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NUMERICAL METHODOLOGIES FOR SOLVING
PARTIAL DIFFERENTIAL EQUATIONS

James M. Hyman, T-7
Center for Nonlinear Studies
Theoretical Division, MS B284
la Alawws NationalLuborawy
La Alarnos,NM 47545
USA

ABSIWCI’, IIIc numerical mcthcds for solving systems of partial differcmial equations
can be analyzed by decoupling the space and time discretizations and analyzing them
indepndcntly. Fmt a method is selected to discrctizc jhc diihtntial quation in space and
incoqmtate the Imundary conditions. The spectrum of this discrete operator is then used as
a guide to choose an appropriate method to integrate the equations through time. The
dissipative effects of a num:rical method are ctucial to constructing reliable methods for
conscmation laws. This is panicularly true when the solution is discontinuous as in a
shock wave or contact discontinuity. Choosing an accutate method to accomplish each of
these tasks, space and time discrctization and incorporating artificial dissipation in Ihe
numerical solution, determines the success of the calculation. We will describe the
methmiologies UWI in each of these choices to construct reliable, accurate and efficient
methods.

1. Introduction

Each year significant and powerful algorithms arc discovered for the solution of
nonlinear partial differential quations (PDEs). ?lwsc algorithms can & highly complicated
and moblemdependcnt; a methmi developed for a particular test problem may not work
fur similar problems. Methods that work well in one space dimension may not be easily
extended to two or three dimensions, Linear analysis cen rarely ensure accuracy with
nonlinear methods or highly nonlinear equations. Most of these methtis have a similar
underlying suucwre. To better predict when a method, which is almost always devclopd
for relatively simple test problems, will extend to more complicate situations, we must
um%tand this underlying stmcturc, First, wc will simplify the stncturc of these methods
so that common features among seemingly different methods emerge that were not evident
when analyzing a specific method for a specific set of equations. By understanding the
general patterns found in most methods, we may gain a better view of how and why the
algorithms work as they do,

TIIc prototype system of PDEs wc will study can be wrirtcn as

u, = f(x, t, u), U(%,o) = u,, 9 (1,!)

where Ihc solution u(x,tj Iics in some function space, x is in some domain (2, and f is u
rmnlinear differential operator. Wc usc the notation u, and UR to represent pitrtiul

differentiation with respect to time and spiice. On the boundary of fl, the solution is
constrained to satisfy the boundary condition

b(x, t* U(x,t)) = O, x E iXz , (1!2)

where b is a nonlirta spatinl differential opu[or.
A discrete numerical nwthmi epproximnles u by an element U in some tinitc dimcnsmmd

spticc whose components art the VUIUCSot’ u aI a discrete set of mesh points or the avrrigc



values Z over a cell bounded by the mesh points. The differential operators f and b arc
replaced by discrete operanons F and B operating on U.

The discret.ized approximation to Eqs. ( 1,1) and ( 1.2) is a constrained system of ordinary
differential quations (ODES),

u, = F(X, t, U), B(X, t, U) = O , (1.3)

which are then integrated numerically This report is organized so that the crucial choices
for methods to discretized space, boundary conditions, time, and methods to solve the
algebraic systems are analyzed independently.

2, Diacretizations in Space

The numerical approximation of the spatial denvat~ves and the distribution of the mesh
points determine how. well the spatial operator f(u) and the solution u will be approximated.
We describe some typical methods to approximate spatial derivatives and then wc describe
how the ctmrs in a calculation are related to the order of accwcy of the method.

The guiding principle in choosing a numerical metld to approximate the spatial operator
is that the resulting discrete model should retain as closely as possible all the crucial
properties of the original differentialoperator. For instance, for a hyperbolic PDE, the
operator f is amisymmetric, so we try to ap~roximate f by an antisymmernc discrete
operator F. For a parabolic PDE when f is dissipative, we approximate f with a dissi ative

fdiscrete opmmr, If f is in conservation form, we also choose a conservation fotm o F.
All spatial differentiation methods we describe follow ihe same algorithmic flow. At time

t during a calculation, we are given the approximate solution vector U at a discrete set of
mesh points X and must generate a numerical approximation F(U) of f(u) at these mesh
points. When f(u) is a nonlinear spatial operator, it will have terms such as g(u,x,t)x or
[s(u,x) g(u,x,t)x!x. First, pointwise values of the solution are defined at a set of grid
~ints, If average values of the solution within each grid cell are &in& calculated, then
they must be interpolated to pointwise values at the edges of the gnd cell, Next dl
nonlinear functions me evaluated to generate, say, the vectors G and S. These vectors are
then diffcrcnced to approximate GX and (SGX)X at the mesh points.

The spatial differentiation is totally divorced from the ncmlineanties of the PDE. This
modultity also reduces the redundancy of programming the same approximation to the
spatial derivatives each time they appear in an quation. These differentiation routines am
debugged and optimized for a particular machine only once--with no specific PDE in mind,

2.1 F1.WIZ VOLUME METHC)DS

Many physically motivated systems of PDEs arc derived from a limiting prcwss applied
to integral equa[ions, For example, a quan[ity u is conserved under the flow of n
conservation law if the amount of u contained in any fixed volume Q is due entirely to the
flux f(u) across the boundary Wl of Q. These conservation laws can be expressed in
integral form as

Where; de~mtcs the outward norm] to the ho ,lndtiry,



Moving the rime derivative under [he in[egral sign and applying the divergence thcqrem
@. (2.1) can be retitten as

I [a,u + v-f(u)] = o
n

By letting the volume shrink to a poim we obtain the PDE

atu+v”f=o (2.3)

at evcty point where u and f am differentiable.
When numerically solving Eq. (2.1) it is natural [O stop the limiting process at the local

mesh spacing and solve Eq. (2.1) where S2 is a control volumes defined by the grid cells.
The divergence theorem a natural identity that can be used to define the rate of change in it
cell. This approach is called the fini[e volume method (FVM) [3, 7,9,11,13]. In one space
dimension wc solve

a,il + ilxi(x) s o (2.4)

where the bar rcpmscnts an integral average over the grid cell:

