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ABSTRACT

The best available statistical-mechanicaltheories consistent with

a reasonable expenditure of computer txlmeare used to calculate a deto-

nation product equation of state for condensed explosives and,are tested

by comparison of calculated detonation properties with experiment.

Chemical equilibrium anmng up to pine product species, including a

sepsrate solid phase, is assumed. The IJD cell model is the basic

equati,onof state. For application to mixtures, a variant of the

Ilmguet-figgins conformal solution theory is chosen, although some other

forms are also considered.

The sensitivity of the results to variation of

molecular potentials and.other doubtful elements of

sufficient to rule out an a priori calculation, but

the uncertain inter-

the theory is

rough adjustment of

one parameter gives fair agreement with e~eriment for a variety of CHON

explosives. Although some insight into the problem is gained, the ~er.

formance of this relatively complex theory is couqkrable to that of

simpler forms ~reviously tried. It appears that still more complicated

theories and better knowledge of the intermolecular potentials are re-

quired for further progress.
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INTRODUCTION

If a cylinder of explosive is suddenly heated or struck at one end,

a detonation wave propagates down t’helength of the charge with approxi-

mately constant velocity. This phenomenon is often treated.by the model

of von Neumann and.Zeldovich (Ref. 1, Chap. 3). Transport properties are

neglected, and the wave consists of a plane shock followed.by a short

reaction zone of constant length in which the explosive material is

rapidly transformed into its decomposition or detonation products. The

material at the end,of the reaction zone is in a state of chemical

equilibrium and enters a time-dependent expansion wave extending to the

rear.boundary of the charge. This model, with the aid,of the so-called,

Chapman-Jouguet (CJ) hypothesis, (Ref. 1, Chap. 3) reduces the problem of

calculattig the state at the resr boundary of the reaction zone (termed,

the CJ pls.ne)to the solution of a set of algebraic equations, provided,

that the equation of state of the detonation products is known. The CJ

state and,the corresponding propagation velocity are unaffected by the

details of the flow in the reaction zone ahead or in the expansion wave

behind.

This simple theory has inspired.a number of efforts to calculate

the detonation properties of both gaseous and,solid explosives. These
.

9



calculations have been fairly successful for gaseous explosives, where

the equation of state is known, but less so for condensed.explosives,

where it is not. The calculations for condensed explosives many of

which are based on semi-empirical equations of statej have been reviewed

2
recently by Jacobs.

Calculations made to date have not completely exploited.the avail-

able equation of state theories, partly because fairly extensive numerical

work is required. Hbwever, a reasonably complete test of existing theory

is practical with present computing equipment, and this is what we attempt

here: to calculate a detonation product equation of state from the best

available analytic statistical-mechanicaltheories consistent with a rea-

sonable expenditure of computer time, and to test the theory through

comparison of calculated and.experimental results for plane} steady det-

onation waves.

h order Im limit the scope of

the experimental work has been done

the investigation and because most of

on materials of this class, we con-

sider only explosives containing the elements C, H, O, and.N. An tiitial

investigation limited to a single explosive with fixed-product composi-

tion has been published.3 In the present work,a nuniberof explosives

are considered and.equilibrium product composition is used.

10



Chapter 1

THE MODEL AND RELATED ASSUMPTIONS

1.1 The M31ecular Model

We assume that the molecular model is appropriate up to the

highest pressures we will consider. Since this assumption, which

underlies most of the others, has been questioned, (Ref. 4, p. 286)

we examine it first.

To

plosive

For RDX

get a general idea

RDX and,assume the

c3H6N606 _’ 3N2 +

of initial density

relative volume vCJ/vo is about 0.75,> which gives a CJ volume of about

of the conditions of interest, take the ex-

d,ecompositionreaction

302 +3C0 ●

P. = 1.8 g/cc, the experimental value of

K

0.42 ~/CC. With the mean molecular weight of this product mixture, about

24, we have for the molar volume
$

v= 10.5 cc/mole .

For a face-centered cubic lattice this gives a mean

distance of

2.91 &

nearest-neighbor

xl



Two nitrogen molecules placed end-to end on a pair of neighboring

sites would look like:

p-1.82 A---l--l.O9 Afl

-
+

+2.91 A~’

so that for this molecule the distance between nonbonded alxmnsts about

1.7 times the bond distance. To estimate the intermolecular repulsion

energy, we use the pair potentials of reference 3 which were determined

to give the experimental RDX detonation velocity in a calculation with

fixed product composition. All of these potentials give about the ssme

result at this distance: an interaction energy, divided by Boltzmannts

constant, of about 3500 ‘K.* To compare this with the dissociation

*
One of the best-known pair potentials is that of argon. It can

also be used to estimate the repulsion energy in the following way.

The radius H of the potential minimum for N2 obtained from second-

virial coefficient measurements is about 4.05 A (Ref. 6, p. 1111) so

that a’tthe value of r . Z’eglA given above, the reduced ~stice r/& iS

about 0.7. Using the best available potential for argon in this distance

range (obtained.from nmlecular scattering),7 we obtain at the same re-

duced distance an interaction energy of 3000 ‘K. The Lennard-Jones

potentials determined from second-virial coef?~icientmeasurements give

an energy two or three tzl.mesas large at this dis-tance,3 but they repre-

sent a considerable extrapolation from the data for which they were deter-

mined.
12
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energy, we recall

yair interactions

energy of

that in a face-centered cubic lattice, there are six

per molecule, corresponding to a total interaction

16,500 OK/mole g 1.4 ev/mole g 32 kcal/nmle g 1.3 kcal./g,

whereas the dissociation energy of N is about 9 ev.
2

These simple con-
.

sid.erationsindicate that molecules exist under such conditions. Since

the CJ temperatures are probably of the order of 2000 to 4000 “K,

however, the intermolecular interaction energy will be several times the

molecular kinetic energy, and the so-called “imperfection”terms in the

equation of state will dominate,

1.2 Separation of the Partition-llmction

For calculational convenience, we assume that the partition function

is se~arable, that is, that the overall partition function, after inte-

gration over nmmentumj can be expressed as a product of the configura-

tional and internal partition functions, and that the internal psrtition

function (for vibration, rotation, etc.) is the same as that at infinite

dilution. Wile this assumption is probably not badly.wrong, it does “

introduce some uncertainty.

An estimate of the effect of compression on the vibrational psrti-

tion function has been made by Cottrell,8 who has done a quantum-mechanical

calculation for the 1$+ molecule ion confined in an ellipsoidal box. At

a pressure of 0.6 mb, a volume of 14 A3/molecule or 8.4 cc/mole, and a

temperature of 3000 “K, he finds that the vibrational energy has increased

13



by about 1 kcal/mole, or about 1/6 RI?, over its value ti free s~ce. .

A rough estimate of the effects of restricted rotation can be

obtained.by consideration of molecules having hindered internal rotation.

In ethane at 1000 ‘K, for example, the contribution to the heat capacity

from internal rotation is about 1A R greater than it wbuld

rotation. (Ref. 9, p.

non-negligible errors

partition function.

M3st statistical

ener~ of a system of

D8) ‘l?husthe use of this assumption

of perhaps 10-15~ of the contribution

be for free

introduces

of the internal

1.3 Non-Additivity of Pair Forces

mechanical theories use the assumption that the total

molecules in a given configuration can be e~ressed

as a .sumof pair interactions, that is,

(1.1)

i> j=l

i<j
-)

where the r!s sre the vector positions of the N molecules, U is the total

configurational energy, and uij is the interaction energy of the i-j pair.

For a dilute system this description is appropriate. As the system is

compressed, however, it ust eventually fail, until finally the appropriate

type of theory> such as metallic band theory or the Fermi-Thomas model,

makes no reference ta pair potentials. The failure of this assumption may

be one of the more important sources of error, since its magnitude in re-

pulsive regions is so difficult to estimate. However, a first order

14



quantum-mechanical calculation by Rosen 10 (See also Refs. 11 and,12.)

gives encouragingly small restits. I@ f~ti for helium

●

E
abc

E
ab + ~c + Eac = 1=15 e

‘r for the configuration ● ~r ~oj

- (8/3)r for the confi~ation ● ~ r~ ● ●,= 9.8 e

where E is the energy of the three-body configuration shown, the d.e-
abc

nominator is the sum of the three-pair interactions, and r is in units

of Bohr radii (0.529 A). The diameter of the potential well for helium

is r*= 2.95 A (Ref. 6, p. 1111). To obtain results for conditions compa-

rable to those in detonations, we take the reduced distance r/@ = 0.7,

and.thus use r = 0.7+ or

E
abc

E
ab + %c + ‘ac

2.1 A. At this distance we find

g -0.02 for the triangular configuration,

S +0.0002 for the linear configuration.

