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NUMERICAL METHODOLOGIES FOR SOLVING
PARTIAL DIFFERENTIAL EQUATIONS

James M. Hyman, T-7

Center for Nonlinear Studies
Theoretical Division, MS B284
Los Alamos National Laboratory
Los Alamos, NM 87545

USA

ABSTRACT. The numerical methods for solving systems of partial differential equations
can be analyzed by decoupling the space and time discretizations and analyzing them
independenty. Firsta method is selected to discretize she differential equation in space and
incorporate the boundary conditions. The spectrum of this discrete operator is then used as
a guide to choose an appropriate method to integrate the equations through time. The
dissipative effects of a numzrical method are crucial to constructing reliable methods for
conservation laws. This is particularly true when the solution is discontinuous as in a
shock wave or contact discontinuity. Choosing an accurate method to accomplish each of
these tasks, space and time discretization and incorporating arntificial dissipation in the
numerical solution, determines the success of the calculation. We will describe the
methodologies used in each of these choices to construct reliable, accurate and efficient
mcthods.

1. Introduction

Each year significant and powerful algorithms are discovered for the solution of
nonlinear partial differential equations (PDEs). These algorithms can be highly complicated
and probl2m-dependent; a method developed for a particular test problem may not work
for similar problems. Methods that work well in one space dimension may not be easily
extended to two or three dimensions. Linear analysis can rarely ensure accuracy with
nonlinear methods or highly nonlinear equations. Most of these methods have a similar
underlying strucwure. To better predict when a method, which is almost always developzd
for relatively simple test problems, will extend to more complicated situations, we must
uncerstand this underlying structure. First, we will simplify the structure of these methads
so that common features among seemingly different methods emerge that were not evident
when analyzing a specific method for a specific set of equations. By understanding the
general patterns found in most methods, we may gain a better view of how and why the
algorithms work as they do.

The prototype system of PDEs we will study can be written as

u, = f(x,t,u), u(x,0) = u, , ) (")

where the solution u(x,t) lies in some function space, x is in some domain 2, and f is a
nunlinear differential operator. We use the notation u, and u, tn represent partial
differentiation with respect to time and space. On the boundary of €2, the solution is
constrained to satisfy the boundary condition

b(x, . ux,t)) = 0, xedQ , (1.2)
where b is a nonlineat spatinl differential operator.

A discrete numerical method epproximates u by an element U in some tinite dimensional
space whose components are the values of u at a discrete set of mesh points or the average



values u over a cell bounded by the mesh points. The differential operators f and b are
replaced by discrete operatnons F and B operating on U.

The discretized approximation to Eqgs. (1.1) and (1.2) is a constrained system of ordinary
differential equations (ODEs),

U, = FX,t,U), BX,t,U) =0 , (1.3)

which are then integrated numerically This report is organized so that the crucial choices
for methods to discretized space, boundary conditions, time, and methods to solve the
algebraic systems are analyzed independenily.

2. Discretizations in Space

The numerical approximation of the spatial derivatives and the distribution of the mesh
points determine how. well the spatial operator f(u) and the solution u will be approximated.
We describe some typical methods to approximate spatial derivatives and then we describe
how the errors in a calculation are related to the order of accuracy of the method.

The guiding principle in choosing a numerical method to approximate the spatial operator
is that the resulting discrete model should retain as closely as possible all the crucial
properties of the original differential operator. For instance, for a hyperbolic PDE, the
operator f is antisymmetric, so we try to approximate f by an antisymmerric discrete
operator F. For a parabolic PDE when f is dissipative, we approximate f with a dissipative
discrete operator. If f is in conservation form, we also choose a conservation form of F.

All spatial differentiation methods we describe follow the same algorithmic flow. At time
t during a calculation, we are given the approximate solution vector U at a discrete set of
mesh points X and must generate a numerical approximation F(U) of f(u) at these mesh
points. When f(u) is a nonlinear spatial operator, it will have terms such as g(u,x,t), or
(s(u,x) g(u,x,t),},. First, pointwise values of the solution are defined at a set of grid
points. If average values of the solution within each grid cell are being calculated, then
they must be interpolated to pointwise values at the edges of the gnd cell. Next zll
nonlinear functions are evaluated to generate, say, the vactors GG and S. These veciors are
then differenced to approximate G, and (SG,), at the mesh points.

The spatial differentiation is totally divorced from the nonlineanties of the PDE. This
modularity also reduces the redundancy of programming the same approximation to the
spatial derivatives each time they appear in an equation. These differentiation routines are
debugged and optimized for a particular machine only once--with no specific PDE in mind.

2.1 FINTTE VOLUME METHODS

Many physically motivated systems of PDEs are derived from a limiting proce.ss applied
to integral equations. For example, a quantity u is conserved under the flow of a
conservation law if the amount of u contained in any fixed volume QQ is due entirely to the

flux f(u) across the boundary 9 of Q. These conservation laws can be expressed in
integral form as

‘%I u -I fu)-n (2.1)
0 an

Where 7 deitotes the outward normal to the bo ndary.



