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FOREWORD

The work on material instability, turbulence, and mixing carried
out at Arzamas- 16, in the former Soviet Union, has been largely
unavailable in the English language. Occasional publications in the
open literature have provided intriguing fragments of information,
indicating that the program of investigation has been extensive and
very impressive, combining strongly interactive activities that are
experimental, theoretical, and computational. With recent changes in
international relationships, the interactions among scientists and
engineers of many countries have now become much more open.
This report is a superb manifestation of the changes.

Preparation of the report was funded by a subcontract from the
Los Alamos National Laborato~. A group of distinguished
scientists from Arzamas- 16 visited Los Alamos to discuss the
content; Los Alamos scientists have likewise traveled to Russia for
this purpose. The final report is a scientific triumph with much
international significance.

Francis H. Harlow
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ABSTRACT

This report describes an extensive program of investigations
conducted at Arzamas-16 in Russia over the past several decades.
The focus of the work is on material interface instability and the
mixing of two materials. Part I of the report discusses analytical and
computational studies of hydrodynamic instabilities and turbulent
mixing. The EGAK codes are described and results are illustrated
for several types of unstable flow. Semiempirical turbulence
transport equations are derived for the mixing of two materials, and
their capabilities are illustrated for several examples. Part II
discusses the experimental studies that have been performed to
investigate instabilities and turbulent mixing. Shock-tube and jelly
techniques are described in considerable detail. Results are
presented for many circumstances and configurations.

Francis H. Harlow
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INTRODUCTION

The report presents the basic results of some calculations, theoretical and
experimental efforts in the study of Rayleigh-Taylor, Kelvin-Helmholtz, Richtmyer-
Meshkov instabilities and the turbulent mixing which is caused by their evolution.

Since the late forties the VNIIEF has been conducting these investigations.
This report is based on the data which were published in different times in Russian
and foreign journals.

The first part of the report deals with calculations and theoretical techniques
for the description of hydrodynamic instabilities applied currently, as well as with the
results of several individual problems and their comparison with the experiment.

These methods can be divided into two types: direct numerical simulation
methods and phenomenological methods. The first type includes the regular 2D and
3D gasdynamical techniques as well as the techniques based on small perturbation
approximation and on incompressible liquid approximation. The second type
comprises the techniques based on various phenomenological turbulence models.

The second part of the report describes the experimental methods and cites
the experimental results of Rayleigh-Taylor and Richtmyer-Meskov instability studies
as well as of turbulent mixing.

The applied methods were based on thin-film gaseous models, on jelly models
and liquid layer models. The research was done for plane and cylindrical geometries.
As drivers, the shock tubes of different designs were used as well as gaseous
explosive mixtures, compressed air and electric wire explosions.

The experimental results were applied in calculational-theoretical technique
calibrations.

The authors did not aim at covering all VNIIEF research done in this field of
science. To a great extent the choice of the material depended on the personal
contribution of the author in these studies.

The authors express deep gratitude to F. Harlow for the useful discussions of a
wide spectrum of problems in hydrodynamic instabilities and turbulent mixing and
for American-Russian workshop on these issues arranged in Los Alamos.



1. HYDRODYNAMIC INSTABILITY

1.1. NUMERICAL METHODS FOR
HYDRODYNMWIC INSTABILITIES INVESTIGATION

1.1.1.SMALL PERTURBATION METHOD IN GAS DYNAMICS.

The studies of turbulent mixing processes must be preceded by the stability
analysis of the gas-dynamic flow of interest which is to define the space regions
where the flow is unstable and to estimate the growth rate of small perturbations.
This can be done analytically only for some applications demonstrating a highly
simplified formulation. Generally when unperturbed flow depends on coordinates and
time in complicated manner, strict analytical study of its stability is impossible.
Therefore it is interesting to develop numerical methods for stability studies.

References [2,3,4] present the numerical method called “MV” allowing
simultaneous computations of 1-D gas-dynamic flows including those with contact
and shock discontinuities as well as the growth rate of small 3-D perturbations of
this flow in the linear approximation.

The main principles serving the base for “MV” method are presented below.
Numerical studies of gas-dynamic flows in terms of stability relative to small

perturbations use the small parameter method and Lagrangian approach to the flow
description. The solution is assumed to exist for basic hydrodynamic problem
(without perturbations) in the class of discontinuous functions.

Denote by II the vector function of initial-boundary conditions and R- the
generalized vector of the problem solution. Attaching II conditions to the system of
gas-dynamic differential equations ensures the unique solution of this system that is
uniquely defines R (particle trajectories and hydrodynamic quantities)

F(ti,t) = ~(1’T), {fi(i, P,T)) = f(~ t) ,

where & = (al, az, as )- are Lagrangian coordinates fixing the initial position of the
particle in space for basic solution, F- is the vector radius of the particle p, T- are
independent thermodynamic variables, fi - are dependent thermodynamic variables,
i=l,2... .

Small perturbations are applied to initial-boundary conditions of the basic
problem.. II is represented as follows.

n(ii, t,a) = I-I;::,, +0 rI&), o s u s 1, (1)

where l_l’O’- is the specified vector function of the basic problem, ~“) - is the applied
perturbation of initial-boundary conditions.

The method applicability condition is to meet the smallness requirement for
the perturbation norm IX(’)<< II(o) .

The family of trajectories for each particle ~(~)for fixed time forms the curve

of variations relating two particle positions depending on II (II = I_I’O’or

I-1= II[o’ - H’”) as a changes from O to 1. Thus for each point of the basic trajectory

@’O’) = ( )f t two directions are specified and hence two differencing operators for

these directions
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thesolution vector R(ct,t) as Taylor series with varying H

f(zu l-r) = f“(zt)l~o) + ~,kf(czt)g,
k=l

.
(3)

i

dkR
where 6kR =

d# -o”

Theequationsfor8kR aregenerated bysequentially applying the operator(2)
to the vector form of gas-dynamic equations. In general case, for example, in the
presence of contact boundaries and shock discontinuities when the problem has a
multiregion solution structure, the region boundaries and boundary conditions are
also differentiated over c..

Using the small parameter method implies the time and space evolution
requirement for the family R(H). The smooth region splitting of the solution should
be retained. The boundary shapes and boundary conditions must be differentiable
within the smoothness order in adjacent regions.

All equations for the perturbation of any order over k are linear relative to

6kR The r h.s. of these equations depends on lower order variations and is not linear
relative to these variations.

This approach can be used to study the stability of any flows that are
described by hydrodynamic model including various physical processes. The flow
under study and applied perturbations may be of any dimension.

One of the methods for perturbation equations is represented by through-out
computations using artificial computational viscosity leading to spatial smearing of
the unperturbed solution and perturbation features.

NUMERICAL MV METHOD

The numerical MV method [2,3,4] is a technique for through-out computations
of the first variation (k= 1) for the perturbation of 1-D symmetric flows. The system
of equations for variation is uniform. The variation coefficients depend on the
solution of 1-D basic problem. Therefore the variables are separated when the
computational algorithm is developed,

(4)
n =1

where cq - is Lagrangian coordinate of basic RO(~, t,llO), ll~o) = ~(o) (ctl, t). In MV

method, the basic solution may have plane, cylindrical or spherical symmetry. The

functions CDn(Ct,,CX,)form the specified basis for the perturbation expansion over the
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variables a2, a3, with its form depending on the basic problem symmetry type. For
example,. @n(czz,a~) are harmonic functions in the case of plane symmetry.

The equations for basic solution R ‘(al, t) and for harmonic amplitudes

5R ~ (al, t) are integrated together using the difference scheme called
“pseudoviscosity cross” [1]. The heat transfer is accounted by the implicit first order
accurate difference scheme.

