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Statistical Properties of Cellular Automata In the Context of
Learning and Recognition Part II: Inverting Local Structure Theory
Equations To Find Cellular Automata With Specified Properties

Howard A. Gutowitz

Center for Nonlinear Studies and Theoretical Division 13
Los Alamos National Laboratory, MS-B258
Los Alamos, New Mexico 87545

ABSTRACT

This is the second of two lectures. In the first lecture the map from
a cellular automaton to a sequence of analytical approximations called
the local structure theory was describcd. In this lecture the inverse map
from approximation to the class of cellular automata approximated is
constructed. The key matter is formatting the local structure theory
equations in terms of block probability estimates weighted by
coefficients. The inverse mapping relies on this format. Each possible
assignment of values to the coefficients defines a class of automata with
rclated statistical properties. It is suggested that these coefficients serve
to smoothly parameterize the space of cellular automata. By varying the
values of the parameters a cellular automaton network may be designed
so that it has a specified invariant measure. If an invariant measure is
considered a "memory"” of the network, then this variation of parameters
to specify the invariant measure must be considered “leamming”. It is
important to note that in this view iearning is 1ot the storage of patterns
in a network, but rather the tailoring of the dynamics of a network.
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Introduction

In the last talk I gave a rather general introductior to cellular autoraata. [ showed
you that, for some cellular automaw at least, there is a probability measure which
remains invariant as the rule 1s applied to it Any other measure tends toward this
fixed measure as the rule is iterauvely applied to it I suggested that this unique stable
invariant measure might be called the "memory” waintained by the dynamics of the
cellular automaton nerwork. [ then went on to develop some methods for analyzning
the stausucal behavior of cellular automata. [ showed that a sequencs of modeis,
called the local structure theory, can be associated with an automaton. As the order of
theory is increased, so does the accuracy with which statistical properties of the rule
are predicted by the theory.

Now [ want to attack the inverse problem, "Given a system of local stucture
theory equations, find the set of rules which are approximzied by this system of equa-

tons.” There are several reasons why this 1s an important problem to consider.

1) When thinking of modelling physical phenomena with cellular automata, 1t 1s
not clear thai there should always be an automaton which descnbes the observed
behavior. Rather, 1t should be that 1n most cases there is a class of automata each of
which 1s an equally vahid des npuon. If this is wue, one woul . like to have a way of

charactenzing the features shared by the automata 1n this class. These aze the featires
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which are most likely to be the perunent ones. [f all one has is the rule table of a sin-
gle rule which does something of interest, one is likely o focus on irrelevant details of

this rule table while searching to explain how the rule does what it does.

2) Most physical systems, and all biological systems, operate in the presence of
significant noise. Both noise in the structure of the svstem and noise in the inputs to
the sysiem. 'n this situadon. it should aiways be the case that if a single cellular auto-
maton is a good model of a system, then many different cellular automata are good
models of the system. The noise will tend to wash out formal, urelevant differences
between rules. Only the most robust features of their construcdon and action will sur-
vive the noise. The local structure theory can be considered as a model of the acton
of cellular automata in the presence of noise. The higher the order of theory, the less

the noise.

3) In the course of constucting the map from local structure theory approximaton to
classes of cellular automat. the local structure theory equadons will be formated so
that certain sets of coefficients appear in the equatons. To each set of coefficients
values corresponds a class of cellular automata. With these coefficients on hand, one
can begin to sce what happens as the values of the coefficients change. That is, the
coefficients can now be treated as parameters and one can ask how the propertes of

cellular automata change as the parameters are smoothly vaned.

This third point has a number of important consequences. The first consequence is
that one of the stumbling blocks in front of applying techniques developed for the
study of smooth dynamical systems to the swudy of cellular automata has been
removed. That 1s, in the stuly of smooth dynamical systems, one likes 10 have some
parameter in the map which can be continuously varied. The changes in the map's pro-
pertues with change in the parameter value are then examined. A deterministac cellular
automaton has no such parameters. The cellular automaton behavzs according to the
specification of its rule table. If the rule table is changed then one has a different cellu-
lar automaton. In the local structure theory, one has a set of parameters whose vana-

tion changes properties not of a single rulz, but the properues of classes of rules



arranged in a nice way in the space of all automata.

