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Abstraci

We report a generalization of the usual single-particle cquat.ions for a linear polarized
wiggler. Particle simuliitions show the presence of harmonics under conditions of low q
and high magnetic fields. These harmonics are introduced into the singie particle equations
by separate field components fof each harmonic. The overtones are fed by the same phase
space and all their effects on the particle motion are treated simultaneously. The coupling
of the magnetic field differs from the usual hessel function f’wrn because of the low electron
energy and thr high magnetic field. We also include longitudinal space charge fields.
W~ compare t}Ie rwlucvd rquation results with a full 1D particle simulation. Finding good
agrcernent, wtI conclu(le that harmonic generation ha> a significant impact on the waveform
under these conditions.

1, Introduction

our tht-wrctical description of a planar FE1.( freo+lcctron laser) begins with a 1D3V (one
distance, three vclocitics) simulation of Maxwell’s equations and thr Lorcntz force equation,
it er)ds with a reduced description that may br rcgiirdvd a% a generalization of the usual
singlr particle dcscriptioni This work is still in progrrss. ‘rho boundary conditions uwxi in
the simulation ar~ periodic in t}~t’dimw]sion coordinate that plays the roll of a phase in
ttw r(’ducw.l description. This roducvd dvsrription pvrmits timr stepx that are an order of
magnitudv l~rgor than that uw’d in tho simulation, the number of particles was two orders
of rniign it udv 1(sss,Mnd thr (’quat ions urr sirnplor and more timenahle to interpretation,

‘:’hc periodic grid assull]ption oft IIC*simulation permits motion of the +bearn to occur,
Thr grid is fixed ii] spacv hui Inay ho thought of as periodically extended ad tn~initum to
the right, Iii timr thv rlcct rorls n]ow’ at relativist.ir ~peed~ to the right, The optical pulse
rnovcs fmi[cr to t}w right hut uIs() is periodic, on t,ho cxtcndcd grid, if our eye were fixed on
a Hir]gh’ partiriv, it would follow it continually to the right, Equivalently, we could watch
thv motion within a solo prriod nnd as the particle moved out of the right boundary we
would W*Vit:, tx~uivaloilt tmtcr thv left, We use the economy of thi~ one period description
in particlr simulntionu wlwre the period is chosen to ho a multiple of both the optical
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wavelength and tl~e wiggler wavelength.
The reduced description path is to average the contribution to each harmonic as the

electrons slip back one optical wavelength. The !undarnental optical frequency component
is a sinusoidal waveform with phase varying from !I to 27r. Suppose a source were to
give more energy to the phaw at. 7r/2 than to 3n/2, then it would distort the waveform
by exciting overtones. To complete the description we consider each harmonic amplitude
separately and sum those contributions at 7r/2 and 37r/2, among others, weighted by the
harmonic phasor. In performing the averaging, we obtain a coupling coefficient that differs
from that of Colson[2], Madey and Taber~3], and McNeil and Firth14,5].

2. Mathematical Description

2.1 Ill Maxwell Equations

First we describe the equations used in our WAVE simulation. They originate from those in
the chapter Fundamen.t al.s (JJ Particle Simufat ton, described by I). Forslund[l ];but they
are modified i, I two respects. First we use charge neutralization, with the average density
<. p ‘.x subtracted out, and second WQusc only the time rate of change of the transverse
part of the coulomb gauge vector potential A to determine the electric field. The latter
operation makes the rc.,ults of the code stable to unphysical and unmathematical temporal
drifts in the longitudinal part of A“and corresponds to voltage-short boundar) conditions
across t.ht’ grid. The former condition is required mathematically with periodic boundary
conditions and corresponds to achievable physical conditions; eg. at physical beam center.

“rhe quantities we usc are in standard notation. The vector Z1 is a unit vector in the
longitudinal direction: The s~alar potential @and the vector potcr,tial ~ give the electric
and magnetic fields E and B, The electron h~~ charge of magnitude e and rest mass m
with ~he ratio of the mass to resi mass designated q, here p is the charge density and J-w
is a virtual current that produces thr static wiggler field.

Maxwell’s equdtions are:

(?;A”-d~A”=-Fldl(j - J:,

d~tj:: d, J,,,

;):4 “’ p - p,

/i(L) A-(()),

4(L) - 4(()),

($(L)= #(()),

t?l Al = O,

L iMthe periodic boundary condition length, chwwn to be th: wig~ler wavelength
2m/k,,, in the simulations, Also
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i= –z~i31f#- f3*(i,xA)x&

E = al(;]xi).