The difference grid is generated from the basic problem conditions and spatial

size smallness requirement for the cell Ar as compared to the perturbation
wavelength. The timestep is chosen from Courant condition: At= KAr/c where c - is
the sound speed, K=O.5- is the redundancy coefficient. Pseudoviscosity required for
3R ~ evaluation is obtained by differentiating Rychtmyer type viscosity for 3-D flows

over cr. This viscosity is important not only in R 0 discontinuity zones where it

smears the delta function of 6R ~ solution but also where the derivations of R 0 are
not smooth that is where it smears 6 R ~ discontinuities.

For external boundaries, the time variation law is specified for R 0 and 8R ~
functions. Their values are determined from the expansion of 2-D or 3-D boundary
conditions and initial geometry into series (4).

The systems of differential equations, their difference analogs and appropriate
codes are reported in [2,3,4].

The MV method is adapted to the stability investigations for shock waves and
interfaces of two media [5].

The studies of gas-dynamic flow within the linear approximation allow to find
when and where the flow instability occurs and to define the evolution law at earlier
times.

TEST COMPUTATION EXAMPLE FOR MV CODE

Consider the shock wave motion through the plane interface of two media.
Let one of the medium (x>O) be a perfect gas with adiabatic index 7=5/3 and

described by the equation of state P=(y-l)pE, where P- is pressure, p- is density, E-
is specific energy. The initial gas pressure is zero and the density p= 1. The second
medium (x<O) is a weightless gas with a constant pressure PO=lOO (~-= O, the
sound speed fio = 00). A strong shock wave moves along x>O under the pressure
impact. This wave is plane when no perturbation exists.

Introduce the perturbation of the interface

~(y) = A, exp(iky),

where y- is the transversal coordinate, A. - is the initial perturbation amplitude, k-
is wave number. For the linear case, all quantities will depend on in a similar way.
Denote the shock front perturbation amplitude ~ -and the interface perturbation
amplitude by q. For t=O ~=q=&

The evolution of small perturbation in the flow of interest is computed
analytically with the method reported in [6], [7]. According to this solution, the
expressions for shock front surface and surface perturbation amplitude, respectively,

have the lorm
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~r) = +(3 JO(T)+ 2J2(~))

[ [

co

~x) = ~ -0.1 +1.1 J()(x) +0.2 J2(x) - 0.9x J~(x) -2 ~ ( ))]‘2m+l x !
m.0

where . -‘f–—; x=kct; h=w Jm (x) - is Bessel function; Arf - is the travel~–1’

path of the shock front by the time t; c - sound speed behind the shock front in the
unperturbed solution.

1

0.8

0.6

0.4

0.2

0

-0.2
0 0.04 0.08 0.12 0.16 0.2

Fig 1. Plane shock front and interface perturbation amplitude
versus travel paths of the shock front and interface, respectively..

1- numerical MV data;
2- analytical data.

This problem was computed with MV code [3] for k= 100. The cell size is 2.10
3. Figure 1 shows numerical and analytical results normed to the initial value of
interface perturbation amplitude. The figure demonstrates a good agreement between
numerical and analytical data. The shock front amplitude, & depends on the front
travel path, R=Arf, in a sign-variable manner and the modulus decreases with time.
The interface amplitude q increases monotonically with the interface travel path
R=Arb.

1.1.2. USING THE BOUNDARY INTEGRAL EQUATIONS METHOD FOR
NONSTATIONARY INCOMPRESSIBLE FLUID DYNAMICS

For some hydrodynamic applications, the moving medium may be thought of
as an incompressible inviscid fluid. Using this assumption allows to apply the
potential theory data and to develop an efficient computational method for time-
dependent potential flows with strongly distorted boundaries. The numerical method
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[8] described below is one of the implementations of the technique called Boundary
Integral Equations Method (BIEM).

The sense of the method as applied to hydrodynamics is the following. The
parameters of vortex-free incompressible fluid flow are found from Laplace equation
for the velocity potential with time-dependent boundary conditions on the moving
boundary.

The velocity potential is represented as the integral of the source function
specified on the fluid interface.

By solving the integral equation, we determine the source function from the
boundary value of the velocity potential. There values are used to compute the
normal component of the surface velocity. Cauchy-Lagrange integral is used to
determine how the boundary potential depends on time. The boundary displacement
is found given the cinematic relations.

This approach permits to convert the volume boundary motion problem to’s
surface one which reduces the number of spatial variables and the computation time.

Two code versions were implemented. The first is intended for axisymmetric
problems and the second for periodic flows near the interface of two variable density
fluids.

The first method - [8], is close to the methods reported in [9,10], however the
version from [9] has a low accuracy and is not suitable for flows with strongly
sheared boundaries. That from [10] demonstrates a high approximation accuracy but
does not allow to compute the motion of fluids containing varying volume cavities

Consider the main relations serving the base for the boundary integral
equations method.

The incompressible fluid hydrodynamics equations have the form:

divii=O

aii
—+<v~.
dt

–%+F
P

For potential external forces ~ (~ = VU ),
rot ii = O, if the flow was initially vortex-free. In
expressed via the potential gradient

ii=vql

(5)

(6)

Thompson theorem indicates that
this case the fluid velocity can be

(7)

and equation (1. 1) converts to Laplace equation for the velocity potential

A(p=O (8)

Equation (6) can be written as Cauchy-Lagrange relation:

(9)

Consider the method implementation for axisymmetric problems where the
fluid-filled region extends to infinity and contains a single-bound cavity whose volume
may change with time.

The expression for ~ can be represented as a simple layer potential:

(lo)
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where F,FO - are vector radii of surface and fluid volume points, respectively; q(i) -
is the integrable source function defined on S surface.

We use the system of cylindrical r, zcoordinates. Thecontour Lof generatrix
of this surface will be specified parametrically; that is L(’r):{r(r), z(%)]. In this case

the expression (10) converts to the form:

4-0+0)=J’clb)‘K(k)D(r)~T,

I-l JGj%=F

where ‘=L7iG’

(11)

K(k) - is the full elliptic first kind integral.
a(p aq

For the velocity components of fluid points u ~ = —
a rO

and u= =—
a Z.

we have:

%(wo)=j~l_k;;;;);k);(:d’)2T,2> -- (13)

ro+zz,

where E(k) - is the full elliptic second kind integral. The relations (1 1)-(13) in the
limiting sense are valid for the fluid points on the boundary. The computational
scheme is discretized as follows. N reference points are specified on L contour, the
values ~ = 1 and N correspond to the axial points (see Fig. 2), the parameter step is
unity for the transition from one point to another. The time derivatives for moving
boundary reference points are denoted as:

da—— —
dt–at

+ii@ (14)

where G~ - is the velocity of boundary points. Normal velocity components for the
surface and fluid must coincide according to the continuity condition

. . a(p

‘bn = dn ~=un-
(15)

Using Cauchy-Lagrange integral (9), the relation (14) and kinematic bounds
yields the system of 3N equations (16) describing the motion of computational points
and potential variations:

d r.
~= u~,nq+i.i~in%
dt
d zi—=
dt

u~,n%–iirin,, (16)

d~i pm(t)-P(t, ri,zi) 1——
dt – ‘Wi ‘+”~, ‘~”~, ‘fi.,ur,!

P
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where - u., UT, - are normal and tangent fluid velocity components on the boundary;

nnZ - are external normal components; P(t, ri, Zi) is the pressure specified on the

b&dary; Pm is the pressure in an infinitely distant (with z=O); g -is the gravity
field acceleration ( vertically downward); tiz- tangent component of the reference
point velocity. The physical problem setup does not restrict fir, so various algorithms
are possible for tangent displacement of reference points.