The imponant consequence of the parameterization of the space of automata for
learning is that by varying parameters, classes of rules with specified propertues can
be found. If one accepts that the "'memornies” of a cellular automaton are its stable
invanant probabilicy measures, then one component of “learning” becomes the process
of, given a probabulity measure, that is, given something to remember, find cellular
automata which fAx that probability measure. When one says that an organism or a
machine “learns” one usually means not only that the organism or machine fixes
memories, but that somenow it fixes these memories 'by itself’, without programming
from the outside. What | will be describing here are the knobs that must be rwisted to
fix a memory. | will not descnbe the "ghost in the machine” that twists the knobs. |
will menton one way that the knobs can be twisted "automatically”, that is, as part of
some explicit opumization scheme. [ will make no claim, however, that this is how it

1s actually done in the brain.

There is a rough correspondence berween the "twisting of the knobs" in local
structure theory equations to find rules with specified invariant measures and the back-
propagauon algorithm in standard neural nets. In each case one anempts to find
interactions berween clements in a network so that the network as a whole behaves in

a desired way.

[t tums out that in many inslances smooth variaton in parameters results in
smooth variation in the properties of the rules described. This encourages belief that
one has found a good and useful way w parameterize the space of rules. Recall from
the last talk that the "raw” description of a cellular automaton, that is, the rule table, is
not the proper format for makiig smooth changes in the propertes of rules. Rule 22,
which formns partemns with a chaotic peppering of tiangles, is only one bit different
from ru.e 54, which forms patterns with large patches of periodic background patter
punctuates by chaotuc disconunuides. I will try to convince you that to make small
changes in rules, one should rake small changes in the local structure theory approxi-

manons to the rules.



1. LST ORDER -1 : PURE MONTE CARLO

[ want you to appreciate that it is very difficult to find a parucular cellular auto-
maton with some specified statistical properdes if you den't have any idea how the
space of cellular automata is structured. First of all, the spacc of cellular automau is
very big. The number of cellular automa'a with two states per cell goes like ¢
where r is the radius of the rule. So there are 232 or about 4 billion radius 2 rules, 2!8
radius 3 rules etc. So if you want to find o single automaton with some good propery,

you won't ever find it by picking automata at random and seeing how they behave.

It’s nonetheless interesting to pick automats at random and see how they behave.
Here 1s an experiment (figure 1) in which I ook 10,000 cellular automata at random
from each of the sets of radius 2, radius 3, and radius 4 rules. [ then ran these rules
on a very long configuradon, again generated at random. The density of cells in state
| was determuned by sampling. Iteration of each rule condnued undl the value of the
density seemed to stabilize. This figure shows the distribution over the set of rules of

the large-time density determined in this way.
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Figure | The distnbution of invanant denswses of 10,000 rules of each radius 2 4.
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The widest distributon is for radius 2 rules, and the more narrow dismributions for
radius 3 and radius 4 rules. It appears that as the radius of rules increases, the expecta-
tion that the final density of a randomly-chosen rule will be 1/2 rapidly approaches 1.
If one were to look at some other statistical property, say the large-time probability of
a 11, one would sce the same thing. That is, the large-time probability of a 11 will be
the probability of a 11 in a completely random configuradon. This is to say that the
tvpical cellular automaton has a very boring invariant measure--it is the measure that
gives all blocks of a given length the same probability. If we want to find cellular
automata which fix more interesting measures, we are going to have to find a more

interesting way to pick rules out of the space of automata.