1
X,* I

E (xi +]/2) = –L U(s)ds ,
Ax

1+1/2 x, (2.5a)

(2.5b)

Axi+ in = xi+l - Xi ~d the notation ; (x) refers to the averaged quantity f(u(x)). The
control volume (grtd cdl) centered at xi+ in = (xi+, + xi )/2 has the boundaries xi ~d

%+1. me diSCIWCdivergence operator can be computed exactly in the (i+ l/2)-tII CCII as

~,ii+,~ =
f(Xi+l) - flX,)

&%i.~\2—“ (2.6)

The point values off in Eq. (2,6) can be obutined by cvaluitting~at the point values of u,
which arc obtained by differentiating the cumulutivc integral of u,

(2,’7)



That is,
u(x) = u=(x) . (2.8)

At the grid points Ui is known exactly;

and
ii~+*~= (Ul+l-Ul)/&i+]~ .

(2.9a)

(2.9b)
.

Between the grid points, U is approximated by an interpolant. For example, if U is
approximated by a piccewisc polynomial, then the reconstructed u is also a pieccwise
polynomial. Typically, u is approxima~ed by a piecewisc constant [6], linear [11],
parabolic [3,1 1], or a higher order Hcmnitc interpolant [5, 7, 9]. The derivative of this
intcrpolant at xi is an O(&k) approximation to U=(xi). This can be used in Eq. (2.6) to
define tic pointwise valucsfi afid j, ~ to give

(2.10)

This process of going from average values of u to evaluating the flux in and OUIof a control
volume is illustrated in Fig. 2.1,

G

/\
I 5 6 ax

~, E,
\

+ 1/2

\
v. 4

iX (Xl)

Figtm 2,1 Schematic of the I%IV for al ii + ~, fi = ~) : 1, The cumulative integral
Ui is defined at the FV boundaries, 2. The interpolant of U is differentiated to define u,.

3, he functions fiOgi uc evaluated. 4, The divergence term is Cvalutited ~ , = (f, , , -
fl)/hi + tn. 5. The lower order term g is inte~oliited and integrated to form G(x). 6. The

avmage values of ~) arc defined from G.,



If a local quadratic imerpolant is used, then a second-order linear approximation to u at
the mid@nts can be found with the cemerd formula

or the onc-siclcd formula

Ui = [(2h~ + 1~ + ‘,+ 3~) ‘~ + ]/2 ‘&i+ ]~zi+3~l /(ki+l/2+Mi+3f2)
+ 0(AX2) .

On uniform grids the founh- and six~h-order formulas arc: (2.1 lb)

and
Ui = @i+5~ _ 8Gi~3,2 + 37fii+1n + 3fii.ln)

. 8Zi.3n + iii.5~ )/60 + O(#) . (2.lld)

Higher order formulas can be generated by using higher degree interpolams [4, 7,8, 13].
In many applications u represents density, energy, pressure, concenaation or sotm positive
quantity. When u is positive then U must be monotone, and, thcrcforc, applying a
monotonicity constraint [5] on the numerical derivative approximations of &U in step 2 of
Fig. 2.1 is appropnatc. For example, if a cubic spline imerpolant is used :0 approximate
the dcrivaavcs, then consuaining U, to sa~isfy

0$111= ~~Ui < 3 min (S, . i~~,S1 , lfl) , (2.12)
where

‘1~1~= (U, +]-u~.)/&, ,

will guamntcc the rcsul~ing interpoliint preserves the monotonicity properties of the data
points.

In some applications u is known to be monotone, conscqucndy U is convex and a
convexity constraint [5] such as

is more appropriate.

Next f(ui) is evaluated and% is evaluated using (2.6). Note that applying these nonlinmr
constraints cm the derivatives of U does not affect ttIc final divergence conservation fcmn of

the derivative approximations of j. This would not be the case if the constraints (2.13) or

(2. 13) were applied directly to an i. Also, even though the high-order intcrpcdates and
derivative approximations am rarely symmetric on nonuniform grids, the resulting FVM is
a conservative approximation in divergence form.

The FVM can also& applied to PDEs with lower crder nonlinear terms such as occur in
chemical 1y reacting flows,

ill fi+ilxm=m . (2,14)

Here ~(u) may not k well approximated by g(u) at-d this term must also be carefully treated
as described in Fig. 2. I



2.2 PHASE AND DAMPINGERRORS

Theemors inapproximating thederivarives by finite volume approximations can be
d.ividd into two classes; phase or dispersion errors and damping or dissipation errors.
The second-, founh- and sixth-order finite volume approximations Eq. (2. 11) of iix can be
written as [1]

ti~ (Xi ) = ( - ~+2 + 8fii+1 “ 8fii.1+ til.2) / (12Ax) + 0(Ax4) , (~]sb)

and

The emors in a finite volume approximation can be computed cxacdy for numerical
approximations of traveling wave solunons to

ii+viil =0, (2,16)

with periodic boundary conditions on the unil interval and constant velocity v, The
solution is a traveling wave witi the solution u (x,t) = u (x-vt, O).

When tic initial conditions consist of a single frequency, u(x,O) = a sin(kx) + b cos(kx),
then tie phmc cmor inrrcduced by [he finite volume approximation will be the same using
second-, founh- or sixti-order differences if the number of mesh points in the calculations
misfy [8]

(2.17)

Here M, is tie number of mesh points when using j-th order finite volume method.
Table 2.1 compares the number of points per wave length necessary to obtain a given

phase error e in the snlution to (3.2) at time [ using second-, fourth- and sixth-order
centerd differences.