The replacement of integral relation (11) with an algebraic one is
accomplished as follows: the potential at j point is considered to be the sum of
“contributions” from the rings formed by the reference points (see Fig. 2)

Fig.2. Contour shape
description for BIE method.

The interpolation
allows to replace
equations relative
that is:

of q(~) over the reference points
(11) with a system of algebraic

to q(z) values at reference points

N

(pj = zAij qi (17)
i=l

The expressions with structure similar to (18)
and (19) replace the integral relations (12) and (13):

N

Urj = z Bijqi (18)
i=l
N

Uz. = x Cijqi. (19)
J

i=l
The following numerical algorithm is adopted.

By solving (17), the source function q is determined
from the specified potential values. The fluid velocity components on the interface
are calculated from the relations (18) and (19) with known q. The solution of
equation (16) yields the new position of the boundary and updated potential values
of the reference points.

The representation of q(~) in the form of piecewise constant function adopted

in [9] is insufficient to describe the flows containing considerable deformations as
the practice shows; however yet the quadratic interpolation results in very
cumbersome and multipleshape algorithms for matrix computations, therefore the
linear interpolation of q(~) was cho~en for the implementatio~:

q(z)=q i+(qi+l- qi)(~-i), z~[i,i+l]

The contour shape that is r(~) and z(~) interpolated
polynomials over ri and zi at the nearest reference points which
interpolation smoothness.

(20)

by fourth degree
ensure a sufficient

The closer is the ring with (i, i+ 1) boundaries to the j point, the greater are
the contributions of the rings formed by the reference points to the boundary
potential value. This is especially true for the points near the axis, so various
contribution evaluation algorithms were chosen to increase the solution accuracy

while approaching the j point.
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The contribution of the i - ring with the boundaries ~= i, i + 1 # j to the
potential value and the velocity component of the j - point was computed using
quadratic interpolation of the integrands from (1 1), (12), (13) over their values at
points ~=i, i+l /2, i-l-l:

i

r f(-c)q(r) d~
‘+[ “ ( ‘)1 “ ‘[“ ( 1)1 ’21)f(l)+2f 1+~ q(l)+~ f(l+l)+2f I+z q(i+l)

i —

The existence of specific features of f(z) with ?+?() necessitates the
computations of contributions from the rings that are the nearest to the j-point using
a special technique. The contribution from the fragment of the of the ring with the
boundaries [j -e, j + e ] (where s <e 1 is a specified parameter) is computed

analytically. The contributions from the “incomplete” rings closest to j with
~ = [j – 1,j – c ] and ~ = [j + e, j + 1] are evaluated by direct numerical integration. The

sums of coefficients from various qj, occurring during the computations of

contributions from various rings form the matrix elements Ati, B*J,C ~.

The integrals are computed with Romberg method and the algebraic equations
use double orthogonalization method. Differential equations were integrated with the
fourth order Runge-Kutta method.

The time required for a single integration step increases more slowly than N2,
when the number of reference points, N, grows.

The code was tested on static and dynamic problems having known analytical
solutions. Particularly, the change (source function) distribution over a sphere and
ellipsoid was computed with a specified potential. For dynamic tests, rigid sphere
rise-up in the gravity field and Rayleigh problem of bubble collapse in fluid were
used.

Test computations shows that the method is cost-efficient and accurately
describes the parameters of hydrodynamic flows with a relatively low number of
reference points. For example, it was shown for Rayleigh problem with 25 reference
points that the relative bubble asymmetry due to the method uncertainty is 4.10-5. at
the time of strong compression.

Numerical computations with the above method involved a series of validation
calculations varying the number of reference points, their positions and the
algorithms for tangent motion of reference points.

The second method version for flows with periodic boundary conditions was
generated using a scheme similar to the about mentioned given the natural
simplifications resulting from the plane flows geometries.

Some computational results obtained with this method are reported in section
1.2.1.

The EGAK
dependent flows
deformations with

1.1.3. EGAK CODES

PHYSICAL BACKGROUND AND BASIS

codes [11 ] are designed for numerical simulation of 2-D time-
of compressible multicomponent media with strong geometry
the turbulence included.
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The codes implement the method allowing to compute a wide spectrum of
physical processes including:

- gas (fluid) dynamics with and without physical viscosity;
- (molecular and turbulent) diffusion;
-turbulent mixing.

The components may be represented by
- real materials;
- vacuum;

- absolutely incompressible bodies;
To distinguish the components their mass and volume concentrations are

used together with specific energies.
The EGAK codes use a regular proceed quadrangular grid whose nodes may

move rather arbitrarily as the computations. In partial cases , the grid may follow
the material (Lagrangian code) or remain fixed (Eulerian grid).

To avoid the smearing of the interfaces between the components , we use the
so called method of concentrations [12]. The sense of the method is as follows: when
the material flows from mixed cells (containing several components), the
concentration field is analyzed and the analysis date are used to determine the
amount and outgoing order of the components. The EGAK codes implement this
method sequentially for all above mentioned components. It allows to localize the
position of interfaces within the accuracy of a single cell.

The outer boundaries of the computational domain may contain the following
conditions:

- material non-penetration (rigid wall);
- input (output);
- pressure and velocity;
- others.

In addition , the incompressible component permits to implement the
nonpenetration requirement inside the computational domain. This allows to simulate
the flows in domains with almost arbitrary configuration including multi-sound
domains.

Finite-difference schemes used in EGAK codes are generated with
integrodifferential method, have the first order approximation accuracy in time and
first or second order accuracy in spatial variables.

A METHOD FOR GAS-DYNAMIC FLOWS IN lAGRANGIAN -EULERIAN VARIABLES

Several Lagrangian-Eulerian methods are implemented within the codes to
compute gas-dynamic or hydrodynamic flows [13, 14, 15, 16]. These methods allow
the direct simulation of unstable flows including turbulized flows for a wide range of
Mach numbers.

The Lagrangian-Eulerian method is described below which now serves the base
for semi-empirical turbulence models. Eulerian methods [13, 14] only slightly differ
from it in terms of main principles.

ORIGINAL EQUATIONS

The original equations describing time-dependent 2-D (plane or axisymmetric)

multicomponent gas flows are represented by the relations expressing the
conservation laws of the moving volume V:
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(22)

(23)

(24)

(25)

where
p! is the density of individual components;
p isthetotal material density involume V;
Vi is the volume occupied by individual components;

V=~Vi ;
fi(v, w) is the velocity (v is x velocity component, w is z velocity component);

~(JX, JY) is the momentum (Jx =~ pvdV, J= =~ pwd V);
v v

Mi = ~ pi dV is the mass of a component in volume V;
v,

E i is the specific internal energy of a component in volume V;

Elf) = ~ Eipi dV is the total internal material energy in volume V;
v,

Pi is the partial pressure of components;
P- is the total material pressure energy in volume V;

E* is the velocity of points of S surface limiting the volume V;

Si are the surfaces limiting the volumes vi, filled with individual components;
i=l,2,...,N is the order number of the component;
N is the number of components;

The system (22-25) is closed by the equations of state for the medium

components

Pi = Pi(pi,Ei). (26)

The system (22-26) is computed with splitting method in two steps. The first
(Lagrangian) step solves equations (22-26) without convective terms or gas-dynamic
equations in Lagrangian variables. The second (Eulerian) step generates a new grid
following the motion of its nodes relative to material and updates the values for the
new grid that is approximates the terms of equations (22-25) rejected at the first
step.

Vector values ii, ~ are defined at the grid nodes and scalar values

(pi, Ei, pi, p, ~i =Mi/M, pi = Vi/V) at the cell centers.
Further the values taken from the lower time layer will be written without

time index (where no confusion occurs); the values computed at the first step are
accompanied by the index (n + 1/2) while those from the second step have the index
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(n + 1). In addition, the symbols have an alphanumeric index indicating the owning
cell (node) as shown in Figure 3.