These are coupled to the particle equations by;

df rn’yt.i - –e(l?+ tixg),

The convention here is using sin in J: rather than the cots convention we use in the reduced
equations as does ref. [2].

2.2 Reduced Equations

Derivation of t]ie reduced equations follows ref. [2] with an important modification to the
coupling coefficient, a more complete resonant condition, and a sum over harmonics. The
standard Madey and Taber[3] coupling coefficient that Co]son deri’”es without t~pograph-
ical error is based upon the fourier transform arising from the axial location that ‘~aries
as sin(2w, ~t), or sin(2kt,,ir1 ). An incomplete description of a correction to this coupling
coefficient has been submitted as ref. 14,5] based upon the change in the axial component
of the electron velocity rat}wr than that to the total energy. Cur approach is different, it
includes treatment of the exact motion of an electron that has all even harmonics of kwzl
present, and we fourim transform an elliptical integral function phasor to find the coupling
coefficient, but do not includv terms arising from non-exponetia] multiplicative variations
via dt/dz1. our approach considers a 1D description in q and phase ; of the particle and
does not lead to the ref. [4,5] corrections. In fact, rather than resulting in an enhancement
of the fundamental, our corrcrtion reducm to the Madey-Taber-Colson coefficient at high
q. At low q (and high magnetic field) when our correction is important, it decreases the

coupling of the fundamonta] rather than giving the ref. 14,5] enhancement, When we write

the expression for + in terms of P1 wr find additional terms that just cancel] the ref. [4,5]
I// terms and thereby giv~’ the Madt’y-’~at)or-{;olso~l resul~ at large -y,

T}w coupling cocflicicnt is drrivtd rrltit}~t’lliatically by expanding the expression

using an elliptical intvgrai cxprwmion for t(~l ), the tirrw an electron reaches !ocation x 1,
and c@ is thr avera~c w+xity in the xl direction. in the calculations r~ported here wc
drop the @c(dt/dxl ) in lieu of tlw expected r~pid variation of the pharw term, Hew we



take w. = k,c. The time t (Z1) can be represented by the sum of a term linear in Z] and a
term doubly periodic in z 1. The linear term combines with kW and ks to form the resonant
condition. The periodic term can be expanded in a fourier series in the even harmonics of
k.,zl . These ideas produce the mathematical identity

1
OC

cc=–
2 2( Cn -t Cn+I)COSlk&(] -- ~-’)z) + (2n -$ l)kwzl + @l,

-m

with the resonant condition obtained when the cos argument is stationary with respect to
Xl, and where we regard the parameters U&,~ and kU, as constants and start with

and end with

where for the numerical and analytical work here the ~c(cft /dzl ) term has been replaced
by unity. Above, the function @ is given by

The quantities /3 and m are

fi ._ g!.: ~; V
2F(:\m) ‘

arid
a;~t .

~2 -]’

where F is the cllipticr,l integral of the first kind defined in the }fandbook o/ Mathematical
Funciions16] by ( 17,2.6). A special case that occurs for small m, evaluated at the harmonic
resonance gives the Madcy-Tabcw-(hkm result at high -y

()J’j “’.-.O;’(1i .:.n;)4 -!--’-y 1- _!_. ] +!5
4

272 2’

and

(2n + l)a~—-— .. . . ..
4 + 2a~
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.i physical interpretation of the coupling coefficient identity is that the harmonics in
the t(z) motion produce an effectively higher harmonic wiggler field. That is, if we think
of a prototypical linear wiggler as having a single resonan~e frequency with 109% coupling
just as a helical wiggler does, wc can view the cc identity as saying that an actual linear
wiggler is, on average. a prototypical wiggler having a magnetic field that is a superposition
of fields with wave numbers that are the odd harmonics of kW. The amplitude of the 2n t 1
hnrmonic of the effective magnetic field is then just the factor c. + Cn+ * multiplied by the
actual fundamental field.

2.2.2 Coupling in the Particle Equations

The reduced equations describe the time dependence of the electromagnetic wave by a
sllperposition of the odd harmonics. The WAVE results reported in Section 3 show a
consistent time dependence because a uniform e-beam was injected and because the AW
period for L was chosen. Were one to describe a problem where the local spectral width
was small but finite compar~d to the harmonic separation, he could do so by generalizing
the approach of ref. 12] along the lines reported here. Such a case would model a time
dependent injected current, for instance.

