet plasma, for example, it is of interest to determine how this

energy is distributed spatially while being partitioned to the

background electrons and ions. It is also of interest to be able to

determine the time history of this deposition. Some of the more

important applications of these type of calculations include the

treatment of fusion product transport and the analysis of injected
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charged particle beams. In order to demonstrate the matrix

factorization (Ml?)method of the last sections, the transport of

fusion alpha particles and beam deuterons and protons will be

considered.

Before proceeding further, it is to be noted that in the

transport equation, the factor ‘ab has consistently been kept within

the summation over the species ‘b’. This is because of the

dependence of 1“ on the background species through the Coulomb

logarithm as

lnA= ln(Ad/bo) = ln[~d/(ZaZbe2/4mcopabV2)].

In this work the arguments Ai and Ae will be approximated as

Ai =

and

A =
e

Ad4~co rni
(

z z.e2 ‘i + ‘a
)2E

al .

Ad411Eo
3Oe

Zae2

for cases where the electron

(3-56)

(3-57)

(3-58)

thermal

the test ion velocities v, but where v

in Eq. (3-57) is set to the thermal
7and the Marshak correction factor is

valid approximations

v
‘th

is greater than

which are

velocity
-..

> Vith. The test ion energy E

ion energy to be definite,

applied in Eq (3-58) when applicable.

The case of 3.5 MeV fusion product alpha particles transporting

in a spherical plasma is considered first. In this example, the

background electron and hybrid D-T ion densities will be 0.2125 x 103

kg/m3 while their temperatures are taken to be equal at 50 keV.
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Although here the temperatures are set equal, the code does allow for

different electron and ion temperatures.

It is chosen to compare the results of the !’lFcalculations with

those given by Mehlhorn and Duderstadt in Ref. 1 since their method

also allows for velocity space dispersion. In order to match the

zoning used in their modified neutronics code TIMEX-FP, 13 radial

zones are used while the velocity space variables are discretized by

4 v directions and an 18 point speed grid. The zone width is taken

to be .7742 x 10-2m which is equivalent to .035As where As is the

range of alpha particles on electrons at the density and temperature

given above. Further, in this problem, the arguments of the Coulomb

logarithm are not calculated by Eqs. (3-57) and (3-58) but the values

of lnA are set as lnAe = 8.25 and lnAi = 18.56 as the were in Ref.

1. The details of the energy deposition calculation are given in

Appendix C.

In Figures 2 and 3, the fraction Ed/Eo of the initial alpha

particle energy E. deposited per zone to the background electrons and

ions, respectively, is plotted for each zone. It can be seen that

the MF method yields results vhich are in very good agreement with

those reported in Ref. 1. In both Figures 2 and 3, the peaks of the

spatial deposition profiles occur in the same zones and. are nearly

identical in magnitude. Similarly, the stopping lengths calculated

by the MF method enjoy close agreement to those previously reported.

Although small differences occur in the two methods’ calculations of

the amount of energy deposited in the first few zones to both

electrons and ions, the results of the MF method should be reliable

since it does not seem to encounter the difficulties near localized

sources that the Sn techniques used in TIMEX-FP might6.

In order to study the effects of the dispersion in velocity

space which the alpha particles undergo as they scatter on the

plasma, the number of angles NN, used in the calculation was varied.

In Figs. 4 and 5 the spatial deposition profiles are again given for

electrons and ions separately. It is seen that by increasing the

number of directions in which the alpha particle distribution
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Fig. 2. --Fraction of initial alpha particle energy
deposited per zone to electrons
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Fig. 3.--Fraction of initial alpha particle energy
deposited per zone to ions
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function can be defined, for the case of deposition to electrons, the