2nd 4th tith
order order order Accuracy

el (vkt) -

4 4 3 2.6

8 5 4 0.65

7 5 0.16

32 10 7 0.04

64 14 8“ 0.01

128 19 10 0,0025

256 27 13 0.0006

Table 2.1. Points per wavelength for second-, fourth- and sixth-order differences
to have the same accuracy.

In a calculation where the solution contains many different frequencies, the high modes
(2-5 points per wavelength) are approximated equally poorly with all the methods. The
middle modes (6- 16) points per wavelength) are computed much more accurately with the
fourth and sixth-order differences than with the second ordex methods. The sixth-order
differences arc more accurate for the lower modes that) either second- or fourth-order
differences,

The relationship of the accuracies of the different methods compared to the number of
points per wavelength is even more impressive in higher dimensions, In two space
dimensions the numbers in Table 2.1 should be squared; in three dimensions cubed. An
example of the gain in accuracy by using a third-order method are illustrated in Fig. 2.1. In
these calculations, done on an irregular grid with volume ratios of over 100 to 1, the higher
order method was obtained by fitting a quaxtic polynomial through the cummt.dative integral
of u and its four neighboring points and differentiating it using the DERMOD package
described in [8].

Also, in calculations with shock waves or other sharp fronts, the post shock oscill~ims
are reduced by the high order differences. Furthermore, these methods are able to resolve
the discontinuitics better and require less artificial dissipation to eliminate post shock
oscillations.

This error analysis has been for periodic boundary conditions. For nonperiodic
boundary conditions the results arc also valid if the boundary conditions have been
approximated as accurately as the solution in the interior. Often, important properties of the
solution behatiw originate at the boundary and the numerical differentiation procedure
must take the boundary conditions into account.



I

Fig. 2.la firstader approximation Fig. 2.lb Secondadcr approximaton

Figure 2.1 The numerical solution of the wave equation is shown &ftcr a Gaussian has
moved around the @dc box once in the vertical and horizontal direction using a l%t-
ordcr (2. la) and tlmxi-order FVM. The grid is exponentially refined in both x and y with
CCII volurnc ratios of over 100 to 1.

3. Boundary Conditions

Before calculating the solution to any differential quation one should determine if the

~ co@tions ~ ~sistcnt with a WCII posed pmblcm. A numcncal method cannot
bc exe to encratc reasonable results for a probl~ which dots not have a WCII defuwd

freasonable so ution. The importance of proper boundary conditicm cannot bc
cwrstrcsscd, the boundary conditions exert one of the strongest influence on the behavior
of the solution. Also, the errors introduced into the calculation from improper boundary
conditions persist even as the mush spacing tends to zcm.

A common error in prescribing boundary conditions for conservation laws is to over or
under specify the number of boundary conditions, Ovcrs ccification usually results in

t?nonsmooth solutions with mesh oscillations near the boun ary. Underspccification dots
not insure the sdutirx is unique and the numerical solution may tend to wander around in
stead state calculations, In either case the rcstdts of the calculation arc not accurate and

dOIM odd bc skeptical of even the qualitrttivc behavior of the solution,



Once it has been determined that the differential equations and boundary conditions are
well posed, special care must be taken to preserve this in the difference approximation.
The way in which boundary conditions are specified for the difference equations can
change a well-posed PDE into an ill-posed (unstable) discrete problem. Two of the most
reliable methods to incorporate boundary conditions into the discrete cqua~ions are the
extmpolation and the unccxmxxl difference methods. Both of these methods work best by
enforcing constituent relationships on the difference equations such rhat the discrete
equations are consistent with as many relationships that can be derived from the
bounalm-y conditions and differential equation as possible.

3.1 nmous POINTS

One of the most effective methods to incorporate the”boundary conditions into the discrete
approximation of the PDE is to extrapolate the solution to fictitious points outside the
region of integration using both the differential equations and the boundary conditions. To
define the nonphysical solution at the fictitious points, the boundary conditions are
differentiated with respect to time arid the time derivatives are replaced with spatial
derivatives using the PDE to obtain differential constraints for the extrapolation formulas.

We will demonstrate this technique for reflecting boundary condihons to the Euler
equations of fluid dynamics: -

w=

where

~t + F(W)X = O

P o
pu F=uW+ p

E, pu

(3.1)

p = mass density
u = velocity
Ou = momentum
E = p(l + 1/2 uz) = total energy per unit volume
1= internal energy
p = pressure

The numerical solution of Eq. (3,1 j is a highly complicated and problem dependent
process, The solution usually contains dynamic interactions between shock waves,
rarefacaon waves and contact discontinuities, A method developed for a particular test
problem may or may not work for another with stronger (or weaker) shocks and contact
discmtinuities,

Equation (3, 1j is hyperbolic if pressure is an increasing function of density at constant
entropy. This is the case if we assume the equation of state to be that of a polytropic gas,
i.e. p = (y 1)Ip. The parameter y is a constant greater than one and qual to the ratio of the
specific heats of the gas. For this equation of state we have CZ=yp/p at constant entropy.
The quantity c is called the local sound speed of the gas and is related to the characteristic
velocities u, u +C and u - c of Eq. (3.1)

The reflecting boundary conditions for a thermally insulated wall for Eq. (3, 1) at x = w
am

U(xo, t) = o, lx(x~, t) = 0, (3.2)



The thermally insulating boundary condition, IX= O, is obtained from the limit of the
viscous dissipative equations as the viscosity and heat dissipation tend to zero. This
condition is necessary to prevent a boundary layer in the difference approximation of
irtviscid calculations due to the presence of artificial dissipation.