LAGRANGIAN STEP

The source system (22-25) computed at the first step has the form

dii
—--~~ad(P+q)
dt –

(27)

d pi
—= –pi divfii
dt

(28)

dEi ‘i ‘qi div~— =_
dt i (29)

Pi
d ?i
‘= iii.
dt

(30)

Here quadratic computational viscosities q, qi are added to the source system.
To close the system (26-30), an additional assumption is required. This may be

one of the following:

- identical material compressibility

div iii = divii (31)

- material pressures equal to the total pressure

Pi=P (32)

The approximation of motion equations use precomputed pressure

dP
F= Pn+—

dt ,=’
(33)

where S is the entropy, z is the timestep. Explicit or ‘—-1’-:4 --~-— -- --- ~-
obtained depending on the computational technique.

(34)

aP— —
2c; = dp , - ,=, ‘i c;’.

‘ere ‘i = : ‘
The implicit scheme results if the precomputed pressure ~ in the formula (33)

is determined from the values obtained by the t=t ‘+1’2

~= Pn–~c&rn diviin+]’2=

(35)
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ii, K

Fig.3. EGAK code counting greed fragment.

A

B

Fig.4. Volume flow through the cell surface evaluation.
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To solve this equation with respect to ~, flows splitting method is used.
After the pressure is computed, the accelerations are calculated on the cell

sides neighboring the node and the node acceleration is determined from the
interpolation . At Lagrangian step, the grid follows the material motion..

If one of the cells surrounding the node of interest contains an incompressible
element , the corresponding accelerations on the sides of such cell are set to zero. A
similar procedure is accomplished on the external boundary representing a rigid wall
or the boundary where the pressure is applied.

After the velocity components are computed, their spatial distribution is
smoothed by the fourth order smallness operator..

Equations (28-29) can be approximated different ways depending on the

assumption choice (31 ) and (32).
For version (31), the approximation of continuity equations (28) is easy. When

approximating the energy equation, the calculation of the difference analog of div ii
uses the velocity values:

1
ii=—

2 ( )u“ + un+”2 .

This is necessary to ensure the difference scheme conservation at the first steo.
When as~umption (32) is used, equations (26, 28, 29, 32) must be’ solved

together. This system has the exact solution in partial cases only, for example, for a
mixture of perfect gases. For arbitrary equations of state, the system reduces to a
single equation solved with iterations.

EULERIAN STEP

After a new grid is generated, it is necessary to determine the component
volume, mass and energy flows from one cell to another in order to compute the
convective terms from equations (22-25). These flows are assumed to be other than
zero only between the cells sharing a side. Consider the computational procedure for
the flows between the neighboring cells (see Figure 4), where the corresponding
indices denote the position of the shared side after the first step and after the
generation of a new grid.

The total volume flow equals to the rotational value (in axisymmetric case) of

the quadrangle A ‘+1’2An+1Bn+1Bn+1’2 shaded in Figure 4. The flow orientation

depends on AV sign. . Figure 4 shows the case where the left cell is a donor.
When mass and energy flows from pure (single component) cells are

computed, we use the first order approximation donor method and the second order
donor-acceptor method. For the latter, the mass flows are given by the following
formula (the energy flow formula has a similar form):

AM = Av[kfld +(1 - ~)P~]

where ~d, pa are the donor and acceptor

The coefficient X is obtained from

cell densi

(36)

ies, respect vely

()k.: 1-$!.— (37)
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To avoid the computational diffusion of the interfaces, the method of

concentrations is used. The mass flows from a mixed cell are determined by

AM i = AVi pid , where

AVi = AV j3i (38)

To evaluate ~1, the volume (or mass) concentration field is analyzed to locally
reproduce the interface between the components in the vicinity of the cell of
interest. Among several algorithms used, the simplest one is that using three cells

for the analyses. Table 1 contains j31 values as a function of some encountered
situations (digits 1 and 2 indicate the component numbers, the index “d” denotes the
donor cell). In the remainder of cases ~1 = ~l& ~Z = ~zd.

Table 1. pi values as a function of potenial situations for three cells

Situation P1 132

I I
1 0

12 1

0 1
1 12

12 I 12 12 ~ld ~2d

When the flows are determined using (38), a situation may occur where the
volume of a component (for example, the first one) is greater than the volume of this
component available in the donor cell or AV1 = AV~l > vld. In this case the volume
of this component is decreased and that of the other is increased by the value
AV1 – Vld. Thus, we have

AV1 = Vld; AV2 = AV2 +(Vld – AV1).

The volume flows across other cell sides are calculated in a similar way.
When the contributions of each subsequent side are computed, the volumes of

materials residing in the cell are decreased by the value of volume flows outgoing
from the cell through other sides at previous computational steps. Generally, the cell
sides are not equivalent for such approach. However the computations show that it
influences the results only slightly.

The method implements another technique for flow computations where the
sides remain equivalent. However the above method is easier to implement which
motivates its application.

Thus the method for m?ss and energy flow computations may use both donor
and donor-acceptor techniques. The former is first order accurate, the latter is second
order accurate
discontinuity.

for smooth solution portions and first order accurate for the vicinity of



For the motion equation approximation
the mass flows. The flow velocity is given by

v=kvd+(l–k)va,

w=kwd+(l–k)wa,
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of momentum flows consistent with

where “d” and “a” indicate the donor and acceptor nodes.

The values of X in pure cells are computed to (37).

For mixed cell nodes, 1=1.

If restriction (32) is used, the pressure are equated other the second step

assuming that the internal cell energy remains unchanged and one components

operates on another.
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1.2 NUMERICAL CALCULATIONS OF SOME UNSTABLE FLOWS

1.2.1. NON-COMPRESSIBLE LIQUID FLOWS

NON-LINEAR STAGE OF RAYLEIGH-TAYLOR INSTABILITY

Numerous research of Rayleigh-Taylor instability (RTI) are reviewed in ref.
[171, for example.

This section includes the 2-D calculation results of Rayleigh-Taylor instability
for non-compressible non-viscous liquids in the plane geometry obtained with
boundary integral equation method described in section 1.1.2.

The problems were solved in the following statement.

Lower semi-space is filled with
p2 density. Magnitude 5=p2/pl>l.
slightly from the horizontal plane.
downwards.

Mainly, the calculations aimed

liquid of pl density and upper - with liquid of
At t=O, the contact boundary shape differs
Field of gravity g, is accelerated vertically

at a through description of RTI development,
including the stage of small perturbations and non-linear stage where the contact
boundary perturbation amplitude is comparable with the characteristic wavelength.

A calculation set was done where the initial surface perturbation was specified
in the form of one harmonics

z(t =0, x)= ao sinx.

Initial perturbation amplitude, ~, varied. The calculations assumed the following
parameter magnitudes: pl=l; g=l; A=2z; ao=0.05-l. To describe the contact

boundary, 30 points at X perturbation period were used.
Figure 5.1 presents the calculated boundary shape for the ratio of densities

5=10 and initial perturbation amplitude ao=0.05 for t=4.83 and t=6. 1. In this
calculation a mushroom-shaped jet of the heavy liquid characteristic of the non-linear
stage at small differences in densities appears later when the jet length is
comparable with X.

In the abovedescribed statement the RTI development calculations were done
also for 5=2, 5, 100, 1000. The results show that in case 3=2 and 5, the boundary

acquires characteristic spiral-like shapes. When density differences are large, 8==100
and 1000, the instability development pattern differs qualitatively. At early moments,
when perturbation amplitude a>l /k, an asymptotic flow pattern is formed. A jet
area is formed where the heavy substance drops down, as well as a bubble area -
where the light liquid emerges.