Moving the time derivative under the integral sign and applying the divergence theorem
Eq. (2.1) can be rewritten as

I [du+Vfu)] =0 (2.2)
(9]

By letting the volume shrink to a poini we obtain the PDE
ou+V-f=0 (2.3)
at every point where u and f are differentiable. .
When numerically solving Eq. (2.1) it is natural to stop the limiting process at the local
mesh spacing and solve Eq. (2.1) where Q is a control volumes defined by the grid cells.
The divergence theorem a natural identity that can be used to define the rate of change in a

cell. This approach is called the finite volume method (FVM) (3, 7,9,11,13). In one space
dimension we solve

o +9,f(x) = 0 (2.4)

where the bar represents an integral average over the grid cell:

Xis)
E(th) = K_—L_J u(s)ds ,

Y1122 (2.53)
(X p) = HI—J Nus)lds
i+l/ X\ (25b)

Ax;. 1n = X, - X;and the notation f (x) refers to the averaged quantity f{u(x)). The
control volume (grid cell) centered at x;, | = (X;,; + X; )/2 has the boundaries x; and
X;+ ;- The discrete divergence operator can be computed exactly in the (i + 1/2)-th cell as

hlivin = %')—lfx—) - (2.6)

The point values of f in Eq. (2.6) can be obtained by evaluating f at the point values of u,
which are obtained by differentiating the cumulative integral of u,

X
Uix) = I uis)ds . (2.1
A g



That is,
ux) = Uyx) . (2.8)

At the grid points U, is known exactly;

ol i-1
U, = I u(s)ds = 2 AII,ln E_|+l/2 . (2.93)
1

X o =

and
ujyp= W, -U)/ &, - (2.9b)

Between the grid points, U is approximated by an interpolant. For example, if U is
approximated by a piecewise polynomial, then the reconstructed u is also a piecewise
polynomial. Typically, u is approximated by a piecewise constant [6]. linear [11],
parabolic [3.11). or a higher order Hermite interpolant [5, 7, 9]. The derivative of tiis
interpolant at x; is an O(Ax*) approximation to U,(x;). This can be used in Eq. (2.6) to
define the pointwise values f; ard f; , | to give

a;in» n = A olx ‘&tl)) .;,;(ZU ) + 0 (k% 1) (2.10)

This process of going from average values of u to evaluating the flux in and out of a control
volume is illustrated in Fig. 2.1.

i1

}'J.=I}‘:l A%, . 1n Ui G
| /12 3, | 5 6 \9,
u ., 1n “.—3_>f. 8, 8 . 1n
v. 4
fy (x;)

Figure 2.1 Schematic of the FMV for d, 4 + 3,f(u) = gw) . 1. The cumulative integral
U; isdefined at the FV boundaries. 2. The interpolant of U is differentiated to define u,.

3. The functions f,, g; are evaluated. 4. The civergence term is evaluated /, = (f; , | -
f)/Ax; , 1p. 5. The lower order term g is interpolated and integrated to form G(x). 6. The

average values of 8(1) are defined from G..



If a local quadratic interpolant is used, then a second-order linear approximation to u at
the midpcints can be found with the centered formula

uj = (Ax; \p i n+ A%, p )/ (Ax O p + Bx, ) +0RE)  (2.11a)
or the one-sided formula

U = [QAX  \p+Axi ) Uiy 12 - AXi U3 ) 1 (A, + AXG, 3p)

+ 0(Ax?) .
On uniform grids the fourth- and sixth-order formulas are: (2.11b)
u; =(-E,',3,2+7E"¢1,2+7Ei_|/2‘ﬁ,'+3,2)/12 +0(A14) ’ (21]C)
and ]
U = Ui, sn - 8Ujyn + 37U, \p + 3Tu; \p)
- 8Ei-3f2 + E,sn)/60 + O(Axd) . (211d)

Higher order formulas can be generated by using higher degree interpolants [4, 7, 8, 13].
In many applicaticns u represents density, energy, pressure, Concentration or some positive
quantity. When u is positive then U must be monotore, and, therefore, applying a
monotonicity constraint [S] on the numerical derivative approximations of d,U in step 2 of
Fig. 2.1 is appropriate. For example, if a cubic spline interpolant is used :o0 approximate
the derivatives, then constraining U, to satisfy

0 s U = alUi € 3 min (S,_,,_-.S,,l,-_,) , (212)
where
Sivin= (U, -Up)/ Ax,

will guarantee the resuliing interpolant preserves the monotonicity properties of the data

points.
In some applications u is known to be monotone, consequently U is convex and a
convexity constraint [5] such as

min (Si+l/2' Si_”z) S alUi S max (Si+lf2v Sa.m) 2.13)

1S more appropriate.

Next f(u,) is evaluated and df is evaluated using (2.6). Note that applying these nonlincar
constraints on the derivatives of U does not affect the final divergence conservation form of
the derivative approximations of /. This would not be the case if the constraints (2.13) or
(2.13) were applied directly to 9, f . Also, even though the high-order interpolates and
derivative approximations are rarely symnietric on nonuniform grids, the resulting FVM is
a conservative approximation in divergence form.

The FVM can also be applied to PDEs with lower crder nonlinear terms such as occur in
chemically reacting flows,

3,7 +0,flu) =g . (2.14)

Here g(u) may not be well approximated by g(i) ard this term must also be carefully treated
as described in Fig. 2.1



22 PHASE AND DAMPING ERRORS

The errors in approximating the derivatives by finite volume approximations can be
divided into two classes; phase or dispersion errors and damping or dissipation errors.
The second-, fourth- and sixth-order finite volume approximations Eq. (2.11) of 4, can be
written as [1]

Uy(x;) = (U -4,)/ (2Ax) + 0(AX?), (2.i5a)

u, (x;) = (-uj,,+ 8u;,, - 8, +u,)/(124x) + 0(Ax%), (2.15b)

El (Xi ) = (Ei+3 - 9Ei+2 + 45Ei+l - 45Ei-l + 95,2 - Ej,}) / (6OAX) + O(Ax") (ZlSC)

The errors in a finite volume approximation can be computed exactly for numerical
approximations of raveling wave solutions to

B+vi, =0, (2.16)

with periodic boundary conditions on the unit interval and constant velocity v. The
sclution is a traveling wave with the solution u (x.t) = u (x-vt, 0).

