A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.
TITLE: THE HIGH-DENSITY Z-PINCH AS A PULSED FUSION NEUTRON SOURCE FOR FUSION NUCLEAR TECHNOLOGY AND MATERIALS TESTING

AUTHOR(S): R. A. Krakowski, J. D. Sethian, and R. L. Hagenson

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.
THE HIGH-DENSITY Z-PINCH AS A PULSED FUSION NEUTRON SOURCE
FOR FUSION NUCLEAR TECHNOLOGY AND MATERIALS TESTING

R. A. Krakowski,* J. D. Sethian,† and R. L. Hagenson‡

ABSTRACT

The dense Z-pinch (DZP) is one of the earliest and simplest plasma heating and confinement schemes. Recent experimental advances based on plasma initiation from hair-like (10s μm in radius) solid hydrogen filaments have so far not encountered the usually devastating MHD instabilities that plagued early DZP experimenters. These encouraging results along with debut of a number of proof-of-principle, high-current (1-2 MA in 10-100 ns) experiments have prompted consideration of the DZP as a pulsed source of DT fusion neutrons of sufficient strength (\(\dot{N} \geq 10^{19} \) n/s) to provide uncollided neutron fluxes in excess of \(I_w = 5-10 \text{ MW/m}^2 \) over test volumes of 10-30 litre or greater. While this neutron source would be pulsed (100s ns pulse widths, 10-100 Hz pulse rate), giving flux time compressions in the range \(10^5-10^6 \), its simplicity, near-term feasibility, low cost, high-Q operation, and relevance to fusion systems that may provide a pulsed commercial end-product (e.g., inertial confinement or the DZP itself) together create the impetus for preliminary consideration as a neutron source for fusion nuclear technology and materials testing. The results of a preliminary parametric systems study (focusing primarily on physics issues), conceptual design, and cost vs. performance analyses are presented. The DZP promises an inexpensive and efficient means to provide pulsed DT neutrons at an average rate in excess of \(10^{19} \) n/s, with neutron currents \(I_w \lesssim 10 \text{ MW/m}^2 \) over volumes \(V_{exp} \gtrsim 30 \) litre using single-pulse technologies that differ little from those being used in present-day experiments.

1. INTRODUCTION

Heating and confinement of high-density plasma by the self magnetic fields generated from plasma currents flowing between two electrodes is one of the earliest schemes considered in the quest for controlled thermonuclear fusion.¹ The formation and Ohmic heating of these high-density Z-pinch (DZPs) by fast-rising currents generally relied on a rapid implosion of a cylindrical current sheath onto the axis of the pinch. These early "classical" pinches were found to be highly unstable¹-³ to sausage (\(m = 0 \)) and kink (\(m = 1 \))

* Los Alamos National Laboratory, Los Alamos, NM 87545
† Naval Research Laboratory, Washington, DC 20375-5000
‡ Phillips Petroleum Co., Bartlesville, OK 74004
magnetohydrodynamic (MHD) deformations. Linear, ideal (zero resistivity) MHD theory predicts reduced growth rates, or even stability for the \(m = 0 \) mode, if the current profiles are sufficiently diffuse. Minimum pressure profiles for which the \(m = 0 \) mode is ideally and linearly stable have been reported. The stabilizing effects of external gas pressure or finite ion Larmor radius have also been suggested.

The development of improved high-voltage, pulsed-diagnostic, and pinch-formation techniques together have led to improved results for the DZP and an enhanced appreciation for the impact of formation conditions and plasma profiles on the pinch behavior. Recent DZP experiments at Los Alamos and at the Naval Research Laboratory have initiated high-voltage discharges through small-radius (10-40 \(\mu m \)), solid-deuterium fibers. These \(I = 0.3-0.6 \) MA experiments do not observe the \(m = 1 \) kink instability, and the \(m = 0 \) sausage instability is suppressed for 100s of Alfvén transit times across the pinch radius as long as the plasma current is increasing (\(\dot{I} > 0 \)). While transport and stability analyses are being conducted using three-dimensional resistive models in both linear and non-linear regimes, the stability of these fiber-initiated DZPs remains enigmatic, indicating the importance of formation method, pinch profiles, local (edge-plasma) dissipation, and dynamic stabilizing mechanisms. Activities organized to resolve these unknowns have recently been summarized. Even more recently, a Z-pinch workshop has summarized progress in this area.

These recent experimental and theoretical results warrant the examination of the potential and possible characteristics of the DZP as an intense source of DT neutrons for fusion nuclear technology testing and other uses. While a number of fusion reactor scooping studies of the DZP have been reported, the potential of this approach as a small but intense source of fusion neutrons represents a more near-term application. A simplified analytic model of the DZP has been used to examine parametric tradeoffs between plasma physics requirements, fusion neutron fluxes and currents, available test volume at a given neutron flux, and a range of operational characteristics. This early modeling effort assumed that the pinch current is increased in a way to assure a constant plasma radius and a balance between magnetic-field pressure and the plasma pressure; flat density and temperature profiles were assumed, alpha-particle heating and pressure was ignored, and the main device performance was characterized by either the number of Alfvén times, \(N_A = \int_0^\tau_A dt/\tau_A \), across a pinch of radius \(a \), \((\tau_A = a/v_A \) and \(v_A \) is the Alfvén speed) or the plasma current rise rate, \(\dot{I} \). Under these idealized equilibrium conditions, when the Ohmic heating equals the Bremsstrahlung losses, the pinch operates at the Pease-Braginskii current of \(I \sim 1.5-2.0 \) MA, depending on temperature and density radial profiles. At a deeper level of analysis, a connection must be made between pinch profiles, stability, and performance; this phase of the DZP neutron-source study is reported herein.

The projection of DZP performance as a pulsed neutron source remains largely in the modeling phase, and this summary report emphasizes this aspect of the problem. After briefly summarizing the essential elements of the DZP in the following Section 2, the plasma models used to estimate neutron yields, \(S_N \), and efficiency, \(Q_I \), are described and evaluated in Section 3 to yield a sample design point. These design-point results have yet to be translated into a conceptual engineering design, but these results are of
sufficiently detail to allow a preliminary economic and performance (e.g., test volume at a
given neutron flux) evaluation to be made in Section 4. Preliminary conclusions are given
in Section 5.

2. ESSENTIAL ELEMENTS OF THE DZP

Figure 1 depicts the DZP as a linear filament of plasma through which is passed an
axial current of sufficient magnitude both to heat the pinch through Ohmic dissipation and
to confine the resulting plasma pressure, \sim 2 n k_B T, by the self magnetic fields associated
with the axial plasma current. The combination of plasma heating and confinement in a
linear geometry (10-30 \mu m radius \times 0.05-0.10 m length) renders the DZP an elegance not
enjoyed by most magnetically confined fusion systems. It is for this reason that the DZP
was one of the earliest plasma-confinement schemes examined in the quest to control ther-
monuclear fusion. The methods of forming these early pinches by means of fast implosion
of current sheaths formed on the surface of the pinch gave rise to the two basic instabilities
illustrated schematically on Figure 2. These instabilities along with impurity influx from
the solid electrodes at each end of the pinch forced fusion research into directions that: (a)
embedded axial magnetic fields for stabilization (of the m = 0 mode); and (b) eliminated
the electrodes by forming the combined axial and encircling magnetic-field structure into
a torus. Plasma stability and longevity was thereby achieved, but at the cost of simplicity
and elegance.