At the non-linear stage the flow characteristics appeared to be slightly
dependent on the initial perturbation amplitude, ao. With time, the bubble top
velocity, UZ and curvature radius R in this point reach their asymptotic values. The
calculation have shown that UZ+ (0.235W.005)&; R+ 0.4X, that agrees with the

results in ref.[ 18].
At the linear stage, the surface perturbation amplitude grows exponentially

with time providing that short-wave perturbations grow faster (an increment is

proportional to ~). The liquids interpenetrate symmetrically. At the non-linear
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Fig.5. 1 Numerical modeling of R-T

Interface shape calculated
1- t= 4.83, 2- t=6.1.
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Fig.5.2. Numerical modeling of R-T instability.

Interface shape calculated for 5=10, z(t=O,x)=O.lsinx.
1- initial shape; 2- t=l.37; 3- t=l.91.



T18

stage, the picture of perturbation growth changes qualitatively. The liquids
interpenetrate non-symmetrically, and the characteristic velocity for large-scale
perturbation growth is higher if the wave length is bigger (UZ = A).

In general, the contact surface deformation picture obtained with BIEM
technique coincides with the solution resulted from other methods [17, 18]. Linear
stage of perturbation growth agrees with the results of the small perturbation
technique.

A calculation set was done for 3=10 in the statement similar to the described
above with the initial surface disturbances in the form of two harmonic
superposition. Figure 5.2 gives contact surface shape for different moments, obtained
in the calculation with the initial disturbances specified in the form

(zt=O, x)=sinx+O.l sin 4x.

By t = 1.5, a large bubble dome emerges at UZ=0.66, that is close to the asymptotic
value 0.23 5&=().59 for long-wave component.

Several reports [17, 19, 20] mention the RTI development tendency that with
time the dominant role in liquid interpenetration zone dynamics is passed to the
long-wave components of initial perturbation.

RICHTMYER-MESHKOV INSTABILITY NON-LINEAR STAGE MODELING

Richtmyer-Meshkov instability (RMI) is instability of a contact gas interface of
different densities under a shock wave effect.

The RMI development pattern can be qualitatively modeled via the evolution
of an initially disturbed contact boundary of non-compressible liquids after the effect
of the acceleration pulse short in time and large in the amplitude, go, or by
specifying the initial perturbations in the velocity field.

With BIEM technique in the plane geometry, the 2-D calculations for this
problem were done for magnitudes 5=p2/p1=2, 5, 1000; pl=l; L=2z; ao=0.05. The
acceleration pulse, width, to, and its magnitude, go, were chosen so that the
boundary perturbation amplitude change during the pulse effect was negligibly small,
and the boundary velocity amplitude Uo= 1. For example, for 5=1000, - tO=O.OO1, and
g*=2. 104.

The case of small density difference was modeled with the specified the plane
surface and initial sinusoidal perturbation in the velocity field, at velocity amplitude
Uo= 1. The liquid densities were assumed equal.

Of interest are the trajectories of characteristic boundary points describing the
biggest depth of light liquid penetration in the heavy one - LI and the heavy liquid
- in the light one -L2. The problem non-linearity results in the harmonics which wave

length is by 2 times less than the initial one that is coupled with available term Vq2

in Cauchy- Lagrange relation. Due to this, an asymmetry arises in the liquid
interpenetration zone, L2/L1 >1. During the time when the amplitudes of shorter-
wave perturbation are small, the width of liquid mterpenetration zone, L=L1+L2
appears to be close to the magnitude predicted by the small perturbation method
despite of the substantial non-linearity of the process.

The calculation results are illustrated in Fig.6-8 in dimensionless variables.
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Fig.6. Numerical modeling of R-M instability.
L2/L1 (dashed lines) and L* (solid lines) as functions oft*.
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Fig.7. Numerical modeling of R-M instability.
U1* (dashed lines) and U2* (solid lines) as functions of t*.

1- 8=1OOO; 2- 8=5; 3- 8=2; 4- 8=1.
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Fig.8. Numerical modeling of R-M instability.
Dimensionless velocity of light liquid interpenetrating into the heavy one
as function of dimensionless interpenetrating depth.
1- 5=1OOO; 2- 5=5; 3- 5=2; 4- 5=1.
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Figure 6 gives functions L*=L/A and L2/L1 vs. t*=tuo/L. Flow asymmetry is
developed faster for large density difference, and difference in L* obtained from small
perturbations method (SPM) predictions occurs faster for small density differences.

Figure 7 presents velocity functions for light liquid penetration in the
* dL1 1 dLz 1 Vs t..——

‘1– dt U()’
and the heavy liquid - in the light one u; = ——

dtuo. -

Figure 8 gives the velocity function for light liquid penetration in the heavy
one ul* vs. L1/X magnitude. With these function extrapolation to U1“=0, we shall
get the following estimates for El \ Z - ultimate magnitudes L1/fi at t-+mo:

6 1 2 5 1000

Z* IA 0.36 0.32 0.26 0.2

Thus at the non-linear stage in t*~O.4, the penetration velocity of light liquid
in the heavy one decreases practically to zero that allow us to conclude about the
existing ultimate magnitude of penetration depth ~1 I AGO.2-O.4.

AXISYMMETRIC PERTURBATIONS IN GAS VOID COMPRESSION BY IDEAL LIQUID

Related to the study of spherical substance compression stability is the
interest in a classical problem of adiabatic compression of a inviscid unbounded
liquid. Rayleigh already considered this problem for a spherically symmetrical case.
The stability of spherical compression in small perturbation case (SPM) was studied
in ref.[21 ]. This perturbation dynamics at the linear and non-linear stages of the void
compression was investigated in ref.[8] with a boundary integral equation method
described in section 1.1.2.

Let at the initial moment the liquid around the axisymmetric void filled with
ideal weightless gas be at rest, and gas pressure PO be less than pressure Pm in the
infinitely distant point. Under this pressure gradient, a potential flow appears which
is characterized by gas void compression and deformation. Gas is compressed
adiabatically.

As a 2-D code test, we have calculated a spherically symmetrical void
compression (without initial perturbation specification). The following set of
parameters was used in the calculation: initial radius r(t=O)= 1; gas adiabatic index
Y=5/3; liquid density p= 1; initial pressures PO=0.015; and Pm= 1. According to an
accurate solution of a spherically symmetrical problem these solutions correspond to
the maximal bulk compression VO / vmin = 305 t=O.9355. The numerical results of
BIEM code coincide with the accurate solution better than 1~~ in all flow
characteristics.

A set of calculations was done where the initial
was specified as close to spherically symmetrical with
of Legendre polynomial

r(t = O,e) = 1+ 2inPn(c0s6)

Below, the calculation results are presented
perturbation amplitude an= 0.05.

shape of a generating surface
the perturbations in the form

for n=2, 3, 4 and initial

Figures 9-12 depict the gas mixture shapes at the times close to the maximal
compression.
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Fig. 9 The shapes of gas cavity at the Fig. 10 The shapes of gas cavity at the
end of compression stage in end of compression stage in
the case of initial perturbation: the case of initial perturbation:

R(t=O, 0)=1 +0.0sP2(cos(@). R(t=O, 0)=1 +0.05P4(cos(EI)).
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Fig. 11 The shapes of gas cavity at the” Fig. 12
end of compression stage in
the case of initial perturbation:

R(t=O, e)=l+o.05p3(c0de)).

1- t=o.919; 2- t=o.93;
3- t=o.935.

The shapes of gas cavity in the
beginning of expansion stage in
the case of initial perturbation:

R(t=O, e)=l+o.05p3(c0de)).

