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ABSTRACl

This is tie second of t-wo leciures, In the first lecture the map from
a cellular automaton to a sequence of analytical approximations called
the local structure theory was described. In this lecture the inverse map
from approximation to tie class of cellular automata approximated is
constructed. The key matter is formatting the local struct~u-c theory
equations in terms of block probability estimates weighted by
cafticients. The inverse mapping relies on this format. Each possible
assignment of values to the coefficients defines a class of automata with
related statistical properties. It is suggestd that these coefficients seine
to smoothly paramctcrizc the space of cellular automata. By varying the
values of tie parameters a cellular automaton nctwGrk may lx designed
so that it has a specified invariant measure. If an invariant measure is
considmed a “memory” of the network, then this variation of pa.ramctcm
to s~cify the invariant measure must be considerd “learning”. It is
importan[ to note that in this view learning is iio[ the sto:agc of patterns
in a network, but rather the tailoring of the dynamics of a network.
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Introduction

In rhe last talk I gave a rather general inrroducdoc to cellular automata I showed

you tha~ for some cellular automata at leasL there is a probability measure which

remains invaritmt as the rule 1s applied to lL Any other measure tends twmrd this

fied measure as the rule is iteratively applied m lL I suggested that this unique s~ble

invariant measure might k called the ‘“mcmcxy” tirainui by the dynamics of the

cellular automaton network. I then wmt on to develop some methods for analyzind

the sranscicai behavior of cellular automata. I showed that ● sequence of modeis,

called the locaI structure theory, can be associated with an automaton. As the order of

chewy is incrcase4 so does the ~uracy with which statistical propatics of the rule

arc predicted by the checxy.

Now I want to attack the inverse problersL .’Given a system of local mucturc

L+eory equations. find the set of rules which are appt’oximmd by this system of equa-

tions.”. There are several reasons why this IS an important problem to c.mstier.

1) When dunking of modell.irtg physical phenomena with celhk automam. It LS

not clear thai there should always be un automaton wtuch desmbm the observed

bchawor. Rather. ]t should be rhat m most cases them IS a Cl&-S of automata each of

which IS an equally vahd dcnptIon. [f chls is me, one WOUK like to have a way of

charac[enzmg the features shared by the automata m ths class. These aa me fcarum



which arc most likely to be tic pctient ones. If all one has is r-he rule uble of a sin-

gle I-W which does s.omcd-ing of intercs~ one is likely to fwus on irrelevant details of

this rule table while searching to explain how W rule does what It does.

2) !wfosI physical systems, and all biological systems, operate in the prewnce of

significant noise. Both noise in the stmcture of LFKsys[em and noise in t-he inpu~ to

the system. h this situation, it should a.iways lx the case that if a single cellular aum-

maton is a gcmd mcxiel of a system then many different cellular automata are goal

models of tie system. The noix w-ill Lend to wash out fotmal, imclcvant ctifferenccs

between rules. Only the most robust fearurcs of their construction and action will sur-

vive r-he noiw. The [cd structure theory can lx considered as a mock] of L!!eaction

of cellular autornaca in t-he prcwnce of noise. The higher tie order of dmory, tie less

the noise.

3) In k couw of constmcting the map from local structure themy approximation to

classes of celluldr automam, Lhe local structure r.hccmyequations will be forrruitcd so

that certain WM of cocfficiems appear in the cqumions. To c.wh set of cmffkients

values conqmnd.s a class of cellular automaa With time cmfficients on ha.n& one

can begin to see what happens as the values of tie coefficients chmge. That is, tie

coefficients can now lx trc.mcd as parameters and one can ask how the properties of

cellular aummma clm.rtge as the paratxwurs arc smoothly varied

This M point has a number of impw-mnt consequences. The first consequence is

[hat one of the stumbling blocks in front of applying techniques developed for dw

smdy of smooth dynamical systems [o the smdy of cellular autorruma has been

removed. That is, in the sn.dy of snmxh dynamical systems, one likes to have some

parameter in the map which CM & continuously varied. The changes in the map’s pro-

pcmes with change in the para.cmt.cr value arc hen examined A deterministic cellular

~utomaton h,u no such pa.ra.rmtcrs. The CCUIAX automaton behaves according [o [he

$pccificacion of i(s rule rabk. If the rule table is changed hen one has a diffettnt ccl; u-

Iar automaton. In tie local structure dmory, one has a wt of pu-amc(ers whose vma-

[lon changes properties nw of a single rule, but [he properties of classes of rules



anangcd in a nice way in the space of all aucomam.

