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Abstract

We report a generalization of the usual single-particle equations for a linear polarized
wiggler. Particle simulations show the presence of harmonics under conditions of low 4
and high magnetic fields. These harmonics are introduced into the singie particle equations
by separate field components for each harmonic. The overtones are fed by the same phase
space and all their effects on the particle motion are treated simultancously. The coupling
of the magnetic field differs from the usual bessel function f>rin Lecause of the low electron
energy and the high magnetic field. We also include longitudinal space charge fields.
We compare the reduced cquation results with a full 1D particle simulation. Finding good
agreement, we conclude that harmonic generation has a significant impact on the waveform
under these conditions.

1. Introduction

Our theoretical description of a planar FEL( free-electron laser) begins with a 1D3V (one
distance, three velocities) simulation of Maxwell’s equations and the Lorentz force equation,
it ends with a reduced description that may be regarded as a generalization of the usual
singte particle description. This work is still in progress. The boundary conditions used in
the simulation are periodic in the dimension coordinate that plays the rol. of a phase in
the reduced description. This reduced description permits time steps that are an order of
magnitude larger than that used in the simulation, the number of particles was two orders
of magnitude less, and the equations are simpler and more amenable to interpretation.

“he periodic grid assumption of the simulation permits motion of the e-beam to occur.
The grid is fixed in space but inay be thought of as periodically extended ad in finitum to
the right. In time the electrons move at relativistic speeds to the right. The optical pulse
moves faster to the right but also is periodie. On the extended grid, if our eye were fixed on
a single particle, it would follow it continually to the right. Equivalently, we could watch
the motion within a sole period and as the particle moved out of the right boundary we
would see ity equivalent enter the left. We use the economy of this one period description
in particle simulations where the period is chosen to be a multiple of hoth the optical



wavelength and the wiggler wavelength.

The reduced description path is to average the contribution to each harmonic as the
electrons slip back one optical wavelength. The fundamental optical frequency component
is a sinusoidal waveform with phase varying from 0 to 2m. Suppose a source were to
give more energy to the phase at n/2 than to 37/2, then it would distort the waveform
by exciting overtones. To complete the description we consider each harmonic amplitude
separately and sum those contributions at 7/2 and 37 /2, among others, weighted by the
harmonic phasor. In performing the averaging, we obtain a coupling coefficient that differs
from that of Colson|2|, Madey and Taber!3|, and McNeil and Firth|4,5].

2. Mathematical Description
2.1 1D Maxwel]l Equations

First we describe the equations used in our WAVE simulation. They originate from those in
the chapter Fundamentals of Particle Simulation, described by D. Forslund|1};but they
are modified in two respects. First we use charge neutralization, with the average density
< p > subtracted out, and second we use only the time rate of chanye of the transverse
part of the coulomb gauge vector potential A to determine the electric field. The latter
operation makes the re.ults of the code stable to unphysical and unmathematical temporal
drifts in the longitudinal part of A and corresponds to voltage-shnrt boundary conditions
across the grid. The former condition is required mathematically with periodic boundary
conditions and corresponds to achievable physical conditions; eg. at physical beam center.

The quantities we use are in standard notation. The vector €, is a unit vector in the
longitudinai direction. The scalar potential ¢ and the vector potertial A give the electric
and magnetic fields £ and B. The electron has charge of magnitude ¢ and rest mass m
with the ratio of the mass to resi mass designated 4. Here p is the charge density and Ju
is a virtual current that produces the static wiggler field.

Maxwell’s equations are:

A BA = &0 - U,
dfd’ = Oydey,
e -~ p -~ p,
AlL) - A(0),
é(L) - (0),
#(L) = #(0),
A, - 0,

Here L is the periodic boundary condition length, chnsen to be th: wiggler wavelength
Aw  2n/k,. in the simulations. Also



E = ~€,8,¢ - 8,(6, x/‘f)xé',,
fj = 6, (E] X/{\.
These are coupled to the particle equations by;

dim~v - —e(E + lTxI;'),

diry - v,

Jo = pF + Jy,

Jy = €ark? sin(kyr)).

The convention here is using sin in J,, rather than the cos convention we use in the reduced
equations as does ref. |2|.