1- t=o.935; 2- t=o.94;
3- t=o.9455.
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In case of n=2 perturbation, by the moment of violated simple connectedness
of area (t=O.936, the void shape is almost toroidal (see Fig.9), the collapse velocity
along the symmetry axis reaches magnitude approximately 10, and the gained
compression is VO/ V(t) = 290.

In case n=3, it appeared that at the initial perturbation amplitude, a3=0.05,
void simple connectedness is violated at the expansion stage after the maximal
compression is achieved. In Fig. 11 and Fig. 12, the void shapes for n=3 at the final
compression stage and initial expansion stage are shown. The time of minimal
volume gain coincides with one-dimensional, and the maximal compression
constituted V. / Vmh = 295.

Figure 10 presents the void shapes for n=4 up to t=O.9332 (VO / Vmti = 280).
Comparison of the results obtained with different number of reference contour

points and at their different arrangement notifies a small error (approximately 1%).
In all cases considered, despite of high void deformation, the minimal obtained

volume differs slightly from the obtained in one-dimensional compression.
At the moments when the radius vs. angle function is unambiguous, the

shapes were analyzed in spectrum, i.e. the coefficients for Legendre polynomial
decomposition r(e). Values an(ao), where ao- an average radius, were compared with
similar SPM calculated functions.

It is easy to show that in the spherically symmetrical case for the assumed
parameters the time (t) function of void radius is described with the equation

(-)dr 2

d2r 3 di
—+— =POr+ –~.dt2 2 r

In case of small perturbations when the void surface
the form of the decomposition by Legendre polynomials:

r(t,6) = aO(t)+ ~an(t)Pn(cose),
n=l

(39)

shape can be presented in

(40)

where r(t)=ao (t)- equation (39) solution, n-harmonic amplitude growth is described
[21 ] by the equation

dzal
~+(cD+2) &-(l-l)mal=O , (41)

dln da.

dt
where x=hr, O=

dx -
Equations (39) and (40) are the mathematical description of small perturbation

method (SPM) for this particular problem.
Figure 13 gives an, function obtained from eq. (39), (40) for initial

perturbation of n=2. These result comparison with the BIEM calculations show that
SPM at 1% accuracy depicts the ground harmonics amplitude up to the loss of r(e).
function unambiguity. That means, the SPM applicability range is notably wider.
(Due to a small difference, the SPM results are not shown in the Figure). However,

at the non-linear stage of perturbation development, alongside with the ground
harmonic, the amplitudes of harmonics which numbers differ from “n” originate,
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grow and become essential. First thing, the multiple harmonics of “2n” numbers

appear (that is due to V~2 term present in Cauchy-Lagrange relation).

INITIAL STAGE OF LOCALIZED PERTURBATION EVOLUTION

As a rule the turbulent mixing dynamics is studied in the arrangement when
the unstable interface between the substances of different densities is plane. (ex.
[22,23,24]). In this case, the initial perturbations are small and of a occasional
nature.

To understand the mixing processes in detail, it is interesting to study the
instabilities of various controlled spectra for initial perturbations. The simplest among
them is a sinusoidal which evolution results in characteristic dynamic structure
consisting of “bubbles” and “spikes” (ex. [25,26,27]). The results of these research

appeared helpful in understanding the role of individual harmonics in a general
picture of instability and turbu~ent mixing development and is the base for the
simplest theoretical models [28, 29]. The previous sections present the results of
similar research.

In ref. [30] the experimental study of substance mixing picture with the
available localized perturbations evolution is described . We shall understand these
perturbations as the perturbations specified on a small area as compared with the
interface area. A particular example for the localized perturbations is a cavity on the
media plane interface.

The BIEM method described in section 1.1.2. was applied for numerical
simulation in the following statement.

In the infinite ideal liquid p=l at rest there is an axisymmetric cavity filled
with weightless gas. The cavity is a sphere of 100 radius with center coordinates
r=O, z=-1OO, near the upper pole, for which the shape disturbance is specified in the
form:

(1

–r 2

z = exp — – 0.09827 at r <3.
4

This disturbance of a secluded cavity shape is of sufficient smoothness and at
small radius r coincides with the linearized problem solution. In the gas, the pressure
is specified which varies according to the law which provides for the radial
acceleration of a constant boundary far from a perturbation g= 1.

Table 2 and Figure 14 illustrate the calculation results.
Table 2 presents the time functions for several magnitudes characterizing flow

which were obtained in this calculation and this problem SPM solution as well as the
characteristics of the bubble stationarily emerging to the surface in the tube:

UP- emerging velocity for the perturbation dome top in coordinate system
coupled with the moving non-disturbed boundary;

R*- curvature radius of the dome top;
2

rU. = ~ @ * - velocity of bubble stationary emergence which has R*

curvature [31 ];
R ~fi - tube radius where a gas bubble comes to a surface at constant velocity

LIP = 0.48~~([31 ]);

u~- SPM rate of perturbation amplitude growth.
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Fig. 13. Harmonic amplitudes dependence on cavity radius ao. Initial

perturbation was in the form r(t=O, 0)=1 +0.05P2(cos(0)).
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Fig. 14. Local perturbation interface shapes calculated with BIE method at
different moments. 1- initial shape, 2- t=l .5, 3- t=l.tl.
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Table 2. Localized perturbation growth characteristics.

t up R* u~ R ~ff

o 0 2 0%4 o -

0.3 0.33 1.9 0.92 0.28 0.5

0.6 0.65 1.7 0.87 0.57 1.8

0.9 0.95 1.6 0.83 0.93 3.8

1.2 1.23 1.6 0.83 1.36 5.7

1.5 1.48 1.7 0.87 1.92 7.8

1.8 1.7 1.9 0.89 2.65 11

The table 2 parameters compared, show that the cavity coming to the surface
is of non-stationary character (velocity u differs from U. and does not depend on

LR*). Monotous increase in R ~ff reveals t at with time the liquid father and father
from the symmetry axis becomes involved in the motion.

The dome top tends to constant 0.75g that differs qualitatively from the
asymptotic stage of periodic perturbation development where this acceleration equals
zero.

Figure 14 depicts a contact interface area with a dotted line for t=l.8 where
the small-scale vortex-like deformations occur. At these sections the solutions do not
convert with the increased number of points (the more in detail the contour of this
part of surface is described, the faster a vortex is formed). A notable effect of how
accurate the description is, on the dome coming to the surface is not discovered.

The calculations done have revealed essential peculiarities of localized
perturbation development and have stimulated the experimental research described in
section 2.7.

NON-STATIONARYFLOWS IN ANGULAR POINT VICINITY IN GAS ACCELERATED
LIQUID LAYER

This section is devoted to the surface interface perturbation evolution research
between light and heavy substances with the angular peculiarities present there [32].
There, perturbations developing together with the natural random perturbations
result in a complicated mixing picture and are characterized by the origin of special
regular structure of a hydrodynamic flow.

Similar flows appear, ex., at the HE-driven acceleration of the plates and shells
with fractures, a cumulative jet is formed in the oblique collision of plates.

As a natural approximation for the theoretical analysis of a regular constituent
of the flows, let us consider that an accelerated plate substance is an ideal liquid. Its
flow is described by Laplace equation for g velocity potential

AQ= O. (42)

The velocity vector depends on ii = FQ.
On the inner layer boundary pl- pressure is specified, and on the external - p2.
Cauchy-Lagrange condition

dq WZ.U2——
dt– 2 ‘q (43)

for the surface points is an equation defining a time function of a surface potential.
Here, u, w - tangential and normal components of liquid velocity on the surface; q =



O, for external layer boundary, and q=-(P1-P2)/p - for inner one, time derivative is
calculated for a fixed surface point, r, which velocity is always directed over normal

ii; p- liquid density.
Motion equation for these points is

d~
()— = mpii ii.

dt
(4’0

If the boundary shifting is small compared to h - layer thickness (that is valid
for early moments) and u and w values are small, equation (43) is integrated
elementary : q=qt.