The important consequence of the pammctcfization of che space of automata for

learning is thar by varying parameters, clws of rules tidl specified propcrcics can

be found If one accepts that the “memories” of a cellular automaton arc its stable

invarian[ probability measures, then one component of “learning” txcorncs the process

of, given a probability measure, that is, given something (o remember, find cellular

automata which 6X that probability measure. When one says that an organism or a

machine “learns” one usually means not ordy that the organism or machine tixcs

memories, but chat somehow i[ fixes these mcrrnnics “by iwlf’, tithout programming

from the outside. Wha[ I w-W be dedbing hem arc the knobs that must lx rwistcd to

fix a memory. I wiU not describe the “ghost in the machine” that twists the knobs. I

will mention one way that tie knobs can & twisted “automatically”, that is, as pan of

mmc explicit optimization scheme. I wiU make no cla.inL however, that this is how it

is actually done in the brain.

lkrc is a rough correspondence txtwccn the “twisting of the mobs” in Iccal

strucrurc theory equations to 6nd rdcs with specified invariant measures and the back-

propagarion algorithm in standard neural nets, In each case one attempts to find

intcmcriors lmwcen elemcnu in a netwcmk so that uw network as a whole behaves in

a desired way,

[t turns out that in many insuu-Kc3 smooth variation in para.mctem resulL3 in

srnaxh variation in the properties of the rulm described. This encourages belief that

one has found a good and uscfuJ way to pammctct-ize the space of I-UICS.RccaU from

the last talk that the “raw” description of a cellular automaton, that is, the rule fable, is

not the proper format for ma.kLIg smooth changes in the propmies of rules- Rule 22,

which forms pexrns with a chm.cic peppering of uiangles, is only one bit different

from r~le 54, which forms patterns with large patches of periodic background pattc-n

puncruatcd by chaotic discontinuitics. I wi!l try 10 convince you tha[ co m~e small

changes in rules, one should make small changes in the local sumcturc LIIcmy approx-

imations to tie I- UICS.
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1. LST ORDER -1 : PURE MONTE CARLO

I want you to dpprecidk that il is ve~ difficult [0 find a particular cellular auto-

maton witi sow spccifmd watiscical propcrdes i you don’ t have any Idea how the

space of cellular au[omaa is srructurWL FL3t of all, Lhe space of ceilular automaLa IS

very big. The number of cellular automa-a wirh two states p cdl gms like 22*’

where r IS the mdius of the rule. So there arc 232 or atmut 4 billion mdius 2 rules, 2 128

radius 3 rules etc. S0 if you want to find Gsingle au~omamn with some good property,

you won’t ever find it by picking aummaca at random and seeing how rhey behave.

It’s nonetheless interesting to pick automam at random and see how they behave.

Here is an experiment (fjgure 1) in which I took 10,CMIO cellular automata at random

from each of chc sets of rwlius 2, radius 3, and radius 4 rules. I hen ran tiesc rules

on a wry long cor-diguracion, again gemmtcd at from- The densiry of cells in state

1 was dewrrmrwd by sampling. Ituaaon of each rule condnucd until the value of the

density seemed to stabilize. This figure shows rhc distribution over the set ~f rules of

rhe large-time density deurminui in this way.
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Ile widest disrnbution is for radius 2 rules, and the more namow distributions for

radius 3 and radius 4 rules. It appears that as the radius of rules increases, the expecta-

tion that the final density of a randomly-chosen rule will be 1/’2rapidly approaches 1.