When the initial conditions consist of a single frequency, u(x,0) = a sin(kx) + b cos(kx),
then the phase error inooduced by the finite volume approximation will be the same using
scco?d-[.gt]'ounh- or sixth-order differences if the number of mesh points in the calculations
satisfy

= 2 - k)
M; = 036M; = 012 Mg (2.17)

Here M; is the number of mesh points when using j-th order finite volume method.

Table 2.1 compares the number of points per wave length necessary to obtain a given
phase error e in the snlution to (3.2) at time t using second-, fourth- and sixth-order
centered differences.



2nd 4th 6th

order order order Accuracy
M, M, Mg e/ (vkt)
4 4 3 2.6
8 5 4 0.65
16 7 5 0.16
32 10 7 0.04
64 14 8 0.01
128 19 10 0.0025
256 27 13 0.0006
Table 2.1. Points per wavelength for second-, fourth- and sixth-order differences

to have the same accuracy.

In a calculation where the solution contains many different frequencies, the high modes
(2-5 points per wavelength) are approximated equally poorly with all the methods. The
middle modes (6-16) points per wavelength) are computed much more accurately with the
fourth and sixth-order differences than with the second order methods. The sixth-order
differences are more accurate for the lower modes than either second- or fourth-order
differences.

The relationship of the accuracies of the different methods compared to the number of
points per wavelength is even more impressive in higher dimensions. In two space
dimensions the numbers in Table 2.1 should be squared; in three dimensions cubed. An
example of the gain in accuracy by using a third-order method are illustrated in Fig. 2.1. In
these calculations, done on an irregular grid with volume ratios of over 100 to 1, the higher
order method was obtained by fitting a quartic polynomial through the cummulative integral
of u and its four neighboring points and differentiating it using the DERMOD package
described in [8).

Also, in calculations with shock waves or other sharp fronts, the post shock oscilla:ions
are reduced by the high order differences. Furthermore, these methods are able to resolve
the discontinuities betier and require less antificial dissipation to eliminate post shock
oscillations.

This error analysis has been for periodic boyndary conditions. For nonperiodic
boundary conditions the results are also valid if the boundary conditions have been
approximated as accurately as the solution in the interior. Often, important properties of the
solution behavinr originate at the boundary and the numerical differentiation procedure
must take the boundary conditions into account.
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Fig. 2.1a first-order approximation Fig. 2.1b Second-order approximaton

Figure 2.1 The numerical solution of the wave equation is shown efter a Gaussian has
moved around the peri.dic box once in the vertical and horizontal direction using a first-
order (2.1a) and third-order FVM. The grid is exponentially refined in both x and v with
cell volume ratios of over 100 to 1.

3. Boundary Conditions

Before calculating the solution to any differential equation one should determine if the
boundary conditions are consistent with a well posed problem. A numerical method cannot
be expected to generate reasonable results for a problem which does not have a well defined
reasonable solution. The importance of proper boundary conditions cannot be
overstressed, the boundary conditions exert one of the strongest influence on the behavior
of the solution. Also, the errors introduced into the calculation from improper boundary
conditions persist even as the mush spacing tends to zero.

A common error in prescribing boundary conditions for conservation laws is to over or
under specify the number of boundary conditions. Overspecification usually results in
nonsmooth solutions with mesh oscillations near the boundary. Underspecification does
not insure the solutio: is unique and the numerical solution may tend to wander around in
steady state calculations. In either case the results of the calculation are not accurate and
oine should be skeptical of even the qualitative behavior of the solution.



Once it has been determined that the differential equations and boundary conditions are
well posed, special care must be taken to preserve this in the difference approximation.
The way in which boundary conditions are specified for the difference equations can
change a well-posed PDE into an ill-posed (unstable) discrete problem. Two of the most
reliabie methods to incorporate boundary conditions into the discrete equations are the
extrapolation and the uncentersd difference methods. Both of these methods work best by
erforcing constituent relationships on the difference equations such that the discrete
equations are consistent with as many relationskips that can be derived from the
boundary conditions and differential equation as possible.

3.1 FICTITIOUS POINTS

One of the most effective methods to incorporate the-boundary conditions into the discrete
approximation of the PDE is to extrapolate the colution to fictitious points outside the
region of integration using both the difterential equations and the boundary conditions. To
define the nonphysical solution at the fictitious points, the boundary conditions are
differentiated with respect to time and the time derivatives are replaced with spatial
derivatives using the PDE to obtain differential constraints for the extrapolation formulas.

We will demonstrate this technique for reflecting boundary conditions to the Euler
equations of fluid dynamics:

W, +F(W), =0 (3.1)
p 0
W= pu F=uW + p
E pu

where

p = mass density

u = velocity

pu = momentum

E = p(1 + 1/2 u?) = total energy per unit volume
I = internal energy

p = pressure

The numerical solution of Eq. (3.1) is a highly complicated and problem dependent
process. The solution usually contains dynamic interactions between shock waves,
rarefaction waves and contact discontinuities. A method developed for a particular test
problem may or may not work for another with stronger (or weaker) shocks and contact
discontinuities.