To incorporate these boundary conditions into our numerical solution when using fourth-
omler centered differences we will introduce two fictitious points at x.1 = ~ - Ax and
X.2= ~ - 2Ax outside the region of integration. At these points we need an approximation
top, pu, and E to preferably fourth-order.

Combining Eqs. (3.1), and (3.2) at x = XOwe have

o = -(pu), = (PUZ+ P)X = pX = (y-1)IpX and pX = O ,

EX = [N +iu*)lx = 0,
-

and
-(PU)X, = (p,), = -(p.), = o .

Since these equations are valid for all time and y # 1 we have

P, = (pu) = (PU)XX= E, = O (3.3a)

as auxiliary boundary conditions at x = X. consistent with the original problem. The
nonphysical solution at the fictitious points outside the region of integration arc defined so
the finite difference approximation of Eqs. (3.3) are satisfied at the boundary,

When we replace the derivatives in these auxiliary boundary conditions by the standa:d
centered firute differences we see that Eqs. (3.3) are satisfied if

p-i = Pi, (pu)l = -(pu).i, E.i = Ei, for i = 1 or 2. (3.3b)

3.2 NOFICIT’170USPOINTS

There is not always a simple extrapolation formula such as Eq, (3.3) to extend the
solution to the fictitious points. For these problems it is often better to use unentered
differences near the boundary. The goal of this approach is to extend the number of
boundaxy conditions so that all components of the solution arc defined at the boundary,
Again, these additional boundary conditions must be consistent with the original problem
and as many relationships as can be derived from it. An uncentcred difference
approximation is then used to approximate the spatial derivatives at the mesh points.

This method will be described for the linear hyperbolic system of M eyuations

Wt= H(x)WX

with the boundary conditions

Sw(j = b(’), X = ~ .

(3.4)

(3.5)

Difficulties arise in defining the solution at the boundary whe 0< Rank(S)< Rank(H)=
M and there does not exist a unique solution WOof (3.5), lf Rank(S) = O then ail the
characteristics are outgoing and using either unentered differences at the points near the
boundary or straight forward extrapolation to the fictitious points gives accurate results.
When Rank(S) = M then all the characteristics are entering the boundary and all the
components of the solution can be solvrd for on the boundary. Unentered spa:ial



differences can then be used at the points near the boundary and will result in an accurate
approximation of tlv. tmundaty conditions.

When Rank(S) is greater than zero but less than M then by differentiating Eq. (3.5) with
respect to time and replacing W, from Eq. (3.4) we have

SH(X)WX = b(t), x = X(). (3.6)

Approximating WXby second-order one-sided differences resu!ts in

S~WO = [S&(4W1 - Wz) ~~2Axb’ (t)]/ 3 + 0(Ax3) (3.7)

where ~ = H(@. E.quatioti (3.7) gives us additional information about the boundary
conditions that is consistent with both the original’ boundary conditions (3.5) and the
differential Eq, (3.4). If we still do not have enough boundary conditions to solve for W.
uniquely then we can continue by differentiating (3.6) with respect to time and using Eq.
(3.4) again,

It is often the case that&i- nonlinea and the above procedure must be iterated. Usually
one or two iterations are suff~~.:nt for a stable accurate boundary approximation.

Once WO has been found we can use uncentel ed finite differences to approximate the
spatial derivatives at the mesh point nearest the boundary or we cmi extrapolate the solution
to fictitious points outside the region of inte~ .ition. This extt apolation can bs done by
replacing the derivatives in Eqs. (3.6) with second-order centered differences and solving
for W.l.

3.3 NONPHYSICALBOUNDARIES

There are many initial boundar? value problems where it is essential to introduce artificial
boundaries to reduce the compuung time und stomge of a calculation. These problems are
usually posed in a domain much Isrger than the subregion where the solution is of interest.
The subregion is blocked off and imbedded in the ohginal problem by creating artificial
boundaries. The boundary conditions at the artificial boundary are chosen such that the
solution on the full domain would automuticully satisfy tiese internal boundary conditions
if the full problem were solved. The goal, of course, is to approximate the original
problem as closely as possible on the reduced domains,

Consider mapping the initial boundary value problem fo: the Euler equations on the half
line [O,-) into [O,b) with a map such as

x ()<X<I
Y=

b+( 1-b)/x I< X<-.

In this new coordinate systcm Eq. (3.1) trunsfmrns to

w, + S(y)Fy = O, )’c I(),b)

where

I ()< y<]
s(y) =

(b-y) / (b-l) ~ l<!<b

(3.8)

(3.9)



The solution to (3.9) is identical to the solutlon of our original problem. Therefore, the
transformed system has the correct number of signals entering and leaving through the
artificial break point at x = 1.

In this transformed system a wave slows down in the region (1,b) and approaches zero
speed as x nears b. This causes a wave tmin to squeeze up, with the lower frequencies
being pushed mto higher ones. These high frequencies cannot be computed accurately and
it is hst to add some dissipation to damp them out as they approach the transformed
infinity boundary b. ‘1’kisdamping should be chosen such that the sigrmls propagating into
the region of interest [0,1] depend in some sense on an average of the solution outside this
region, i.e. (1,b). A possible form for tie dissipation is

Wt + s(y)q = (WQWY)Y (3.10)

where

0“ Ocy<l
d(y) =

~[(y-1) / (b-1)]2 l<y<b

Notice that the equation is unchanged in the interval [0,1] and becomes parabolic in the
interval ( 1,b]. In fact at y = b the equation reduces to a simple diffusion equation.
Boundary condiuons must be given for all the variables at y = b for the problem to be well-
posed. The boundary condition for steady flow at infinity (WY = O) gave the best results
in a series of test problems.

Ily imbedding the equation in the subregion into a well-posed problem in a slightly larger
domain the difficulty of maintaining the correct number of boundary conditions at the
artificial boundary was solved aummtitictil]y, Furthermore, the information entering the
region at this boundary depends on some global average properties of the solution outside
the subregion.