If one were to look at some other statistical property, say the large-time probability of

a 11, one would see the same thing. That is. the large-time probability of a 11 will be

the probability of a 11 in a completely random configuration. This is to say that the

typical cellular automaton has a very boring invariant tneasw--it is the measute that

gives all blocks of a given length the same probability. If we want to find cellular

automata which fix more interesting measures, we arc going to have to find a more

interesting way to pick ties out of the space of automata

2. THE ACTION OF A CELLULAR AUTOMATON ON A MEASURE

In the last lecture I explained how the local structute theory worked in a pictorial

fashion. TCJunderstand how the inverse map is constructed, however, we will definitely

need some equations. The most concise equation which describe” how a cellular auto

maton acts on measures is

w(E) = p.(%-l(E)). (1)

This says the following: Say you have a pdmbility measure M which describes the

probabilities of all sets of configurations at some given time in the evolution of a cel-

lular automaton r. Now you want to M the measure z y at the next time. The proba-

b~lity of a set E under x p is the measure under y of the preimage of E. The preimage

of a set E of configurations is the set of conf@rations which map to E under the rule.

This is denoted T-’(E).

Some basic facts of measure theory allow us to expand equation (1) out so that it

is both more understandable and more concrete. AU sets of configurations can be con-

structed out of fundamental sets called cyfinder sets or bfoch. Blocks arc sets of
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configurations which share a specified contiguous sequence of cell states at a specified

position in the configuration. A block can be specified by giving the states sl,~ 0. “

which defined the bkk, and the starting posiaon for these states. So we would like to

write equation (1) in terms of its action on blocks.

Cellular automata are slufi-invurianf. That is, applying a rule to a configuration

and then shifting the result (say to the left) is the same as shifting the configuration

and then applying the rule. This means that we can confine ourselves to probability

measures which arc shift-invariant. Under a shift-invariant measure the probability of

a block depends only the sequence of cell states which define the block, not on where

this sequence starts.

With all this in mincL wc can rewrite equation (1) as an infinite system of equa-

tions of the forlxt

~+l(b) = ~ M@),b)PYB). (2)
IBI x lbl+~

This says that the probability of a block b at time t+ 1 denoted F+l(b) is the sum over

the probabilities at time t of blocks B whose size is equal to the size of b plus 2 times

the radius of the rule and which lead to b under the rule. The delta function serves to

pick out just those blocks B which lead to b under the rule. It has the value 1 if z(B)

is b, and O otherwise. MB) is the probability of bkck B at time L We can think of

the system of equations (2) as being arranged hierarchically, First there are two equa-

tions for the probability of a O and a 1, then there am 4 equations for the probabilities

of 2-blocks 00,01,10,11 and so on.

This system of equations is entirely impractical to use as it stands. Say we want

to know what the probability of a 1 is after one application of a cellular automaton of

radius 1. To determine this using equation (2) we need to know the probabilities at

the previous time of all 3-blocks which lead to a 1. This may not be too bad. But now

say we want to continue the itctation for two time steps. For this we need to know ini-

tially the probabilities of 5-blocks. In general, to continue the iteration for t time steps,

we need initial information about the probability of blocks of length 1+2t. Since the
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nurnber of blocks grows exponentially WM the length of the blocks, this gets rapidly

impractical.

The local structure theory gets around Ltis problem by tiuncahng the system of

equations at some finite block size.

3. Oth-ORDER LST

The most radical truncation is called the oth-omier theory. In Oth-order theory

one assumes that the probability of a block does not depend on what the block is made

of, only on its size. All blocks of the same size are assumed to have the same proba-

bility. So each block of length n gets probabih-y ~. Substitution of that estimate into

the equation for the evolution of the probability of a 1, one has

(3)

In this equation the probability of a 1 does not depend on time. All the time depen-

dence was removed when we assumed that all blocks of the same si~ always have the

same probability. Now all the 5 function does is mum the number of neighborhoods

which lead to a 1 under the ndc. If we CM that numtir ~ then equation (3) is just:

(4)

where d is 1

rule. What

configuration

prediction of

rule table.

plus twice the radius of the rule, otherwise known as the diamter of the

the Oth-order theory says is that the density (fraction of 1‘s) of a

at any time is just the density of the ruk tabk itself. In panicular, the

Oth-order theory for the invariant density of a rule is the density of the
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Every rule yields a particular value of ~ Conversely, to each value of k is asso-

ciated many rules. I will say that rules of a given radius s~e in the same (0-th order)

class if they yield the same value for k.