2. THE ACTION OF A CELLULAR AUTOMATON ON A MEASURE

In the last lecture [ explained how the local structure theory worked in a pictorial
fashion. To understand how the inverse map is constructed, however, we will definitely
need some equations. The most concise equation which describe~ how a cellular auto-

maton acts on measures is

H(E) = u(t~I(E)). (1)

This says the following: Say you hsve a probability measure U which describes the
probabilities of all sets of configurations at some given time in the evolution of a cel-
lular automaton t. Now you want to find the measure t u at the next time. The proba-
bility of a set E under T | is the measure under @ of the preimage of E. The preimage
of a set E of configurations is the set of configurations which map to E under the rule.
This is denoted t~!(E).

Some basic facts of measure theory allow us to expand equaton (1) out so that it
is both more understandable and more concrete. All sets of configuratons can be con-
saructed out of fundamental sets called cylinder sets or blocks. Blocks are sets of
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configurations which share a specified contiguous sequence of cell states at a specified
position in the configuration. A block can be specified by giving the states s; s, - - -
which defined the bluck, and the starting position for these states. So we would like to
write equaton (1) in terms of its action on blocks.

Cellular autornata are shift-invariant. That is, applying a rule to a configuration
and then shifting the result (say to the left) is the same as shifting the configuration
and then applying the rule. This means that we can confine ourselves to probability
measures which are shift-invariant. Under a shift-invariant measure the probability of
a block depends only the sequence of cell states which define the block, not on where
this sequence starts.

With all this in mind, we can rewrite equation (1) as an infinite system of equa-

tons of the form

Pdy= ¥ 3(t(B).b)PYB). Q)
IBI = Ibl+2r

This says that the probatility of a block b at time t+1 denoted P**!(b) is the sum over
the probabilites at time t of blocks B whose size is equal to the size of b pius 2 times
the radius of the rule and which lead to b under the rule. The delta function serves to
pick out just those blocks B which lead to b under the rule. It has the value 1 if T(B)
is b, and O otherwisec. PYB) is the probability of block B at time t. We can think of
the system of equations (2) as being arranged hierarchically, First there are two equa-
tons for the probability of a O and a 1, then there are 4 equations for the probabilities
of 2-blocks 00,01,10,11 and so on.

This system of equations is entirely impractical to use as it stands. Say we want
to know what the probability of a | is after one application of a cellular automaton of
radius 1. To determine this using equation (2) we need to know the probabilites at
the previous time of all 3-blocks which lead to a 1. This may not be too bad. But now
say we want to continue the iteragon for two time steps. For this we need to know 1ini-
tally the probabilities of S-blocks. In general, to continue the iteration for t time steps,

we need inital information about the probability of blocks of length 1+2t. Since the
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number of blocks grows exponendally with the length of the blocks, this gets rapidly
impractical.
The local structure theory gets around this problem by truncating the system of

equations at some finite block size.

3. 0th-ORDER LST

The most radical truncation is called the Oth-order theory. In Oth-order theory
one assumes that the probability of a block does not depend on what the block is made

of, only on its size. All blocks of the same size are assumed to have the same proba-

bility. So each block of length n gets probability _2_1_; Substtution of that estimate into

the equation for the evolution of the probability of a 1, one has

p = x BCBLD 3

IBl = 1+ 2“}

In this equation the probability of a | does not depend on time. All the time depen-
dence was removed when we assumed that all blocks of the same size always have the
same probability. Now all the 8 function does is count the number of neighborhoods
which lead to a | under the rule. If we call that nuriber A, then equation (3) is just:

A
p:—’ 4
1 > 4)

where ¢ is | plus twice the radius of the rule, otherwise known as the diameter of the
rule. What the Oth-order theory says is that the density (fraction of 1's) of a
configuration at any time is just the density of the rule table itself. In particular, the
prediction of Oth-order theory for the invariant density of a rule is the density of the

rule table.
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Every rule yields a particular value of A. Conversely, to each value of X is asso-
ciated many rules. I will say that rules of a given radius are in the same (O-th order)

class if they yield the same value for A.