3,4 SPECIALP13EFORMS

3.4.1 ~haracteristic Form. In problems where the solution is sensitive to the
approx~mation of the boundary conditions it mtiy be more stable to triinsform the boundary
conditions or the equation into characteristic form at the boundary. The extrapolation
fonnuhts are then derived to extrapolate the outgoing chwucteristic variables to the fictitious
points.

Characteristic variabl:,, are also importimt when no amount of algebrit seems to yiuld
enough relationships to uni uely define all the solution variables at the fictitious points.

?When this happens one is urctd m extritpolitte on some of the variables without any
boundary relationships to guide the cxrrapolution: II is usua]ly best to extrapolate on
outgoing chamctertstic variables and use their vtdues iit the fictitious points to provide the
extra needed information,

2.4,2 Differential Form, Whatever cxtr~polotion formula is used there may be some
inherent tnmcatlon error in the extriipoliited solution at the fictitious points. Some of these
tnmcation errors can be eliminated by cnunging the differential form of the equation at the
boundary, For example, t$e reflecting boundtiry conditions (3,2) con be incorporated in
the Euler quations at the boundary to give
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at the boundary. By differencing and integrating these equations, rather then Eq. (3.1), at
the boundary we have prevented some of the possible truncation errors inherent in the
extrapolation formula, from creeping into our calculation. Notice that the modified Eq.
(3.1 1) has been kept in divergence form. This is particularly important to maimain
conservation when shocks are retlected at the wall.

Using the modified differential form of the equations is especially important when there is
a removable singularity at the boundary. This often occurs at the orgin in PDEs formulated
in cylindencal or spherical symmetry At the singul~ty these terms should be replared by
their equivalent nonsingular form obtained using l.’l%pital’s rule.

4. Artificial Dissipation

The purpose of the artit~cial dissipation or :~rtificial viscosity is to remove many of the
numerical difficulties of integrating hyperbolic PDEs with shrck waves or other
disconanuities in the solution.by dissipating or damping out wclgy in the high frequencies
of the solution, This approach does in some sense mock up the effects of the viscous and
dissipative terms discarded in the derivation of the Euler equations in that it primarily
dissipates the high wave numbers, but it has little to do with true heat dissipation or
viscosity. Artificial dissiptition is a special form of truncation error either inherent to a
finite difference approximation or resulting from explicitly adding an additional term to the
+uation. This dissipation is the leading truncation error in the numerical approximation
and is chosen on the basis of the exFectcd form of the solution,

There are six primary reasons for including artificial dissipation in the numerical
approximation, They are:
1. To achieve proper entropy production ucross shock fronts,
-. To smooth out nonphysical discontinui[ies in the flow,
;, To solve the problem of ~heenergy utisctide when com~’jting only u finite number

of modes,
4, To compensate for spatial interpolti(ion errors, such as the Gibb’s phenomenon,

near discontinuities in the solution,
5. To counteract the dispersmn error in the numerical scheme,
t). To stabilize certain time differencing methods,

The form of a good artificial dissipation term tailored for a particular problem will depend
on which of these points are most impofiunt. It is therefore essential to designing ti
numerical method to have a basic understanding of c~ch of them, In this section we will
review each reason for adding artificiiil dissipti[ion hnd suggest a form which works for it
large class of problems,

4.1,1, Entropy Prodwtic: n, The most common reason given for adding artificial
dissipation is so that one can cidculiitc shock WUVCS,Entropy increases across a shock
front, but Eq, (3,1) has no mechanism for the increase, We must add a tetm to the
quation which will allow entropy to increase by the proper amount, The term should be in
conservation fotm to maintain (he Runkine-Fiugoniot jump conditions and therefore give
the comect shock speed,

4,1.2, Nonphysical [li.rct}n!ini~ttic’,~ Anmhcl desired effect of the ;wtificiul dissip:ltion is
to smooth out nortphysiciil discontintjit]cs in the flow, ‘Ilul is, it wfmk.1he advanhtgcous if’
the mificiid dissipation were formul;itc(i in such ,1w;Iy that physi~’:t:sh~wks w s[tible iil~d



nonphysical sudden compression shocks arc unstable. These nonphysical discontinuities
often occur in the initial conditions and can be smoothed out by using more artificial
dissipation in the fnt few time steps than later in the calculation.

4.1.3. Energy Cascade. Typically, in Eq. (3.1) energy enters the system at low wave
numbers and cascades upward to higher wave numtxrs where it is eventually dissipated by
molecular viscosity and enters the system as heat (Kolmogoroff hypothesis). In numerical
calculations the energy spectrum is limited by the number of mesh points. When there is
no artificial dissipation in the system the energy cascade backs up at the higher fkcquencies
and shows u in the calculation as high frequency noise or trash. Some of this energy is

1’aliascd or re Iected back into the lower wave numbers, This closed loop energy cascade
can destroy the accuracy in all wave numbers during even modemtcly short computations.

4.1.4, Gibb Phenomenon. Anificial dissipation can help compensate for some of the
errors intzuluccd by approximating U and (JX with an interpolant whose values agree witi
U only at a discrete set of points. The emors in the interpolant arc most severe near
discontinuities in the function being approximated, At these points the continuity
conditions used to derive the intcrpolant breakdown and oscillations appear in the
calculation. These oscillations can destroy the accuracy of the calculation by creating
nonlinear instabilities or introducing nonphysical fcawres in the flow such as negative mass
or pfissurc. The oscillations may generate new a~~ifacts into the calculation such that the
numerical calculation is stable but converges to the wrong f ~ution In reacting flows,
overshoots in temperature can prcmat urely trigger a chemical reaction or co bustion front
and lead to meaningless results. Adding artificial dissipation to the numerical
approximation damps the high frequencies and helps reduce superfluous oscillations in the
solution.