spatial profile’s peak is decreased while deposition to the outer

zones is increased. In the case of the ions, the peak is also

diminished but shifted to the right with the deposition to the outer

zones again increasing. This behavior is to be expected for the

following reasons. Since the initially isotropic alpha particles are

at higher energies than the background electrons and ions, their

distribution will depart from the isotropic form as they scatter in

an attempt to reach a thermal equilibrium. Although the alpha energy

may diminish after the first few collisions in zones near the center

of the sphere, the energy is more directed in the outward directions

in these zones. They will approach a thermal equilibrium after

enough collisions have occurred along their path, so that their

distribution will again acquire an isotropic character in the outer

zones of the mesh. At this time the particles will have no preferred

direction , so that the amount of backscattering will become the same

flJN.4

- ---- NN.8

. . . . . . NN = 16

........ ..-

01 23 4 5 6 7 8 9 10.11 12

Zone

Fig. 4.--Fractional deposition per zone to electrons
for an increasing number of directions (NN)
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Fig. 5. --Fractional deposition per zone to ions for
for an increasing number of directions (nn)

as the amount of forward scattering, thus resulting in higher

deposition to these outer zones. That this behavior is indeed the

case,

of the

vector

is established by following the distribution of the cosine (B)

alpha particles” velocity vectors with respect to the radial

as a function of time. In Fig. 6 this spectral information

is shown for the center zone at t = O while the curves at other times

are appropriate to the third zone on the mesh. It is seen that the

distribution (normalized to unity on the abscissa) becomes peaked

toward a positive cosine almost instantaneously, showing that the

alpha energy is highly directed toward the outer zones. As time (NT)

progresses, the particles scatter and lose their energy and the

distribution tends toward a Maxwellian at the background temperature.

From this information, it can be concluded that by using too few

angles in this type of calculation, the results may become biased in

showing too much deposition in the first few zones and in ignoring

the backscattering effects in the outer zones.
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Fig. 6. --Angular spectra of the distribution function at
the 3rd position on the zone grid. At the first time
step (NT), the spectra is shown for the first zone

It is interesting to note that the plots in Figure 6 contain

data points which appear jagged. This is due to the use of a large

time step in the algorithm, which gives rise to small fluctuations in

the distribution information, a common occurrence in any finite

difference scheme. Although this phenomenon could be detrimental in

some algorithms, the MF method remained absolutely conservative and

convergent.

In Figure 7 the time dependent energy deposition history is

shown for both deposition on electrons and on ions. As a check on

the accuracy of this method, the curve showing the total energy

fraction deposited to both ions and electrons was calculated using

the appropriate moment of the L.H.S. of the transport equation,

Eq. (3-18). It can be seen that the code remained energy conserving.

It is noted that the total deposition fraction in time tends

towards unity but becomes asymptotic at a value less than unity.

This is, of course, due to the fact that the alpha particle does not
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Fig. 7. --Time history of deposition to both electrons
and ions

lose all of its kinetic energy but only slows down to an energy

defined by the temperature at thermal equilibrium.

The efficiency for the MF method is demonstrated in Figures 8

and 9. The same computations described above for four angles, 13

zones and 18 velocity grid points were performed using 150 time steps

(NT) at a time increment of .01 and then carried out again using 1500

time steps at & = .001. Here the time increment At is scaled to the

slowing-down time of alpha particles due to electrons at 50 keV which

is equal to 8.47 x 10-9 sec. It can be seen that very little

accuracy is lost by using the larger time step. The calculation

using 150 time 6teps required 5 seconds of CPU time on the CRAY I

computer.

The energy deposited to a plasma by an injected beam can be

calculated by introducing a distribution function characterizing the

beam at the outermost zone of the system. In the examples which

follow, the zoning used in the previous examples is retained but a
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distribution (in speed) defined at one ingoing angledelta function

is used to simulate a beam entering at the boundary.

In the first example, a beam of 1 MeV deuTerons impinging on D-T

plasma (at the same temperature and density as before) at the

outermost zone (zone 13) is considered. The delta function is

defined at their velocity corresponding to that energy which is v =

9.823 x 106 mfsec. In Figs. 10 and 11, the deposition profiles are

shown for the case in which the beam consists of an initial burst of

ingoing deuterons. Since the beam velocity is much less than the

electron thermal velocity in this case, the deuterons should tend to

deposit their energy on the background ions in greater proportion.

This is seen to be the case.

