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Burg(]'z’s) has suggested the application of the maximum entropy princi-
ple of analysis to the computation of power spectra. A number of publications
followed (c.g., 4, 5, 6) which expanded the apvlication to a variety of piob-
lems. Ball (ref. 7) has cmphasized that the case for this method of analysis
- may have been overstated at times: caveat cmptor!

Friedcn(s'g'lo) has applied the method to the analysis of inage data. We
briefly review his approich as we have applied it to the images of an x-ray
pinhole camera. If thie image detector (film in our case) were noiseless, the
relation between object and image would be given by (ref. 11)
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I is the irradiance of a square image cell centered on xﬁ,yi and O is the ra-
diance of a squarec object cecll centered on X;,Yj. The 4-dimensional matrix §
is the pointspread or Green's functinn of the p%oblem. Its normalization is
such that for any object point its integral over the image plane is unity.
The effects of various instrumental influciaces and physical phenomena are
consolidated in S. The application of the present work to other problems
(c.g., to astronomical mappiug of the x-ray sky) requires, in principle, only
a restructuring of the S caiculation and manipulation. From a probability
analysis Frieden then obtains
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B is an adjustable paramcter sct to guarantce N =n + B > 0 where n is
the actual noise in the system, p is an adjustable paramcggy, Ak 2 and y are var-
iables to be solved for, is the restored object matrix, N is the¢ noise ma-

trix and P, is the total radiance of the objcct as established from I.

We now spccialize to the particular problem where the object is a glowing
laser-fusion target microsphere 0.95 cm from a pinhole of ralius 2 x 1077 cm,
the image _is 7.2 cm from the pinhole and the photon wavclength is likely to be
6.2 x 10°° em. The image matrix was constructed from a microdensitometer
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analysis of the image on Kodak RAR2490 film. R. F, Benjamir of this Laboratory
kindly provided the fi’..

The circle of confusion of a pinhole camera can be estimated by simply
addirg the effects of geometric optics and diffraction. If the pinhole, of
radius a, is illuminated by a spherically divergent wavefront, radius of cur-
vature R, at image distance Z gecometrical optics gives a circle of confusion
radius a(R + Z)/R. The light is also diffracted through an angle €/ka (k =
2m/8), 6§ = 1, its exact value depending on the definition of the edge of the
diffraction pattnrn. The radius of the c1rc1e then becomes Rgf¢ = a(R + Z)/R
+ Z6/ka and its minimum occurs at (a 32 = Z8(R/(R + 2))/k; Implying an op-
timum Fresnel number of F =~ 1/3. opt In this case diffraction dominates
the pointspread function. Light scattering in the emulsion (ref. 12) can
alsc contribute. llowever, x-ray scattering is small and we neglect it for
the nonce. The advantage of optimizing the camera are: best possible re-
so ution; design is as insensitive to pinhole contour as possible since

/da = 0. To calculate the pointspread function we consider a circular
apgrgure of radius a, in a scrcen located at 2 = O, uniformly illuminated by
2 spherically divergent wavefront of radius of curvature R. At the screen
the field is E(r,0) = exp{- ikr /2R} Upon insertion of this into the Fresrel
integral for axisymmetric diffraction we find at a distance Z from the screcn

- a ., =2
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where o = (R + Z)/R. For small Fresnel numbers the integral exponent1a1 is
slowly varying and we can partially integrate sctting U = exp(- 1ka?-/2u),
dv = J (krr/Z)rdr Repeating the process indefinitely we find
o
E(r,2) = » expl- ik[z + (% + o®a®)/22]) D GikaaZ/n)" L3 (o), (6)
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which converges for all values o the Fresncl number; F = kaaz/ZNZ and p =
kar/Z. To a sufficient approximation for our purposes
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where we now take p = ka|X - x'|/Z: X being a point in image space and X'
being an object space point projected on the image plane. This photon distri-
bution is then used in its nonfactorable form to calculate the pointspread
function.

We now consider the computationzl aspccts of the problem. Let the image
space be overlayecd by a squarc grid n by n, and the object space by a square
grid m by m. Since we want to use an n of 100 or more we cannot handle the
completc discretized pointspread matrix, which with diffraction, would have
(mn) elements. Instcad we truncate thc original pointspread function at a
spot size which includes about 95% of the cnerpsy. In the present case this
reduces the number of clements by a factor of 250 and permits storage of the
matrix on disk (after deletion of zeroes by compaction).
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Finding the m by m object mntgix which naximizes the (eonstraired)
entropy requires the solution of n“ + 1 cinultancous nonlinear equations.

This is done by a Newton Raphson method which requires at each iteration,
calculation of the (n“ + 1) by (n“ + 1) symmetric Jacobian and solution of
the n? + 1 linear system. The truncation of the discretized pointspread
function also serves, fgrtunaEcly, to make the .Jacobian sparse and of a par-
ticular pattern. The n* by n“ part, if considered to be an n by n block ma-
trix is a band matrix, with, say, d sub ard super diagonals, where (d + 1)/n
is approximately the ratio of the spot «iameter to the side of the image
space. In the linit of a very fine grid (large n) this ratio is constant:
the spot approach:s the point source imape of the pinhole. Furthermore, the
n by n matrices of ordinary nunbers which constitute the nonzero hlocks of
the Jacobian have the same structure. The one extra row and column of the
Jacobian, which corresponds to the overall power constraint, are full.

We can just afford to store on disk the approximately 2 dzn2 distinct
nonzero clcments of the symmetric Jacobian but two tricks are required for
solving the linear system Jx = y inside the Newton Raphson iteration loop.
The first takes care of the single full row and column. The second avoids fill-
in of the sparse Jacobian during the solution process for the llnear system.
Let

J =(Kl-§ )s X = (“s xO)’ Yy = (vl )’o).
R§o

where R, u and v are n2 by one and Jo’ X,» ¥, are scalars. Then to solve

J* e y we first solve Ku, = v, Ku? = R, Then we write u = u, + X u, and solve
R (u1 + xouz) = JU for X To solve Kw = Z without using any extra Storage we
write the decomposition K = D + G, where D is the block diagonal and G is the
rest. Thus D is a symmetric band matrix of order n“ witn d sub and super di-
agonals and the system Da = b can be sol¥e9 officiently with no extra space
required. We then iterate the system Dw(@) = z - cw(q-1) starting with w(0)

a 0. This can probabiy be proved convergent when we are nesar the solution,
aad it is of course desirable in any cvent to start the Newton Raphson pro-
cedure fairly near the solution; for example by solving the problem first with
a_fairly coarse mesh. We note that the work rcquired for each q is of order

d nz; for q = 1 this work 1s required for initial trianglularization of D, and
for q £ 1 it is required for the multiplication of G (which has about d(2d + 1)
nonzero clements per row)

With these techniques in hand we have analysed the microdensitometer
traces of a laser-fusion varget photograph. We are presently generating re-
stored object matrices of 80 x 80 pixcls from image matrices of 64 x 64 pixels.
We have the prospect of incrcasing both of thesc numbers significantly. GCDuring
the oral presentation of this paper we will examine an original x-ray photo-
graph, its microdensitometer profile and restorations made with various values
of the quasi-free paramcters in the calculation. We will also consider com-
puter time requirements.
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