To invert the Oth-order equadon, that is, to find all rules in a Oth-order class
defined by some value of A is rather mivial. Given a value for A, just find all ways of
filling a rule table so that exactly A neighborhoods lead to a 1. and all the other neigh-
borhoods lead to 0. Here (figure 2) are the rule tables for all nearest-neighbor rules in
the class A = 3,

COO0OO0OOrHOOOOHOOOr OOHOFHFHFOOOOFHOO
OCCQCOOrHOOOOFHOOOKFOOHOKFOFHOOOFHOOO
CQOOHOOOOKHOOOHOOHOOKFHFHOOOHOOOO KM
CQOHOOOOKHOOOrHOOOHKHKFHODODOOrHOOOKFHO
OHOOOOKHOOOOHKFHKFHKFHFOOODOOOKHOOOOK K
HFOOOOOHFKHKFHFFHFOOODODODOOOOOHFHFKFHITOO
HEEEPRPPO000000000000000 O H i1 1
R R RE,PO0000000
OHOOKFHOHHOOOKFHOOKFHOKHHOOMFOI IHO M
HOOKFROKFHOKHOOHOMNHOKHOFHOKFOFOMIMHOKM I
COHOOKHKHOOKHOOHOOHKHOHOOKHFHONMHO KM
COFHFHIHOOOKFHOOOKFHKHFHOOOFMFHOOGOKHKHKO
HHPOOOOOCOHKHHHOOOOOOKRKMHPMHMHMOOOO
OO0V OOOOHMHHHMHFHFHFHMHEFHFOOOOLOOOOO
PRSP 00000000000000000000
[eReNoNoFaoNoNoNoNo s oofoNoYoloYoofoNoYoYoYoaofeXoloXe)

Figure 2 The r=1 rules in the ¢

E
3

There are 56 rules in this class out of the total number of 256 nearest-neighbor rules.
The Oth-order theory predicts that the invariant density of each of these rules should be
3/8 = 0.375. Actually, (Ggure 3), the invariant densities of rules in this class form a

distribution whose center is near 0.375, but none of the rules actually have an invariant
density of 0.37S.
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Figure 3 The distribution of invanant densities of re1 rues in the class A = 3,

This distribution is quite broad, and there is no control over the probabilities of
loniger-length blocks. The Oth-order theory has to be improved, and that is what I

want to turn to next.

4. FIRST ORDER THEORY (MEAN FIELD THEORY)

The next order of local structure theory is also known as the mean field theory.
The mean field theory, like the Oth-order theory, truncates the infinite system of equa-
tions (2) which describe how a cellular automaton acts on a measure. In both cases
the system is truncated at the level where neighborhood blocks map to states of single
cells. In the Oth-order theory all blocks of the same size were assumed to have the
same probability. In the mean field theory the probability of a block is estimated in
terms of the probability of the states of cells the block contains. [n the mean field

theory, the probability of a block B is given by
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P(B) = P{!(®) pyu®. (5)

where #0(B) and #1(B) are the number of 0's and 1's respectively in the block B.
This equation is exact in the case in which the states of different cells are completely
uncorrelated. It is important to observe that two blocks which have the same rumber
of cells in states O and |1 will be assigned the same probability.

Substituting this new probability estimate into the equation for the evoludon of

the probability of a 1, we have

P*l= Y  &t(B),1)(PHM® (pHK®) (6)
(BIIB| =d)

Observe that any two blocks which both lead to a | under the rule, and have the same
number of cells in states 0 and | in them will contribute the same amout of probability

to the sum. This means that the equation can be rewritten as
d , .
PPl = Ta®}y (i- PHY, M
=0

where the coefficients a; count the number of neighborhood blocks which lead to a |
under a rule and also contain i 1's . This polynomial equation is a model of the evo-
lution ot any cellular automaton which yields the coefficient values a. A fixed point of
the equation, if it has one, is an estimate of the invariant density of any cellular auto-

mata which yields the coefficient values a.