Recent interest in the pulsed DZP has been centered on new ways to form a diffuse-
current pinch (e.g., minimizing the radial sharpness of the current sheath) by applying a
large voltage across a hair-like fiber of frozen deuterium (or DT in the case of the neutron
source being considered here). The resulting pinch, which so far have passed 100s kA
through a filament of 10s \mu m in radius, have shown surprisingly long stable times as long
as the plasma current is rising (I \gtrsim 10^{12} A/s). The time theoretically needed for this
solid-fiber pinch to become unstable to the kinds of distortions depicted in Figure 2 is on
the order of \alpha/v_A; these modern DZPs have shown stability for N_A \gtrsim 100 be of these Alfven
transit times, with values of N_A \gtrsim 1,000 being the goal for the neutron source application.

The absence of the m = 0 instability can be explained by profile effects, but the
length of stable times for the m = 1 (kink) instability remains somewhat a puzzle and
uncertainty for extrapolation of the DZP to high-Q fusion-burn conditions. Explanations
for the observed stability include: (a) resistive effects, which explain the low-temperature
m = 0 stability; (b) viscous effects, which explain the higher-temperature m = 0 stability;
(c) skin effects, which are postulated to enhance the aforementioned effects of resistivity
and viscosity; and (d) axial-flow effects to provide m = 1 stability at higher tempera-
tures. The results of recent (and continuing) calculations by Nebel on the impact of
plasma resistivity on the m = 0, 1 instabilities are shown on Figure 3. Likewise, and in
a more complex non-linear way, plasma viscosity can provide channels through which the
energy that drives these instabilities can be dissipated; radial/axial coupling through Lar-
mor gyrations, thermal flow along magnetic field lines, and compressional distortions of
the pressure tensor provide dissipating mechanisms, each of which may be operative over
different temperature regions.
Whatever the actual stabilization mechanisms active in the DZP, the experimentally observed stability in the modern DZP has been sufficiently reassuring to justify the construction of two major "proof-of-principle" experiments at the Naval Research Laboratory and at the Los Alamos National Laboratory. Table I summarizes the main parameters of each device, and Figure 4 gives a schematic diagram for each. The ZFX and HDZP-II experiments are complimentary, with the NRL device operating with a slower current rise rate ($5 \times 10^{12} \text{ A/s}$) and a somewhat higher-radius fiber (30-50 μm). At the heart of each device is a Marx-bank-driven fast energy store (a water capacitor for NRL, a water-filled transmission line for Los Alamos), and each has the planning and capability to use DT fibers. These devices, in size, energy, and cost, are prototypical of the DZP neutron source being proposed herein. In fact, the cost of constructing the Los Alamos HDZP-II experiment provides a realistic cost basis for estimating the DZP-based neutron source (Section 4). The technological challenges of operating this pulsed neutron source (10-100 Hz, 10-100 ns pulse width) are addressed qualitatively in Section 4, although considerably more work is required to resolve the technological issues related to 10-100 Hz pulse rates required of a $\dot{S}_N \geq 10^{19} \text{n/s}$ DZP neutron source.

3. DESIGN-POINT DETERMINATION

Preliminary scoping studies of the DZP neutron source were made on the basis of a constant-radius analytic model that heated only by Ohmic dissipation, with Bremsstrahlung radiation being the only loss channel for plasma enthalpy. These early estimates predicted that pinches of radius $a \approx 15-20 \mu m$ and length $\ell_p \approx 0.05-0.10$ operating with discharge times $\tau_D \approx 50 \text{ ns}$ would produce a DT burnup fraction of $f_B = 0.05-0.10$ and a neutron yield of $S_N \approx 0.5-1.0 \times 10^7$ ($W_F \approx 0.1-0.2 \text{ MJ}$) with a Q-value of $Q_F \equiv W_F/W_B \approx 1.0$, where $W_B \approx \frac{1}{2} L_p I_p^2$ is the stored energy and L_p is the plasma inductance relative to the return conductor surrounding the pinch. These pinches typically would operate with a peak current of $I = 1.5-20 \text{ MA}$ and require (for the value of τ_D given above) $V_p/\ell_p \approx 5-10 \text{ MV/m}$ from the Marx-charged water-filled transmission line; pulse rates in the range 10-100 Hz, therefore, would be required to give a neutron source strength $\dot{S}_N \approx 10^{18}-10^{19} \text{n/s}$ considered necessary for a high-flux ($I_w \approx 5-10 \text{ MW/m}^2$), high-volume ($V_{exp} \approx 10^5 \text{ of litres}$) neutron test facility.

While the analytic model of the DZP was adequate to determine the reasonableness of the concept, the compressional/expansional dynamics as well as fusion-product heating, burnup effects, enthalpy egress, infusion of electrode impurities, plasma pressure and temperature profiles, and the waterline circuit can all impact the crucial parameters of the DZP neutron source, particularly S_N, Q, τ_B, and/or f_B. Consequently, the design-point determination was made using a coupled-plasma/circuits dynamical model described below. This modeling activity is continuing in considerably more detail with the realization of the importance of a range of physical phenomena on the fusion burn dynamics and because of the eminence of single-discharge DZP experiments with parameters not significantly different from those suggested here for the neutron source.
3.1 Model

The time-dependent, multi-species, profile-averaging (zero-dimensional), circuit-driven plasma model used to simulate reversed-field-pinch reactor plasmas25 was modified to describe the DZP. A designated fraction of the energy associated with charged-particle fusion reaction products is deposited in the plasma, plasma enthalpy end losses are simulated as parallel electron conduction over regions of the plasma where the electrons are demagnetized, line-density depletion by fuel burnup is included, a range of plasma profiles consistent with the usual (\(\nabla \tilde{p} = j \times \tilde{B}\)) equilibrium is included, and the radial transport of energy from the pinch other than radiation (line, cyclotron, and Bremsstrahlung radiations) is zero. Generally, axial energy transport by electron conduction is dependent on profile assumption, but is small, and the majority of the alpha-particle energy may be retained by the pinch.26 A classical electrical resistivity was assumed with \(Z_{\text{eff}} \approx 1\), except as modified by alpha-particle accumulation. The complex process of fiber melting and plasma formation27 was not modeled.