Another way of reassming oneself about this problem is to compare

results from a _pair-potentialmodel with those from a theory a~propriate

to higher densities, such as the Fermi-Thomas model. To facilitate this

comparison we have calculated,the pair potential which would.give to a

system of like molecules on a face-centered cubic lattice the same energies

at all compressions as those calculated.from the Fermi-Thomas model for a

temperature of O 0K.13 This fictitious potentisl for argon is compared,

with some potentials estimated.from experimental data in Fig. 1.1. Mole-

cules with the

centered cubic

pair potential labeled I?Illplaced on the

lattice reproduce the Fermi-Thomas-Dirac

sites of a face-

results for argon

15
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Fig. 1.1 Comparison of experimental pair ptentials for argon with that
equivalent to the Fermi-Thomas-Dirac theory.
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at O ‘K. The other potentials sre obtained.from experimental results

quoted in reference 14. The fictitious potential is seen to come fairly

close to the experimental potential obtained from molecular scattering

data at its lower limit of vslid.ity. This result is encouraging, but

perhaps fortuitous.

1.4

We have stated above

appropriate one, but that

The Metallic Transition

ou assumption that the molecular model is the

at some high pressure

This comes about in the following way (Ref. 15,

sities, the energy levels of a regular array of

it becomes inappropriate.

Chap. 10). At low den-

atoms or molecules

correspond to those of the isolated.molecules but are highly degenerate

because of the large number of psrticles. As the material is compressed,

these degenerate levels split up due to the perturbations of near neigh-

bors, but are so large in nuniberthat %ands” of energy levels are formed.

As the compression is continued, these bands eventually overlap. If the

substance is initially nonconducting (lowestband filled with electrons)

then it takes on metallic c~acter when the ground state band.overlaps

(or is separated by an energy of about kT from) the first excited.band..

Some attempts have been made to calculate the point at which this

metallic transition occurs in simple substances. For
%“6

it was con-

cluded that the metallic transition may never occur, but if it does the

transition pressure is greater than 250 kb. For helium, which has a very

high ionization energy, the transition pressure has been estimated to be

100 to 200 mb.
17

Both of these calculations sre for a temperature of

17



O “K. The point at which this type of transition might occur In systems

of interest to us is uncertain. The high temperature probably tends to

lower the transition yressue by increasing the kinetic energy of the

electrons, but the pertmbation of the regular lattice structie through

molecular mrtion probably has the opposite effect. In a similar fashionj

the vsriety of molecular species probably increases the transition pres-

sure. Illrscbfelder(Ref. 6, p. z@) states that the metallic state is

probably reached at pressures of about 1 mb.

18
9



Chapter 2

TEEORY

Since we

sufficient to

limit our consideration to CHON

consider a system of detonation

explosives, it should be

products consisting of two

phases: one, solid carbon in some form, and the other, a fluid.

the remaining product species. Thus we require an equation of

tixture of

state for

a pure solid, an equation of state for a fluid mixture (whichwe hereafter

call the gas equation of state), and a method of calculating the equili- ,

brium composition of such a ho-phase system. These define the overall

equation of state of the mixture; the hydrod~smic conservation equations

must then be solved with this equation of state.

This chapter is devoted,to a qualitative discussion of the required

theory. The corresponding

description of the machine

equations are

code is given

collected,in Appendix A, and a

in A~~endix B.

2.1 Ideal Thermodynamic Functions

For fluids it is convenient to separate the equation of state calcu-

lation into ideal and imperfection parts

the psrtition function into inte?mal and

19

correspmding to the factoring of

configurational terms. The solid



equation of state is formally separated in.the same way into sn ideal part

at the temperature of interest and one atmosphere pressure and an imper-

fection part depending on both temperature and,pressure. The ideal parts,

usually referred to as ideal thernmdynamic functions, have been tabulated

by the National Bureau of Standards and,others for all of the species of

interest to us. For use in the calculation, the results sre represented

by analytic fits constructed to give a thernmd.ynamicallyconsistent set of

functions.

2.2 Solid Equation of State

From the phase diagram of csrbon,18 Fig. 2.1, we see that our region of

interest probably contains the dianmnd+raphite transition curve. For Sk

plicity, and because this transition is rather slow, we assume that the

carbon is always yresent as graphite.

The particle size of the precipitated carbon maybe limitedby several

ef~ects such as nucleation, rate of reaction, and diffusion. To obtain an

estimate of the maximum particle size, we calculate an approx~te upper

size Limit for a diffusion-controlledprecipitation. The simple theory for

diffusion-limited crystal growth19 gives

r= cr(dt)l/2 ,

where r is the particle radius at time t, d is the diffusion coefficient,

and a is a dimensionless function of concentration rsmging from 0.1 to 10.

The principal uncertainty in applying this equation is the value of the

diffusion coefficient under detonation conditions. In the absence of

20
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experimental information and reliable theory, we assume that it lies in

the range of values measured for liquids under normal conditions: about

10-5 cm2/sec. This choice appears to be at least consistent with the

trends of experimental measurements of self-diffusion in C02.20 For a

time of 1 ~sec, it gives a particle radius of about 300 A.

Thus the carbon particles are not large, and it is possible that the

other effects mentioned above could completely prevent their ~recipitation

in the reaction zone even when they are present at equilibrium. In any

case, we allow the carbon to be present as a separate phase, and represent

the effects of small particle size by allowing small increases in its heat

of formation as an additional perameter.

The graphite equation of state is constructed from the experimental

Hugoniot curve by a method similar to that d.escribed.byllice et al. (Ref. 212

p. 1) It is assumed that:

(1) Theenergy islmown along some reference cuetithep-vplae.

(2) Ata given volume, theenergy isalinesx function ofpressue.

(3) The Gruneisen nuniber,

‘=[+(sp’
is Constant.

Thus the equation of state takes the form

E = Er(v) + (’/v)~ - pr(v)] ●

(2.1)

(2.2)

22



The reference curve (subscriptr) is taken to be

the experimental Ihgoniot22 for v/v. < 1 y

thecurve p= Oforv/vo>l .

The energies on the Ehgoniot are known from the experimental pressures

and.volumes and the Hugoniot equationj the energies and.volumes on ~ = O

are obtained.by assuming constant values of the heat capacity Cv and

thermal expansion coefficient a:

E - E. = CVT ,

v -v
o
=C2T .

v
o

(2.3)

The value of G is obtained from the thermodynamic relation

G
Vo! 1 (9’75X ~=7—T

applied.at normal volume.

For our calculations, the thermodynamic vsriables p, v, and T are more

convenient than p, v, and E. The details of this transformation are given

in Aypendix A. It results in a more complicated set of equations, and an

iteration is required to d.etemninev, given p and T. The constants used

are

Cv/R =2.5 (Ref. 23)

of= 8.03 x 10-6(”K)4 (mean value for all directions)24

v= 0.444 cc/g (Ref. 25, pp. 2-18)
o

T = 298 “K
o

G=o.1656 .

. 23



T!kLs value

similarly,

~(Ref. 26)

of Cv is an a~roximate mean for the range 300-2000 ‘K.

the value of G corresponds to an approximate mean value of

over the range of the experimental data. The equation of state

is rather insensitive to the choice of Q!and H.

This equation of state gives results which are similsx ta those

27 ~is is ‘ot
obtained with a different form used in earlier work.

surprising, since both are fitted to the experimental Hugoniot, and all

of the displacements from it are quite small.

2.3 Gas Equation of State

In classical statistical mechanics the imperfection

equation of state is derived from the partition function

Q . ~v. . .~vew[- u(~l, ● O●, ~N)/MI]G1. ● ● &N

in which the vectors ~ denote the molecular positions, U

energy of any configuration, and.the integration is over

part of the

or phase integral

(2.4)

is the total

the volume v of

the system. As pointed out in Chapter 1, it is usually assumed that U is

expressible as a sum of pair interactions

N

(2.5)

iid;l

‘here‘ij’ hereafter called the pair ~tential, is the interaction energy

of the i-j pair of nmlecules. The problem thus separates into two parts:

determination of the pair potentials u
ij’

and calculation of the phase

integral given these functions.