Equation (3.1) is hyperbolic if pressure is an increasing function of density at constant
entropy. This is the case if we assume the equation of state to be that of a polytropic gas,
i.e. p = (y-1)Ip. The parameter y is a constant greater than one and equal to the ratio of the
specific heats of the gas. For this equation of state we have ¢2=+yp/p at constant ¢ntropy.
The quantity c is called the local sound speed of the gas and is related to the characteristic
velocities u,u +cand u - cof Eq. (3.1)

The reflecting boundary conditions for a thermally insulated wall for Eq. (3.1) at x = x
are

u(xg.t) = 0, IL(xg 1) = 0. (3.2,



The thermally insulating boundary condition, I, = 0, is obtained from the limit of the
viscous dissipative equations as the viscosity and heat dissipation tend to zero. This
condition is necessary to prevent a boundary layer in the difference approximation of
inviscid calculations due to the presence of artificial dissipation.

To incorporate these boundary conditions into our numerical solution when using fourth-
order centered differences we will introduce two fictitious points at x ; = x, - Ax and
X3 = Xg - 2Ax outside the region of integration. At these points we nced an approximation
to p, pu, and E to preferably fourth-order.

Combining Egs. (3.1), and (3.2) at x = xg we have

0 = -(pu), = (puZ+p) =p, = (-DIp; and p, =0

Ex = (p+3u?)), =0,
and ,
“(Pu)yxy = (Px = (P =0

Since these equations are valid for all time and v# | we have
Py = (pu) = (pu)y, = E, =0 (3.3a)

as auxiliary boundary conditions at x = x( consistent with the original problem. The
nonphysical solution at the fictitious points outside the region of integration are defined so
the finite difference approximation of Egs. (3.3) are satisfied at the boundary.

When we replace the derivatives in these auxiliary boundary conditions by the standatd
centered finte differences we see that Eqs. (3.3) are satsfied if

Pi = Pi (pu)l = -(pU)_i, E-i = Ei' for i =1 or?2. (33b)
3.2 NO FICTITIOUS POINTS

There is not always a simple extrapolation formula such as Eq. (3.3) to extend the
solution to the fictitious points. For these problems it is often better to use uncentered
differences near the boundary. The goal of this approach is to extend the number of
boundary conditions so that all components of the solution are defined at the boundary.
Again, these additional boundary conditions must be consistent with the original problem
and as many relationships as can be derived from it. An uncentered difference
approximation is then uscd to approximate the spatial derivatives at the mesh points.

This method will be described for the linear hyperbolic system of M equations

W, = H(x)W, : (3.4)
with the boundary conditions
SWp = b(*), x=x. 3.5)

Difficulties arise in defining the solution at the boundary whe 0 < Rank(S) < Rank(H) =
M and there does not exist a unique solution Wy of (3.5). 1f Rank(S) = 0 then ail the
characteristics are outgoing and using either uncentered differences at the points near the
boundary or straight forward extrapolation to the fictitious points gives accurate results.
When Rank(S) = M then all the characteristics are entering the houndary and all the
components of the solution can be solved for on the boundary. Uncentered spaial



differences can then be used at the points near the boundary and will result in an accurate
approximation of thr. boundary conditions.

Wihien Rank(S) is greater than zero but less than M then by differentiating Eq. (3.5) with
respect to time and replacing W, from Eq. (3.4) we have

SH(x)W, = b'(t), x=x;. (3.6)
Approximating W, by second-order one-sided differences results in
SH W, = [SHy(4W, - W) - 2Axb"{1)] /3 + 0(Ax3) 3.7

where Hg = H(xg). Equation (3.7) gives us additional information about the boundary
conditions that is consistent with both the originalboundary conditions (3.5) and the
differential £q. (3.4). If we still do not have enough boundary conditions to solve for Wg
u;iqucly then we car continue by differentiating (3.6) with respect to time and using Eq.
(3.4) again.

Itis ogftcn the case that Hy i~ nonlinear and the above procedure must be iterated. Usually
one or two iterations are suffic. :nt for a stable accurate boundary approximation.

Once W, has becn found we can use uncenteied finite differences to approximate the
spatial derivatives at the mesh point nearest the boundary or we can extrapolate the solution
to fictitious points outsicde the region of integi.ution. This extrapolation can b2 done by

replacing the derivatives in Egs. (3.6) with second-order centered differences and solving
for W ;.

33 NONPHYSICAL BOUNDARIES

There are many initial boundary value problems where it is essential to introduce artificial
boundaries to reduce the computing time and storage of a calculation. These problems are
usually posed in a domain much larger than the subregion where the solution is of interest.
The subregion is blocked off and imbedded in the original problem by creating artificial
boundaries. The boundary conditions at the artificial boundary are chosen such that the
solution on the full domain would automatically satisfy these internal boundary conditions
if the full problem were solved. The goal, of course, is to approximate the original
problem as closely as possible on the reduced domains.

Consider mapping the initial boundary value problem fo. the Euler equations on the half
line [0,ee) into [0,b) with a map such as

X O<x<l
y = (3.8)
b+(1-b)/x l <x <o,
In this new coordinate system Eq. (3.1) transtorms to
W, + s(v)F, =0, yelOb)
where
] <y«

s(y) = (3.9)
(b-y)/ (b-1) 2 l<y<b



The solution to (3.9) is identical to the solution of our original problem. Therefore, the
transformed system has the correct number of signals entering and leaving through the
artificial break pointat x = 1.