In Figures 12 and 13, the deposition profiles are shown for an

initial burst of 500 keV ingoing protons. Since the proton velocity

is the same as above (v = 9.823 x 106 m/see) the same tendency to

deposit more energy to the ions should be observed. In addition
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and

x = Atvx + X.

Y = Atvy + y. (4-7)

z = Atvz + z. .

Eqs. (4-2), (4-6) and (4-7) constitute the governing dynamical

equations which will describe the motion of test particles in between

collision events.

The

O in the

equation

deflects

equation

Collision Probabilities

expected time in which a test particle deflects by an angle

laboratory frame can be calculated from the Fokker-Planck

and in particular, the time in which a test particle

by 90° can be calculated by taking the v$ moment of the FP

and then defining

av~
Td = V2/(—) .

at

This is the well known “deflection time” where .

(4-8)

(4-9)

and where the distribution of test particles at t=O is assumed to

have the form fa(x,v,t=O) = na(~,t=O)6(~ - >) and where the——

background distributions are taken to be Maxwellian. Montgomery and

Tidman3 give ‘d as
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+ (~ + abv2)erf(a~’2v)l} (4-lo)

where Y = noe4Z2/4n~~m2 and no is the background plasma density and

where ab = mb/2kTb. If the derivative in this expression is

performed, one obtains the working form of the deflection time as

(4-11)

The relaxation time for an accumulated deflection and O (e < 900) is

then determined by4

‘c) = Tdt3in20 . (4-12)

The number of

expected amount

NQ = At/~e

times that a test particle is deflected by this

in a given time step is then simply

(4-13)

so that at the end of that time step the particle is forced to change

direction by an amount NQO@. Note that the angle @ can be fixed to

be any value between 0° and 90°. Note also that the value of NQ as
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computed from Eq. (4-13) may not be an integer. Integer values of

the number of deflections to occur in a time step can be obtained

though by a simple Monte Carlo selection which will not bias the

results of Eq. (4-13) over many time steps. AS is shown in Fig. 17

if I represents an integer just below N@ and 1+1 one just above, a

random number & can be used to determine what integer value to use in

the calculation as

ifG<(NO- 1) choose 1+1 .,

(4-14)

C>(Ne- 1) choose I .

Once the integer number of @ deflections has been determined, each

deflection can be performed in a simple velocity space coordinate

Performl deflections

1+1

Perform 1+1 deflections

Fig. 17.--Method for determj.ningthe integer number
of @ deflections to be performed
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system i?’,~’’,;” in which the pre-collision velocity vector xi lies

along the i?’axis (Fig. 18). The transformations from the laboratory

system to the

two steps.

which it l“ies

system. This

double primed coordinate system can be accomplished in

First, the initial velocity is rotated into a frame in

in a plane formed by the ;’~’ vectors of an ;“,~-,i’

transformation is easily shown to be

(4-15)

v~ = vxcosu + v sinu
Y

~ = -Vxsin~ + v cos~
‘Y Y

v; = v=

From this system, the velocity can then be transformed easily into an
A!lx ‘“ system,j?’,z in which it lies along the f“ axis with the

transformation equations

v~ = v~cose + v~sine

= v’
‘; Y

(4-16)
Vll= -v”sin6 + V~COSQ
z z

where e is the angle through which the f’,i’,~’ system would have to

be rotated so as

In order to

velocity vector

random azimuthal

to lie along the <“,~’’,i”system.

perform the @ deflection in the simple system, the

is first rotated @ onto the ~“~” plane. Then a

direction is chosen as $ = 2n( where 6 is a random

number. The final velocity’s components in that frame are then given

by

v“~f = V~iCOS@

V;f = V’~iSinQCOS6

‘;f = V’~iSin@sin~ .

(4-17)
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The transformations back to the laboratory system shown in

Fig. 16 can easily be accomplished by changing the transformation

angles to their negatives so that

and finally

= v~cos~ - v’sinu‘x Y

= v~sinu + v’cosu
‘Y Y

v= = v’z“

. ..

PrQ-cWision

Fig. 18.--The pre and
xi and ~f

(4-19)

(4-18)

Post-collision

post-collision velocities