To invert the Oth-order equation, that is, to find all rules in a Oth-order class

defined by some value of A is rather triviaI. Given a value for L just find all ways of

filling a nde table so that exactly k neighborhoods lead to a 1, and all the other neigh-

borhoods lead to O. Here (figure 2) are the n.de tables for all nearest-neighkr rules in

the class A = 3.
00101010 11100000
00011010 11010000
10000:10 10110000
01000110 01110000
00100110 11001000
00010110 1o1o1ooo
00001110 01101000
11000001 1GO11OOO
10100001 01011000
01100001 00111000
10010001 11000100
01010001 10100100
00110001 01100100
Aooolool 10010100
01001001 01010100
00101001 Ocl lo loo
00011001 10001100
10000101 01.oollfjo
01000101 Oolol loa
00100101 00011100
00010s01 11000010
00001101 10100010
10000011 01100010
Olcoooll 10010010
00100011 01010010
00010011 00110010
00001011 1 0 0 01 01 0
00000111 01001010

Figure2Thcml~tiWcbb3.

There are56 rules in this class outofthetodnuk of 2S6nearest-neighbr roles.

The Oth-order theory predicts that the invariant density of each of these rules should be

3/8 = 0.375. Actually, (figure 3), the invariant densities of rules in this class fotm a

distribution whose center is near 0.375, but none of the rules actually have an invariant

density of 0.375.
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This disrnbuaon is quite ~ and there

longer-length blocks. The Oth-mier theory

want to turn to next.

is no control over the probabilities of

has to be impmv~ and that is what I

4. FIRST ORDER THEORY (MEAN FIEL9 THEORY)

The next order of local structure theory is also known as the mean field theory.

The mean field theusy, like the Oth-order theory, truncates the infinite system of equa-

tions (2) which describe how a cellular automaton acts on a measure. In both cases

the system is truncated at the level where neighborhood blocks map to states of single

cells. In the Oth-order theory all blocks of the same size were assumed to have the

same probabdity, In the mean field theory the probability of a block is estimated in

[ems of the probability of the states of cells the block contains. [n the mean field

theory, the probability of a block B is given by
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P(B) = P~l@) POj)- (5)

where M)(B) and #l(B) arc the rwmber of O’s and 1‘s respectively in the block B.

This equation is exact in the case in which the states of different cells are completely

uncorrelated. It is important to observe that mm blocks which have the same number

of cells in states O and 1 will be assigned the same probability.

Substituting this new probability estimate into the equation for the evolution of

the probability of a 1, we have

Obsem fhat any two blocks which both lead to a 1 under the rule, and hm’e the same

number of cells in states O and 1 in them will contribute the same amout of probability

to the sum. This means that the equation can be rewritten as

Pf+l = &P/y (1- Pf)w (7)
a

where the coefficients q count the number of neighborhood blocks which lead to a 1

under a mle and also contain i 1‘s . This pcdynomial equation is a model of the evm

lution of any cellular automaton which yields the coefficient values a. A !i.xed point of

the equation, if it has one, is an estimate of the invariant density of any cellular auto-

mata which yields the coefficient values a.

Observe that many different rules of a given radius may have the same values for

tic a coefficients. Such rules arc indistinguishable at the level of mean field theory,

So, just as we had before Oth-order classes, we now have mean ticld theory classes of

cellular automata.
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It is not difficult to find all rules in a mean field theory class. The best way to

explain how m do this is by giving you an example. This example concerns nearest-

neighbor rules. There are four coefficients in the mean field theory, which we can label

w through a3, Each cf ttiese coefficients “controls” a certain number of neighborhood

blocks, as hewn here. In this example each of the coefficients is set to one of its

allowed values.

