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ABSTRACT

In ari effort to increase spatial resolution
without arding additional meshea, an adaptive
mesh was incorporated into a two-dimensional
Lagrangian hydrodynamics code along with two-
Aimensional flux corrected (FCT) remapper.

The adaptive mesh automatically generates a
mesh based on smoothness and orthogonality,
and at the same time also tracks physicsl
conditions of interest by focusing mesh
points in regions that exhibit those
conditions; this is done by defining a
welighting function associated with the
physical conditions to be tracked.

The FCT remupper calculates the net
transportive fluxes based on a weighted
average of two fluxes computed by a low-order
scheme and a high-order scheme,. This
averaging procedure produces solutions which
are conservative and nondiffusive, nd
maintains positivity.

This adaptive rezoner package was
modularized such that users can add the
adaptive mesh to any logical regions bounded

by slip/collapse lines. Extensive
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calculations of various tast problems were
pe~formed, and the results of these calcu
~lations will be discussed in detail.

1. INTRODUCTION

The purpose of this paper is to describe an adaptive
rezoner incorporated into the two-dimensicnal (2D) finite
difference Lagrangian hydrodynamic (hydro) code with a
quadrilateral cell. This 2D hydro code is a FORTRAN program
for the (ray-1 Computer designed to calculate the time-
dependen’. solutions of two-dimensional hydrodynamic problems
with elastic and plastic flow including phase transition and
spall ir plane or cylindrical geometry. A quarilateral cell
is formed by two adjacent constant I lines and two adjacent
constant J lines. An overall code architecture including its
finite difference equations, is given in references 1 and 2.

In section 2 of this papers, a variational method for the
automatic mesh generation in a two-dimension [3]) is developed.
Firs., a formulation of the functional for generating adaptive
mesnes is described. Then the Euler equations for this
fuctional are derived, and the finjite cCcifferencs
approximations to the Euler equations are solved by iteration.
A two-dimensional (2D) FCT (flux corrected transport) remapper
{4] is developed in section 3. First, an algorithm for
calculating a low-order flux and high order flux with corner-
coupling is given. Then a method for limiting fluxes, and
the final antidiffusive transport steps are briefly described.
Several test problems including a reactive HE (high explosive)
burn were calculated using this code with adaptive meshes.
Some results of these calculation ars given section 4.

2. VARIATION METHOD FOR MESH GENERATION

It is well known that there are two approaches to
increase a spatial resolution of the finite difference
approximations to the time-dependent partial differential
equations without using finer uniform meshes over the whole
mesh system. One is the use of a stationary mesh system with
the mesh refinement in space to obtain tha desired accuracy at
the proper locations. The other is the use of an automatic
mesh genaration scheme to move the mesh points in such & way
that they concentrate at the places where they are needed most
for highe: resolution. Researchers along the first approach
are exemplified by the multigrid methods for Brant et al.,
{6,7) and the local mesh refinement Method of Berger et al.,
(8. The s2c0nd apprcach is the variational method for moving
mesh point.s of Brackbill and Saltzman ([3), and fanenko et al.,
[9). Tne variational method of Brackbill and Saltzman was
used in this paper.

The methods of multigrid and local mesh refinem 1t can



achieve high local accuracy, but they lose the numeriocal ac-
curacy and stability at the boundary batween fine and coarse
mesh regions. Since their mesh systeus are not boundary-
fitted, complicated interpolations necessary for the proulems
with shocks and complex geometry. On the cther hand, the con-
trol mechanism in the varjiational methods of Yanenko,
Brackbill, and Saltzman is more problem-oriented, e.g., the
velocities of the moving mesh points, the distortion in the
mesh and concentration of the mesh points can be controlled
almost ir.dependently by varying different control parameters
in the functionals to be minimized.

The detajled description of the variational formulation
of the mesh generator of Brackbill and Saltzman is elaborated
in reference 3. Therefore, only its brief description wiil be
given in this section.

2.1 Variational Formulation of the Mesh Generator

Consider a map from the two-dimensional parameter space
x(g,n) to x(1,J), and we define the following functionals
which measure the properties of the map:

L= 160" (Vm?iav. ' (1)

Io=| (V¢ V) dv. , (2)
'n

I\='|n wldV. , (3)
éx er oxer

- . ———, ]
I =i et ()

where (£,n) are rontinuous varlables which take on integer
values, (1,)) are the indices which give the location of mesh
vertices x(1,j), w(x,y) 1s a given function of x and y, J is
the Jacobian of the map.