Observe that many different rules of a given radius may have the same values for
the a coefficients. Such rules are indistinguishable at the i=vel of mean field theory.
So, just as we had before Oth-order classes, we now have mean field theory classes of

cellular automata.
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It is not difficult to find all rules in a mean field theory class. The best way to
explain how 12 do this is by giving you an example. This example concerns neares:-
neighbor rules. There are four coefficients in the mean field theory, which we can label
a, through a,. Each of these coefficients “controls” a certain number of neighborhood
blocks, as hown here. In this exainple each of the coefficients is set to one of its

allowed values.

coefficient blocks controlled

ag =0 000
a, =2 001 010 100
2, = | 011 101 110
=1 111

Consider first ag, which has the value 0. ay controls the block 000. Since it has the
value 0, 000 must lead to 0 under any rule in this class. Now consider a;, which has
the value 2. This value can be achieved in several ways, for instance if 001 and 100
lead to !, and 010 leads w O then 8, will have the value 2. Ignoring the other
coefficients for a moment, all possible ways of chosing vo blocks to lead to a 1 out
of the list of blocks contolled by a, will lead to a rule in this mean field class. In the
same way ther: are several ways to achieve the value | for a,, and just one way the
achieve the value for ay. So to find all rules in the class, find all ways of achieving

cach coefficient value, and then take these in all possible combinations.
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This leads to the following set of rule tables:

111 110 101 100 011 010 001 000

o 1 01 0 1 O O
o o161 1 0 1 0 O
o 0o 01 1 1 0 O
o1 01 0 O I O
o o1 1 0 O 1 O
o 0 011 0 1 O
o1 0 0 0 1 1 O
0 1 0 0 1 1 O
O 0 0o 01 1 1 O

Hence, there are nine rules i1n this class. Notice that every one of these rules have 3
neighborhoods w..ch lead to a 1. Every onz of these rules belong to the Oth-order
class defined by A = 3. It will always be the case that the rules in the same mean field
class also belong to the same Oth-order class.

The mean field equation which defines this class has a fixed point density of 0.38.
The average invariant density of rules in this class is 0.42. So in this case the mean
field theory dues a good job of predicting the behavior of rules in this class. Stll, even
here, there is room for improvement, and so0 we turn to 2nd-order theory.



5. SECOND ORDER LST

The mean field theory was derived from the assumption that correlatons between
the states of different cells are nct generated as the cellular automaton operates. Under
this assumption, the probability of a large block is estimated as the product of the pro-
bability of the states of cells it contains. As we saw in the first talk, the mean field
theory fails to accurately model a cellular automaton if correlations are generated as
the rule is iterated. I showed you last time that there is a process, called Bayesian
extension, by which the comrelations represented by the probabilities of blocks of some
size can be used to estimate correlations in blocks of a larger size. This lead to a sys-
tematic generalization of the mean field thecry. Here I will only talk about the first
step of this generalization. From there the general case will become clear. In the first
step of the generalization, called the 2nd-order theory, correlations ars represented in

terms of the probabilities of contiguous pairs of cells.

Let s; € {0,1) be the possibic states of a cell in position i in a block. Let
(s;32 *  * 8, be an n-block, and P(s;s; - - - s,) be the probability of an n-block. If the
probabilities of all 2-blocks are known, the probability of an n-block, n > 2 , may be
estimated by

n~-1
ITPGsisie1)

=1

n-1
I‘;P(si)

P(s;sy - - - sy (8)

where the 1-block probabilities are found by appropriate summation of the 2-block
probabilites.

Blocks which always have the same probability according to equation (8) are said
to be of the sanw 2nd-order type. in the mean field theory the type of a block was
determined by how many cells in staie | it had. 2nd-order types are determined by the
number of the various 2-blocks they contain. 2nd-order types can be coded by a triple
(x.y.z), where x is the total number of 10 and 01 sub-blocks counting overlaps, v is

the number of 11 sub-blocks again counung overlaps, and z is the number of cells in



state 1 in the central n-2 region of the n-block. The number of other 1- and 2-blocks in
the n-block can be found by appealing to the Kolmogorov consistency conditions. As
an example, 10010 and 10100 are both expressed as (3,0,1)s and are hence of the
same 2nd-order type. Here are the 2nd-order types of 3- and 4-blocks. These are used

in the 2nd-order theory for radius 1 rules.