24



The pair potentials must be determined indirectly from

of experimental data, for quantum-mechanical calculation of

practical for only tie simplest molecules. (Several recent

various kinds

them is

theoretical

calculations for helium agree with each other to within 20-3@, and with

experiment (molecular scattering data) to within 30-507$.28) For pure

fluids, at least, the problem of evaluating the _phaseintegral is in much

better shape. The cell or free volume theory of Lennsrd-Jones and

Devonshire and its various modifications and improvements provide a

fairly good approximation above the critical density.

. The problem becomes much more complicated for a mixture. With c

different kinds of molecules there are C(C + 1)/2 different pair poten-

tials, and there is very little experimental information on the inter-

actions between unlike molecules. The

integral becomes more complicated, and

theory such as the cell model csn give

tractable theories of

equation of state; if

problem of evaluating the phase

it is dmbtful whether any simple

satisfactory results. Mst of the

mixtures are obtained by perturbing the pure fluid

these methods are used, it is still of considerable
I

interest.

Pair Potentials

At the high pressures and densities yroduced by detonations in

condensed e~losives, the attractive parts of the pair potentials are

relatively unimportant; the equation of state depends largely on their

shapes in the repulsive region which is, unfortunately, poorly determined

25



by the usual methods. These consist of measuring, in dilute systems, bulk

properties which can he calculated exactly from the pair potential. The

determination is made by calculating the measured property with a variety

of assumed potentials until one is found which reproduces the experimental

data. The experiments are usually done at low temperatures, where the

small fraction of energetic collisions makes the results insensitive to

the shape of the repulsive par% of the potential. In the last few years,

however, a number of potential curves have been determined from the scat-

tering of nmlecular beams. This method gives results

range of interest to us but can be used only when one

interacting pair is in nmnatomic form. With the help

in the repulsive

member of the

of quantum-mechani-

cal ideas, however, appropriate collections of such results can be used

to estimate potentials for diatomic or polyatomic species. Another source

of information is data on shock figoniots originatingin condensed materials.

Subject to the uncertainty in the equation of state used, the ~goniot can

%e calculated from an assumed pair ~tential and the results compsred with

experiment. We have done this where the necessary data were available.

The three most commonly used analytic

potential are:

Lennard-Jones (L-J)

representations

Mason-Rice (MR)

of the pair

(2.6a)

(2.6b)

26



ModifiedMorse (MM)

where r is the separation distance, kT* is the well depth (value

minimum energy) at separation r*, k is Boltzmann~s constant, and

(2.6c)

of

aandn

are adjustable parameters which may range from 9 to 15. Since the expon-

ential form of repulsion is probably more realistic, the latter two forms

are preferred. The second is most commonlyused, but causes trouble at

high densities because of its spurious descent to minus infinity at zero

separation. The third removes this defect at the cost of a slight dis-

tortion of the correct form at large separations.

The mixture equations of state that we use require that the poten-

tials be expressible as

with

this

same

u(r) = kT%f(r/fi) , (2.7)

the same functional form f(r/r+$)for all interactions. To satisfy

requirement, we assume that one of the above analytic forms (with the

value of n or a throughout) applies to all pairs of like molecules and

that, for each such pair,

the unlike _pairsa common

mine the values of r* and

values of r++and T* are given. Then we use for

analytic form (with the same n or a), and d.eter-

T* from the empirical combining rules

I-tj= *(q + r-y T%j = (qT@ . (2.8)

These appear to hold,within 2 or 3$ for spherical and slightly nonspherical

molecules like argon and,nitrogen, but for mixtures like C02 that contain
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more nonspherical molecules, deviations of 10 to 15$ have been fouud (Ref. 6,

QI?.169, 222; Ref. 29, p. 52; Ref. 30).

= ~ Sewrate ~epoti31
we have described.the pertinent experimental

information on the product species we plan to use, the calculation of the

shock Ihzgoniotswhere experimental data are available, ad the resulttig

choice of a potential for each species. The results are summarized in

Table 2.1 and Fig. 2.2. A brief description of the extent of lmowledge

about each species follows.

Table 2.1. Potential Constants Chosen

A

‘2

co

E$o

NO

Q’

12

15

15

14

15b

14

15b

15

14

N(A)

3.83

4.05

4.05

3*35

3997

3.34

4.20

3.73

4.29

(exp.six form)a

&s2Q
119

120

120

138

105

37

200

132

154

%’he MM form was used for 1$0 and 02.

b
These values of Q were guessed.

28
,



!

I I I

●

105

104

103

102

—

I
I

I

3 4
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Nitrogen, Cabon Mmoxide, I&drogen, and.Methane. For all of these

except carbon monoxide, both bulk measurements antimolecular scattering

data are available, and pair potentials consistent with %oth sets of tits

have been proposed. Only bulk measurements are available for carbon

nmnoxide, but they give results very close to those for nitrogen, with

which it is isoelectronic, and the carbon nxm.oxide_ptential is, therefore,

taken to be identical to that of nitrogen.

Nitric Oxide. For this substance, only bulk measurements and the

potential determined from them are available. Since there is an unpaired

e“lectron,it is possible that the form of the potential is different from

those of the other species.

Water. Water has a strong di~le moment and is nonspherical in shape.

A spherically symmetric potential function of the sort commnly used may

be a poor approximation, and several angle-dependent forms have been pro-

posed. To avoid excessive complication in the equation of state calcula-

tion, we tried a spherically symmetric form and made a number of calcula.

tions of the Fhzgoniotcurve to compae with the extensive e~erimental data

available. None of the potentials tried agreed well with experiment; the

choice was made to minimize the disagreement.

Carbon Dioxide. This nmlecule, like water, is nonspherical, and the

bulk measurements using &l_fferentproperties give different potentials,

depending on the pro~erty chosen and on the temperature range over which

it is measured. There are no molecular scattering results. Our choice

represents a compromise among the available data.
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2.4 Pure-Fluid Equation of State

In the ftied-product-compositiondetonation calculations mentioned.

in the introduction, several different gas equations of state were used.

All of them gave results which were fairly close together, particularly

at high initial densities. This suggests that the pure-component equa-

tion of state (given the pair yotential) is not one of the major uncer-

tainties’of the yroblem. We feel that the best equation of state con-

sistent with the available computing time is the free-volume theory of

Lennard.-Jonesand Devonshire, and its modifications (Ref. 6, Chay. 4).

In its simplest form, this model (hereafter called the LJD theory)

imagines the available space to be divided into cells whose centers form

a regular lattice spannipg the available volume. Each cell contains a

single molecule; all but one are assumed,fixed at their cell centers,

and this one is allowed to move in the force field.of its neighbors which

are Lsrnesredoutlronta a sphere of radius equal to the nearest-neighbor

distance.

A nUmber of improvements and modifications of this theory have been

made. Kirkwood
32

provided a consistent statistical-mechanical derivation

of the cell model which does not fix the neighbors while one molecule nmves,

but provides for the calculation of the probability of all positions with-

in the cell, under the assumption that this probability is the same in all

cells. His result takes the form of an integral equation for the cell

probability and contains the earlier theory as a zeroth order ap~roxhation

to the solution. Both Kirkwood!s theory and the original one assume that
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each ceXl contains exactly one nmlecule. A number of later investigations

have elaborated the theory to include the presence of lboles” (empty cells)

and multiply-occupied cells. b the region of interest to us, these compli.

cations have very little effect because of the high pressures and densities.
*

TO date, no one has presentedan exact solution of Kirkwood?s integral

equation for a nonsingular pair patential. Vood33 has solved it exactly

for the case of h~d spheres, with a result which is exactly that given

by the simple LJD theory. An earlier numerical calculation by Elrschfelde24

for hard spheres which removed the approximation of spherical snmothing but

otherwise retained the inconsistent LJD ayproach (i.e., did

Kirkwoodls integral equation, but &Ld hold the neighbors at

positions) gave a different answer. Thus for hard spheres,

not solve

their lattice

the effects of

these two approximations+pherical snnothingj and the approximation of the

integral equation solution by the LJD mxlel of fixed neighbors exactly can.

cel each other to give the correct result.

The so-called Wmproved free-volume~!theory for which, with the

Lennard-Jones pair ptential, extensive numerical results have recently

been publishedby Dahler and IUrschfelder,35 may not be an improvement at

all, since, although the integral equation is solved, the approximation

of spherical snmothing is still made. Thus it is not surprising to find

that their theory agrees less well with mnte Carlo calculations made with

the same pair potential than does the original IJD theory.