The integral in equation (1) measure the smoothnesas of
the mapping from (£,n) to (x,y). 7n particular, the gradients
in the integrand measures the spacing of the conatant £ and n
lines. It seems pausible that a mesh that has amoo.h changes
in spacing would have a functiona) value leas than a jaggedly
spaced mesh. We will call this integral the smoothness
functional. The intergral in equation (2) measures the or-
thogonality of conatant { and n lines. if the mesh were
perfectly orthogonal then the integral would be zero. We will
call this integral the orthogonality funotional. The integral
in equation (3) measures how well the volume elements are
conforming to a given weight funotion w(x,y). If we were to



minimize this integral, we would pra2dict that where w {s large
J should be small and conversely where J {s large w should be
relatively small. Further, if J i amall in a neighbornhood of
some point P then the \rid should have many points close
together in a neighborhoou of the point P, We will call this
last integral the volume welghting functional.

Then, we take a linear combinatfon of the integrals as

below. The lambdas are all chosen positive and their relative
8ize determines the importance given to each integral.

I=1, 44,1 +2,1,, (5)

2.2 Euler Equations for the Variational Problem

The Euler equations for the smooth functional Is is are:

buXxy+boax, +b,x, +a,y +a,y,+a,y,,=0
and {(6)

Ay X +anx, HaX, + VRt v, =0,

where 1, = —Aa. b,, = Ba. ¢, =Ca,
a,, = 24[. b,, = -2B0. ¢,y =—2Ch. (7)

a,, = —A;. b,, ~: B;. c,r=Cy.
Amx y,+x,y,. Be=yl+yl. C=x|+x,. (8)

a=(x}+yp)J. fo=(x;x, + 3y ) y= (x; 43D (9)

The Euler equations for the orthogonality functicaal Io are:

bu"‘“ + bo?-‘h + bu"“nn ta, -"H +a,: -rln + -Yﬂﬂ =0

(10)
Aoy X + Qo2 Xpg + Qo Xy + Cog Ny v Cox Vg + C ¥y = 0.
with coefficients
a, =x,,. by = x,,. Cor= V5
ag, = x v, +x. 0. boy = 2(2x,x, + v, v,) Cor= (v x4+ 20 v )
. . (11)
Qg = X, V). Doy = x;. Cor= 0.

Finally, the Euler equations for the volume weighting
functional Iv are



2w(b, xyy + b, ;x,, + b,.x,, +a,, Yu+8,y,+a,y,) =) fad

ox
and (12)
2w(a,, x, + 82X + 83X, + 0, 3y + €., Yt e y,,)==)? -a—“
B a). .

where the coefficients are given by

a, =-x,r.. b, =1, ca=xl. (13)

au=X, ¥, + X, V. by=-2yy,. Ca=-2x,x,.

a,=-x,¥,. b=yl ch=xj.

Three sets of Euler equations are to be added togethes with

coefficients given by
a=a,+ Aa, + )‘oao'
b= bs + A\b\ + }'nbo'

=0y + Al + Aol

(14)

The resulting system of elliptic equations are numerically
Solved by the classjca. Gauss-Jacobi iteration.

3.  THE TWO-DIMENSIONAL FCT REMAPPER

Lagrangian hydrodynamics calculations are sometimes
terminated prematurely because of severe distortions in the
computational cell., Then, there i{s the need to change the
computational celi in order to continue the calculation., Or
the computational mesh has to be changed to statisfy various
crite, ia if an adaptive mesh algorithm is used with the
Lagrangian hydrodynamics calculations., It is then necessary
to transfer the conservad quantities (such as mass, momentum,
and energy) from the o)d mesh to the new mesh. This process
is called remapping or rezoning. 1In essence, it is an
interpolation procedure from one mesh to another., However, we
would like to impose three important restrictions on this
process; namely we want it to be& conservative, nondiffusive and
positive,

The FCT remapper used {n this paper was developed by
Scannapieco [U] and Zalesak (10]. The detailed description of
FCT cemapper is elaborated in references 4 and 10. Therefore,
only its dbrief description will be given here,

The basis for the new remapper is a flux corrected
transport technique developed by Zalesak for fixed Eulerian
meshes. Zalesak's technique had to be modifiad to run on an
arbitrary quadrilateral mesh., This meant that the high and



low order fluxes used in the technique had to be defined cn an
arbitrary quadriiateral sesh. ;