3-block 2nd-order types (b coefficients)
type  blocks of this type

(0,0,0) 000
0,2,1) 111
(1,000 001,100
(1,,,1) 011,110
2,00) 10l
(2,0,1) 010
4-block 2nd-order types (¢ coefficients)

type  blocks of this type

0,0,00 0000
(0,3,2) 1111
(1,0,0)  0001,1000
(1,1,1)  0011,1100
(1,2,2) 01111110
(2,00) 1001
(2.0,1) 0100,0010
(2,1.1) 1101,1011
(2,1,2) 0110
(3.0,1) 0101,1010
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The second order LST preserves the combinatorial information contained in both
the cellular automaton map from neighborhood blocks to single cells and the map from
(d+1)-length blocks onto 2-blocks. We choose to parameterize the probabilities of |-
and 2- blocks by P, and Py;. Any other pair of linearly independent 1- and/or 2-block
probabilides could also serve as parameters. The other 2-block probabilities can be
found from the parameters chosen using the Kolmogorov consistency conditions, e.g.
Pot = P10 = P1~Pn1-

The 2nd-order theory is constructed by substitution of the probability estimate
given by equation (8) into equations of tiie form (2) for the evolution of P, and Py,.
Then, as was done in the derivaton of the mean field equation (7), the sum is rear-
ranged so that blocks of the same type are collected together. A coefficient by, ;), is
associated to each type of d-block, aud a coefficient ¢(, . ), is associated to each type
of (d+1)-block. The b coefficients count the number of d-blocks of the given type
which lead to a | under the cellular automaton, and the ¢ coefficients count the
number of (d+1)-blocks which lead to 11. Let P*((x,y,z),) be the probability at time t
of a block of type (x,y.z), according to equation (8). The second order equations are
then

plt-o-l = 2 b(g'y,;).P‘((xvy'z)d) (9)
(x.y.2)

pl‘rl = 3 c(x.y.z).P‘((xvaz)ml)v
(x.yz)

where sums run over the 2nd-order types of d- and (d+1)- blocks respectively.

As was the case for Oth- and Ist-oider theories, many rules may give rise to the
same 2nd-order coefficient values. Thus each allowed set of 2nd-order coefficients

defines a 2nd-order class of cellular aucomata.

At second order the construction of a LST class becomes slightly involved. It
may be difficult to directly infer a rule rable from a specification of theoretical
coefficient values because each neighborhood block of length d may be part of several
d+1 blocks each contrulled by a different ¢ coefficient. This means that the values of

the ¢ coefficients may interact in a complicated way to determine which transitions in



the rule table are consistent with a specification of coefficient values. Below a two
step process which handles these complications is outlined.

The first step of the construction of a second order class relies on the observation
that both the a coefficients of the mean field theory and the b coefficients of the
second order LST for d-diameter rules control blocks of the neighborhood size d. By
employing exactly the method described above for the construction of a mean field
class, we can find a set of rules with potential membership in a second order class.
Such rules have the desired b coefficient values, but their ¢ coefficients values have
yet to be determined.

The secend step of the construction determines the ¢ coefficient values. The for-
ward map from a rule table to a set of LST coefficients is easily computed. In the
second step of construction, we use the forward map to determine the ¢ coefficient
values of all cellular automata isolated in the first step, and then check these values

against the ¢ coefficient values which define the class in queston.

The 2nd-order theory almost corapletely splits the first order class I showed ear-
lier into individual cellular automata. The estimates for the invariant densities for the
rules in this class as compared with the Oth- and Ist-order estimates are shown here
(figure 4). Clearly, for the mnst part, increase in order of theory produces better esti-

mates of the staustical properties of these rules.
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Num Oth 1st 2nd MC
84 0375 0.382 0.500 0.500

52 0375 0382 0010 o0.281
28 0375 0.382 0.500 0.500
82 0375 0.382 0.383 0.388
50 0375 0.382 0.500 0.500
26 0375 0.382 0.383 0.388
70 0375 0.382 0.500 0.500
38 0375 0.382 0.010 0.281
14 0375 0382 0394 0.500
Ave 0375 0.382 0.350 0.42

Figure 4 The mean ficld clacs defined by a= (0,2,1,0). Estimates of the inveriant densities of these rules
by Monte Cario and LST orders 0-2.