4,15. Dispersion error, Dispersion emors come from the inexactness in both [he time
and space differencing methods. The dispersion emors duc to the different modes of tile
solution traveling at different and incorcct velocities CiIII accumulate and destroy the
accuracy of the compulaf.icm. This is pu.r~iculurly true for the higher modes even in
calculations of flows which should huvc only ! moth solutions. Increasing the accuracy in
Mh the time and space differencing methods will reduce the dispersion “ ‘he low and
middle frequencies, but not the high modes. 1[ may be best to damp these out by some
form of artificial dissipwion,

4,1,6, Srabilizttrion o! Time /nfc#r(~lion Mrthods, The ahilit y of artificial dissipation to
stabilize, what may otherwise be an unstable time diffcrclwing method for hyperbolic
PDEs, results from the fact that it shif:s the spccuum of the spatial operator 10 [he left half
plane so that the solution to the modified cquution is mathematically and numerically more
st.nble, This may be necessaty for such stmhrd intc~ration methods, such M the fomard
Euler method, thut are unstable for ODES with imu~lna.ry eigenvalues, This need can he
overcome by using an integratim method thut IS swhle for ODES with imaginwy
eigenvalucs and hence a proiulc for hvpcrhollc PDEs, An example is the leap-frog

0/prcdictor<onwtor meth clescmhd In SCC,5

4,2 DIFFHUM’IALFORM

For many problems !hc artificial dissip:lli[m intwrcn~ I() [hr time integration mclhml is
sufflcicn! to coqxnsate for the cncr~y L“iIsL.;Idcprtddrm ;\nd illso [he entropy production in
weak shocks, For suong shocks il is ncccss;wy It) MM signifi~iun[ly more dissipation. Ilc
extra dissipation c~n k nddcd by cRplIL’Itlv whIIng II dissiputivr truncnmm error IC}I{q,



(3. 1). A simple scaling analysis can show that adding a second order anificial dissipation
term of the form

will fix the shock width to be a fixed numhr of grid points and will be independent of
linear transformations of the equation, Here km,, is the magnitude of the largest
characteristic velocity of the system [&aX =5( IuI+c) for Eq. (3. l)] and 6 is a dirncitsionless
scaling pararncter. Numerical cxpcfimcms have verified that choosing the parameter ~ =
0.25 results in monotone solution profiles when second-order finite volurnc methods are
used and the quarions arc integrated accurately in time. The higher otder finite volume
mcthals remain monotone with slightly lower values of& To retain accuracy away from
shock waves sornc of the more sophisticated methcds include a witch that detects the
Prcscnc: of a shock and scales 6 to bc small whe the solution is smooth

5. Time Diacretiztttion

The numerical solution of ( 1,3) is advanced in time in d.iscrcte steps that vaty depending
on the local behavior of the solution; thar is, the length of the time steps depends on
whether the solution is evolving on a slow or fiist rime scale, The ma@r difference between
time and space differentiation is that ~imcIl., ..1 direction. This time flow allows savings in
computer storage, but introduces question: about the time stability of the difference
equations mlativc to the stability of the differential equations. For example, in choosing the
an appro~. ~‘tc numerical method to integrate the Euler quations through time one has to
consider the accuracy, stability, storage requirements, computational complexity and the
relative cost of the different methods. These fac~ors arc de endcnt on each other and

/trdcoffs must bc made as to which ctiteriaaremore impcmant or a particular problem.

5.1 SPECTRALANALYSIS

Both the phase and damping errors depend on the spectrum of [he differential equation
and the nmc step size, The time ,tcp c~in be varied during the calculation to rcducc the
numerical intcgr~tion mom, but the spectrum of the diffcrcnrial cqumions is detctmincd by
the spatiai difference operator, A good integration mctho depends on how accurately it
cart integrate a pafiiculdr set of cquimons. For (his rcuson the spectrum of the spatial
difference operator is the most impor[unt guide in selecting an eficient numerical
method to integrate through time, The spectrum can ‘X determined by analyzing the
linearized continuous time . dismctc space approximation of the PDE.

Equation (3. 1) is solved after adding anificial dissipation and therefore we must analyze a
system of the form (4,1), Most of the csscntiul propcnics of this system arc also found in
the simple prototype quation

A semi-discrete approximation [~f (5. I ) results when the spatial derivatives arc
approximated by finite differences on u mesh of N points, This sys[cm cun lx written in
the form of ordinary diffcrcmial cquution~ (ODES)

y’ - Ay +/jAx~y - (’y = f(y) (5,2,

The vector y is an array of the approxin~:ltc solu[i~m 01 the mesh poims tmd [he prvnr
denotes the derivative of y with rcspcut n) tlmc.



when second-order centered differences a.R used the cimwalues of A are “ “ ‘
the cigenvalues of B negative real, The eigenvalues of-&C are complex
ellipses in the complex plane shown in Fig, 5.1.
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Figure 5.1 The eigcnvalucs cJAxC in Eq, (5.2) arc complex and lie on ellipses for values
of 5 = 0.0, 0.2, .OO,lOO.