* ~if3 is nOt t~e, of course, at sufficiently low pressures on the

isentrope through the CJ state.
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“Therefore,we use the original liTDcell theory. Some more recent

developments in this field are not without interest, but we have retained

the IJD theory, psrtly on the grounds of vested.interest in machine codes

already prepared. Moreover, it gives reasonably good.agreement with the

Nkmte Carlo results at high densities, and in the calculation of EEzgoniot

m
curves the errors in E and P aypear to cancel each other to some extent.

Mixtures

,

The Problem. Getting a tractable statistical-mechanicaltheory for

the equation of state of a mixture is a formidable problem, particularly

with molecules of appreciably different sizes. An extended discussion of

this problem, with applications of most of the current theories to mixtures

of hard spheres, is given in a separate report.
36

The results described

there are qualitatively similar to those given in the next chapter for

systems of more realistic molecules at high pressure, for under these

conditions the size differences are the controlling factors.

Some of the difficulties are brought out by comparison with the shpler

but still difficult problem of determining the equation of state of a pure

fluid at high density. In a highly compressed pure fluid.,the average

positions of the molecules are close to the sites of a regular lattice,

and the IJIlcell theory, which allows only”small displacements from the

lattice sites, gives a fairly good approxinxationb the t~e equation of

state.

~ a mixture the problem is far from solved even if the molecules

are assumed to lie on regular lattice sites, for the most probable
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arrangement of the molecules on the sites must still be determined.

Although this order-disorder problem has inspired.a number of very complex

theories,37 it has not been solved in closed form for any three-dimensional

lattice. The approx~te methods which have been developed me of doubtfil

validity when the interaction energies are lsrge compared to 1o11.

In a mixture, the lattice approximation itself 1s, of course, very

poor, for the differences in molecular size produce an average configurat-

ion with a very irregular structure. The extremely complicated problem

of determining this structure is well illustrated by Bernalfs studies of

the geometrical structure of pure liquids of normal density.38 This

problem bears some resemblance to that of the mixture, since a normal-

density liquid has a rather open structure which can be roughly described

as a mixture of nnlecules and.holes.

The theory of mixtures is in a rather unsatisfactory state. Although

nuch work has been done, nuch more rematis.

agree even on the sign of the corrections to

their chsracter, this is hsmlly a surprise.

The present theories do not

ideal mixing. In view of

They simply do not go deeply

enough into the details of the very complex problem.

Several different ways of attacking the problem are discussed in

reference 36. Here we consider only two: the perturbation method and

the pseudopotential method,.

Perturbation Theories. The theories which use this approach can be

divided into two classes: conformal solution theory, and what we choose

to call n-fluid theory. It has only recently

34
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whose properties are assumed knowdg They differ mainly inthe choice

of expansion variable. The conformal solution method (Ref.

10; Ref. 40; 41) begins with the assumption that all of the

interaction potentials have the same functional fo~

29, Chap. 9,

intermolecular

(2.9)

where W and r+ may have tifferent values for each component pair.
ij ij

Thus

each pure component obeys the same reduced equation of state

(2.10)

To obtati the equation of state of the mixture, some reference fluid obeying

this common reduced.equation of state is chosen, and the mixture partition

function is expanded about that of the reference fluid in ~wers of

(qj - I+) and (qd - T:), where the subscript r denotes the reference

fluid.. This expansion can be carried out exactly; for F’, the imperfection

Gibbs free energy of the mixture, it takes the form

where x, is the mole fraction of conqyment i, and c is the number of
A

components. The coefficients of the first-order

property of being expressed entirely in terms of

terms have the convenient

the macroscopic properties
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of the reference fluid (and the composition). Unfortunately, the coeffi.

cients of the higher-order terms cannot be so simply expressed3 they con-

tain statistical-mechanicalintegrals of the nmlecular distribution

functions of the reference fluid, and thus deyend.on its microscopic

properties.

In the original formulation %y Longuet-llLggins,40
one of the pure

components was chosen as the reference fluid. We refer to this form of

the conformal solution theory as the LH theory. ~os=ov,s recent worp9

suggests that the reference fluid.be chosen so that the first-order terms

of Eq. 2.11 vanish. Thus, if we choose as the reference fluid a composi.

tion-d.ependentfictitious substance obeying the common reduced.equations

of state with potential constants

c
& v

(2.12)

i,j=l

the extensive properties

of the reference fluid.

theory the corresponding

i, j =1

of the mixture become, in first order, just those

We call this form of the conformal solution

states, or ‘US!!theory. Unfortunately, this

approximation criterion does not yield a unique reference fluid, since

any functions of z+. my be used as the expnsion variables.
iJ

For example,

if the e~nsion is nmie in powers

parameter, we have:

c

i, j=l

(~j )n and (~j )n, with n an adjustable

36
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Theories of the second class, which we call n-fluid theories, have

#g has provided s,unifiedreceived wide attention. Recently Nosano

statistical-mechanicalderivation of them. The method is quite similar

to that of the conforml solution theory. As before, it is assumed that

the properties of

that the function

the choice of the

any pure fluid with given pair potential are known, i_.e.,—

F~[T~pju(r)l iS given. The principal differences are in

expansion variable and of the reference fluid..

The expansion is made in the differences between

potential functions s.ud.the potential.function of the

‘ij
(r) -uT(r) ,

the individual pair-

reference fluid.

(2.14)

and.these functional differences are treated as the variables of the Taylor

series. It is thus no longer necesssry that the potential functions have

the same functional form, but only that their differences be, in some sense,

sufficiently small. Of course, for molecules of different sizes these ~

differences become large at sufficiently small separations, and there the

expansion may become invalid.. The hope is that such configurations are

sufficiently improbable that the final result is correct, but this has not

been proved.. As in the conformal solution theory, the expansion is exact,

but only the first-order coefficients can be expressed entirely in ‘termsof

the maCrOSCOpiC properties of the reference fluid.

The form of the expansion is then

of expansions about a set of reference

equal to the number of different pairs

generalized,to a line= combination

fluids whose maxtmm number is

of components. The coefficients

of this linear combination and the potentials of the reference fluids
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are then chosen so that the first-order terms of the overall expansion

vanish.

as a

There are three ways of doing this; each yields a system which serves

model of the mixture, correct to first order in the expansion variable.

(1) A single substance with potential function

c

The @erfection free energy of

(2) A set of c substances

c

Us(r) = ~xjuaj(r) ,
j=l

The imperfection free energy of

c

. (2.15)

the mixture is just that of this substance.

with potential functions

(12’=1, ““”, c) .

the mixtuze is given by

ad

(3) A Set of c(c+l)/2 suhstsmces with potential functions

Uap(r) = u@ ~ (CY,P =1, ““”c) ●

The imperfection free energy of the mlxhxre is given by

. F’(T,p~) =

.;l [

XQXPF: T>PyUu~(r)] .

=

(2.16a)

(2.16b)

(2.lTa)

(2.17%)

Pseudopotentisl Theories. These theories are obtainedby an a~roach

completely different from the perturbation

for a mixture is rearranged to the form

methods. The partition function
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i3=l/kT, s= (;i, ““”, ;N) . (2.18)

+
where x represents the chemical composition of the system. The brackets

denote an a priori average, for each set of position vectors occurring in

the integration, over all possible interchanges of the molecules among

these positions, so that evaluation of this integrand at each set of

position vectors occurring in the integration requires the solution of a

complicated order-disorder problem. Thus the problem has been formally

rearranged to represent a single fictitious substance with an extremeiy

complicated,composition- -d temperature-dependentpotential function 0,

called the pseudopotential. The fictitious substance correspmding to

this potential is clearly not conformal with the components of the mixture,

in the sense of Eq. 2.9.