A range of plasma pressure/current profiles was examined in order to understand better the impact of possible stability constraints,3,4,11,12 as well as the impact on the overall pinch dynamics and overall performance; these profiles were assumed to be frozen into the pinch, with more realistic multidimensional models11 being required to examine diffusion effects. Two pressure profiles were considered that under widely differing assumptions could be stable to the \(m = 0\) sausage instability: (a) the linearly ideally stable Kadomtsev profile;4,8 and (b) a linearly non-ideally stable profile.12 These extrema are respectively given by

\[
p/p_0 = \left[5\beta/(4 + 5\beta)\right]^{\frac{1}{2}} \quad (1A)
\]

\[
(4 + 5\beta)^{\frac{1}{2}}/\beta^{\frac{3}{2}} = \left[(5\beta - 1)^{\frac{1}{2}}/(\beta - 1)^{\frac{1}{2}}\right] x^2, \quad (1B)
\]

and,

\[
p/p_0 = 1 - 2x^\nu + x^{2\nu}, \quad (2)
\]

where \(\beta = 2\mu_o p/B_0^2\) is the local beta, \(\beta_\theta = 2\mu_0 \langle p \rangle/B_0^2(1)\) is the average beta, and \(x = r/a\) is the normalized pinch radius. Linear resistive stability is predicted12 for the polynomial profile described by Eq. (2) when \(\nu \geq 32\) (i.e., very flat radial pressure profile) for both \(m = 0\) and \(m = 1\) modes. The same model used to determine the stability of profiles given by Eq. (2) indicates that the Kadomtsev profiles are more than marginally stable if finite resistivity is included. Figure 6 gives the pressure and current density profiles for a range of assumed \(\beta_\theta\) or \(\nu\) values. The profile factors that correct the Bremsstrahlung, Ohmic, and DT-fusion powers computed using average properties, \(g_{\text{RF}}, g_{\text{OHM}},\) and \(g_{\text{DT}}\), respectively, with \(g_{\text{BR}} = g_{\text{DT}}\) for a flat radial temperature profile, are also given on Figure 6.

A simplified algorithm was used to evaluate the waterline characteristics depicted on Figure 5 once the discharge time, \(\tau_\mu\), and the stored energy \(W_R\), are specified. In addition to the plasma inductance

\[
L_p = \frac{\mu_0 l_p}{2\pi} n(R_p/a), \quad (3)
\]
a range of "horizontal" and "vertical" gap inductances are computed, with the ratio f_L of stray to plasma inductances being computed that is consistent with the requirements of the main insulator stack (Figure 5) and magnetic insulation. Given the required field energy
\[W_B \simeq (1 + f_L)L_I I^2/2 , \] and a transfer efficiency, η_{WL}, the waterline capacitance can be computed from
\[C_{WL} = 2(W_B/\eta_{WL})/V_p^2 = \frac{2\eta_l \ell_w}{\ell n(R_o/R_i)} . \]

The length of the waterline is determined from the following expression for the discharge time:
\[\tau_D = 2 \sqrt{L W L C_{WL}} = \frac{2\ell_w}{c} (\epsilon/\epsilon_o)^{1/2} , \] where c is the speed of light in vacuum, ϵ_o is the permittivity of free space, and ϵ is the dielectric constant of water. From these expressions the ratio R_i/R_o can be computed.

Finally, the following expression has been developed empirically by waterline designers that relates the waterline standoff distance, $R_o - R_i$, to the applied voltage, V_p, the time of voltage standoff, τ_D, and the electrode area available for breakdown, $A_w \simeq 2\pi \ell w < R >$, where $< R >$ is the logarithmic average radius:
\[V_p \tau_D^{1/3}/10^6(R_o - R_i) \simeq 131.4/A_w^{0.08} . \]

The results of a parametric evaluation of this waterline model are shown in Figure 7, where it has been assumed that $R_1 = R_i/2$ and $R_2 = (3/4)R_i$ (Figure 5). The electrical circuit is modeled as being composed of the coupled waterline/plasma elements depicted in Figure 8.

3.2 Results

As noted previously, the following processes that can impact device performance:
(a) circuit efficiency (e.g., f_L versus τ_D, Figure 7); (b) plasma/circuit dynamics; (c) profile effects, particularly for Ohmic heating (Figure 6); (d) alpha-particle heating as contributing to expansion forces; and (e) axial energy transport. For each pressure profile, the temperature is assumed a constant of radius, and the impact of alpha-particle heating is examined parametrically. The discharge is assumed to terminate when $I = 0$; the potential benefits of a crowbarred phase in increasing f_B and Q_p are not taken into account. All computations fixed f_L at a conservative value of 0.5 while forcing τ_D and I, as well as the waterline geometry and W_{MAX}, to adjust appropriately. Figure 9 and 10 give the time-dependent behavior of plasma temperature, density, radius, current, and powers for both the Kadomtsev [Eq. (1)] and polynomial [Eq. (2)] pressure profiles, with and without alpha-particle heating; for both profiles, and for the plasma enthalpy endloss model used, alpha-particle self-heating can prematurely disrupt the pinch, causing premature expansion of the plasma column, a quenching of the burn, and a limitation on the Q-value and f_B. The dependence of Q_P and S_N on N_A are shown in Figure 11 for...
both the peaked (Kadomtsev) and polynomial ("poly") profiles, with and without alpha-
particle heating; the results of the previously described analytic (constrained radius) model
are also shown. Figure 12 shows the computed dependence of Q_p and S_N on peak plasma
current; the strong dependence reported from experiment10 is noted.

The general behavior with or without the inclusion of alpha-particle heating is simi-
lar between profiles for the fixed conditions assumed ($f_L = 0.5$, $a_o = 15 \mu m$, $N =
3.88(10)^{19} m^{-1}$). For the Kadomtsev profiles, $g_{OHM} = 6.7$, $g_{BR} = g_{DT} = 6.5$, and
$(g_{OHM}/g_{BR})^{\frac{1}{3}} = 1.02$, where the latter ratio is proportional to the equilibrium ($\dot{a} = 0$
Pease current, I_{eq}; these profile factors for the polynomial profiles ($\nu = 32$) are 3.76, 1.06,
and 1.88, respectively. Hence, without alpha-particle heating, the stronger Ohmic heating
early in the current transient gives a larger radial excursion for the Kadomtsev profile, but
the final current is somewhat lower. The stronger internal fields for the Kadomtsev profile
makes the axial end loss of energy by electron conduction negligible compared to 5% for
the case of no alpha-particle heating in the case of the polynomial profile, and as high
as 25-30% for the case of alpha-particle heating. For both profile cases considered, the
initial plasma expansion, as driven by Ohmic heating, is turned around, and the plasma
re-compresses to or beyond the original radius. It should be noted that the plasma/circuits
dynamics in this early expansion phase is not well modelled by the zero-dimensional model.