In this case the surface
the initial layer shape at t=O

values for potential: Q=qt, we
(we present the area occupied
Differentiating the discovered

deformation is found in the following way. Specifying
as it is depicted in Fig. 15 and using the boundary

solve eq. (42) with a conformal conversion method
by a liquid on the band in complex potential plane).

space distribution Q(7), we determine the velocity
vector ii. Finally, integrating eq. (44) over time, we find the needed shifting of inner
and outer surface points. For certainty, let us consider that the inner surface fracture

angle ~ K 180°.

The boundary points are shifted to normal, and for the outer surface of
accelerated layer this shift is

lh-~

X is found from the equation

described by the expression

(–)m–p

()PI –P2 ~z x 27t
=

2ph 1+1 ‘

h

=()’
P L

rz . —B g,oz ‘=l+A’

(45)

1=x–l
BU(X>O)= ~ dx - incomplete Beta function, and r2- distance from

top to a specifie~ point on the outer surface (Fig. 15)

With r2 +00 (k+ 00) we obtain IAF21+ (Pl - P2)t2 / 2ph that, as it should

corresponds to the plane layer motion at g = (Pl – P2 ) / ph.

In close vicinity of outer angle at rz -+ O (~ -+ O)

(–)7t-p

()PI –P2 ~z L 271
AF2 =

2ph l+L ‘

That is, that in the considered approximation the outer angle top does
move, that corresponds to the experimental results.

The inner surface point shifting is described by the expression

(q())wp2t2 ~ 27t
AF2 =

2ph l+L ‘
(46)

the

(B)

be,

not

where ~ is expressedvia rl- distance from top (A) to a specified surface point
(Fig. 15) from relation
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Fig. 15. Liquid layer shape. Dashed lines correspond to the smaU
perturbation method prediction.

PI =1, PZ=O, P=l, h=l
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Fig. 16. The inner boundary shape at the proximity of the angle vertex A.
BIE code calculations
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Like in the above considered case, at rl+m(p+m) we get,

~-z --+ (Pl – Pz )t 2 I 2ph In the small vicinity of top (A) at rl + O (~+ O) the point

shifting is described by the formula:

(–)
n–p

()

P1– P2t2 A 271
@ =

2ph l+k ‘
(47)

The limit infinity means that the above approximation are not fulfilled in the
inner angle top vicinity. In relation (43) one can not neglect U* IZ W2 magnitudes,
and the surface deformation can not be considered small at any t values. The same is
noted by the experiment results also.

To describe hydrodynamic flows accurately, problem (42), (43), (44) should be
solved in a complete statement without simplifying suppositions. This problem was
numerically solved with the boundary integral equation method [8] for ~=90°. In this
case, it was assumed that Pl=l, P2=0, p=l, h=l.

Figure 16 illustrates the inner surface motion at small magnitude where from
it is seen that in top (A) vicinity (as in the experiment) a fast growing cavity is
formed which shape is almost a cylinder. On the surface two new angular
peculiarities appear. The distance between the points on the cavity surface grows
faster than the distance between the points on the rest inner surface. That means,
the cavity is as if blown out of the point which was originally in top (A). Relation

(47) being valid at IAF1I << rl e< h, reveals the present intermediate self-similarity

asymptotic of 2-D problem (42), (43), (44). Providing that self-similarity index a

(in expression lArll = Const ta ) equals ct=2 (2@3)/(3z-2~). For ~=n/2 a=l.5, that
approximately corresponds to the numerical results.

The analytical research of the flows in the vicinities of newly formed surface
points based on self-similarity hypothesis presents the interest.

1.2.2. NONLINEAR STAGE IN KELVIN-HELMHOLTZ INSTABILITY DEVELOPMENT
COMPRESSIBLE GAS CASE

Kelvin-Helmholtz (KHI), or tangential velocity discontinuity instability, is one
of typical hydrodynamic instability effects.

The problem for tangential velocity in compressible gases was addressed by
Landau [36] in small perturbation approximation for 2-D perturbations case.

Many typical instabilities including KHI have the linear stage characterized by
increments growing with shorter wavelengths. With numerical calculation, this
situation may cause short-wavelength perturbations existing in the initial
distributions due to discrete computational scheme to grow, and consequently,
degrade the calculation of the deterministic perturbations evolution. The above-noted
difficulties set limits on the choice of computational mesh and the approximation
accuracy of initial distributions.
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NONLINEAR STAGE IN KHI DEVELOPMENT

I

Analytically, it is hardly possible to describe the evolution of perturbations
with their amplitudes comparable to wavelengths, therefore the studies use
numerical simulation as basic approach.

This Section describes the results of KM studies in plane geometry for
compressible gases [34,35].

Quantitative description of the nonlinear stage is limited by the time where a
harmonic starts to develop substantially having wavelengths comparable to mesh
size.

The calculations were made using EGAK codes [1 1], with the problem stated
as follows.

There are two ideal gases in the upper and lower half-spaces, having the same

initial pressures and adiabatic indices, equal to P1=P2~0.6 and yl=yz=5/3,
respectively. For some initial time, there has been specified an x-periodic sinusoidal
perturbation of the interface

z(t=O, x)=alsin(2nx), (49)

where al=O. 1 and perturbation wavelength is X=1.
Tangential velocity discontinuity AuX=l satisfied the plane flow conditions for

relatively small 2-D perturbations [36]

AUX<(C1Z13+C2Z13)31Z, (50)
where c1 and C2 are the sound velocities in the upper and lower gases, respectively.
Initial density was pl=l, and pz was varied as pZ=l,5, 10.

The computational field had its size in x-axis ~=1. Periodic boundary
conditions were used.

The interface (49) was approximated by piecewise-continuous function. This
made the velocity discontinuity spread in z direction over the length d =(1+ 2)h,
where h - is the mesh size.

The number of cells used was 50 per perturbation wave period.
As shown by the analysis of initial perturbationsspectrum, the first harmonic

al has its actual amplitude differing from 0.1 by no more than 1YO, with the
amplitudes of harmonics an ( 1<n< 10) not higher than 0.01 al. Therefore, the
approximation assumed for initial perturbation was reasonable accurate.

Figures 17 through 20 illustrate some calculations.
Figure 17 shows interface shapes at different times for the case where the

gases have the same initial density. What is observed is the interface spiraling. This
tendency is less marked for density ratio equal to 10 (Figure 18).

Figure 20 shows the interpenetration zone thickness L(t)=zmax–zmin, where
z~aX and z~in are the maximum and minimum z-coordinates of the interface. At an
earlier stage, the curves L(t) are linear, with the rise rate decreasing with larger
density difference, and this is qualitatively consistent with the data from linear
theory of small perturbations growing in incompressible liquids. For gases having the
same densities, L is no longer observed at the level L-=4.7.

While density variations in the flows of interest were within 30% the
contribution of the velocity discontinuity smoothing can be estimated by making use
of the data from shear flow instability studies of incompressible liquids. That the
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Fig.20. Numerical modeling of K-H instability with EGAK code.
1- 8=1; 2- 8=5; 3- 5=10;

dashed line - the problem analogous to the problem 1 (?$=1), but sound
speed was doubfed.



T33

incompressible liquid approximation is suitable for this purpose, is also supported by
the similar calculations where sound velocities in gases were increased two-fold
(dashed line in Figure 20). The interface shapes obtained by this calculation differ
from the previous calculated data by no more than a mesh space.