The order-disorder problem required for the calculation of the

J2-44pseudopotential has been solved approximatelyby three different methods.

ti the moment method, the pseudopotential is expanded in powers of the

u44(r)/Ml!. Its first term isequivalent totheone-fluid theory. The
J-d

higher-order terms are

but the convergence is

large, and there is no

result than one. The

first-order result: a

quite complicated.

slow in systems of

guarantee that two

The series is lmown to converge,

interest to us, where uiJ/kT is

or three terms will give a better

mair-correlation method ~ives a more interestin~

rather complicated expression for the effective
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potential function, which contains both the composition and the temperature

and gives the one-fluid result only in the high-temperature limit. Illgher

approximations can be obtained in principle by this method also, but the

result

can be

series

does not take the form of a power series, and no expansion variable

identified. In the pseudo-pair-potential method, the moment method

is rearranged into a sum of pair interaction terms plus a sum of

triplet interaction terms, etc. The

closed.form ta give

i’cj

It can be shown

cp(r) =-KC

pair interaction terms are sumned in

cc

n -Puw(r)
.4n xxe

WY
. (2.19)

CY=ly=l

that the first-order result of the moment method

(one-fluid.theory) is a rigorous upyer bound to the Gibbs free energy, and

that the pseudo-pair-~otential result is a rigorous lower bound to the same

quantity. However, these bounds are so widely separated as to be of nmstly

theoretical interest.

Discussion. The LH theory suffers from the arbitrary choice of refer-—

ence fluid. Once this is chosen as one of the pure components, the theory

gives wrong results for the specisl case of a mixture consisting of any other

pure component.

The CS theory ties not have this disadvantage, for—

case the fictitious pure fluid representing the mixture

component in question. However, both of these theories

arbitrariness in the choice of the expansion variables.

h the above special

reduces to the pure

suffer from the
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The one-fluid theory is ~“or in

free energy is known to be too high.

it implies that all cells must be of

several ways. The predicted mixture

In the framework of the cell theory,

the same size. Thus, the large com-

ponents are squeezed too

certainly too high. The

of ways, but since it so

hard, and their chemical _potentialsare almost

one-fluid theory has been derived in a number

often turns up as a first ap~roximation to some

other theory, one suspects that it could be imyroved-

The two-fluid theory almost certainly represents an improvement. It

has also been derived in several different ways, but these are generally

more sophisticated and reasonable than those leading to the one-fluid

theory. In the cell theory framework, it corresponds to taking a different

size cell for each component, which seems more reasonable than the one-

fluid limitation to cells of equal size. Both theories suffer from a

practical disadvantage: they yield effective potential constants only for

a Power-1aw Potential tiction such as the L-J form. That is, the sums in

Eqs. 2.15 and 2.16a which become, with a common functional form for the

potential,

c

can be expressed in the

‘F%l?(r/fi),

with

c

I G)r> X.x.w. —
lJiJ

i, j=l
ij ‘

form

(2.20)

(2.21)



(where ~ and @ denote the sets of all Tfj and r-fj) only for a power-law

45
potential function. Thus, for the exp-six and MM potentials, Eq. 2.6,

for example, the effective pair potential of the mixture in the one.f+uid

model or the pair

should be used in

of Eq. 2.21.

potentials of the reference fluids in the two-fluid mdel

the form of Eq. 2.20, rather than in the simpler form

Of the pseudopotential theories, the only practical result of the

nmment method is the one-fluid theory, which is probably much too hard.

The results given in reference 36 indicate that the pseub-pair-potential

results are mch too soft, at least at high pressures. This leaves the

pair correlation method, whose worth is difficult to assess. None of the

pseudopotential results are simple enough for use in the complete detonation

calculation, although some limited results for the

are given in the next chapter.

2.5 Chemical Equilibrium

46,47The method proposedby Brinkley is used,

to solve for the chemical composition.

pair-correlation theory

with some refinements,’

2.6 Hydrodynamic Conservation Equations

These are standard, (Ref. 1, Chap. 3) with

Chapman-Jouguet condition. The correct form of

to question, but the best guess on the basis of

the exception of the

this hypothesis is open

48the present theory

is that the equilibrium CJ condition — tangency of the Rayleigh line
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D’ ‘p-p”=V
Ov-v

o
(2.22)

(withD the detonation velocity) to the equilibrium detonation Efugoniot—

should at least be approached.asymptotically with time. Therefore, we have

used this form of the CJ condition, which is equivalent to finding the

point on the equilibrium detonation Ehgoniot at which the calculated deton-

ation velocity is a minimum.
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Chapter 3

ILLUSTRATIVE NUMERICAL RESULTS

In this chapter we give numerical results illustrating some properties

of various portions of the

different contributions to

3.1

theory EL@ show

the eqaation of

the relative importance of the

state.

Solid Equation of State

An isotherm calculated from the graphite equation

in Fig. 3.1, together with the eqertiental ~goniot.

of StitS iS shown

The isentxope with

the same temperature at ~ = O lies very close to the isotherm; the isen.

tropic temperature rise is snELlldue to the small value of

constant G.

This equation of state gives results

27
a different form used in earlier work.

3.2 Gas Equation of State

similar to those

for Pure Fluids

Calculated isotherms for argon at 300, 1000, and 3000

the Gruneisen

obtained from

‘K end en

isentrope through the 3000° isotherm at 0.3 mb pressure are shown in
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Fig. 3.1 Shock Eugoniot (experimental)and 3000 “K isotherm (calculated)
for graphite.
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Figure 3.2. The pair potential used in the exp-six form adjusted to fit

molecular scattering data as described in Ref. 31. An experimental isen.

trope through the point T = 300 “K , p = 0.001 mb is also shown,49 snd is

seen to be in fairly good agreement with the calculated one. In spite of

the dips in the isotherms, the isentrope is quite smooth. This is probably

somewhat fortuitous: the isentrop chosen enters the phase transition

region shortly below its lower end,in the figure. Isentropes of higher

entropy probably look somewhat like the 3000° isotherm.

As discussed in Chapter 2, the equation of state is often thought of

as divided introideal and imperfection parts, the latter arising from the

intermolecular forces. Under detonation conditions, the average inter-

molecular distances corres~nd to strong repulsion, and the intermolecular

forces make the main contributions to the internal energy and pressure of

the

The

system. As an illustration, take the argon,state point:

P =0.3 mb.

T =3000 ‘K.

v = 10.2 cc/nnle

E/Itl= 4.57 (relative to O “K.)

pV/RT .12.3 .

energy and pressure sre divided into ideal and imperfection parts as

follows:

id,eal iqerfection

E@ 33$ G*

pv~ % 9*
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Fig. 3.2. Isotherms and isentropes for argon. Illustrating the.
characteristics of the gas equation of state for pure fluids.
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The imperfection part is often thought of as further subdivided into

Y1.attice!rand ~lexcess.over-lattice”parts. The lattice part corresponds

to a (classical)face-centered cubic crystal at O ‘K, is thus independent

of the statistical-mechanicalequation of state, and depends only on the

pair potential. When the imperfection parts of the energy and.pressure

are divided in this way, the results are

excess
lattice over lattice

E@ 45$ 55$

pv/RT - 1 ‘w% 2% .

Also of interest is the question of what Tart of the potential curve

makes the major contribution to the equation of state. To see this, we

make use of the inverted form of the cell integrals given in the Appendix

of reference 14. These express the imperfection energy and pressure in the

form

E’ a~u(r)G(r)drj yv - mafmm’(r)G(r)~,
o 0

where u(r) is the pair potential and.G(r) is the weighting function or

effective radial distribution function for the cell theory. Figure 3.3

shows the normalized weighting function and integrands of these integrals.

The range of significant distances is sufficiently small, with half-width

on the order of 0.5 A, that the attractive portion of the potential has

alnmst no effect on the equation of state.
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DISTANCE r, ~

Fig. 3.3. Normalized weighting function and integrands for the LJD cell
integrals transformed.to integrals over the intermolecular separation r,
evaluated for argon at p = 0.3 mb, T = 3000 ‘K. Not shown is the nega-
tive delta-function portion of the weighting function, which is located
at its maximum and.has an srea equal to half that under the weighting
function curve shown.
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3.3 Gas Equation of State for Mixtures

Since presently available comparisons of the mixture theories are

limited

present

LH, CS,

is also

-to low pressures, we give here a Mgh-pr=m= Com=is% ~d

some properties of the theories under detonation conditions. The

one-fluid, and two-fluid theories are used. Limited consideration

given b the SalsWrg pair-correlation theory, which is too compli-

cated for complete calculations, even in the s@le ~fiZLI’Y s~tem

Thermodynamic Functions

The model used is a binary system at a pressure of 0.3 mb and a

temperature of 2000 ‘K, whose components have pair potential constants in

the ratios

55
T;

—Zg , —=
T ? P

The L-J form of the pair ptential is chosen because it is the only one for

which simple average pair potentials are consistently defined in the sta-

. tistical-mechanical sense by the mixture theories used. For the X=ir FO-

tential of component one, we take one of those chosen for least disagree-

ment with experiment in reference 3:

n = 12, F = 100, x+ =3959 ●

Figure 3.4 shows the pair potentials for the pure components and the

effective pair potentials for the equinmlar binary system as given by the

CS, one-fluid, pair-correlation, and.pseu~-Wir-Potenti~

50
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Fig. 3.4. The pair potentials of the pure components and.the effective
pair potentials given by the different mixture theories.
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The thermodynamic functions* calculated for this system with the

different mixture theories are shown in Figs. 3.5 and 3.6. Figure 3.7

shows the effective values of ‘W end ‘N given by the CS and one-fluid

theories together

two-fluid theory.