Without alpha-particle heating, the assumed profiles set the time scale for the burn,
with expected higher g_{OHM} and g_{DT} values for the Kadomtsev profile reducing that time
scale somewhat. Generally, without alpha-particle heating, $T_e \simeq T_i$ for both profiles, but
strong decoupling of T_e and T_i ($T_i > T_e$) is found with alpha-particle heating included for
both profile cases. The impact of alpha-particle heating seems to be qualitatively the same
for both profiles: to continue the radial expansion of the plasma column initially started
by the Ohmic heating. Since g_{OHM} and g_{DT} are larger for the peaked Kadomtsev profile,
the "blow up" of the pinch is more rapid, and the adverse impact on Q_p and S_N is greater
(factor of ~ 8 reduction for the Kadomtsev profile compared to 2.7 for the polynomial
profile). The polynomial profile also benefits from an enhanced axial energy-loss rate to
help shed the alpha-particle energy deposited into the plasma.

Combining all these effects, along with a greater separation of T_e and T_i, when alpha-
particle heating is included, gives the composite behavior summarized on Figures 11 and
12. On the basis of these simulations, a "strawman" design point has been selected using
the polynomial pressure profile [Eq. (2), $\nu = 32$]. This design is summarized on Table II for
the cases with and without alpha-particle heating. The latter $Q_p \simeq 1$ ($a_o = 15 \mu m$, $\ell_p =
R_c = 0.1 m$) design ($S_N \simeq 2 \times 10^{17} n/pulse$, $\tau_D = 100 ns$, $f_B = 0.1$) is used to project
the economics and general performance (I_e versus V_{zfp}) of the DZP neutron source. However,
it is emphasized that the burn dynamics of the DZP are complex, the present model uses
only simplified models to described a limited number of physical processes and future
work is required in this area to understand better important tradeoffs between physics,
technology, performance, and cost.24
4. PRELIMINARY ECONOMICS AND PERFORMANCE EVALUATION

4.1 Cost Estimate

The DZP is a pulsed neutron source with significant time compression of the uncollided neutron flux. For example, the strawman design listed on Table II, with a 2×10^{17} n/pulse source strength delivered in $\tau_D \approx 100$ ns, would for an average source strength of $S_N = 10^{18}$ n/s have to pulsed at a frequency of $\omega \approx 50$ Hz, giving a flux compression of $FC \equiv 1/\omega\tau_D \approx 2 \times 10^5$. Some leeway exists for reducing FC towards values where radiation damage rate effects are less of a concern to the material scientists, but the DZP can never approximate a truly steady-state source of neutrons. Reductions in FC generally reduce the per-pulse neutron yield (e.g., burnup fraction, f_B) and increase the repetition rate. While a few orders of magnitude reduction in FC are possible, the plasma Q-value decreases almost in proportion to f_B and, consequently, the cost of these more “steady-state-like” neutrons increases.

The positive side of this pulse nature is that these neutrons can be produced cheaply and fairly soon, give success of the DZP experiments presently coming on line at NRL (ZFX) and Los Alamos (HDZP-II). Since the DZP neutron source differs little from these experimental devices, with the exception of the pulse rate, and since significant costs are not anticipate in designing, building, and operating a 50-100 Hz DZP, cost projection for this pulsed neutron source as summarized in Table III, should be fairly accurate.

Table III gives only cost of the neutron source, per se. Before the generalized evaluation methodology described in Reference 29 can be applied to provide an overall, intercomparative figure-of-merit, the full capital cost of the DZP neutron facility must be estimated. The total capital cost is expected to exceed considerably the device cost summarized in Table III, but unfortunately the design of the overall facility has not available in sufficient detail to allow an accurate, “bottoms-up” cost estimate to be made. Consequently, an estimate of the total capital cost, $\text{CAP}(M\$)$, was made by scaling in size and power the more detailed estimates mode for the FTF/RFP.29 Table IV summarize the results of this estimate, with: $\text{CAP} \approx 110$ M\$, after the cost of systems of no relevance to the DZP (e.g., coils current drive, etc.) was subtracted. As described in Reference 29, CAP is multiplied by a pay rate, $\lambda (\text{yr}^{-1})$ and combined with other annual charges related to: (a) cost of people, COP (M\$/person yr); (b) cost of electricity, COE (mills/kWeh); and cost of tritium, COT (M\$/kg), to give the following expression for the total annual changes:

$$AC(M\$/\text{yr}) = \lambda \cdot \text{CAP} + \eta \cdot \text{COP} + p_f P_F \left[\frac{COE}{114.2 \cdot Q_p} + \frac{COT(1 - TBR)}{18.0} \right]. \tag{8}$$

This annual charge is used in the following expression for a figure-of-merit, FOM, that reflects the cost of creating a given number of total lattice displacements with neutrons.

$$\text{FOM}(M\$/dpa \cdot m^3) = \frac{AC \cdot T}{DPA \cdot V_{exp}}. \tag{9}$$

In these expressions, N is the number of people needed to operate the neutron source, p_f is the duty factor of the device, TBR is the tritium breeding ratio, $DPA/T \approx 101_w(MW/m^2)$
is the annual displacement rate, and $V_{exp}(m^3)$ is the experimental volume. Using the base-case values for these parameters listed in Table V, an annual charge of $AC = 28 \text{ M\$}/\text{year}$ is estimated.

4.2 Performance Evaluation

In conducting a preliminary performance evaluation of the DZP neutron source, both the pulse-rate issues and the neutron flux distribution through the test volume must be resolved. Little detailed engineering has been devoted to the pulsed-rate issues, which center on: (a) power supply; (b) DT fiber injection; (c) electrode erosion; and (d) post-discharge evacuation of the discharge chamber.

Preliminary estimates of the plasma exhaust issue revealed no serious problem with evacuating the $\sim 1 \text{ litre-torr}$ of unburn DT fuel, helium ash, and impurities on a $\lesssim 10^{-3}s$ timescale for the geometry depicted in Figure 5 and summarized in Table II. Likewise, no serious operational on cost problems could be identified with the power supplies, with the main concern being the lifetime of the switches used in the Marx bank [re: footnote (a) in Table III].

A number of schemes for injecting the DT fiber into the discharge chamber on a $\sim 10 \text{ ms}$ timescale have been considered, but none have been designed in sufficient detail to assure a good solution to this, along with electrode erosion, the greatest uncertainty with the DZP neutron course. Gravity feed of the frozen fibers would be adequate, continuous fiber extrusion with discharge “clipping” has been considered, or “blow-gun” injection using a gas-gun or electron-beam self-ablation drive are among the ideas being considered.

The problem of electrode longevity represents another serious issue for the DZP neutron source, both in terms impact on plasma performance and the economics and with respect to the essential feasibility of the 10-100 Hz DZP. Preliminary estimates of impurity ingress into a $\ell_p \approx 0.1 \text{-m}$ pinch from a lithium electrode indicates that, for discharges less than $\sim 300 \text{ ns}$ in duration, the lithium evaporated at each electrode would have insufficient time to impact the burn dynamics and neutron yield. The main problem then revolves around resolving the geometry of a replenishable electrode. Lithium liquid metal seem particularly appropriate for this purpose, because of the relatively low melting point (459 K) and the low atomic number. Continuously extruded lithium rods or liquid-lithium jets are being considered. An example of the latter has been developed by NRL and is shown schematically in Figure 13.