In this transformed system a wave slows down in the region (1,b) and approaches zero
speed as x nears b. This causes a wave train to squeeze up, with the lower {requencies
being pushed into higher ones. These high frequencies cannot be computed accurately and
it is bust to add some dissipation to damp them out as they approach the transformed
infinity boundary b. Ttis damping should be chosen such that the signals propagating into
the region of interest [0,1] depend in some sense on an average of the solution outside this
region, i.e. (1,b). A possible form for the dissipation is

W, + s(y)Fy = (Ayd(y)Wy)y (3.10)
where

0 ' O<y<l
d(y) =
3(y-1) /7 (b-1))2 l<y<b

Notice that the equation is unchanged in the interval [0,1] and becomes parabolic in the
interval (1,b). In fact at y = b the equation reduces to a simple diffusion equation.
Bonndary condiuons must be given for all the variables at y = t for the problem to be well-
posed. The boundary condition for steady flow at infinity (W, = 0) gave the best results
in a series of test problems.

3y imbedding the equation in the subregion into a well-posed problem in a slightly larger
domain the difficulty of maintaining the correct number of boundary conditions at the
artificial boundary was solved attomatically. Furthermore, the information entering the
region at this boundary depends on somc global average properties of the solution outside
the sutregion.

34 SPECIAL PDE FORMS

3.4.1 Tharacteristic Form. In problems where tne solution is sensitive to the
approximation of the boundary conditions it may be more stable to transform the boundary
conditions or the equation into characteristic form at the boundary. The extrapolation
formulas are then derived to extrapolate the outgoing characteristic variables to the fictitious
points.

Characteristic variablc., are also important when no amount of algebra seems to yicld
enough relationships to unic}ucly define all the solution variables at the fictitious points.
When this happens one is forced to extrapolate on some of the variables without any
boundary relationships to guide the extrapolation: It is usually best to extrapolate on
outgoing charactenstic variables and use their values at the fictitious points to provide the
extra needed informat.on.

2.4.2 Differential Form. Whatever extrapolation formula is used there may be some
inherent truncation error in the extrapolated solution at the fictitious points. Some of these
truncation errors can be eliminated by ¢nanging the differential fonn of the equation at the
boundary. For example, the reflecting boundary conditions (3.2) can be incorporated in
the Euler equations at the boundary to give



(P pu
W =|Pul 0] =0 (3.11)
E( pu/x

at the boundary. By differencing and integrating these equations, rather then Eq. (3.1), at
the boundary we have prevented some of the possible truncation errors inherent in the
extrapolation formula, from creeping into our calculation. Notice that the modified Eq.
(3.11) has been kept in divergence form. This is particularly important to maintain
conservation when shocks are reflected at the wall.

Using the modified differential form of the equations is especially important when there is
a removable singularity at the boundary. This often occurs at the orgir in PDEs formulated
in cylinderical or spherical symmetry At the singularity these terms should be replaced by

their equivalent nonsingular form obtained using 1."Hopital’s rule.
4. Artificial Dissipation

The purposc of the artificial dissipation or antificial viscosity is to remove many of the
numerical difficulties of integrating hyperbolic PDEs with shcck waves or other
discontinuities in the solution.by dissipating or damping out 2neigy in the high frequencies
of the solution. This approach does 1n some sense mock up the effects of the viscous and
dissipative terms discarded in the derivation of the Euler equations in that it primarily
dissipates the high wave numbers, but it has little to do with true heat dissipation or
viscosity. Artificial dissipation is a special form of truncation error either inherent to a
finite difference approximation or resulting from explicitly adding an additional term to the
equation. This dissipation is the leading truncation error in the numerical approximation
and is chosen on the basis of the expected form of the solution.

There are six primary reasons for including artificial dissipation in the numerical
approximation. They are:
To achieve proper entropy production across shock fronts.
To smooth out nonphysical discontinuities in the flow.
To solve the problem of the energy cascade when comruting only a finite number
of modes.
To compensate for spatial interpolation errors. such as the Gibb's phenomenon,
near discontinuities in the solution.
To counteract the dispersion error in the numerical scheme.
To stabilize certain time differencing methods.

The form of a good artificial dissipation term tailored for a particular problem will depend
on which of these points are most important. It is therefore essential to designing a
numerical method to have a basic understanding of euch of them. In this section we will
review each reason for adding artificial dissipation and suggest a form which works for a
large class of problems.
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4.1.1. En:ropy Producticn. The most common reason given for adding artificial
dissipation is so that one can calculate shock waves. Entropy increases across a shock
front, but Eq. (3.1) has no mechanism for the increase. We must add a term to the
equation which will allow entropy to increase by the proper amount. The terin should be in
conservation form to riaintain the Rankine-Hugoniot jump conditions and therefore give
the correct shock speed.

4.1.2. Nonphysical Discontinuuties. Another desired effect of the artificial dissipation is
to smooth out nonphysical discontinuities in the flow. That is, it would be advantageous if
the antificial dissipation were formulaed in such 4 wity that physical shocks are stable and



nonphysical sudden compression shocks are unstable. These nonphysical discontinuities
often occur in the initial conditions and can be smoothed out by using more anificial
dissipation in the first few time steps than later in the calculation.

4.1.3. Energy Cascade. Typically, in Eq. (3.1) energy enters the system at low wave
numbers and cascades upward to higher wave numbers where it is eventually dissipated by
molecular viscosity and enters the system as heat (Kolmogoroff hypothesis). In numerical
calculations the energy spectrum is limited by the number of mesh points. When there is
no artificial dissipation in the system the energy cascade backs up at the higher frequencies
and shows up in the calculation as high frequency noise or trash. Some of this energy is
aliased or n:ﬁcctcd back into the lower wave numbers. This closed loop energy cascade
can destroy the accuracy in all wave numbers during even moderately short computations.