coefficient blocks controlled

II(J=O Ooo

al=z 001010100

az=l 011 101 110

a, =() 111

Consider first ~ which has the value 0. ~ controls the block (XX). Since it has the

value O, 000 must lead to O under any rule in this class. Now consider al, which has

the value 2. ‘I?us value can be achieved in several wiys, for instance if 001 and 100

lead to !, and 010 leads m O then al will &tie the vahc 2. Ignoring the other

coefficients for a nmmen~ ail poasiblc ways of chosing r.vo blocks to lead to a 1 out

of the list of blocks controlled by ml will !csd to a rule in this mean field class. In the

same way them arc several ways to achieve the value 1 for a2, and just one way the

achieve the value for •~. So to find all rules in the class, find all ways of achieving

each coefficient value, and then take these in all possible combinations.
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This leads to the following set of rule tables:

111 110101 1000llolooolooo

01010100

00 1 1 0 100

00011100

01010010

00 1 1 00 1 0

0001 1010

0 1000 1 1 0

00 100 1 1 0

0000 1 1 1 0

Hence, thmarc nincrtdes m th.isclass. Notice that evexyonc oftheserules have 3

neighborhoods w,~ch lead to a 1. Every one of these rules belong to the Oth-order

class defined by A = 3. It will always be the case that the rules in the same mean field

class also belong to the same Oth-order class.

The mean field equation which defines this class has a fixed point density of 0.38.

The average invariant density of rules in this class is 0.42. So in this case the man

field t’mory does a good job of predicting the behavior of rules in this cM. Still, even

here, there is room for improvement and so we turn to 2nd-order theory,



5. SECOND ORDER LST

Themean field theory was derived from the assumption that correlations bemwen

the states of different cells are nGt generated as the cellular automaton operates. Under

this assumption, the probability of a large block is estimated as the product of the pro-

bability of the states of ceils it contains. As we saw in the first talk, the mean field

theory fails to accurately model a cellular automaton if correlations arc generated as

the rule is iteratca. I showed you last time that there is a process, called Bayesian

extension, by which the correlations represented by the probabilities of blocks of some

size can be used to estimate correlations in blocks of a larger size, This lead to a sys-

tematic generalization of the mean field lheo.ry. Here I will only talk about the first

step of this generalization. From there Ihe general cssc will become clear. In the first

step of the generalization, called the 2md-mder theory, correlations are mpresentcd in

terms of the probabilities of contiguous pa.m of cells.

Let q e (O,1) be the possibk states of a cell in position i in a block. Let

(S,% “ “ “ SJ be an n-block, and P(sl~ . . “ @ be the probability of an n-block. If the

probabilities of all 2-blocks arc known, the pmbabi.lity of an n-block, n >2, may be

CXtiXUlti by

i+wi%,)
(8)

where the 1-block probabilities arc found by appropriate summation of the 2-block

probabilities.

Blocks which always have the same probability according to equation (8) are said

to be of the same 2nd-order type. in the mean field theory the type of a block was

determined by how many cells in stale 1 it had. 2nd~der types are detem.ined by the

nt~mbcr of the various 2-blocks thcy contmn. 2nd-order types can be coded by a triple

(X,y,Z)m where x is the total numb of 10 and 01 su~blocks counting overlaps, v is

the number of 11 subblocks again counnng overlaps, and z IS the number of cells in
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state 1 in the central n-2 region of the n-block. The number of other 1- and 2-blocks in

the n-block can be found by appealing to the Kolmogomv consistency conditions. As

an example, 10010 and 10100 arc both expressed as (3,0,1)5 and arc hence of the

same 2nd-order type, Hem arc the 2nd-order types of 3- and 4-blocks. These are used

in the 2nd-order theory for radius 1 rules.

3-bIock 2nd-order types (b coefficients)

type blocks of thiS type

(0,0,0) Ooo

(0,2,1) 111

(1,0,0) 001,100

(1,1,1) 011,110

(2,0,0) 101

(2,0,1) 010

4-bkxk 2nd-Order types (c coefficients)

blocks of thiS type

(0,0,0)

(0,3,2)

(1,0,0)

(1,1,1)

(1,2,2)

(2,0,0)

(2,0,1)

(2,1,1)

(2,1,2)

(3,0,1)

1111

Ooo1,1ooo

0011,llCU)