with those for each of the reference fluids of the

In order ta do an approximate mixture calculation for

the complicated pair-correlation potential, we have approximated it by the

L-J potential shown with long dashes in Fig. 3.4. The thermodynamic func-

tions for a substance with this potential sre shown as pints at X@in

Fig. 3.5,

From these results and more extensive calculations not reported here,

we conclude:

cess

(1) The clifferent mixture

thermodynamic functions.

theories give different signs for the ex-

*
Some of the results of the calculations are expressed as excess

thermodynamic functions, denoted by the superscript e. These sre deftied

as the difference between the calculated value of the imperfection thernm-

dynamic function for the mixture and.the corresponding value for ideal

mixing.

Fe\T,p,~) = F’(T,p,?)
-i’i~;@~2)+xl’n’i~etc*
i=j

i
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Fig. 3.5. Imperfection thermodynamic functions for the binary mixture.
The dots at x = ~ are for the pair-correlation potential approximated
as described in the text.
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Fig. 3.7. Effective pair potential constants for the binary mixture.
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(2) At xi . & the range of the results for the free energy and

volume of the mixture is about 6-10$ of their values for ideal mixing.

The range of the calculated chemical ptentials corresponds to changes

of the equilibrium constants by factors of ten or more. The greatest

range is found for compositions having small ammnts of large nmlecules.

(3) me differences in potential constants chosen for this study are

of the order of those in our system of product species. Under these con-

ditions, the effect of Mfferences in N is much Uu?ger than the effect of

differences in T*.

(4) One deficiency of the L-H theory — its failure for compositions

far removed from the reference fluid — is shown.

(5) UthOu@ the CS and one-fluid theories are the two extremes when

the ti sre appreciably different,
i

they give the same results for the case

of equal +.
i

(6) Calculations at Toints on an isentrope through p = 0.3 mb,

T = 3000 ‘K show that over a wide range of temperature and pressure the

excess thermodynamic functions, expressed as a percentage of the imper-

fection functions for ideal mixing, are of the same order of magnitude.

The qualitative relationships are also unchanged: throughout, the one- and

two-fluid theories give positive excess quantities, while the CS theory

gives negative ones.

(7) Eq.uilibrim calculations for mixtures of the s-pecieslisted in

Section 3.4 using the L-J, n = 12 potential and one-fluid theory give

isotherms with mechanically unstable sections characterizedby the rapid
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shifting of the reaction

N2 +C02+2N0 +C(s) ●

Under these conditions the system is presumably unstable with respect

to separation into additional phases. What the composition of these might

be was not determined. Since in this case both the mixtme theory and

the pair potential are unrealistically hard, the instability should.prob-

ably be regsrded as just an interesting curiosity (and, perhaps, as a

warning). It was never encountered in any of the detonation calculations

described in later chapters, for which more realistic pair potentials were

used..

Continuous Variations of the Potential Constants

The ~ CS, and one-fluid theories are all obtained by expansion

about a system in which the.pair potentials of all components are the

same, namely, a pure fluid,. In each case, the expansion variables corres-

pond to differences in the Totential functions, and.the first-order terms

sxe given correctly. While none of these theories attempts to compute the

second-order terms properly, nonlinearity is introduced,into the latter

two by their special choices of the reference fluids, which change both

with the composition and with the pair potentials.

pansion can be made for a-pure fluid, and gives the

pure fluid with a different pair yotential in terms

the first and the differences between the potential

The same type of ex-

properties of a second

of the properties of

constants. Since the

second-order terms in this expansion are probably compsxable to those for
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a mixture, this system is

Figure 3.8 shows the

fluid as a function of N

also of interest.

imperfection thermodynamic functions of a pure

and T*, at constant T and p. The deviations of

these curves from the straight lines tangent to them at the center of the

range give a rough measure of the importance of the second-and higher-order

terms in an expansion of the type used in the mixture theories. For the

range of & and N

that errors of the

the uncertainty in

found in oum set of components, these restits suggest

order of 5 tn l@ in the volume might be attributed to

the second-order terms of the expansion.

Similar presentations for the binary mixture are given in Fig. 3.9,

where the imperfection thermodynamic functions of the mixture are shown

as functions of rjJand ~ with ~ and ~ fixed. All of these theories

give the correct slopes at the central point (r~ . @_, HI . ~), but differ

in the curvature. The LHtheory is linear in fi~, @W, ~d %23 sfice the

arithmetic-mean combining rule is used for Z+12) the curve for ~ becomes a

straight line. This is not the case for !!?&for which the geometric-mean

combining rule (T!& = @~) is used. The other theories are linear in

their initial formulation, but in each case the special choice of reference

fluids effectively introduces nonlinear terms as yointed out above. Ideal

mixing can be shown to give the wrong slope at the central point in the

~ plot; in the ~ plot it accidentally gives the right

cancel through the use of the arithmetic-mean combining

for small deviations the geometric and arithmetic means

slope because terms

‘le ‘or ‘?2” ‘ince

are nearly the same,

however, the samunt by which the ideal mixing curve deviates from the
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Fig. 3.9. Variation of the imperfection free energy of a btisry
mixture with the potential constants ~ and T~ at constant T and p
(T=2000”K, TI=Oo311ib). For the ~ variation, ? is held constant at
the central value, and.vice versa.
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correct slope at the central point is too small to be seen in the figure.

?tromthis point of view, the failure of the different mixture theories

to agree even on the sign of the excess functions is not surprising. The

deviation from ideal mixing de~ends, in all practical cases, on the amount

of curvature in these curves, a property which is not given

of confidence by any of these essentially linear theories.

3.4 Chemical Composition and.l?ugacities

Under the conditions of interest, fugacity corrections

gas equilibrium constants are important. We give here some

with any degree

to the ideal

numerical

exsnples. For an equation of state point, we take the calculated CJ state

for the explosive RDX (C5H606N6)at density 1.8 g/cc, using the -pair.

potential.constants given in Chapter 2, the CS mixture theo~, and the MM
*

form of the pair potential. For the potential exponent, the value a . 13

is chosen to give approximate agreement with the experimental detonation

velocity.

A chemical reaction maybe representedby
c

I Vixi = o ,

i=l

is the total number of chemical species present, Xi

species 1, and v
i

is the stoichiometric coefficient

represents one

for species

where c

mole of

i, i.e., the nunfoerof moles of species i transformed %y the reaction.

At equilibrium, the mole fractions xi of the species involved in each

reaction must satisfy a relation of the fom
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II ‘i
‘i

= k(T,p,;) ,

(gas
species)

where k can be expressed as

(gas
species)

Here K(T) is

terms of the

[
vi FO(T) - l&A@ .

K(T) = -
I

i
RT

(all
syecies)

the ideal gas equilibrium constaut

standard free energies, as show)j

(which is expessed ti

AU is the change in the

number of males of gas as the reaction goes from left to right} F~ is the

total imperfection

for the solid, and.

-x
free energy 0$ the gas, F: is the corresponding quantity

W; is the imperfection chemical potential of species i.
A

The terms W: - F: in the expression for .4n

interpretation. Since from thermodynamics

k can be given a simple physical

they reyresent, roughly speaking, differences in size ~d ~teraction

energy; nmlecules which are larger and ‘!harder’rthan average have W; > F’,
6

and vice versa for those which are smaller and %ofter.’t

*
The fugacity is “q.p) .defined as pe
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In Table 3.1 we give numerical values of some of these quantities

including the equilibrium constants for several reactions (not an inde-

pendent set) for the calculated detonation state described above.