Wc shall fwst analyze Eq. (5.2) when there is no artificial dissipation (i.e. 6 = O) and
include the effects of tic dissipation as a perturbation on this quation, When b = O Eq.
(5.2) is @xrsive since thecigcnvalucs of A Iic on the imaginaq axis. These eigcnvalues,
k, arc qual to iau, ia(u + c) and ia(u - c), where a depends upon the spatial order of
approximation, When second- or fourth-order ccntcrcd diffcrcnccs in Eq. (3,1) are used
and the boundary conditions art periodic on the unit intewal the comsponding a’s arc

~ K~(sin(2xjAx)) / Ax ,
and

a, = (8 t,in(2xjAx) - sin (4njAx)) / 6Ax , “

for j = N/2, -N12 + 1.,,., N/2 and Ax = I/N,
To facilitate studying the propcnics of different time integration methods

isolation thcomm. That is, the stabillty and accuracv of a numerical intimation

(5.3)

(5.4)

we usc the
method for

Eq. (5.2) k determined entirely by hoi it approxlm~tes the decoupled di~gonalizcd systcm

Yi’ = ~,y, * (55)

with the solution yi(t) = yl(())ch’ whcrr the k, arc the cigenvalues of C,



5.2 EXPLICITMETHODS

5.2.1 Numerical Algorithms. The simplest integration method to integrate from ~ to %,1
is called the forward Euler method

Y:’j = Yn + ‘t ‘n + ‘(At*) “ (5.6a)

This method is linearly stable if At is chosen so that ?dt lies within the stability region 1
shown in Fig. 5.2. These regions are symmernc about the real axis and are shown in Fig.
5.2. The method is stable if At is chosen small enough that LAt lies within its stability
region for all the cigenvalues A of C. Here, A is arly of the eigenvalucs of the !inearized
Jacobian matrix of F in Eq. (1.3). This approximate solution can be improved by iterating
the cormaor of order k + 1, in this case the improved Euler corrector

(5,6b)

Here the superscript is the iteration index, ~n~)l= f(y~~l ). After the corrector cycle,
additional iterations are based on the simple recumence relation

(5.7)

for i = 3,4,... . The order of accuracy increases by one for every iteration for linear
autonomous systems of equations. The consumts c1depend on the iteration count and the
predictor-corrector method used to start the process. The ci wc chosen to increase th~ order
of accuracy of the method for linear autonomous systems and each Iteration. When Eqs.
(5.6) are used to start the iteration tl.e constants c1have the simple explicit formula ci = lfi,
i = 3,4,... . This method is called the iterated Runge-Kutta method since the stobility
region after the i-th iteration is equivalent to the stability region of an i-th order Runge-
Kutta method, The stability regions, shown in Fig. 5.2, increase on each iteration and the
approximations will converge to the exact solution when solving Iinmr autonomous
systems such as Eq, (5,2).

Another iterated method which has exce!lent stability and accuracy properties for the
ODES with eigenvalues near the imaginary tixis, such as the Euler equaticns, is the iterated
leap-frog method, The second-order Ieiip-frog predictor is given by

Y:!)] = (l-r~)yn + r~yn.l + At(l+r)fn + O(At~) , (5.80)

where r = (~, -~)/(\-\.l) and the third-order leap-frog conector is

y$)l = [(2-r) (l+r)2yn + r~yn I + At( l+r)*fn+ At(1+r) $n’!l1/ (2+%)
} ()(At4) ,(5,81))

The coefficients for this method itrc c1 = .3/10, 7/30, 4/21 , 45]/2800,” 3]4/2255,
1153/9420, and 126/1 153 for i=3,4,,,9 when r= 1, The c, at-c functions of r tind tire mu
known for gcnerd r at [his time, ‘TIc stability rcgl(ms tire shown in Fig, 5.3



The leap-frog predictor is unstable for systems of equaticms with eigenvalues having a
nonzero real part. Therefore, when artificial dissipation is added or the boundary
conditions shift the spectrum of the discretized equation the leap-frog method cannot be
used without the comector cycle. The first corrector application extends the bound on the
maximum time step by 50%, increases the method to third-order and is stable in smooth
regions of the solution with or without any spatial artificial dissipation. Another difficulty
with using the leap-frog predictor is a unique type of error due to time and space mesh
decoupling, The odd and even points of a mesh are only weahly coupled when integrating
conservation laws and errors wi~h frequency = 2Ax can degrade the accuracy of the
solution with high fkequency noise. The comector cycle couples the mesh points among the
three time levels and ptwcnts this weak instability.

When integrating nonlinear equations, the iteriited methods (5.7) reduce to the order of
the predictor-corrector of Runge-Kutta starting method. The stability regions still expand
wit-hexua iterations but the order of accumcy remains the same,

52.2 Stability Properties For most numerical methods it is the largest cigenvalue ~,, of
the linearized quations that determines the stability condition. When this occurs simpler
stability restrictions on At can be derived using Figs. 5.2 and 5,3. When second-order
centered differences are used in space and the leap-frog predictor is used in time, then if b

= O the stability condition requires At1~,~ <1 or (using Eq. (6.3)).

+-lsin(2njAx)
At max( 1~+ C) Ax = R rntix(]ul+ c) < 1 . (5.9)

This is the usual Courant-Fricdrichs-Lewy sttibility condition for explicit methods when
solving the Euler equations, If fourth-order centered differences are used in space and the
leap-frog predictor-corrector method in lime, the corresponding stability condition is

-.8-
At6Ax maX(l~+~) < 1.5 (5.10).

Notice in Fig, 4 that some integrittion schemes such us forward Euler are unconditionally
unstable for all A: > () when the spectrum of the discretized syst:m lies on the imaginary
axis, It is well known thitt forward Euler is the heart of many standard methods to solve
Eq. (5,1) and in fact is not always uncondi~ionully unsttible, This is because of the addition
of nrtificia.1dissipation shifts the eigcnvidues of the linearized system to the left so they have
a negative real part as seen in Fig. 5,1,

We caution the reader th~t this stability tinalysis is linear and is not necessarily valid for
highly nonlinear phenomena such as shock utiv~s in practice to prevent nonlinear
instiibdities, it is necessary [o restrict the time step sllghtly below the upper bound given by
the linear analysis,

5,3 IMPLICITMETHODS

5,3, I Numerical AlgiwMnr.r, Miiny problems occur when the solution changes on a slow
time scale but the stitbility criteriti limit the tlmc step far below thtit needed to retain
accuracy, In these ctts:s, it is often best to usc ii more stiible im licit method, One of the