0111,1110

1001

OI(XI,00I0

1101,1011

0110

0101,1010



-12-

Thc second order MT preserves the combinatorial information contained in both

the cellular automaton map from neighborhood blocks to single cells and the map from

(d+ 1)-length blocks onto 2-blocks. We choose to paramcterize the probabilities of 1-

and 2- blocks by PI and P11. Any other pair of linearly independent 1- and/or 2-block

probabilities could also serve as parameters. The other 2-block probabilities can be

found from the parameters

Pol = Plo = P1-P1l”

The 2nd*rder theory

given by equation (8) into

chosen using the Kolmogorov consistency conditions, e.g.

is constructed by substitution of the probability estimate

equations of the form (2) for the evolution of P1 and PI 1.

Then, as was done ill the derivation of the mean field equation (7), the sum is ma’-

rangcd so that blocks of the same type are collected together. A coefficient b(X,YtZ)4is

associated to each type of d-block, a.~~da c~fficient CtLyz~l is -at~ tO e~h VPC

of (d+ 1)-block. The b coefficients count the numk of d-blocks of the given type

which lead to a 1 under the cellular automaton, and the c coefficients count the

number of (d+l)-blocks which lead to 11. Let ~((x,y,z)n) be the probability at time t

of a block of type (X,y,Z)naccording to equation (8). The second order equations arc

then

PY’ ‘= (9)z kJAw(x?Y*W
(x,yJh

where SUIIM rurl OV~ tk 2nd-Oftk

As was the CUC for (k& and

same 2nd-order coefficient values. “~us each alJowcd set of 2nd-order coefficients

Mines a 2nd-order class of cellular Mt,mmm.

types of d- and (d+ 1} blocks rcspccavely.

1st-oidef theories, many rules may give nsc to the

At second order die construction of a LST class bccotmcs slightly involved. It

may be difficult to directly infer a IUlC utble from a specification of thcamical

coefficient values because each r~cighborhood block of length d may be part of several

d+ I blocks each controlled by a Mkrcnt c coefficient. This means that the values of

[he c coefficients may mtemct in a complicated way to detmrtinc which transitions in



the rule table arc consistent with a specification of coefficient values. Below a two

step process which handles these complications is outlined.

The first step of the construction of a second order class relies on the observation

that both t-he a coefficients of the mean field theory and the b coefficients of the

second order LST for d-diameter rules control blocks of the neighborhood size d. By

employing exactly the method described above for the construction of a mean field

class, we can find a set of rules with potential membership in a second order class.

Such rules have the desired b coefficient values, but their c coefficients values have

yet to be determined.

The scccnd step of the construction determines the c coefficient values. The for-

ward map !iom a rule table to a set of LST coefficients is easily computed. In the

second step of construction, we usc the forward map to determine the c coefficient

values of all cellular automata isolated in the first step, and then check these values

against the c coefficient values which defie the class in question.

The 2nd+xdcr theory almost completely splits the first order class I showed ear-

lier into mdividuai cellular automam The estimates for the invariant densities for the

rules in this class as compamd VA*Athe Oth- and lst-order estimates are shown here

(figure 4). Clearly, for the IXMXtpm incmasc in order of theory produces better esti-

mates of the statistical properties of these n.des.
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Num Oth
84 0.375

52 0.375

28 0.375

82 0.375

50 0.375

26 0.375

70 0.375

38 0.375

14 0.375

Ave 0,375

1st

0.382

0,382

0.382

0.382

0,382

0.382

0.382

0.382

0.382

0.382

2nd

0.500

0.010

0.500

0.383

0.500

0.383

0.500

0.010

0.394

0.350

MC

0.500

0.281

0.500

0.386

0.500

0.386

0.500

0.281

0.500

0.42

Figure 4 lhc memI kbd Ck# dc6ncd by a- (0$,1,0). ~ (#W hf~ dmsitia dhse da

by Mmtc Carband LSTo@xs(12.