The basic philoaophy of the FCT technique is that two
algorithns are used to csrry out the transport of the fluid
quantities: An algorithm low-order, in space, that is highly
diffusive but gives smooth results, is combiried through the
medium of a flur-limiter with a high-order algorithm that is
very nondiffusive but causes ripples in the sclution. The
combination produces an algorithm that {s accurste to any
desired to order irn space, 18 nondiffusive, #nd does not cause
numerical ripples. Since the FCT remap:2r is written flux
conservative fora, it conserves all transported quantities to
machine roundoff, and maintains positivity.
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Fig. 1 Calculation of Noncornur-Coupled
Low-Order Fluxes

Now we will cescribe how to calculate the lower-order
fluxes. Fig. ? shows two overlapping quadrilateral

1 13 t
Lagrangianmeshes and their vertices j, j-1,J -1, J’,J N L I
_j'1—1. and J”. The unprimed quantities refer to
the old meah and the primed Quantities refer to the new mesh.
The lover-order fluxes are calculated by donor cell (or
upwind) differenca scheme asauming tha conserved quantities

are piecewise constant over the old and new ce¢lls. For



example, the low-order flux between the meshes j and 32 is
calculated by multiplying a displaced cell volume associated
with a dotted area in Fig. 1 and a conserved quantity from a
donor-cell.

Fig. 2 Calculations of Corner-Coupled High-
Order Fluxes,

To calculate the corner-coupled high-order fluxes, we
construct a hypothetical cell j and its five neighbor cells j-
1, 5= 1, 35, 0% ¢+ 1 and J +! as shown in Fig. 2. The vertex
of this hypothetical cell is located at tne average position
between the old and new cell vertices. Then, the conserved
quantities are linearly interpolated along the top side
panel between the hypothetical cell j and its five neighbor
cells. Finally, the corner-coupled high-order fluxes along
the topside panel are calculzted by taking the line
integration of the advective terma. The corner-coupled
higher-order fluxes along the rightside panel are calculated

in a similiar way.

Since we calculated the low-order and high-order fluxes,
we are ready to calculated the conserved Quantities {n the new

mesh as below:

1. Define the antidiffusive flux,

Aj - FHJ -FLJ (15)



where FHJ

FLJ i3 a net low-order flux away from & new cell J.

is a net high-order flux away from a new cell )

2. Compute the conserved quantitiesc in the new cell using
the low-order fluxes,

L
QNJ - QoJ - FLJ/voJ (16)

where Q:J is the conserved quantities in the new cell J

using the low-order fluxes,
Q is the conserved quantities in old cell j.

oJ
VoJ is the volume of the old cell J.
3. Limited vhe AJ in a manner such the th as computed In
step 4 beluw i3 free of extrema found in Q:J or on'
AS -
j CJAJ' 0 < CJ _(_1 (17)

y, Apply the limited antidiffusive fluxes,

L c
- - (18)
QNJ QNJ AJ/VOJ

where QNJ is final conserved quantities
in the new cell J.

Zalesak's flux limiter [10) was used in this paper.

b, Results, Discussions, and Conclusion

Figs 3 and 4 show comparisons of 2D Hydro Code
calculations for the zhock test problem at the same time, with
or without the adaptive mesh update.

The test problem has two layers of hollow matal ba.ls
which are made of a high density material. An idea)l gas with
gamma of 5/3 was sandwiched between two hollow balls. Two
strong shocks whose sirengths are approximately ! Megabar, are
generatad along two forty-five degree lines from the North and
South poles, and these two shocks move azimuthally toward the
equator,

The adaptive mesh was only added on the ideal gas region,
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Comparisons of Two Azimuthally-Moving Shocks Calculations
Using 2D Hydro Code with (Fig. 3) or without (Fig. 4)

Adaprive Mesh,
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Fig 4-b

Comparisons of Two Azimuthally-Moving Shocks Calculations
Using 2D Hydro Code with (Fig.3) or without (Fig. 4)

Adaptive Mesh.

&nd both the gmooth functional as well as the volume weignting

functional was turned on,

The purpose of the smooth

functional is to connect fine and coarse mesh regions with

smoothly |ncreasing or decreasing meshes.

On the other hand,
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Fig. 3-c Fig. 3-d

Calculations of Two Azimuthally-Moving Shocks ofter their
Collisions at the Equator Region using 2D Hydro Code with
Adaptive Mesh.

the purpose of the volume functional (s to resolve a certain
Physical varisble associated with a function (e.g.., a shock)
by adding fine meshes, and to follow this physical variable,
The physical variable ic be followed in our test problem is a
pressure¢ gradient.

