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Lie group symmetries of partial differential equations (PDE’s) allow the construction of particular solutions
for those equations. Each symmetry group allows the reduction of the dimensionality of the equations until
they reach ordinary differential equations. If no symmetry groups exist then the method has, in the past,
been abandoned for those equations. Here we demonstrate a new procedure for which PDE’s allowing no
symmetry groups can indeed be solved using symmetries. The method entails ezpamfing the dimensionality
using a simple group to a higher dimensional PDE which then allows multiple group reductions to obtain
particular solutions. These solutions are then transformed back into the original variables and become
group-invariant solutions of the original PDE which exhibited no group symmetries.

I. Introduction

The existence of symmetries of differential equations under Lie groups of transformations often allows
those equations to be reduced to simpler equations. Specifically, a one parameter group can reduce (i) an nth
order ordinary differential equation (ODE) to an (n-l)st order ODE, (ii) a first order ODE to quadrature,
(ii) an nth order partial differential equation (PDE) with m independent variables to an nth order PDE with
m – 1 independent variables. Invariance therefore allows a reduction in order for ODE’s and a reduction in
the number of independent variables for PDE’s.

In the case of the existence of more than one invariance group, a recalled multi-parameter group, several
reductions can generally be made. These reductions are sequential, and the order in which they occur is
important. The concepts of normal subgroups and ideals are critical to choosing the proper order in which
to reduce.

The are presently several type of symmetries for differential equations in use. The simplest are the
classical Lie point symmetries. After this are contact symmetries, where the coordinate functions contain
first order derivatives. Generalized symmetries or Lie-Backlund symmetries occur when the coordinate
functions contain finite but higher order derivatives. Potential symmetries are symmetries for a system of
expanded equations involving the introduction of functions as new potential variables. Partial invariance
occurs when only a submanifold of the solution space is invariant under the transformation. Discussions and
examples of these can be found in the texts listed in Reference 1. In this paper we consider only the simplest
of these symmetries, Lie point symmetries.

One of the major accomplishments of Sophus Lie was to identify that the properties of the global
transformations of the group are completely and uniquely determined by the infinitesimal transformations
around the identity transformation. This allows the nonlinear relations for the identification of invariance
groups to be replaced by linear relations, greatly improving the accessibility of applications. Therefore,
instead of dealing with global transformation equations, we use differential operators whose exponentiation
generates the action of the group. These operators are called the group generators.

The collection of th= differential operators forms the basis for the Lie algebra. There is a one-to-one
correspondence between the Lie groups and the associated Lie algebras. For an r-parameter group there are r
differential operators ?)i, i = 1,..., r, that generate the group action through exponentiation. The Lie bracket
is the commutator of two operators, and the algebra is cl-d under this commutator: [vi t Uj] = C$” Vk, (sum

over k) for all i,j = 1, ....r.
Consider an r-parameter group G with generatora vi and associated Lie algebra Cl. If a subset of the

operators vi is closed under commutation, i.e.,[vi,Uj] = C’&w for all i j = 1, ...!St s < r with C& = O for
k > s, then these operators span an s-dimensional subalgebra N of ~, and they generate a corresponding
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a-parameter subgroup H of G. Giverr a subalgebra ‘H of ~, if the commutator of any element of H with any
element outside of X goes back into 7f, then ?i ia an ideal of G, and the subgroup H is a normal subgroup of
G. For any subgroup H of G we can identify the collection of all operators ui whose commutation with any
element in H goes back into 7f. This collection, which must contain all of H, generatea the normalizer of H.
That is, the normalizer NorG(H) of a subgroup H in G is generated by the algebra JAG(H) = {Vj : [vi, Oj] C
7iVVi E’H, UjE G}.

The theorem pertaining to sequential reductions can now be stated:

m!2QE?Q Consider a system of differential equations E invariant under a multiparameter group G with
subgroup H. The system E/H obtained by reducing E with the subgroup H will be invariant under the
quotient group Q =NorG(H)/H.

The quotient group can be formed by simply removing one of the elements of H from NorG(H). A simple
proof of this theorem can be found in 0vsiannikov[1982]. This theorem forms the baais for the choice of
order for multiple reductions.

An r-parameter group for which a chain of normal subgroups can be constructed where each normal
subgroup is one dimension lower is called solvable. A consequence of the above theorem is that if an r-
parameter group is solvable, then r reductions can take place. Note that all tw-parameter groups are
solvable.

Given a system of differential equations invariant under an r-parameter group for which we wish to
perform multiple reductions, the first reduction should use a subgroup with a nonzero quotient group Q,
so further reductions are allowed. If we incorrectly choose a subgroup whose particular Q is empty, then
generally no further reductions are possible and we are “stuck.” Examples of the use of multiple reductions
on PDE’s can be found in Reference 2.

For two-parameter Abelian groups, where [VI,VZ]= O, both VI and V2 represent normal subgroups, so
one can reduce twice without regard to order. For a non-Abelian two-parameter group, which can always be
written [VI, VZ]= V2 by suitable choice of basis, it is necessary to use first the normal subgroup (VZ) in order
for the second reduction to be allowed. If the nonnormal subgroup (VI) is used first, the reduced system
generally loses the V2 symmetry.

This brings up the following possibility: Suppose we are given a differential equation which hss no
symmetry groups. It is possible that this equation is one of these “stuck” equations, and can be solved
by first recovering the higher dimensional equation, and then following the “correct” reduction path. This
process is illustrated in Figure 1 for the example of a tw~parameter non-Abelian group.

For ODE’s, the expansion up one level incressea the order of the system, but it remains ODE’S. This
procedure for ODE’s wss suggested by 01ver[1986] and pursued in References 3 and 4. A collection of ODE’s
possessing these hidden symmetries was systematically developed for the czwe of the 8-parameter projective
group in a plane. The parallel process for a single, specific PDE is demonstrated here. It is intereating to
note that any ODE could be considered to be the “stuck” reduction of a PDE, so the process described here
could also be attempted for ODE’S.