6. CLASSIFICATION of Ir=2RULES

The point of all of this discussion, that the local strumrc t!!cory supplies a good

way to explore the space of celldar au~ is somewhat lost if one only considers

rtiUS 1 ruks. Them are Ofdy 256 such ldC~ ksS if one takes into account triviai

automorphisms bctwccn rules, so all of these rules can be examined on a case by case

basis. Life bccomcs more intcmxing, however, when one goes on to consider radius 2

rules. As 1 said artier, there arc about 4 billion rulius 2 rules, So it is impossible to

look at them all individually. In this ~ituation, the ability to examine rule3 in terms of

classes becomes a very powerful tool.

A Iot of wosk has Men done on the classification of radius 2 rules. Hem 1 just

want to talk about some of the highlights.

The two most important questions to ask about the classification concern its accu-

racy and its homogeneity. The accuracy question is, “how well am the properties of

rules in a class predicted by the local structure dmory quations which define the
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class?” The homogeneity question is, “how similar to each other are the rules in a

class?” These questions am important for applications, in particular, the application to

learning.

Imagine that we want a network to “remember” some probability measure. This

memory will be stored in the dynamics of a cellular automaton WhIIg on itself, Learn-

ing involves the selection of the “right” ceih.dar automaton to store the probability

measure in question. I want to suggest that the way to select such an automaton is to

1) vary the coefficients in some order of local structure approximation until values are

found such that the equation ties the desired measure, then 2) use the inverse map to

find an ulltomaton, or a set of automa~ which are in the class described by that set of

coefficients. l%is automaton will do the job ordy if the local structure L,- equation

accurately describes the behavior of the rules in its class. That is, it should be that the

performance of a rule in a class should match fairly well with the pcrfom-.ce of the

eqlations which describe the class. It is also &sirablc for all the rules in th~ class to

be sitrilm to each other. [t could be, for instance, that a parcicukr c!ass has millions

of elements. and the equations which define the class could accurately dewribc the

uverage over the whole class of some property, but any individual rule in the class

could be very different in behavior from that average behavior. This would make the

program for learning that I just outlined unworkable.

Lets 6rst take up the question of accuracy. To discuss how far one measure is

from another, we need a notion of distance in the space cf measu.ms. The distance I

will use is

d@v) = ~ ~ l@)-v(B) Io (lo)
(B II I! I-2)

That is, given two measures, JAti V , the distance between them is one-half of the

sum over 2-blocks of the absolute value of the difference of tie probability of the 2-

blocks under the two measures. The maximum distance between any two measures is

1. The way this will b used u this: Many roles will be selected out of an LST class.

The invariant 2-block probabilities of all of these roles will be determined by applying

them many times to a random initial configuration. Tle average over all these rules of
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the invariant 2-Mock probabilities will bc found. This avcmge I will call the empirical

invariant measure of the class. On the other hand, the theoretical invariarr measure can

bc found by solving for the fixd point of the equations which define the class. Finally,

the distance between the empirical and thcosetical invariant mcawrcs can bc found

using the mernc I just defined.

As you might expect, for some CISSSCSthuc will bc a small distance between the

empirical and theoretical invariant measures and for other c!asscs this distance could

bc quite large. Xn general, them will be some distribution over classes of

Here (figure 5) is what this distribution looks like for clmsa of radius 2

at orders O through 2.

1.0
09
08

4

0.7
0.6-

Q 0’5-
~ o.4-

0.2
0 1-

0.0

this distance.

rules defined

0.0 0.1 0.2 0,3 0.4 0.5 0.6 0,7 0.8 0.9 1.0

Average Distance

Figure smc L,dismnce bctwaathuxcdcaI mdan@kd csthnws dthoinvariMt nnassmx These

dismbutions arc ova c- of r-2 ruk dedned at wdm ~2. + ) OdI+rdw, Cl ) lstakr, and A )

2nd-orda,

These CU.NCS were gotten by sclcctin~ thousands of LST classes, then selecting tens tc)

hundreds of rules out of each class, empirically dctcrtnining the imuwiant mcasums of

these rules, and finding the distance fiurn the empirical measures, averaged over a

class, to the fixed-point measure of the equatior~s which define the class.

As you can SCC,as the odcr of theory inmxscs, %C typical distance between [hc

cmplrical and thcactical invariant measures decrcascs, Even the Oth-order theory is
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fairly accurate, on average. Recall that the maximum distance between measures is 1.