When the velocity discontinuity smoothing region (Ozz<d) has UX linearly
dependent on z, the unstable perturbations spectrum is upper limited by the wave
number value k*=l .3/d [37]. For k=2n/LzO.4k*, the perturbations increments differ
from those in the velocity discontinuity problem by less than 10~0. The calculations
were performed with the spacing scale for velocity discontinuity smoothing d=0.02,
the harmonic referring to k* is that of the number n“=l 1. Harmonics numbered

n> 11 would not grow. But perturbations with harmonic numbers n=6 to 11 will grow
significantly slower than for velocity discontinuity case.

Small additional harmonics caused by stepwise shape. approximation of
theinitial perturbation, and the above considerations both indicate reasonably
accurate numerical description of the nonlinear stage of perturbations growth during
a limited time. The mathematical viscosity effects analysis made using analytical
assessments and by numerically solving supplementary problems, shows the
calculation results for t >2 are more likely to be qualitative. Good accuracy of the
data obtained for tz2 has been proved by the calculation with the mesh size taken
twice as small.

The numerical solutions were verified for accuracy and representativeness
using a calculation involving the velocity discontinuity AUX=5. From criterion (50),
the flow like this should by steady with respect to comparatively small 2-D
perturbations.

The interface shape as resulting from this calculation is given in Figure 19.
Unlike the nonsteady case, there is no perturbations amplitude growth observed
here, thus showing qualitative agreement with the conditions of reference [36].

Thus, the following may be concluded from the analyses of the calculation
results.

A harmonically perturbed interface will transform with time into a periodic set
of spirals. Spiraling is the more tapid, the smaller the density difference between the
gases. What was to be observed, that the lateral spiral growth is limited by the value
L@.7fi, this being due to the periodic nature of initial perturbations. The shear flow
instability criterion referring to 2-D perturbations (50) has also proved valid for finite
amplitude perturbations.

EVOLUTION OF PERTURBATIONS SPECIFIED SUPERPOSED HARMONICS

Ref. [35] used EGAK codes to continue numerical studies of shear instability
problems, particularly, for more difficult initial perturbations cases. These
calculations addressed harmonics interactions and the way they influence the gases
interpenetrating pattern.

The calculations have been made for gases having one and the same density
~=1 and the same pressures PO=0.6. The velocity discontinuity was Aux= 1. There
were more computational cells used per unit length (60) than in the above-described
calculations.

lrtitially,the interfaceperturbationwas specifiedas
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superposition of two harmonics: z(t=(),X)=alcos( 2nx/Ll)+akcos(2nx/Lk),
where ~k=l /k (k= 1, 3), and

- saw-tooth shaped.
Table 3 shows some parameters to define initial perturbations.

Table 3. Input parameters and results of the calculations

N type Al A2 A3 A5 Lo L
1 - 0.02 - 0.1 - 0.106 0.45
2 - 0.1 - 0.1 - 0.268 0.5
3 - 0.067 0.1 - - 0.175 0.43
4 saw- 0.082 - 0.03 0.2 0.02 0.43

tooth

The following notation is used here:

Ak=ak/ %k - harmonic amplitude ratio (for saw-tooth type perturbation
Fourier coefficients are given),

L=z~a(t,x)-z~in( t,x) - gas interpenetration thickness
Lo= Z~~(t=O,X)-Z~i”(t=O,X).

Figure 21 through 23 illustrate the interface shape evolution as obtained in
calculations through 4, respectively..

The calculations all observe the gas interpenetration zone stops growing
thicker. The final column in Table 3 includes asymptotic values L.

Given the first harmonic has smaller amplitude than the third one (calculation
1), a two-stage flow pattern will be then observed. Initially, there will be the first
harmonic rapidly increasingin amplitude, thus making the gas interpenetration zone
grow thicker. Overtime, the growth rate ofLwill be decreasing. Then, the increase
in L becomes dependent on the amplitude growth of the harmonic of n=3, and thus
the zone thickness grows more rapidly. At later times, L growth rate again will
decrease. However, when the first harmonic’s initial amplitude is larger than that for
theharmonicofn=3, notwo-stage flow pattern will be observed.

Why the gas interpenetration zone stops growing thicker, can be understood
from the following qualitative analogy. By virtue of its periodic nature, the
perturbations spectrum is limited and contains for any t only harmonics with the
wave number k22n/ Ln, where Ln is the computational field size in x axis. Shear
flow is a rather complex pattern during its nonlinear stage (with a set of spirals
forming). If one considers it as averaged flow with continuously distributed velocity,
then it should be stable against perturbations having wave number

k > k* =(1 -2)/ L [38]. By times where L>(l-2)Ln/27c, this flow should become
stable against perturbations having any wave numbers possible.

1.2.3. ON INITIAL PERTURBATION SPECTRA AND CONDITIONS OF
GRAVITATIONAL SELF-SIMILAR MIXING REGIME

Usually, gravitational mixing experimental results are analyzed with the
assumption that the initial perturbation spectrum is insignificant because it “is not
stored in the memory”. Acceleration magnitude, g, being constant, one thinks that
turbulent mixing zone width, L, depends quadratically on time, i.e, the self-similar
function takes place:



L=f(A)gt2,

where A is Atwood number. With acceleration chang”ng

x = (J&dt)2is introduced instead of gt2, ex. ref.[zsl.
Analogues self-similar functions are assumed for values: L1-
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(51)

slightly, variable

penetration depth
of a light substance into heavy and L2- penetration depth of a heavy substance into
light (L1+L2=L).

The experiments, ex. [23] and [39], are analyzed via a mere comparison of
self-similar constants f(A) obtained in measurement treatment. These experiments
are, mainly, aimed at data acquisition for of different theoretical models of turbulent
mixing.

The self-similar statement of a problem must not include the parameters for
length dimension, in particular the selected perturbation wavelengths either. In real
experiments there are always the parameters for length dimension, for ex. of
accelerated layer size. Various physical mechanisms distort perturbation spectrum
and inspire the selected harmonics which evolute the fastest. This means that to

realize the self-similar regime of mixing in the experiments, a set of requirements
should be met:

- mixing zone width must be substantially lesser than the accelerated layer
thickness and their transversal dimensions;

physical processes leading to the dominant evolution of the selected
harmonics must be minimal;

- by the moment of mixing parameter measurements the initial perturbation
spectrum must “be forgotten”.

The first requirement depends on the geometrical size of experimental facility
and accelerated samples.

The second requirement depends on the real experiment_ can be violated, for
ex., because of the surface tension at liquid-gas or liquid-liquid interface. The surface
tension constraints the growing harmonics spectrum in the range of small
wavelengths, i.e. the problem contains a supplementary dimensional parameter..

In the experiment this impact can be weakened by the transition to higher
acceleration magnitudes when the turbulent mixing is studied. This causes a shift in
growing harmonics spectrum boundary to the field of shorter wavelengths, thus
reducing the length dimension parameter.

Additional analysis is needed to state the usage of surface-active substances
for the same aims, ex. [23]. For example, in ref. [40] it was shown that the surface-
active substances available can cause notable attenuation of capillary waves on the
liquid surface, i.e. the opposite effect

The most difficult are the questions if the initial perturbation spectrum is
really forgotten, what characteristic time for this process is and in how far the
extended perturbation spectra are frequent in the uniform spectrum (52) which does
not include the length dimension parameter?

ao(k)k=C=Const, (52)

Let us consider the disturbance spectra which originate on the free surface of
liquid interface due to heat fluctuations. We shall avail ourselves of Mandelstam
analysis results for such fluctuations [44] to explain the peculiarities of light
reflection from the different density liquid interface.