As noted previously, any attempt to ameliorate the pulsed nature of the DZP neutron source will decrease F_B and therefore, Q_p; greater input power for a given source strength results. This point is illustrated schematically on Figure 14, which describes an idealized burn of duration τ_D that occurs with a period $1/\omega$ to yield a neutron-flux time compression of $FC = \dot{S}_N / \dot{S}_N \approx \tau_D / \tau_D$, where \dot{S}_N is the neutron production rate averaged over the pulse width τ_D and $\dot{S}_N \approx \dot{S}_N \tau_D$ is the time-averaged neutron production rate. Given that the time between pulses should be less than the time τ_V required for a lattice vacancy to recombine, a lower limit of $\omega \gtrsim 100 \text{ Hz}$ would be required for $\tau_V \approx 10 \text{ ms}$. An upper bound of $FC \lesssim 10^3$ then defines an operating space on Figure 14 that generally is not
achievable by the DZP in order to mimic a "steady-state" neutron source; burn times much above \(\tau_D \approx 100 \) ns seem highly unlikely, particularly if the constrained that \(\dot{I} \geq 10^{12} \) A/s must be enforced for reasons of stability. Hence, pulse frequencies in excess of 10 kHz would be required, and, given an average source strength of \(< \dot{S}_N > \approx 10^{19} \) n/s, a burnup fraction of \(f_B \leq 5 \times 10^{-4} \) would be required for the base-case conditions \((\ell_p = 0.1 \) m, \(N \approx 3.8 \times 10^{19} \) m\(^{-1}\) for \(\omega = 10^4 \) Hz (e.g., \(2 < \dot{S}_N > /N \ell_p = f_B \omega \)). The resulting Q-values for this system is given approximately by

\[
Q_p = \frac{W_F}{W_{1N}} = \frac{W_F}{\frac{1}{2} L_p I^2 + R_n I^2} = \frac{(E_F/T)f_B}{4\ell(n(R_c/a) + 3(\tau_D/\tau_n))} \approx \frac{55 f_B}{1 + \tau_D/10\tau_n},
\]

and would indeed be low for these low values of \(f_B \); generally, the DZP cannot meet the steady-state criteria (e.g., \(1/\omega < \tau_D \) and \(FC < 10^3 \)) while simultaneously operating at \(Q_p > 1 \). moderate levels of neutron source strength \(< \dot{S}_N > \approx 10^{19} \) n/s), even if kilocycle levels of pulse rates proved feasible.

While a number of ideas are available to deal with the main problems of the 10-100 Hz DZP neutron source, none have been developed to a level of integrated detail needed to assess the neutronic performance. Consequently, the idealized geometry shown in Figure 5 has been used to estimate the neutron flux and energy distribution. A two-dimensional Monte Carlo transport calculation was performed using the MCNP code.\(^{30}\) The spacial distribution of 14-MeV neutrons and neutrons with energies above 0.18 MeV are shown in Figure 15 for this \(\sim 50\)-Hz device; the MCNP computation modeled all vital parts of the DZP, including the topside cryogenic DT fiber maker, the bottomside alumina insulator stack, and the neutron-moderating water in the high-voltage transmission line. These preliminary estimates indicated severe heating problems in both the waterline insulators and the cryostatic fiber make for a 50-Hz, \(\sim 10^{19} \) n/s device. Figure 16 gives the dependence of experimental volume on uncollided neutron flux for an \(\dot{S}_N = 1.8 \times 10^{18} \) n/s device (\(\sim 10 \) Hz). Combining the capital-cost estimate mode in Section 3.1 with the "standard" methodology described in Ref. 29, the resulting relative figure of merit for the DZP neutron source is shown in Figure 17. A comparison of this pulsed neutron source \((FC = 10^5-10^6) \) with the steady-state RFP plasma-based neutron source is also given.

5. SUMMARY AND CONCLUSIONS

The DZP promises to fill a gap as a materials-testing facility of low-cost, moderate-to-high-flux fusion neutron source that can provide DT neutron currents in the range \(I_w = 5-10 \) MW/m\(^2\) in 20-30 \(\ell \) test volumes. This conclusion is based on an operating scenario where all fusions take place only during the current-rise phase, with a pinch termination assumed to occur when \(\dot{I} \approx 0 \). The DZP is a strongly pulsed neutron source with neutron flux time compressions in the range \(10^4-10^5 \); reductions in the flux compression is possible,
but the plasma Q-value would fall considerably below unity and the pulse rate would be in the kilo-Hertz range. By far the greatest physics uncertainty rests with attaining stable pinch times in the range $N_A = 2,000-4,000$, although it should be noted that for all cases $t^* \equiv$ magnetic Reynold's number, $Re_m = \tau_0 / \tau_A$, is only in the range of 2,000-4,000. Initial inner melting, maintenance of pressure equilibrium, alpha-particle effects, the magnitude of plasma enthalpy endloss, and electrode impurity ingress present other important physics uncertainties requiring further study. Given that operation at high neutron fluxes proves possible by increases in the pulse rate substantially above ~ 1 Hz, minimizing the magnitude and cost of driver power, which is expected to be a main operational cost item, will require $Q_p \sim 1$; this condition in turn translates into $N_A \gtrsim 4,000$, with $f_B \gtrsim 0.05$ and $\dot{\Delta}N_T \gtrsim 0.8(10)^{17}$. As seen from Figure 11, these conditions and requirements can become easier or be made more difficult, depending on profile effects and whether or not the alpha particles couple energy/pressure to the pinch. Operation of the pinch beyond the $I_n = 0$ cutoff enforced throughout this study will significantly increase the yield (burnup) and Q-value, although the MHD stability and technology required to "crowbar" the Dzp represents an additional issue; it is nevertheless encouraging that the kinds of yields and fuel burnup (2-10% with alpha-particle heating, larger without alpha-particle heating) are theoretically possible during the current rise phase of 50-100 ns.

The main technical uncertainties are ones of energy transfer efficiency (as measured by $Q_p = W_F / W_{MX}$ and f_L), repetition rate, and damage rate effects [neutron flux time compressions in the range 10^5-10^6]. While the DZP is inherently a pulsed neutron source, not unlike those expected from inertial confinement fusion, the pulse rate must be sufficiently high to allow operation at a thermal steady state with little or no (uncontrolled) temperature oscillation occurring in the test samples. Pulse rates of the order of $\gtrsim 1$ Hz in this regard should be sufficient from an engineering viewpoint, except possibly for small-scale sample tests.

Related to this pulse-rate issue from an operational point of view is the ability to remove the unburned DT gas ($\sim 0.10 \ell$ torr), the maximum injection rate of fresh DT fibers, and the pulsed-power requirements (1.5-2.0 MA at $V \approx 2.5$ MV). Other issues related to repetition rate are associated with switching of the Marx generators used to drive the high-voltage waterline, power reflections and dissipation therein, and electrode erosion and fatigue damage. High-repetition-rate Marx banks are available, albeit at lower energies then required. Most of these pulse-ratemax technical issues appear amendable to reasonable technical solution within realistic cost and time constraints, although more detailed designs are required.