2.2 Reduced Equations

Derivation of the reduced equations follows ref. |2| with an important modification to the
coupling coefficient, a more complete resonant condition, and a sum over harmonics. The
standard Madey and Taber|3| coupling coefficient that Colson deries without typograph-
ical error is based upon the fourier transform arising from the axial location that varies
as sin(2w.t), or sin(2k,.r,). An incomplete description of a correction to this coupling
coefficient has been submitted as ref. |4,5 based upon the change in the axial component
of the electron velocity rather than that to the total energy. Cur approach is different, it
includes treatment of the exact motion of an electron that has all even harmonics of ky,z,
present, and we fourier transform an elliptical integral function phasor to find the coupling
coefficient, but do not include terms arising from non-exponetial multiplicative variations
via dt/dx,. Our approach considers a 1) description in 4 and phase ; of the particle and
does not lead to the ref. |4,5| corrections. In fact, rather than resulting in an enhancement
of the fundamental, our correction reduces to the Madey-Taber-Colson coefficient at high
4. At low v (and high magnetic field) when our correction is important, it decreases the
coupling of the fundamental rather than giving the ref. |4,5] enhancement. When we write
the expression for 4 in terims of B, we find additional terms that just cancell the ref. |4.5]
1/f terms and thereby give the Madey-Taber-Colson resuli at large ~.

2.2.1 The Coupling Coeflicient

The coupling coeflicient is derived mathematically by expanding the expression

ce  cor(kyry)cos(kaay - wet + @)Pe
d.'r;

using an elliptical integral expression for t(z,), the time an electron reaches location r,
and ¢f is the average velocity in the ), direction. In the calculations reported here we
drop the fe(dt/dx,) in lieu of the expected rapid variation of the phase term. Here we
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take w, = k.c. The time t(z,) can be represented by the sum of a term linear in z, and a
term doubly periodic in x;. The linear term combines with k,, and k, to form the resonant
condition. The periodic term can be expanded in a fourier series in the even harmonics of
k,zx,. These ideas produce the mathematical identity

1 .
re =g ;o(c,, + engr)coslk.(1 - B~ ")z, + (2n + Dkyz) + @),

with the resonant condition obtained when the cos argument is stationary with respect to
z), and where we regard the parameters ax,~ and k,, as constants and stari with

t(z ) B /Il d-'l»') L
L €21 - 4 2) - cfaly 2costky,z,)V/?]

and end with . y
| . .. t
Cn = [. cos: P (0/2) + nbjsc dz, dé,

where for the numerical and analytical work here the fc(dt/dz,) term has been replaced
by unity. Above, the function & is given by

A=k k., BL [’ (5 + Alm) - F(5Im) (1 * ?)]

The quantities # and m are

and

where F is the ellipticel integral of the first kind defined in the Handbook of Mathematical
Functions|6] by (17.2.6). A special case that occurs for small m, evaluated at the harmonic
resonance gives the Madey-Taber-Colson result at high 4

. : 2
»() " (2n + 1)m singg 7% kSIn 20

81 A)(1+ ) 44 203"
0 )
[’",_(.(1_7_"), ey L 1+912‘ ,
14y 242 2

and

en TN T, (2nd )m T [.Zj l)azl )
&(1 #)(1 + 17) +

4



\ physical interpretation of the coupling coefficient identity is that the harmonics in
the t(z) motion produce an effectively higher harmonic wiggler field. That is, if we think
of a prototypical linear wiggler as having a single resonance frequency with 100% coupling
just as a helical wiggler does, we can view the cc identity as saying that an actual linear
wiggler is, on average, a prototypical wiggler having a magnetic field that is a superposition
of fields with wave numnbers that are the cdd harmonics of k,,. The amplitude of the 2n + 1
harmonic of the effective magnetic field is then just the factor ¢, + ¢y, ) multiplied by the
actual fundamental field.

2.2.2 Coupling in the Particle Equations

The reduced equations describe the time dependence of the electromagnetic wave by a
snperposition of the odd harmonics. The WAVE results reported in Section 3 show a
consistent time dependence because a uniform e-hbeam was injected and because tha A,
period for L was chosen. Were one to describe a problem where the local spectral width
was smnall but finite compared to the harmonic separation, he could do so by generalizing
the approach of ref. [2| along the lines reported here. Such a case would model a time
dependent injected current, for instance.

The electric field is taken to be a superposition of harmonics; allowing only resonant
interactions that occur for the I’th wave vector given by

. —~ (2I . .)km
ka - (20 + 1)k, = e

we have

d 00‘ a
8: = L(cl + cH,)elE{; coslk(1 - 8" Nxy + (20 « Vkyz) + @]
-0

2.2.3 The Reduced Equation Set

Using complex notation, £ - e expi¢;, we have the square pulse equations,

d~ (er 4 i) o ax ) ek 5,
e RYT o 204 N - -
i R ) & N expi(2l 4+ 1)¢ ek’

d¢ ko
(1 k),

d€ -~ a exp - 1(20 + 1)¢
2 polatan) < e 2 e > .