3.5 Kinetic, Internal,and,Chemical Bond Energy

It may be of interest to give results for a simple hydrodynamic

model which produces

is done by supposing

moving with the mass

the detonation products in a constant state.
50

This

that the detonation wave is followed by a piston

velocity of the products, so that the state vsriables

everywhere behind

that

Q+l?=

the wave sre constant. For this model it can

K.E. i-E(T,p) -E(TO,PO) ,

where W is the work done by the piston, Q is the !lchemicalbond

(the change in internal energy when the H.E. reacts at constant

to form products), K. E. is the kinetic energy of the products,

be shown

energylr

Tandp

and E iS

the internal energy of the products. Writing this equation as percentages

of the total on each side for the calculation described in the previous

section gives

Q + W = K.E. +

60$ 40$ 2*

Thus, in this system which produces

state, only 60% of the energy which

the breaking of chemical bonds, and.

E(T,P) - E(TO,PO) .
\

8($

the detonation products in a constant

maintains the detonation comes from

the remainder is supplied by the piston.

In the reaction products, 20$ of this total energy appesrs as (macroscopic)
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Table3.1. EquilibriumConstantsandRelated

QuantitiesforSeveralReactions.

(p= 0.33mb, T =4040 “K, lap .1.207, &3-4&)

Species

c(s)

‘2

CO

Reaction

(1) CO+*C02+ *C(S)

(2)150.1$+*2

b)~O+~N2+~+N0

(4) co+ I$o-co2+~

Idealh3dCd
Potential

(d’(T). ~ - Al$)f
m

-4.4

-29.2

-33.4

-37.8

-29.0

-21..6

-47.4

-31.2

-37.1

Imperfection
ChemicalPotential

v;
m!

4.4

16.4

16.4

11.o

15.5

8.4

19.1

Y+*O

19.1

EquilibriumConstants

ForIdealOas For IdealGas With~aclty
Gastile at pd.atm at p=O.33mb Corrections
Change(Aw) .CnK(T) h K(T)-(Av)In p In k(T)

-4 -7..5 -1.2 +3.5

++ -0.5 -6.9 -11.3

+* -1.7 -8.1 -1.2.8

0 -2.1 -2.1 -2.2

+:
3

-I-5.1 w.8 -4.8
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kinetic energy, and,the remaining @ as increased internal energy of the

products.

3.6 Some Gross parameter Variations

In this section we show the effects of certain gross changes in the

calculation.

the nuniberof

used in rough

Included are the effects of the heat of explosion and of

moles of gas in the detonation products, two quantities often

engineertig evaluations of new explosives.

The explosive is RDX at density 1.8 g/cc. The calculation is made

as described in Section 3.4, but with.fixed, instead,of equilibrium, pro.

duct composition. me variations are listed in Table 3.2. In run 2 the

number of moles of gas is increased by converting all of the C02 accordfig

to the equation

C02 + c(s) +2C0 .

llLrun 3 the solid is made incompressible. Run 4 shows the effect of

increasing the heat of eqlosion Q, and in run 5 the LJD cell theory is

replaced by the ideal gas equation of state. The heat of formation of

the explosive is

of explosion.

The results

artificiallyadjusted.as required to give the desired heat

are given in Table 3.2 and,Fig. 3.10.
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Chapter 4

VARIATION OF PARAMETERS

Because of the imperfect state of the theory, the calctiation conta~s

a number of adjustable parameters, such as the pair-potential constants. To

assess the effect of this uncertainty, we first coqare fith e~r~nt the

results of a calculation which is a priori in the sense that the values of

the parameters are chosen from the information presented in Chapters 2 and

3, making no use of the measured detonation properties of the e@osives for

which the calculations are done. We then exsmine the effects of a systematic

variation of the parameters. Before describing any of the calculations, we

discuss the parameters themselves.

4.1 The Parameters

We describe here the parameters which may be varied, listing them

according to the main subdivisions of the theory.

Gas Equation of State

As pointed out in Chapter 2, this problem may be divided into the

microscopic one of determining the forces (pair potentials) acttig between
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the molecules, and the macroscopic one of finding the behavior of the system

once these-force laws are given. For mixtures, most theoretical treatments

divide the latter

of state and of a

as a perturbation

Pair Potentials.

problem into the determination of a pure-fluid equation

mixture theory which

on the pure fluid.

These are determined

gives the properties of the mixture

experimentally. In the simple case

of interaction between monat.omitmolecules, the important repulsive part

of the potential can be obtained directly from observations of molecular

scattering. For more complicated,molecules, pair potentials can be derived

from

Even

that

for

the

this type of data,

these less-certain

we need to how.

As the potentials

but only at

results are

are usually

each interaction: the analytic

characteristic distance r*, and

the

not

cost of introducing some assumptions.

available for all of the interactions

represented, there are four parameters

form, the repulsion exponent a or n,

the well depth !lY. The conformal

assumption requires that the analytic form and repulsion exponent be the

same for all interactions so that a single analytic form and value of the

repulsive exponent apply to all interactions of the system. The values of

r% ~d, T* for each interaction ~st still be chosen. For interactions of

like mdeculesj they are taken from the experimental information on the

pair ptential; for unlike interactions, the combining

I-Y. = ++(r~+~) ,lJ

are used.. These rules are of course

.

qj = (q’H)*

only approximate,

rules

and one could.intro-

duce many more parameters to modify them, but we will use them in this form

and consider only the ~ and.~ of the like interactions as parameters.

69



Thus, for a system of c components, there are 2C -I-2 parameters: the

analytic form and repulsive index of the potential, and the individual.

parameters @ and ~. It will often be convenient to keep the ratios of
J.

the individual

the mixture by

J.

parameters constant

scaling all of them

Pure Fluid Equation of State

Consideration is limited to a

and vary the average

by the same factor.

single form, the LD

that there are no’adjustable parameters in this part of

Mixture Theory. The practical theories give quite

parameters for

cell theory, so

the theory.

different results,

but there are no high-pressure experiments with which to compare. The

crudeness of the theories compared to the problem to which they apply

makes an a priori assessment of their worth difficult. We therefore try

several, including the extreme ones, and regard this choice as mother

parameter.

Solid Equation of State. The principal uncertainty here is the

particle size of the solid; if it is small enough, surface forces become

ixxporta.ut.To represent this effect, we vary the heat of formation of the

solid by smnunts up to about ten per cent of the sublimation energy.

4.2 An APriori Calculation

For this calculation and for the parameter variations, we have chosen

a minimum number of explosives covering a fairly wide range of atomic com-

position, oxygen balance, and density. These are listed in Table 4.1.
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The parameters chosen

(1) The MM potential

are

[

6
CY(l. *) 6 (I-- >)

u(r) =W<cGe -#-&e 1
with a = 14.

(2) The species

C(graphite), N2, co, F$o, Im, ~, 02, cl

with values of r~ and ~ from Table 2.1.

(3) The CS mixture theory.

(4) The value zero for the heat of formation of graphite.

Many of these choices are rather sr%itrary. The repulsive e~nent

could have %een chosen to be 15, but all of the CY= 15, exp-six potential-s

lie above the repulsive potentials derived from nmlecular scattering data

over most of the distance range (see

CY= 14 instead. What mixture theory

The restits reported in reference 36

reference 31), so we have chosen

to choose is really an open question.

suggest that, where anything is known

about the problem, ideal mixing gives good results. The CS theory iS close

to ideal mixing and has the advantage that average potential constants are

defined. The value of the graphite heat of formation is unknown; we have

taken the bulk value. Thus, while we term this calculation a priori, there

is considerable arbitrariness in its specification. How much the results

are affected can be judged from the parameter variations presented later.
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The results of this

Figs. 4.1 and 4.2 and in

velocities are too high,

calculation are compared with experiment in

*
Table 4.2. Most of the calculated detonation

the calculated Hugoniots do not

to the experimental CJ points, and the calculated values

too high. Thus it appears that the parameter variations

next section may effect

4.3

some improvement.

Sinale Parameter Variations

come very close

**
of y“”’are all

described in the

One of the first variations tried was to

repulsive exponent a from 14 to 13. With the

this moved the calculated,Hhgoniots closer to

change the value of the

exception of NM/HN03,

the experimental CJ points in

the p-v plane (Fig. 4.3), and,brought the deviations from the experimental

velocities closer together. We therefore decided to take this calculation

as the starting point. In what follows we term this parameter set, that

*
The figures

Chapter.

and tables containing the results are at the end of this

** poD2
The CJ pressure is given by P =

m; Y%%%)s

y is chosen for comparison instead of the pressure, since it

. The quantity

is a much less

sensitive function of the thermodynamic state. For simplicity, we use in

this chapter only the experimental data from this laboratory, which Probably

form a fairly consistent set. This should be sufficient here, where the main

object is to show the effects of the parameters on the calculated results.