[best methods for Pt)Es is the second-order bu{’kw;wddifference ormula

Y:;+)] = I( I + r)2yr,- r~yl, , + At(l+r)ftl,l ]/(1 + 2r) + O(At’) (S,ll)
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Figure 5.2 The stability regions for the iterated Runge-Kutta method am shown in Fig,
5.2a. The i-th iteration is stable if kAt is withirl the i. [h curve for all cigenvalues A of the
Jacobian of F in Eq. (1.3). The phase (solid line) and damping (dashed line) errors in the
different modes kAt of the numerical solution of (5. 1), 8=0, due to time truncation errors
are shown in Fig. 5.2b.
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Figure 5.2 The smbility regions fu: the iterated Leap-Frog method are shown in Fig. 5.3a,
The i-th itwaaon is stable if ~At is within the i-th cutwe for all eigenvalucs A of the
J~bian ot’ F in Eq, (1.3). The phase (solid line) and damping (dashed line) errors in the
eigenvalues Ut of numerical solution of (5.1), /3 = O, due to time tmncation errors are
shown in Fig. 5.3b. Note that there is no damping error in the leap-fro predictor and that

ithe ronectm slighdy damps the higher modes and greatly redu( cs the p ase emor in all the
modest



These method is stable when R(l) <0 for all At, as can be seen in Fig, 5.4,. retains the
positivity of the solutmn to (3.5), and has the proper limit for large AtA.

,:

Figure 5,4 Stability region for me Second-order BDF formula (5.11) when r = 1.

On each time step of a one-cycle implicil method wc must solve.a nonlinear algebraic
system of the form

Yn+l + @tfn+l = known quantities , (5.12)

Several iterative methods, discussed in rhe next section, show how Eq. (5.12) might be
solved. A good first guess can ofien bc made by using polynomial extrapolation,

6. Algebraic Systems

6.1 ITEMTIVE MEIHODS

When implicit methods are LIscdthen on each time step we must solve large sparse
algebraic systems of quations, Tnesc equations can be written as

A(v)-b=O , (6. 1)

where A is a nonlinear discrete operator, b is a known vector, and the discrete solution
vector is v. Often the solution of Q. 6.1 is difficult LOobtain directly, but the residual

for an

+’

rmA(w). b (6.2)

approximate solution w is wisy to evaluate. If there is a rclatd system

P(w) -b=O (6,3)

that approximates Eq. (6.1) and is easier to solve, the defect correction algorithm may bc

r
ap , priate.

wen a guess Vn near a root Vn.,l of Eq, (6,1), we can expand Eq. (6,1) using Taylor
series to get



O = A(vn+l) - b
= A(vn+l) - b + p(vn+l) - P(vn+l)
= A(vn) - b + P(vn+l) - P(vn) - (Jp - J~) (vn+l - vn) + O(IS2) , (6.4)

where e = Vn+l- Vn, and Jp and JA are the Jacobians of P and A. The defect correction
iteration 1~any O(e) approximation to Eq. (6.1). The simplest such iteration is

P(vn+l) = p(vn) - A(vn) + b . (6.5)

This iteration will converge if vii and JPthe Jacobian of P, are near enough to V,l+land JA,
respectively. Table 6.1 lists some of the more common applications of defect corrections.

The iteration (6.2) can often be speeded up by using an acceleration pamrrwter o to give
●

P(vn+l) (6.6)= P(Vn)- ~[A(vn) - b] .

These methods include successive oven :iaxation, dynamic alternating direction implicit
methods, and damped Newton. Often a two-step acceleration method

P(vll+l) = b + ~[p(vn) - WA(vn)] + (1 - @n)p(v..l) (6.7)

can speed up the cortvergcnce even more. These methods include the Tchebyshev [10] and
conjugate-~ient [41 m-ethods.

—~1~) =

A(vn) + JA(vn) (vn+l - Vn)

Diagonal of JA

I.awer triangular part of JA

bwer rnanguhr part of ~A
+ first upper off-diagonal

Coarse grid operator + relax
using one of the above

SyrnmctriC paft of JA

If A=(I+At LX+ At L),
then P = (I + ht~,) (1 + At LY),
whcm LX= linearized lower order
approximation to L,

LU where
L = lower triangular remix
U = upper triangular matrix

cd

Newton [12]

Jacobi [12]

Gauss-Siedel [12]

Line Gauss-Siedel [12]

Multigrid [2]

Conctis-Golub-O’Leary [4]

ADI[12]

Incomplete LU m“ hod [10]

Table 6.1. Common examples of the defect cot-rcction iteri(ion,

Whenever a numerical lterution is being used to solve an implicitly defined system of
equations, it is extremely useful to unritvel the itcri~tionand detetmine exactly wh~t equittion



(6. 1) thc converged solution satisfies and what the preconditioning operator P is. Once
these have been determined, often the iteration can be speeded up by irqnoving the
preconditioning or using an acceleration method.

7. Summary

We have used a ,modular approach to develop accurate and robust methods for the
numerical solution of PDEs. The methods to discretize the spatial operator, the boundary
conditions, and the time variable, and solve any algebraic system that may arise are
combined when writing a code to solve the PDE system. Special care always must be
taken when solving a nonlinear equation or when using a nonlinear method. This means
that the code must be field tested. The field testis to check the reliability of the method on a
particular nonlinear system of PDEs. The numerical results should be insensitive to
reformulations of the equations, small changes in the initial conditions, the mesh orientation
and refinement, and the choice of a stable accurate discretization method.

Another excellent analysis tool is verification that any known solutions are well
approximated and that any auxiliary relationships (such as conservation laws) hold for the
numerically generated solution. These checks should be made -- even it one iS absolutely,
positively sure that the numerical solution and coding are correct.
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