4.14. Gibb Phenomenon. Antificial dissipation can help compensate for some of the
errors introduced by approximating U and U, with an interpolant whose values agree with
U only at a discrete set of points. The errors in the interpolant are most severe near
discontinuities in the function being approximated. At these points the continuity
conditions used to derive the interpolant breakdown and oscillations appear in the
calculation. These oscillations can destroy the accuracy of the calculation by creating
nonlinear instabilities or introducing nonphysical features in the flow such as negative mass
or prassure. The oscillations may generate new aitifacts into the calculation such that the
numerical calculation is stable but converges to the wrong s lution In reacting flows,
overshoots in temperature can prematurely trigger a chemical reaction or co  bustion front
and lead to meaningless results. Adding artificial dissipation to the numerical
approximation damps the high frequencies and helps reduce superfluous oscillations in the
solution.

4.15. Dispersion error. Dispersion errors come from the inexaciness in both the time
and space differencing methods. The dispersion errors due to the different modes of tive
solution traveling at different and incorrect velocities can accumulate and destroy the
accuracy of the computation. This is particularly true for the higher modes even in
calculations of flows which should have only ! mooth solutions. Iacreasing the accuracy in
both the time and space differencing methods will reduce the dispersion * *he low and
middle frequencies, but not the high modes. It may be best to damp these out by some
form of artificial dissipation.

4.1.6. Stabilization of Time Integration Methods. The ability of artificial dissipation to
stabilize, what may otherwise be an unstable time differencing method for hyperbolic
PDE:s, results from the fact that it shif:s the spectrum of the spatial operator to the left half
plane so that the solution to the modified equation is mathematically and numerically riiore
stable. This may be necessary for such standird integration methods, such as the forward
Euler methwd, that are unstable for ODEs with imaginary eigenvalues. This need can be
overcome by using an integration method that 1s stable for ODEs with imaginary
eigenvalues and hence approiate for hyperbolic PDIis. An example is the leap-frog
predictor-corrector method described in Sec. §

4.2 DIFFERENTIAL FORM

For many problems the arntificial dissipation inherent to the time integration method is
sufficient to compensate for the energy cascitde problem and also the entropy production in
weak shocks. For strong shocks it is necessary to add significantly more dissipation. The
extra dissipation cun be ndded by explicitly adding u dissipative truncation error to 1.



(3.1). A simple scaling analysis can show that adding a second order artificial dissipation
term of the form

W, + Fx = (Ax 8AmaxWa)x @.1)

will fix the shock width to be a fixed numher of grid points and will be independent of
linear ransformations of the equation. Here A,, is the magnitude of the largest
characteristic velocity of the system [A,,, =8(lul+c) for Eq. (3.1)] and & is a dimensionless
scaling parameter. Numerical experiments have verified that choosing the parameter § =
0.25 results in monotone solution profiles when second-order finite volume methods are
used and the equations are integrated accurately in time. The higher order finite volume
methods remain monotone with slightly lower values of 8. To retain accuracy away from
shock waves some of the more sophisticated methods include a switch that detects the
presenc= of a shock and scales § to be small wh-re the solution is smooth.

S. Time Discretization

The numerical solution of (1.3) is advanced in time in discrete steps that vary depending
on the local behavior of the solution; that is, the length of the time steps depends on
whether the solution is evolving or. a slow or fast time scale. The major differcnce between
time and space differentiation is that time hi.. . 1 direction. This time flow allows savings in
computer storage, but introduces questions about the time stability of the difference
equations relative to the stability of the differential equations. For example, in choosing the
an appror.. ‘te numerical method to integrate the Euler equations through time one has to
consider the accuracy, stability, storage requirements, computational complexity and the
relative cost of the different methods. Thesc factors are dependent on each other and
tradeofts must be made as to which criteria are more important for a particular problem.

5.1 SPECTRAL ANALYSIS

Both the phase and damping errors depend on the spectrum of the differential equation
and the ume step size. The time .tep ci1n be varied during the calculation to reduce the
numerical integrution errors, but the spectrum of the differential equations is determined by
the spatiai difference operator. A good integration metho depends on how accurately it
can integrate a particular set of equations. For this reason the spectrum of the spatial
difference operator is the most important puide in selecting an efficient numerical
method to integrate through time. The spectrum can be determined by analyzing the
linearized continuous time - discrete space approximation of the PDE.

Equation (3.1) is solved after adding artificial dissipation and therefore we must analyze a
system of the form (4.1). Most of the essential properties of this system are also found in

the simple prototype equation

PitPy = (Axspl)l . (5.1
A semi-discrete approximation of (5.1) results when the spatial derivatives are
approximated by finite differences on a mesh of N points. This system can be written in
the form of ordinary differential equations (ODEs)

y = Ay + 8AxBy = Cy = f(y) . (5.2,

The vector y is an array of the approximite solution at the mesh points and the prime
denotes the derivative of y with respect to time.



When second-order centered differences are used the eigenvalues of A are imaginary and
the eigenvalues of B negative real. The eigenvalues of AxC are complex and lie on the
ellipses in the complex plane shown in Fig. 5.1 .
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Figure 5.1 The eigenvalues of AxC in Eq. (5.2) are complex and lie on ellipses for values
of 8 = 00,02, ..,10.

We shall first analyze Eq. (5.2) when there is no artificial dissipation (i.e. 8 = 0) and
include the effects of the dissipation as a perturbation on this equation. When 8 =0 Eq.
(5.2) is dispersive since the eigenvalues of A lie on the imaginary axis. These eigenvalues,
A, are equal to iy, ia(u + ¢) and ia(u - ¢), where a depends upon the spatial order of
approximation. When second- or fourth-order centered differences in Eq. (3.1) are used
and the boundary conditions are periodic on the unit interval the corresponding a's are

o, = (sin(2rnjAx))/ Ax, (5.3)
and
a, = (8 1in(2RjAx) - sin (4%jAx)) / 6Ax , (5.4)

for j=-N/2,-N/2 + 1...,N/2 and Ax = I/N.