It should be emphasized that the physics of the DZP neutron source can be tested on a single-shot basis, without the need to develop critical technologies, on facilities presently coming into operation at NRL (ZfX) and Los Alamos (HIZP-II). If these experiments prove successful, the critical engineering components, (e.g., respectively, pulsed high-voltage power supplies, continuously pulsed fiber makers, a range of regenerative electrode configurations) can be developed in a "burst mode" on a prototypical device capable of discharging a short sequence of pulses. A typical development plan is suggested in Table VI based on this sequence of proof-of-principle (ZfX, HIZP-II) · burst-mode-
prototype—neutron-source-facility; the main components that would be tested and developed are indicated. A properly direct program of this kind should take approximately three years to provide a continuously operating $10^{18}-10^{19}$ n/s neutron source, given the physics of DZP stability allows the $I > 0$ pinch to heat at nominally constant radius for $4,000-5,000$ radial Alfvén times. The use of nominal existing and relatively uncomplex technology (no high-current accelerator, no high-power neutral beams, no high-field magnets, no high heat/particle-flux surfaces, etc.) promises a relatively inexpensive and rapid deployment of this pulse source of DT fusion neutrons.

In summary the DZP concept is emerging with new excitement generated by experimental sustainment times that go far beyond those predicted by MHD stability theories. Much of this progress can be attributed to a greater appreciation of the role played by the early formation and internal structure of the pinch, although much remains to be understood in this area. The focus of ongoing efforts will be on understanding the implications of these formation and structural aspects of the DZP, as well as the impact of the driver circuit, in so far as they determine the operation of a high-Q, transitory ($I \simeq 0$) source of fusion neutrons.
REFERENCES

14. Proc. 2nd Conf. on Dense Z-Pinches, April 26-28, 1989, Laguna Beach, CA.

FIGURE CAPTIONS

Figure 1. Schematic representation of the dense Z-pinch (DZP).

Figure 2. Schematic representative of the m = 0 ("sausage") and m = 1 ("kink") instabilities that commonly plagued the DZP.

Figure 3. The impact of plasma resistivity on the m = 0,1 instabilities (Figure 2) in the DZP.

Figure 4. Schematic diagrams of proof-of-principle DZP experiments under construction at the Naval Research Laboratory (ZFX) and the Los Alamos National Laboratory (HDZP-II).

Figure 5. Conceptual arrangement of the DZP neutron source showing schematically the Marx generator, water-filled transmission line, insulator stack, pinch chamber, DT fiber maker, and test volume. This model also provides a geometry for the first estimates of neutron fluxes, and dimensions shown are used for estimating waterline design.

Figure 6. Pressure and current-density profiles and profile factors for two (extreme) test cases [Eq. (1) and (2)] examined by parametric design study.

Figure 7. Interdependence of waterline characteristics as a function of discharge time using the geometric described on Figure 5 and Eqs. (3)-(7).

Figure 8. Plasma/waterline circuits model used in time-dependent DZP simulation.

Figure 9. Computed DT discharge for the Kadomstev profiles [Eq. (1)] with and without alpha-particle heating.

Figure 10. Computed DT discharges for the polynomial profiles [Eq. (2)], with and without alpha-particle heating.

Figure 11. Dependence of neutron yield and plasma Q-value on number of Alfvén times, N_A, for a range of pressure profiles, including the flat profiles assumed for the constant-radius analytic model. All discharges were terminated when $\dot{I} = 0$, and the impact of alpha-particle heating is shown (Figures 9-10).

Figure 12. Dependence of neutron yield and plasma Q-value on peak plasma current.

Figure 13. A liquid-lithium electrode concept being considered as a means to provide replenishable electrodes to the 10-100 Hz DZP.

Figure 14. Illustrations of pulse-rate and Sax-compression limitation for the DZP neutron source.

Figure 15. High-energy and low energy neutron flux distributed for a 50 Hz, $\dot{S}_N = 10^{18} n/s$ DZP neutron source based on the geometry given in Figure 5.

Figure 16. Dependence of experimental volume on uncollided neutron current for the DZP geometry depicted in Figure 5.

Figure 17. Dependence of relative figure of merit on available test volume and comparison with the RFP neutron source.
TABLE I
Parameters for Proof of Principle DZP Experiments under Construction of the Naval Research Laboratory (ZFX) and the Los Alamos National Laboratory (HDZP-II).\(^{(a)}\)

<table>
<thead>
<tr>
<th></th>
<th>Naval Research Laboratory (ZFX)</th>
<th>Los Alamos National Laboratory (HDZP-II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinch length, (\ell_p ,(m))</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Pinch current, (I(\text{MA}))</td>
<td>2.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Waveform</td>
<td>Sinusoidal</td>
<td>Quasi-sinusoidal</td>
</tr>
<tr>
<td>Quarter-period, (\tau_D ,(\text{ns}))</td>
<td>630</td>
<td>(>100)</td>
</tr>
<tr>
<td>Initial (\text{d}I/\text{d}t), ((10^{12}\text{A/s}))</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Voltage, (V_p ,(\text{MV}))</td>
<td>0.75</td>
<td>3.0</td>
</tr>
<tr>
<td>System energy, (W_B ,(kJ))</td>
<td>350</td>
<td>200</td>
</tr>
</tbody>
</table>

\(^{(a)}\) Both facilities are expected to be operational in 1989.
TABLE II
“Strawman” Resign Parameters for a DZP Neutron Source for Use in Economic and Performance Evaluation.