The electric field is taken to be a superposition of harmonics; allowing oI~ly resonant
interactions that occur for the f’th wave vector given by

(21 , “)k,,,
ksl - (2/ + l)k.q= ------- ,

f)-1..]

we have

2.2.3

[Ising

Here,

The Reduced Equation Set

complex notation, /’1 - el exp ir$l, we have the square pulse equations,

dy (&i “t ~1+1) ~,~k eEIPl

& ‘“ 2
-- cxpi(2f + l)G?J- ------,
-Y m(bc2k8

we have taken the propagating wave to bc planar, and p reprcstmts the average
electron density in th~ wiggler measured in w~/u~ units; 8? indicates the real part of the
exprwwion, The electrostatic te~r~l follows refermce z. In it~ implemel~tation, numerical
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noise problems are avoided by subtracting out the initial density
vector just before integration of h’]. The conservation of energy
box follows mathematically from the above equations with ~ = 4

vector from the density
within a computational
and is expressed as

That is, the loss of electron energy density is compensated by the gain in energy density
on one or more of the harmonics.

3. Computational Results

3.1 Wave Resutls

The WAVE particle simulations used 10000 particles with 188 cells in Z1 ranging from O
to 1&r. In this work k~/kw = 6.0, fll~ = 3.775 at injection just outside and also just inside
the wiggler, rl = 47.34 where ~1 is t}~e injection time; also we have ~ = 12n/T1; the scaled
density is (w~/u~)O = 8.710”’6 outside the wiggler and /?-1 times larger inside. The scaled
vector potential magnetic field is ak = 2.82. We used 70000 time steps of At = 0.15. At
the fundamental frequency, the shape factor of ref. [7] is S1 = 0.9985, indicating more
than adequate spatial resolution. The first run shown in Fig. 1 had magnetic permeability
of unity; all other runs had p = 0,99893. All runs reported here were started from noise.

Simple charge/current neutralization and propagation in free space did not give ade-
quate representation of the expected results. Fig. 1 shows a plot of the optical field energy
and magnetic field energy averaged over the computational grid. These results show a
drift in the electric field energy at long times that arises from a small non-physical time
dependent A 1 component, before the second modification was made to Maxwell’s equa-
tions. Also the rapid oscillation at 7’<2000 is attributed to a generated diamagnetic field
that slightly altered the presumed equilibrium between the initialized static magnetic field
and the initialized virtual current.

The calculation shown in Fig. 2 shows similar quantities but here the above mentioned
problems do not appear. The electrical energy grcwth rate q = 0.0055 in the code units
differs substantially from 0.0043 of Fig. 1.

The final wave form of the Zz component of the electric field is shown in Fig. 3 along
with a harmonic decomposition, The significant components are the 1‘st, 3’rd, and 5’th
harmonics of the fundamental frequency, Theoretical considerations suggest that these
components propagate to the right.

The electrons are shown in the ~1 q, xl phase space in Fig. 4a and their density in
Fig. 4b. We can clearly see the bunching occurring in both figures. Most of the variation
in the density peak amplitude is attributed to the variation of /11, but the peaks are not
equally separated in time or space.

3,2 Reduced Equatkm (Maculations

T},e coupling coefficient for the fundamental frequency that is used in the reduced equations
i~ shown in Fig, 5, it differs substantially form a variation of 0.755 to 0.745 that occurs by
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approximating @ by a sin2kW z approximation ,sans resonance assumption, over the same
range, but yet at high ~ the two results agree with each other.

The magnitude of the total electrical field is shown in Fig. 6a in the same time units as
the WAVE calculation. The harmonics are shown in Fig. 6b. These harmonics are plotted
on a time and magnitude scale that requires the subplot to be blown up to the full grid size
to read the values. As in the simulation, the harnlonics are seen to be appreciable. Here
the 100 particles were placed on the grid with equal spacing but, then each particle was
displaced a small random amount that reproduced the expected noise on the fundamental
for 10009 completely randomized particles. This gives more noise on the harmonics that
a complete randomization of 10000 particles would give, but may be thought of as being
representative of some realizations of 10000 random particles.

The growth rate for this case was computed by finding the largest growth root in
solving the cubic equation that arises in the small signal limit of these equations. This
small signal theory was used as a means of checking the reduced equation description, giving
overlaying plots for the cases compared. The growth rate was 0.00553 in good agreement
with 0.0055 from WAVE. This comparison was serendipitous for severai reasons: (1) the
harmonic modes contribute an undetermined amount to the growth rate in the WAVE case
(2) the /?dt/dzl term may alter the coupling coefficient; (3) the reduced description may
be slightly more complicated than that shown.
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