To faciliate studying the properties of different time integration methods we use the
isolation theorem. That is, the stability and accuracy of a numerical integration method for
Eq. (5.2) is determined entircly by how it approximates the decoupled diagonalized system

yi = Ay (5.5)

with the solution y,(t) = y,(0)e™ where the A, are the eigenvalues of C.



5.2 EXPLICIT METHODS

5.2.1 Numerical Algorithms. The simplest integration method to integrate from t; to
is called the forward Euler method

y$\l+)l =Y t At fn + 0(Ar?) . (5.6a)

This method is linearly stable if At is chosen so that AAt lies within the stability region |
shown in Fig. 5.2. These regions are symmetric about the real axis and are shown in Fig.
5.2. The method is stable if At is chosen small enough that AAt lies within its stability
region for all the eigenvalues A of C. Here, A is any of the eigenvalues of the linearized
Jacobian matrix of F in Eq. (1.3). This approximate solution can be improved by iterating
the corrector of order k + 1, in this case the improved Euler corrector

=y, + IRAED +£) + 0@A0) (5.6b)

n+l

(2)
yn+l

Here the superscripr is the iteration index, f‘n'j, = f(y;L), ).

additional iterations are based on the simple recurrence relation

After the corrector cycle,

i il i-1) i-2) .
yO =y v can £ - 2 L o

(5.7)

fori = 3,4.. . The order of accuracy increases by one for every iteration for linear
autonomous systems of equations. The constants ¢; depend on the iteration count and the
predictor-corrector method used to start the process. The c; are chosen to increase the order
of accuracy of the method for linear autonomous systems and each iteration. When Eqs.
(5.6) are used to start the iteration th.e constants ¢, have the simple explicit formula c; := 14,
i =3,4,. . This method is called the iterated Runge-Kutta method since the stability
region after the i-th iteration is equivalent to the stability region of an i-th order Runge-
Kutta method. The stability regions, shown in Fig. 5.2, increase on each iteration and the
approximations will converge to the exact solution when solving lincar autonomous
systems such as Eq. (5.2).

Another iterated method which has excellent stability and accuracy froperties for the
ODELs with eigenvalues near the imaginary axis. such as the Euler equaticns, is the iterated
leap-frog method. The second-order leap-frog predictor is given by

yi = 1)y, + rly, + Aul+nf, + Q@AY (5.82)
where r = (t,,,-t,)/(t;-t, ) and the third-order leap-frog corrector is
YO = (20 (1+0ly, + Py, |+ S+0)2,+ A+ 1)1/ 243n)
+ O0(A%)  .(5.8D)

The coefficients for this method are ¢, = 3/10, 7/30, 4/21, 451/2800, 314/2255.
1153/9420, and 126/1153 for i=3,4...9 when r=1. The ¢, are funchons of r and are no1
known for general r at this time. The stability regions are shown in Fig. 5.3



The leap-frog predictor is unstable for systems of equations with eigenvalues having a
nonzero real part. Therefore, when artificial dissipation is added or the boundary
conditions shift the spectrum of the discretized equation the leap-frog method cannot be
used without the correcior cycle. The first corrector application extends the bound on the
maximum time step by 50%, increases the method to third-order and is stable in smooth
regions of the solution with or without any spatial antificial dissipation. Another difficulty
with using the leap-frog predictor is a unique type of error due to time and space mesh
decoupling. The odd and even points of a mesh are only weakly coupled when integrating
conservaton laws and errors with frequency = 2Ax can degrade the accuracy of the
solution with high frequency noise. The corrector cycle couples the mesh points among the
three time levels and prevents this weak instability.

When integrating nonlinear equations, the iterated methods (5.7) reduce to the order of
the predictor-corrector of Runge-Kutta starting method. The stability regions still expand
with extra iterations but the order of accuracy remains the same.

52.2 Stability Properiies For most numerical methods it is the largest eigenvalue A, of
the linearized equations that determines the stability condition. When this occurs simpler
stability restrictions on At can be derived using Figs. 5.2 and 5.3. When second-order
centered differences are used in space and the leap-frog predictor is used in time, then if 6

= 0 the stability condition requires At|Am,y <1 or (using Eq. (6.2)).

sin(2mjAx)

Atmax(|u+c)|” Ax = Ax max(ul +¢) < | : (5.9)

This is the usual Courant-Friedrichs-Lewy stability condition for explicit methods when
solving the Euler equations. If fourth-order centered differences are used in space and the
leap-frog predictor-corrector method in time. the corresponding stability condition is

Atg§; max(ju+¢) < 1.5 (5.10).

Notice in Fig. 4 that some integration schemes such as forward Euler are unconditionally
unstable for all At > 0 when the spectrum of the discretized syst=m lies on the imaginary
axis. It is well known that forward Euler is the heart of many standard methods to solve
Eq. (5.1) and in fact is not always unconditionally unstable. This is because of the addition
of artificial dissipation shifts the eigenvalues of the linearized system to the left so they have
anegative real part as seenin Fig. 5.1

We caution the reader that this stability analysis is linear and is not necessarily valid for
highly nonlinear phenomena such as shock waves, In practice to prevent nonlinear
instabilities, it is necessary to restrict the time step slightly below the upper bound given by
the linear analysis.