II. Example

--- Consider the second order qussilinear PDE
..

—r— ., . . . .
~g ;

(1+ Z2)F== + 4: (F=y + :Fyy) + (22+ :)F= + JJ(cw + 4)~$1 =0. (1)===== 1 -=
‘isP:
3.= k.-:-
m~—m ~
5— This equation has two point symmetry invariance groups, whose generatora are v = 8F and u = FdF, which—.

$- N \ represent translational and scaling invariance for the dependent variable. These symmetries are allowed
~~~ ; since (1) contains F only in derivatives and is linear in those derivatives. Neither of these symmetries can be
~S co \ wed to reduce the number of independent variables for this PDE since neither transforms the independent
~~ % =variablea. Thus, from a point symmetry perspective, we are “stuck.”
%====$
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s. . .- ,.. .. .

.,
-1



Following Figure 1, we consider this PDE as the result of a reduction by the “wrong” symmetry group
of a higher dimensional PDE, and we look to reconstruct this former PDE and proceed with the proper
reduction order. We arbitrarily choose a simple scaling group to enlarge the dimensionality of (1), and look
for non-Abelian symmetry groups of the enlarged equation. If (1) is a result of the use of a scaling group
from a higher dimension, this group generator can be written VI = Z8Z + aw8W + bt~t, where z, w, and t are

the independent variables in the higher dimension and a and b are free parameters. Since (1) is the reduced
equation using this generator, the variablea z, g and F are the group invariants of this generator and are
the integration constants of the characteristic equations of the invariance condition VI~ = O:

dz dw dt dG—=—= —=—.
z aw bt O

The solutions of these equations are

Za z’
z =— — ~ and G = F(z, IJ).

w
>v—

To construct the expanded PDE in these new variables from (l), we need to replace the derivatives
with respect to z and v with derivatives of G with respect to z, w and t.Simple calculations give

aza - 1

G.
bzb-l

= F=z. i- Fyyz = Fs ~ + FV7,

G=, =
a(a – 1)2”-2 b(b – l)zb-2 F

= F=+ t
w Y

a2z2a-2 abza+b-2 b2z2b-2

+F.z W2 + 2Fsy Wt + Fyy~,

G. = -$Fz,

G Ww = ~Fz + ~Fz.,

Gt = –;FY.

We first replace Fyy in (1) using relation (4). It is then noticed that the term multiplying
set to zero through the choice b = 2a. The term F== is replaced using (6), F= replaced using (3),
Fy with (7). This leaves

GWW+
1

z’2a-2a2Gzz + z2a~la2Gz - ~G’ = 0“

We see for the choice a = 1 that this equation becomes

Gww + Gzz + :Gz = aG: ,

(2)

of F

(3)

(4)

(5)

(6)

(7)

F.y can be
and finally,

(8)

which is the 2-D linear heat conduction equation in cylindrical coordinates. Therefore, Equation (1) is the
result of reducing (8) with the symmetry VI = z8= + w8W+ 2@.

Equation (8) possesses many known symmetries besides VI, including

V2 =
[ 1-~dw+W@G and V3= wt& + zi8. + t2& – G ;(w2 + Z2) + it 8G.

We see that [VI, VZ]= V2 and [vl, U3]= 2V3, so both V2 and V3satisfy the criterion we seek.
Following Figure 1, we use V2 first and then VI to reduce (8) to a second order ODE. The invariants of

uz are
al=z, a2, =t, and as= Geaw2/(4t)

●
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For the double reduction, we write the second generator in te~~of the invariant of the first:~.. ..

w = fl& + fz~a, + f3als.

The functions fi are found through fi = vlai, which yield tl = al, t2 = 2a2, and f3= O. The invariants of
both VI and V2 are then the solutions of the characteristic equations

which are

dal da2 da3

—=%=77al

a? Z2
8 =_= _ and H(s) = Geaw’/14~J.

az t

Calculating the derivatives of G with respect to z, w and t in terms of the new variables H and s and
substituting into (8), the equation is reduced to the ODE

4sH” + H’(4 + cY8) –;H=O,

which has the general solution
~(8) = CIHI + c2~2,

Hl=e
()

-3a8f4~1,2 _E

4

H2 = e-2””U [1:,1,: ,

where L is the Laguerre polynomial and U is the Kummer Hypergeometric function. These two solutions
are then written in terms of the original variables F, z and y and become

and

FI(z, y) = e
()

-W/(@L1,2 _y

F2(z, y) = e-ayf=2+1)t(4z2)U [1;,l, y .

These solutions are then two particular solutions of the partial differential equation (l).

III. Discussion

This specific example shows the construction of particular solutions to a PDE that possesses no nontrivial
point symmetries through a new technique of symmetry reduction. It involves expanding the equation to a
potentially more complicated one whose solutions may be found. The symmetry reductions of this expanded
equation must include the one used to obtain it from the original PDE, otherwise the solutions will not carry
over to the original system.

A parallel technique using expansion of order for ODE’s has been developed in a systematic fashion in
Reference 4. We note that similar systematic development can be pursued with PDE’s, although the number
of possible groups is now much larger (even limiting oneself to projective groups).
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PDE, 3 independent variables, [VI, VJ = V2

/

V2 .

PD~ 2 ind. VZU’S

IVI

ODE
“correct”

PDEj 2 ind. VX’S

stuck!

(start here)

“incorrect”

Figure 1.

Correct and incorrect reduction paths using a 2-parameter non-Abelian group.

.— . .—. —— -—— ---- . . . . . . .



.— -—.

—