The peak of the Oth-order curve is much less than diaL approximately O.1“/, while the

peak of the 2nd-order cume is at 0.05. Prewrnably, if the order of theory were

increased still further, the typical accuracy would continue to improve.

Now let me take up the question of the homogeneity of LST classes. The homog-

eneity of a class is assessed by determining how much some property of rules varies

over the class. Consider measuring the invtiant density of all the rules in a class.

These invariant densities will form some sort of distribution, and the standard devia-

tion of this distribution is a well-defined objcc~ which we can call the class standard

deviation of the invariant density. Again, some classes will have a smsll standard devi-

ation of the density, and others will have a large one. Again, there is a disrnbution

over clusses of the class standard deviation of the density, and again the distribution

will depend on the osder of theay considered. The results here are mom striking

than ‘Ae results concerning accuracy of LST predictions (figure 6).

class SD

Flgurc 6 The ctau swidud &WUIaI d h mmiant &Muy. Dismbuoan ovu ctasacsor m2 rula

defined at orden o-2.

The typical size O( the class standard deviation of [he density drops dramatically as the
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order of theory is incmscd. By order 2, L& properties of rules in a class arc so

tightly controlled that rather careful empirical work is needed to sw the variation over

a class in statistical properties of rules.

[n summary, it seems that we are in the best of all possible worlds! Even at very

low order, the LST serves to break the space of cellular automata into classes of rules

with similar properties. These properties may be accurately determined by solving for

the fixed-points of a system of equations. ‘Ilis means that we can now begin to

explore the space of cellular automaa not by picking rules at random and simulating

them, but by varying the coefficients in small systems of equations. The difference in

the amount of computer time required by these two methods is enormous. The cost of

picking rules at random and running them to see how they perform is so great that it is

clear that hrni.ng, or anything else for that matter, is not done in that way, at least not

on a mutinc basis.

7. VARIATION OF LST COEFFICIENTS

So far we’ve been mostly thinking of the coefficients in the NT equations as

having some fixed set of values, and then asking how well fixing the coefficient values

serves to 6X the properties of the rules in the class defined by the equations. Having

determined that the coupling between LST equations and the rules in the classes

defined is fairly tighL we can forget about the rules themselves for a momen~ and just

consider the behavior of the equations, Now, at a given order of theory, we have a

family of quations pmmetUUd by the cd!kients. We can ask what happens to

the properties of these equations as the parameter values are smoothly varied. For most

applications that one cart think of, it would be best that small changes in parameter

values should result in small chmges in the properties of the equations. 1‘m going to

close this talk by showing you wme rrsults which suggest that this is in fact the case.

Here (figure 7) you see what happens when two paramewrs in the mean field theory

for radius 2 rules are varied.
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Figure 7 VAation of nvo pamncters in the moM field thaxy for !=2 ruka (t12 and a3) vs. the 6%cd-

poult &Jasity of tlwac qmtbt%

The values of the pammctcrs are shown as x and y, and the tied point density of the

equations determined by x and y (with the other paratxmcrs held fixed) is plotted in

the z dit-ccaon. As citncr x or y or both arc increased, the fixed-point density of the

quations zlso increases, smoodt J. This behavior seems rather typical.

Now let’s put together the pieces. Given a system of local structure theory equa-

tions, all t-he rules which are approximated by these equations can be found. The pm-

@es of these rules match well with the propcr=tics of the equations which describe

them. As the paramc:crs in the equations am smoothly varied, the properties of the

equations vary smoothly. This implies that by smoothly varying pmramctcrs in some

system of equations wc can smoothly trove around in the space of cellular automata It

is now easy to imagine that given a measure which we want to be invariant under a

cellular automaton, wc can find such an automaton by varying parameters in LST

equations until wc have the desired result, This varia[ion could be controlled by any

sort of optimization scheme which is set up to minimi,m the distance between the
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measum wc wish held fixed and the measure fixed by the systcm of quations at each

setting of the parameter values. In this interpretation learning is not the storage of pat-

terns in a network, but rather the tailoring of the dynamics of a network.