53 IMPLICIT METHODS

5.3.1 Numerical Algorithms.  Many problems occur when the solution changes on a slow
ume scale but the stability criternia limit the time step far below that needed to retain
accuracy. In these casss, itis often besi to use a more stable implicit method. One of the
best methods for PDEs is the second-order backward difference formula

y = [+ 02y, - rdy o+ ALt 171+ 20+ 0At) (5.1D
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Figure 5.2 The stability regions for the iterated Runge-Kutta method are shown in Fig.
5.2a. The i-th iteration is stable if AAt is within the i- th curve for all eigenvalues A of the
Jacobian of F in Eq. (1.3). The phase (solid line) and damping (dashed line) errors in the
different modes AAt of the numerical solution of (5.1), 8=0, due to time truncation errors
are shown in Fig. 5.2b.
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Figure 5.2 The stability regions fu. the iterated Leap-Frog method are shown in Fig. 5.3a.
The i-th it=ration is stable if AAt is within the i-th curve for all eigenvalues A of the
Jacobian of F in Eq. (1.3). The phase (solid line) and damping (dashed line) errors in the
eigenvalues AAt of numerical solution of (5.1), 8 = 0, due to time truncation errors are
shown in Fig. 5.3b. Note that there is no damping error in the leap-frog predictor and that

the rorrector slightly damps the higher modes and greatly reduc es the phase error in all the
modes.



These method is stable when Re{A) <0 for all At, as can be seen in Fig. 5.4,. retains the
positivity of the solution to (5.5), and has the proper limit for large AtA.
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Figure 5.4 Stability region for tne Second-order BDF formula (5.11) whenr=1.

On each time step of a one-cycle implicit method we must solve.a nonlinear algebraic
system of the form

Yo+1 + BAtf,,, = known quantities \ (5.12)

Several iterative methods, discussed in the next section, show how Eq. (5.12) might be
solved. A good first guess can ofien be made by using polynomial extrapolation.

6. Algebraic Systems
6.1 ITERATIVE METHODS

When implicit methods are used then on each time step we must solve large sparse
algebraic systems of equations. Tnese equations can be written as

AWV)-b =19, 6.1

where A is a nonlinear discrete operator, b is a known vector, and the discrete solution
vecior is v. Often the solution of Eq. 6.1 is difficult .0 obtain directly, but the residual
error

r=AMWw)-b (6.2)
for an approximate solution w is easy to evaluate. If there is a related system

Pw)-b=0 (6.3)
that a;;grlolximues Eq. (6.1) and is easier to solve, the defect correction algorithm may be
ap e

iven a guess v, near a root v, of Eq. (6.1), we can expand Eq. (6.1) using Taylor
series to get



O = A(Vn,”) -b
= A(Vn-ﬂ) -b+ P(Vn+l) - P(Vn+l)
= A(vp) - b+ P(vp,)) - P(vp) - Jp - Ja) (Vnyp - vy) + 0E2) (6.4)

where € = v,,, - v,, and Jp and J , are the Jacobians of P and A. The defect correction
iteration is any O(€) approximation to Eq. (6.1). The simplest such iteration is

P(vp,) = P(vy) -A(vp) +b . (6.5)

This iteration will converge if v, and J, the Jacobian of P, are near enough to v,,4, and Ja,
respecuvcly Table 6.1 lists some of thc more common applications of «efect corrections.
The iteration (6.2) can often be speeded up by USmg an acceleration parameter @ to give

P(vn-yl) = P(vn) - mn[A(vn) - b] . (66)

These methods include successive over. 2laxation, dynamic altenating direction tmplicit
methods, and damped Newton. Often a two-step acceleration method

Plv,,.1) = b+ w[P(v,) - 0 A(v)] + (1 - @0)P(vp,y) 6.7)

can speed up the convergence even more. These methods include the Tchebyshev [10] and
conjugate-gradient (4] methods.

— P(v,. 1 = Methiod
A(vp) +Ja(Vn) (Vogy - V) Newton [12]
Diagonal of J, Jacobi [12]
Lower triangular part of J, Gauss-Siedel [12]
Lower triangular part of J Line Gauss-Siedel [12]
+ first upper off-diagonal
Coarse grid operator + relax Multigrid 2]
using one of the above
Svmmetric part of J 5 Concus-Golub-O'Leary (4]
IfA=(I+AtL, + AtL,) . ADI[12]
then P = (l+Azi)(l+AtL)
where L, = lncanzcd lower order
approximauon tolL.
LU where
L = lower triangular matrix Incomplete LU m- .hod [ 10]

U = upper triangular matrix
Table 6.1. Common examples of the defect correction iteration.

Whenever a numerical iteration is being used to solve an implicitly defined system of
equations, it is extremely useful to unravel the iteration and determine exactly what equation



(6.1) the converged solution satisfies and what the preconditioning operator P is. Once
these have been determined, often the iteration can be speeded up by impioving the
preconditioning or using an acceleration method.

7. Summary

We have used a modular approach to develop accurate and robust methods for the
numerical solution of PDEs. The methods to discretize the spatial operator, the boundary
conditions, and the time variable, and solve any algebraic system that may arise are
combined when writing a code to solve the PDE system. Special care always must be
taken when solving a nonlinear equation or when using a nonlinear method. This means
that the code must be field tested. The field test is to check the reliability of the method on a
particular nonlinear system of PDEs. The numerical results should be insensitive to
reformulations of the equations, small changes in the initial conditions, the mesh orientation
and refinement, and the choice of a stable accurate discretization method.

Another excellent analysis tool is verification that any known solutions are well
approximated and that any auxiliary relationships (such as conservation laws) hold for the
numerically generated solution. These checks should be made -- even it one is absolutely,
positively sure that the numerical solution and coding are correct.
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