] v

Here, we have taken the propagating wave to be planar, and p reprcsents the average
electron density in the wiggler measured in w;‘f/w:f units; R indicates the real part of the
expression. The electrostatic teim follows reference 2. In its implementation, numerical
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noise problems are avoided by subtracting out the initial density vector from the density
vector just before integration of r). The conservation of energy within a computationai
box follows mathematically frem the above equations with ¢ = ¢ and is expressed as

p<y>+ Z |&i]? = constant.
l

That is, the loss of electron energy density is compensated by the gain in energy density
on one or more of the harmonics.

3. Computational Results
3.1 Wave Resutls

The WAVE particle simulations used 10000 particles with 188 cells in z, ranging from 0
to 12x. In this work k./k,, = 6.0, By4 = 3.775 at injection just outside and also just inside
the wiggler, 7, = 47.34 where 7, is the injection time; also we have 3 = 127 /7y; the scaled
density is (w?/w?), = 8.7 107 outside the wiggler and S~ times larger inside. The scaled
vectoi potential magnetic field is ax = 2.82. We used 70000 time steps of At = 0.15. At
the fundamental frequency, the shape factor of ref. (7| is S, = 0.9985, indicating more
than adequate spatial resolution. The first run shown in Fig. 1 had magnetic permeability
of unity; all other runs had u = 0.99893. All runs reported here were started from noise.

Simple charge/current neutralization and propagation in free space did not give ade-
quate representation of the expected results. Fig. 1 shows a plot of the optical field energy
and magnetic field energy averaged over the computational grid. These results show a
drift. in the electric ficld energy at long times that arises from a small non-physical time
dependent A, component, before the second modification was made to Maxwell’s equa-
tions. Also the rapid oscillation at T < 2000 is attributed to a generated diamagnetic field
that slightly altered the presumed equilibrium between the initialized static magnetic field
and the initialized virtual current.

The calculation shown in Fig. 2 shows similar quantities but here the above mentiored
problems do not appear. The electrical energy grcwth rate v = 0.0055 in the code units
differs substantially from 0.0043 of Fig. 1.

The final wave form of the £, component of the electric field is shown in Fig. 3 along
with a harmonic decomposition. The significant components are the 1’st, 3’rd, and 5'th
harmonics of the fundamental frequency. Theoretical considerations suggest that these
components propagate to the right.

The electrons are shown in the 3,4, r; phase space in Fig. 4a and their density in
Fig. 4b. We can clearly see the bunching occurring in both figures. Most of the variation
in the density peak amplitude is attributed to the variation of #;, but the peaks are not
equally separated in time or space.

3.2 Reduced Equation Calculations

The coupling coefficient for the fundamental frequency that is used in the reduced equations
is shown in Fig. 5. it diflers substantially form a variation of 0.755 to 0.745 that occurs by
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approximating ® by a sin2k,,z approximation ,sans resonance assumption, over the same
range, but yet at high 4 the two results agree with e¢ach other.

The magnitude of the total electrical field is shown in Fig. 6a in the same time units as
the WAVE calculation. The harmonics are shown in Fig. 6b. These harmonics are plotted
on a time and magnitude scale that requires the subgplot to be blown up to the full grid size
to read the values. As in the simulaticn, the harmonics are seen to be appreciable. Here
the 100 particles were placed on the grid with equal spacing but then each particle was
displaced a small random amount that reproduced the expected noise on the fundamental
for 10009 completely randomized particles. This gives more noise on the harmonics that
a complete randomization of 10000 particles would give, but may be thought of as being
representative of some realizations of 10000 random particles.

The growth rate for this case was computed by finding the largest growth ront in
solving the cubic equation that arises in the small signal limit of these equations. This
small signal theory was used as a means of checking the reduced equation description, giving
overlaying plots for the cases compared. The growth rate was 0.00553 in good agreement
with 0.0055 from WAVE. This comparison was serendipitous for several reasons: (1) the
harmonic modes contribute an undetermined amount to the growth rate in the WAVE case
(2) the Bdt/dz, term may alter the coupling coefficient; (3) the reduced description may
be slightly more complicated than that shown.
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