6. CLASSIFICATION of r=2 RULES

The point of all of this discussion, that the local structure theory supplies a good
way to explore the space of cellular automata, is somewhat lost if one only considers
radius | rules. There are only 256 such rules, less if one takes into account trivial
automorphisms between rules, so all of these rules can be examined on a case by case
basis. Life becomes more interesting, however, when one goes on to consider radius 2
rules. As [ said carlier, there are about 4 billion radius 2 rules. So it is impossible to
look at them all individually. In this situaton, the ability to examine rules in terms of
classes becomes a very powerful tool.

A ot of work has wern done on the classification of radius 2 rules. Here I just
want to talk aoout some of the highlights.

The two most important questions to ask about the classification concem its accu-

racy and its homogeneity. The accuracy question is, "how well are the properties of

rules in a class predicted by the local structure theory equations which define the
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class?” The homogeneity question is, "how similar to each other are the rules in a
class?" These questions are important for applications, in particular, the application to
learning.

Imagine that we want a network to "remember" some probahility measure. This
memorv will be stored in the dynamics of a cellnlar automaton acting on itself. Leamn-
ing involves the selection of the "right" ceilular autotnaton to store the probability
measure in question. I want to suggest that the way to select such an autornaton is to
1) vary the coefficients in some order of local structure approximation untl values are
found such that the eguation fixes the desired measure. then 2) use the inverse map to
find an automaton, or a set of automata, which are in the class described by that set of
coefficients. This automaton will do the job oniy if the local structure L.eory equation
accurately describes the behavior of the rules in its class. That is, it should be that the
performance of a rule i» 2 class should match fairly well with the perforr..ce of the
eqrations which describe the class. It is also desirable for all the rules in the class to
be simila: to each other. It could be, for instance, that a particular class has millions
of elements, and the equations which define the class could accurately describe the
average over the whole class of some property, but any individual rule in the class
could be very different in behavior from that average behavior. This would make the
program for leamning that I just outlined unworkable.

Lets first take up the question of accuracy. To discuss how far one measure is
from another, we need a notion of distance in the space cf measures. The distance [
will use is

d(u.V)=—;- 2 u@B)-v(B)I. (10)
(BiIRi=2)

That is, given two measures, | and v , the distance between them is one-half of the
sum over 2-blocks of the absolute value of the difference of the probability of the 2-
blocks under the two measures. The maximum distance between any two measures is
1. The way this will be used is this: Many rules will be selected out of an LST class.
The invariant 2-block probabilities of all of these rules will be determined by applying

them many times to a random initial configuration. The average over all these rules of
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the invariant 2-block probabilities will be found. This average I will call the empirical
invariant measure of the class. On the other hand, the theoretical invarian: measure can
be found by solving for the fixed point of the equations which dzfine the class. Finally,
the distance between the empirical and theoretical invariant measures can be found

using the metric I just defined.

As you might expect, for some classes there will be a small distance between the
empirical and theoretical invariant measures and for other classes this distance could
be quite large. In general, there will be some distribution over classes of this distance.
Here (figure 5) is what this distribution looks like for classec of radius 2 rules defined

at orders O through 2.

# of Classes

O O O O O O O © O O r

0.0 0.1 0.2 0.3 0.4 0.5 0.5 0.7 ¢.8 0.9 1.0

Average Distance

Figure S The L, distance between theoretical and empirical estimases of the invariant measures. These
distnbutions are over classes of r=2 rules defined a1 ordess 0-2. + ) Oth-order, O ) Ist-order, and A )
2nd-order.

These curves were gotten by selecting thousands of LST classes, then selecting tens to
hundreds of rules out of each class, empirically determining the invariant measures of
these rules, and finding the distance from the empirical measures, averaged over a

class, to the fixed-point measure of the equations which define the class.