<table>
<thead>
<tr>
<th>Profile factors, g_i</th>
<th>With αs</th>
<th>Without αs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g_{BR} = g_{DT}$</td>
<td>1.057</td>
<td>1.057</td>
</tr>
<tr>
<td>g_{OHM}</td>
<td>3.758</td>
<td>1.378</td>
</tr>
<tr>
<td>Alpha-particle heating, f_α</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Current rise time, τ_R (ns)</td>
<td>96.4</td>
<td>96.1</td>
</tr>
<tr>
<td>Voltage, $V_{WL} = V_{MX}$ (MV)</td>
<td>10.1</td>
<td>10.1</td>
</tr>
<tr>
<td>Stored Energy, W_{MX} (kJ)</td>
<td>537.</td>
<td>537.</td>
</tr>
<tr>
<td>Water-line efficiency, η_{WL}</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>Transfer efficiency, f_L</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Plasma current, I_ϕ (MA)</td>
<td>1.86</td>
<td>1.81</td>
</tr>
<tr>
<td>Neutron yield</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy, W_N (kJ)</td>
<td>157.7</td>
<td>421.2</td>
</tr>
<tr>
<td>Number, $S_N/10^{17}$</td>
<td>0.70</td>
<td>1.87</td>
</tr>
<tr>
<td>Plasma Q-value, $Q_P = W_F/W_{MX}$</td>
<td>0.37</td>
<td>0.98</td>
</tr>
<tr>
<td>Number of Alfvén times, N_A</td>
<td>2990</td>
<td>4200</td>
</tr>
<tr>
<td>Plasma energies (kJ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohmic, W_{OHM}</td>
<td>27.6</td>
<td>41.5</td>
</tr>
<tr>
<td>Alpha particle, W_α</td>
<td>39.4</td>
<td>105.8</td>
</tr>
<tr>
<td>Axial conduction, W_{COND}</td>
<td>11.6</td>
<td>7.83</td>
</tr>
<tr>
<td>Radiation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bremsstrahlung, W_{BR}</td>
<td>6.6</td>
<td>13.9</td>
</tr>
<tr>
<td>Line (oxygen), W_{LINE}</td>
<td>nil</td>
<td>nil</td>
</tr>
<tr>
<td>Cyclotron, W_{CYC}</td>
<td>nil</td>
<td>nil</td>
</tr>
<tr>
<td>Expansion, W_{PV}</td>
<td>21.9</td>
<td>-6.1</td>
</tr>
<tr>
<td>Plasma, W_P</td>
<td>27.6</td>
<td>26.2</td>
</tr>
<tr>
<td>Fuel burnup, f_B</td>
<td>0.036</td>
<td>0.095</td>
</tr>
<tr>
<td>Final Z_{eff}</td>
<td>1.04</td>
<td>1.10</td>
</tr>
<tr>
<td>Final plasma parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line density, $N = \pi n^2 n (10^{10}/m)$</td>
<td>3.88</td>
<td>3.88</td>
</tr>
<tr>
<td>Density, $n_i (10^{28}/m^3)$</td>
<td>0.38</td>
<td>3.07</td>
</tr>
<tr>
<td>Temperature, T_e/T_i (keV)</td>
<td>10.1/20.1</td>
<td>14.9/14.7</td>
</tr>
<tr>
<td>Expansion, $x = a/a_0$</td>
<td>3.68</td>
<td>1.47</td>
</tr>
</tbody>
</table>

[report] spinch 6/7/89- 18
TABLE II
“Strawman” resign parameters for a DZP neutron source for use in economic and performance evaluation.
(Cont.-1)

Geometry
- Initial plasma radius, $a_0 (\mu m)$ 15
- Plasma length, $\ell_p (m)$ 0.10
- Return conductor radius, $R_p (m)$ 0.10
- Front end (a)
 - magnetically insulated gap, $\delta_p (m)$ 0.01
 - insulator-stack height, $\ell_i (m)$ 0.83
 - insulator-stack radii, $R_1 / R_2 (m)$ 0.24/0.35
 - inductances (μH)
 - insulator, L_i 67.9
 - gap 1, L_{g1} 19.4
 - gap 2, L_{g2} 0.08
 - plasma, L_p 175.9
- Waterline
 - length, $\ell_{WL} (m)$ 1.44
 - inner/outer radii, $R_1 / R_2 (m)$ 0.47/0.86
 - inductance, $L_{WL} (\mu H)$ 0.17
 - capacitance, $C_{WL} (pF)$ 10.63
- Marx bank
 - inductance, $L_{MX} (\mu H)$ 17.4
 - capacitance, $C_{MX} (pF)$ 10.1
 - voltage, $V_{MX} (MV)$ 10.1
 - energy, $W_{MX} (kJ)$ 537.0

(a) Refer to Figure 5.
<table>
<thead>
<tr>
<th>Item</th>
<th>HDZP-II</th>
<th>Cost (k$)</th>
<th>Unit Cost</th>
<th>DZP n-Source</th>
<th>Cost (k$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse Rate (Hz)</td>
<td>~0</td>
<td>100</td>
<td>0.5 $/kg</td>
<td>10</td>
<td>270</td>
</tr>
<tr>
<td>Marx Bank<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Energy (kJ)</td>
<td>200</td>
<td></td>
<td></td>
<td>540</td>
<td></td>
</tr>
<tr>
<td>• Dimensions (m)</td>
<td>1.5 x 3.0 x 1.5 = 6.8 m<sup>3</sup></td>
<td>18 m<sup>3</sup></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Energy Density (kJ/m<sup>3</sup>)</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission Line<sup>b</sup></td>
<td></td>
<td>100</td>
<td>167 $/kg</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>• Mass (tonne)</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Dimensions (m, ℓ x r<sub>i</sub>/r<sub>o</sub>)</td>
<td>1.83 x 0.57/0.79</td>
<td>1.44 x 0.47/0.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Chamber<sup>c</sup></td>
<td></td>
<td>50</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>• Dimensions (m, ℓ x r)</td>
<td>0.3 x 0.15</td>
<td></td>
<td></td>
<td>0.1 x 0.1</td>
<td></td>
</tr>
<tr>
<td>• Volume (ℓ)</td>
<td>42</td>
<td></td>
<td></td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>Fibermaker<sup>d</sup></td>
<td></td>
<td>2</td>
<td>1 $/W</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Power Supply</td>
<td></td>
<td>20</td>
<td></td>
<td>5,400</td>
<td></td>
</tr>
<tr>
<td>• current (A)</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• voltage (kV)</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• power (kW)</td>
<td>20</td>
<td></td>
<td></td>
<td>5,400</td>
<td></td>
</tr>
<tr>
<td>Tank<sup>e</sup></td>
<td></td>
<td>55</td>
<td>3.7 $/kg</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>• mass (tonne)</td>
<td>15</td>
<td></td>
<td></td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>• dimensions (m)</td>
<td>3.4 x 3.1 x 3.5 = 9.0 m<sup>3</sup></td>
<td>24 m<sup>3</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• nominal densities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• energy (kJ/m<sup>3</sup>)</td>
<td>2.2</td>
<td></td>
<td></td>
<td>22.5</td>
<td></td>
</tr>
<tr>
<td>• mass (tonne/m<sup>3</sup>)</td>
<td>1.7</td>
<td></td>
<td></td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Vacuum</td>
<td></td>
<td>1</td>
<td></td>
<td>300</td>
<td>50</td>
</tr>
<tr>
<td>• speed (ℓ/s)</td>
<td>300</td>
<td></td>
<td></td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>TOTAL COST (k$)</td>
<td></td>
<td>328</td>
<td></td>
<td>6,520</td>
<td></td>
</tr>
</tbody>
</table>

(a) For both the HDZP-II experiment and the DZP n-source, approximately 0.1 Coulomb is discharged through a given switch, which for a lifetime charge transfer of 10⁸ Coulomb amounts to ~ 10⁷ discharges or switch lifetime of ~4% (~2 weeks) of a year for 80% availability. Replacement of those (~$100) items is expected to have a negligible impact on operating cost or availability.