The mesh interface and the shock pressure vs., the Z-
directional distance are plotted together with the same scale.
Figs. 3-2 and U-a show that two shock fronts move azimuthally
toward the ejuator. Please, note how closely the adaptive
mesh follows the shock front. 1In addition, the fine and
coarse mesh regions ere connected smoothly by increasing or
decreasing meshes. Figs 3-b and U-b show the results of mesh
interfaces and shock pressure profiles at approximately 0.195
microseoonds when two shocks collide with each other, forming
a Mach stem. Two-dimensional Hydro Code without the adaptive
@esh update, died at this time because of mesh tanglings.
However, 2D Hydro Code with the adaptive mesh kept calculating
the transient behaviors of two shocks as shown in Figs. 3-c
and 3-d. The maximum shock strength attained approximately
6.5 Megabars at about 0,2! microseconds at the equator.

Then, two shocks moved back tou the polar axis and were
reflected at about 0.382 microseconds.

Now we will use the adaptive mesh for calculations of
reactive HE turns. The test problem has a cylindrical
geometry, and has one detonation point surrounded by a



[ F W INENEPY WY e

Fig. 5-a Fig. 6-a

Comparisons of Forest Fire Reactive HE Burn Calculations
Using 2D Hydro Code with (Fig. 5) or without (Fig. 6)

Adaptive Mesh.

[ F ¥ UNSESVE NI Y

Y S G L L A L¢P SR

Fig. 5-b Fig. 6-b

Comparisons of Forest Fire Reactive HE Burn Calculations
Using 2D Hydro Code with (Fig. 5) or without (Fig. 6)

Adaptive Mesh.

sensitiv2 HE and a rectangular inert foam material at the lop-
left side. An entire HE device was e cloaed by two aluminum



plates at the top and bottom sides.

Figs. 5. and 6 show comparison of 2D Hydro Code
calculations for the reactive HE test problem at the same
time, with and without adpative mesh update,

The mesh interface and unburned HE maas fraction contour
were plotted together with the same scale in Figs. 5 and 6.
The heavy solid lines in Figs &5 through é indicate the
boundary line between the burr .d and unburned HE. The
adaptive mesh was only added on the HE and inert foam material
regions., The amooth functional, the volume functional, and
the orthogonal functional were turned on. The physiczal
variatle to be follonwed in our test problem in a pressure
grad nt.

Figures 5 and & show how the detonation front moves with
time. Please, note how closely the adaptive meshes follow the
detonation front in Fig. 5. 1In add.tion, the fine and coarse
mesh regions are conrected by smoothly lncreasing or
decreaszins meshes as shown in Fig. 5. Therefore, Fig. 5 shows
a relatively narrow def.onation front without any hourglass and
finger-ijke instabilites behind. However, Fig. 6 shows both
hcurglass and finger-like instabilities behind and at
detonation front., Two-dimensional Hydro Code without the
adpative mesh died at about 6.05 microseconds because of
hourglass inscabilities. 2D Hydro Code with and without the
adaptive mesh calculated the detonation velocity is 0.8¢
and 0.78 cm/microseconds, respectively. The theoretical
detonat.on veloecity is 0.89 cm/microseccnds.

Two major obstacles preventing a successful calculation
¢f reactive HE burns using the adaptive mesh have been
tendency of a mesh adjuster to pull most orf meshes from a
region ahead of a detonation front to a detonation front
region and a2 mix of a partially-rurned HE cell with an
unburned HE cell Ly a remapjer The former makes tnhe nesh
adjuster run out of mes..ea at the region ahead of the
¢etonation front, and the latters re¢si'lts in artificial
burning of the HEs, making the detc-at’on front move faater
than its theoreticel velocity. To cure these problems, the
displacemeats of mesh points which nack the meshes close to
the detonation frort, are calculated by a linear weighting of
two displacements, that is, one by culculated by the mesh
adjuster, and the other by multiplying a locel fluid velocity
and a timestep. Since the local fluid velocity is zero at tne
region ahead of the detonation front, this linear weighting of
two diaplacement tends to make the mesh adjuster pull more
meshes from the region behlind the detonation front ratrer than
ahead of ths detonation front which, in turn, makes the
remapper less likely mix the partially-burned HE cell with the
unburned HE cell.



The main thrust of this work has been to implement the
adaptive rezoning capability into the code, and we are néw
beginning to use it, in particular, for calculations for
reactive HE burns. These are preliminary resultes and do not
represent the word,

We plan to incorporate the more advanced rezoner [5] into
2D Hydro Code as part ¢f an 2ffort to cure the artificial
burning of the HEs. This rezoner was developed by John
Dukowicz and maintains the second-order accuracy in space.

In conclusion, the adaptive mesh can handle intracteble
problems, and increases the spatial resolution of the physica.
variables without adding additional mesh.
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