As you can see, as the order of theory increases, the typical distance between the

empirical and theoretical invariant measures decreases. Even the Oth-order theory is
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fairly accurate, on average. Recall that the maximum distance between measures is 1.
The peak of the Oth-order curve is much less than that, approximately 0.17, while the
peak of the 2nd-order curve is at 0.05. Presumably, if the order of theory were

increased stll further, the typical accuracy would continue to improve.

Now let me take up the question of the homogeneity of LST classes. The homo-
geneity of a class is assessed by determining how much some property of rules varies
over the class. Consider measuring the invariant density of all the rules in a class.
These invariant densities will form some sort of distribution, and the standard devia-
tion of this distribution is a well-defined object, which we can call the class standard
deviation of the invariant density. Again, some classes will have a smail standard devi-
ation of the density, and others will have a large one. Again, there is a distribution
over classes of the class standard deviation of the densiry, and again the distribution
will depend on the order of theory considered. The results here are more striking
than the results concerning accuracy of LST predictions (figure 6).

Ave » 0.043
A -
Ave » 011 ve © 0.087

& of Classes

o
-
—y v

Class SD

Figure 6 The class siandard deviation of the invariant deasity. Distribution over classes or r=2 rules
defined at orders 0-2.

The typical size ol the class standard deviation of the density drops dramatically as the
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order of theory is increased. By order 2, e properties of rules in a class are so
tightly controlled that rather careful empirical work is needed to see the variation over
a class in statistical properties of rules.

In summary, it seems that we are in the best of all possible worlds! Even at very
low order, the LST serves to break the space of cellular automata into classes of rules
with similar properties. These properties may be accurately determined by solving for
the fixed-points of a system of equations. This means that we can now begin to
explore the space of cellular automata, not by picking rules at random and simulating
them, but by varying the coefficients in small systems of equations. The difference in
the amount of computer time required by these two methods is enormous. The cost of
picking rules at random and running them to see how they perform is so great that it is
clear that learning, or anything else {or that matter, is not done in that way, at least not

on a routine basis.

7. VARIATION OF LST COEFFICIENTS

So far we’'ve been mostly thinking of the coefficients in the LST equations as
having some fixed set of values, and then asking how well fixing the coefficient values
serves to fix the properties of the rules in the class defined by the equations. Having
determined that the coupling between LST equations and the rules in the classes
defined is fairly tight, we can forget about the rules themselves for a moment, and just
consider the behavior of the equations. Now, at a given order of theory, we have a
family of equations parameterized by the coefficients. We can ask what happens to
the properties of these equations 2s the parameter values are smoothly varied. For most
applications that one can think of, it would be best that small changes in parameter
values should result in small changes in the properties of the equations. ['m going to
close this walk by showing you some results which suggest that this is in fact the case.
Here (figure 7) you see what nappens when two parameters in the mean field theory
for radius 2 rules are varied.
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Figure 7 Variation of two parameters in the mean field theory for re2 rules (2; and 21) vs. the fixed-
point density of these cquations.

The values of the parameters are shown as x and y, and the fixed point density of the
equations determined by x and y (with the other parameiers held fixed) is plotted in
the z direction. As eitner x or y or both are increased, the fixed-point density of the

equations also increases, smooth . This behavior seems rather typical.

Now let’s put together the pieces. Given a system of local structure theory equa-
tions, all the rules which are approximated by these equations can be found. The pro-
perties of these rules match well with the properties of the equations which describe
them. As the parameters in the equations are smoothly varied, the properties of the
equations vary smoothly. This implies that by smoothly varying parameters in some
system of equations we can smoothly move around in the space of cellular automata. It
is now easy to imagine that given a measure which we want to be invariant under a
cellular automaron, we can find such an automaton by varving parameters in LST
equadons untl we have the desired result. This vanation could be controlled by any

sort of optimization scheme which is set up to minimize the distance between the
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measure we wish held fixed and the measure fixed by the system of equations at each
setting of the parameter values. In this interpretation learning is not the storage of pat-

temns in a network, but rather the tailoring of the dynamics of a network.