(b) Although the high-voltage transmission lines for both the HDZP-II and the DZP n-source are nominally of the same dimensions, the n-source application would be more highly stressed and an arbitrary factor of 5 has been included in costing this item.

(c) A factor of two has been included in the nevertheless smaller load chamber required of the n-source to account for the added cost of accommodating irradiation samples and active cooling.

(d) This cost for the n-source taken arbitrarily 25 times that of the HDZP-II experiment to accommodate the impact of 10-Hz operation on this yet-to-be-designed item.

(e) The tank mass for the n-source was estimated from the HDZP-II "smear" density using a volume that accommodates the increased requirements of the higher-energy Marx bank, itself operated at the effective HDZP-II energy density, while allowing the nominal added ~ 8 m³ for the HDZP-II-like transmission line.

[report] spinch-6/7/69 - 0
<table>
<thead>
<tr>
<th>ITEM</th>
<th>(M$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front-end Device Cost</td>
<td>7.0<sup>(a)</sup></td>
</tr>
<tr>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>• Supply</td>
<td>5.0</td>
</tr>
<tr>
<td>• Distribution</td>
<td>3.0</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>7.0</td>
</tr>
<tr>
<td>Maintenance services</td>
<td>25.0</td>
</tr>
<tr>
<td>Data acquisition, control, processing</td>
<td>4.0</td>
</tr>
<tr>
<td>Watercooling/heat rejection</td>
<td>2.0</td>
</tr>
<tr>
<td>Tritium fueling system</td>
<td>1.0</td>
</tr>
<tr>
<td>Buildings, facilities, utilities</td>
<td>46.0</td>
</tr>
<tr>
<td>Cleanup, disposal, monitoring</td>
<td>2.0</td>
</tr>
<tr>
<td>Project cost</td>
<td>8.0<sup>(b)</sup></td>
</tr>
<tr>
<td>Total</td>
<td>110.</td>
</tr>
</tbody>
</table>

^(a) Taken from Table III

^(b) 8% of total of above items.
TABLE V
Typical Parameters Used to Evaluate the Figure of Merit (FOM) for the DZP Neutron Source

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual cost of money, (\lambda) (1/yr)</td>
<td>0.15</td>
</tr>
<tr>
<td>Number of people required to operate device, (N)</td>
<td>25</td>
</tr>
<tr>
<td>Cost of people, (COP(M$/\text{person yr}))</td>
<td>0.16</td>
</tr>
<tr>
<td>Availability, (p_f)</td>
<td>0.8</td>
</tr>
<tr>
<td>Cost of electricity, (COE(\text{mills/kWeh}))</td>
<td>40</td>
</tr>
<tr>
<td>Cost of tritium, (COT(M$/\text{kg}))</td>
<td>10</td>
</tr>
<tr>
<td>Tritium breeding ratio, (TBR)</td>
<td>0.0</td>
</tr>
<tr>
<td>Tritium burn-up fraction, (f_B)</td>
<td>0.05</td>
</tr>
<tr>
<td>dpa goal value, (DPA)</td>
<td>100</td>
</tr>
<tr>
<td>Irradiation time to achieve DPA, (T(\text{yr}))</td>
<td>1.0</td>
</tr>
<tr>
<td>Normalized dpa rate, (DPA/I_{\nu}T(dpa m^2/MW/yr))</td>
<td>10</td>
</tr>
</tbody>
</table>
TABLE VI
Typical Development Scenario for the DZP Neutron Source

<table>
<thead>
<tr>
<th>Component</th>
<th>Proof of principle</th>
<th>Prototype (burst)</th>
<th>Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test physics</td>
<td>Develop critical</td>
<td>(100-Hz, continuous)</td>
</tr>
<tr>
<td></td>
<td>(single shot)</td>
<td>technologies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(100 Hz for 1 s)</td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>Marx/waterline</td>
<td>DOD technology-burst</td>
<td>Continuous</td>
</tr>
<tr>
<td>Fibermaker</td>
<td>Manual extrusion</td>
<td>Pellet inject-burst</td>
<td>Continuous</td>
</tr>
<tr>
<td>Electrodes</td>
<td>Metal</td>
<td>Rotating solid</td>
<td>Lithium streams</td>
</tr>
<tr>
<td>Pumping</td>
<td>Turbo/diffusion</td>
<td>Large reservoir</td>
<td>Large pumps</td>
</tr>
<tr>
<td>Heat transfer</td>
<td>NA</td>
<td>Thermal capacity</td>
<td>Existing technology</td>
</tr>
<tr>
<td>Tritium handling</td>
<td>0.5 Curie/shot</td>
<td>50 Curie/burst</td>
<td>Fusion technology</td>
</tr>
<tr>
<td>Development time</td>
<td>< 2 years</td>
<td>3 years</td>
<td>3 years</td>
</tr>
</tbody>
</table>
PRESSURE BALANCE

kinetic vs magnetic

\[P = 2 n k_B T_1 \]

\[B_0^2 / 2 \mu_0 \]

\[\mu = \frac{\mu_0}{2 \pi} \]

IN:
- Ohmic Dissipation
- Compression
- Fusion-Product Heating

OUT:
- Radiation
- Endloss
"SAUSAGE" (m = 0) INSTABILITY

"KINK" (m = 1) INSTABILITY
1 - load chamber (pinch)
2 - fibermaker
3 - transmission line
4 - intermediate store
5 - Marx bank
\[\frac{V}{10^6} \frac{\tau_R^{1/3}}{R_0 - R_i} = \frac{131.4}{A^{0.08}} \]

\[l_p = 0.1 \text{ m} \]
\[a = 15 \mu\text{m} \]
\[R_p = 0.1 \text{ m} \]
\[\delta = 10 \text{ mm} \]
\[I = 1.5 \text{ MA} \]
\[N_A = \int_0^{\tau_B} dt / \tau_A \]
FUSION NEUTRON YIELD, $S_N / 10^{17}$

PLASMA CURRENT, I (MA)

$\alpha_0 = 15 \mu$m

$\ell_p = 0.1$ m

$\varepsilon = 0.5$

$\tau_R = 80 - 120$ ns

$N_A = 1000 - 4000$
\[P_F \text{ (MW)} = Q_p W_B \omega \]

\[= 28 \frac{\langle \dot{S}_N \rangle}{10^{19}} \]

\[2 \frac{\langle \dot{S}_N \rangle}{N \tau_p} = f_B \omega \]

\[\langle \dot{S}_N \rangle = \dot{S}_N \tau_B \omega \]

FLUX COMPRESSION = FC = \dot{S}_N / \langle \dot{S}_N \rangle = \frac{1}{\tau_B \omega}
NEUTRON WALL LOADING, I_w (MW/m²)

EXPERIMENTAL VOLUME, V_{exp} (\mathcal{L})

FTF/RFP

DZP
NEUTRON WALL LOADING, I_w (MW/m2) vs. RELATIVE FIGURE-OF-MERIT, RFOM

- DZP
- FTF/RFP