I&me complete comparisons with most of the available experimental data are

made in Chapter 5.
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used for

ltcentral

The

.

the a priori calculation with a changed from 14 to 13, the

point. ‘f

list of variations chosen is given in Table 4.2.

are so many parameters which can be varied, we have tried

limited set. Without actually assigning numbers, we have

figure of merit for inclusion the product of the range of

Since there

to select a

taken as a rough

uncertainty

of the parameter in question and its effect on the results. The range of

variation of nmst of the parszneterswas chosen to correspond roughly

to the uncertainty in their values. Some comments on the choices follow.

The results will be discussed,in Section 4.5.

Potential Parameters Comm3n to All Species

In addition to

the pair potential,

CY,

we

the repulsive expnent in the analytic form of

define another conmmn potential parameter: a scale

factor S@ on sll of the molecular sizes. The change in this scale factor

(run 4) was chosen to give about the ssme effect on the results as chang.

ingo!byl(runs 1-3). One calculation was also dnne with the L-J, n . 9

potentisl (run 5).

Potential Psmameters For the Individual Species

The nmst uncertain of the pair-potential constants are the values

of N for csrbon dioxide and water. These also have a inked effect on

the calculated results and were therefore chosen for variation. The

observed effects were lsrge enough to m,lceit desirable to take both
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positive and negative changes (runs 6-9). The individual values of N

apparently have little effect. This was suggested by some of the mixture

studies mentioned in Chapter 3, and is confirmed by run 10 in which all

~ were made approximately equal to the middle of the range of the calcu-

lated average T* for the central point, with little effect on the results.

(The detonation velocities for this run, not plotted, are within 50 m/s

of those for the central point.)

Mixture Theorv

The one-fluid theory* gives a rigorous upper bound to the mixture

free energy, and large positive deviations from ideal mixing; it is

probably much too hxrd~!. The very %oftff pseudo-pair-potential theory,

which gives a rigorous lower bound to the free energy, is too complicated

for use in the calculation. The softest theorywe have used.is the CS

theory chosen for the central point, which gives relatively small negative

*
The one-fluid theory gives a very complicated calculational recipe

for any potential other than the Lennsrd-Jones form. Therefore, the mixt-

ure rule which gives the

the L-J, n = 9 _potential,

in all other parts of the

average parameters was written in this case for

which is comparable to the MMj a = 13 form used

calculation. While this procedure must be re-

garded as empirical from the statistical-mechanical-point of Viewz it iS

thermodynamically consistent, and, we believe, a good approximation to the

more exact method..
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deviations from ideal.mixing. We have done calculations wtth the one.

fluid theory (run n), and also with ideal mixing (run 12), which gives

results between those of the one-fluid theory and the CS theory (run 2).

Heat of Formation of Solid Carbon

Since any solid carbon present is probably in the form of very small

particles, there maybe an appreciable surface energy due to interface

interactions with gas nmlecules, which sre neglected in the calculation.

To take this effect into account, we have increased the heat of formation

of the solid up to about ten per cent of the sublimation

4.4 Canpensated.Parameter Variations

energy (runs 13, I-4).

Since sozneof the psmaueter vsxiations of Section 4.3 caused rather

large changes in detonation velocity and CJ pressure, we repeated several

of them with all ~ scsled to compensate for the variation and bring the

calculated detonation velocities back to approximately the origtisl vslue.

In nearly all cases it was found that the required scale factor could be

obtained quite closely from a simple ~rocedure based on the reduced initial

density scaling described in Ref. 3. Let subscript 1 refer to the central

point (run 2) and subscript 2 refer to a cshulation done with one parameter

changed. If (po)l ~d (PO)2 are the densities at which the calculated

ation velocities are equal, then the required scsll.efactor is given by

(Po)l ‘-/3

‘*
= scale factor for r* = [1i~”

(See figure at the top of the next page.)
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(2) (1)

/

.— —

D

(PO)2 (Po),

P.

Several of the original variations were repeated.,using this reciye

for the compensation. These runs sre listed in Table 4.3.

4.5 Discussion of the Results

The results of the calculations are given in Tables 4.2 and 4.3 and.

Figs. 4.1 to 4.7. !ihecentral point set of psmmeters~ Figs. 4=3} 4.4aY

gives results which compsxe with experiment as follows:

(1) The calculated detonation velocity for~/~03 is about 500 m/s

below the experimental valuej the neti largest disagreement, from TNT at

density 1.4, is about 300 mfr.
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(2) With the exception of Nl@N03, the calculated Hhgoniots pass

close to the experimental CJ points, but the calculated CJ pressures are

too low (with correspondingly high vslues of y), indicating that the cal-

culated Hugoniots are too steep near their CJ points.

(3) me cdctiated teIrIperaturefor nitromethane is

degrees too high, while that for N14/PN03is about right.

several hundred

(4) The hook at the end of the TNT velocity curve is due to the hook

in the experimental data. None of our calculations produced anything like

this for TNT,

disappesxance

mechanism.

(5) me

are such that

although the abrupt changes in slope associated with carbon

in the other explosives, Fig. 4.6c, suggest a possible

experimental errors, discussed in nmre detail in Chapter 5,

some of the calculated velocities are certainly wrong by

several hundred meters per second; but the calculated pressures and

temperatures may possibly be correct.

The parameter variations

discuss the results.

Common Potential Parameters

Figures 4.1 anci4.2 show

were tide about this centrsl point. We now

that the ptential with exponent o!= 14 is

too herd: all of the claculated Ehgoniots with the exception of NM/’EN03

lie to the right of the experimental CJ points. Figure 4.3 shaws that

a= 13 is about right in this respect, and it slso brings the velocity

deviations closer together, Fig. 4.4a. The potential with o!= 12 is
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clearly too soft, Fig. 4.4b. Increasing all the molecular diameters ~

by about 2%, Fig. 4.4c, has about the same effect as increasing o!from

13 to 14, but does not increase y quite so much (Table 4.3). Substitu-

tion of the L-J, n = 9 potential for the MM form, Fig. 4.4d, gives re-

sults qualitatively similar to those for a = 12, exce@ that the calcu-

lated velocity for Nl@3NO< is even lower.
J

Individual Potential.Parameters

Figure 4.5a-d shows that the

marked effect on

do not give much

the calculated

better overall

relative sizes of the molecules have a

Heat of Formation of Solid Carbon

results, but that the variations tried,

agreement with experiment.

This parameter has a pronounced effect on the shape of the calculated

velocity curves, Fig. 4.6c and d,,and also decreases

of y appreciably. When solid carbon is present, the

velocity of increasing the heat of formation depends

the density. The reaction

2~o-F3c(s) +2co-Ec~

is shifted.to the right; the resulting

AH. = -I-44 kcal

the calculated values

initial effect on

on the explosive and

J.

decrease in Q and in the total

number of moles of products tends to decrease the calculated,velocity,

I

while the increase in the number of moles of gas tends to increase it.

Of course, when the heat of formation of the solid,is increased, the

solid tends to disappear. In nitromethane and in low-density Composition B
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and RDX, it disappars

are formed.

Mixture Theory

entirely, and considerable quantities of methane

For the simple theories considered here, changing the mixture theory,

Fig. 4.6a and b, gives results comparable to

the exponent of the potential or scaling all

calculated vslues of y remain too high.

those obtainedby changing

of the molecular sizes. The
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Fig. 4.1. Calculated,detonation Hugoniots and experimental CJ points
for the a priori set of parameters, run 1.
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Chapter 5

COMPARISON WITH EXPERIMENT

Having examined the effect of verying the parameters, we now make

a more etiensive comparison with experiment.

The “central Pointttset of parameters described in Chapter 4 was used

for all of the calculations. To make the compecrisonas meaningful as possi-

ble, we considered a wide variety of explosives. The principal characteris-

tics affecting the choice were: accuracy of the data, oxygen-balance, density,

and vmiety of atomic composition, with particular emphasis on those explo-

sives which lack one or nmre of the elements C, H, O, and N. In order to

attain the desired variety, we included some e~losives for which the ex-

perimental data are

The explosives

relatively poor.

chosen me listed.in Table 5.1.

5.1 Applicabilityof the Hydrodynamic Theory

As often happens, the system for which a simple theory can be con-

structed is not the one on which experiments can be performed. The

Zeldovich-von Neumann theory described in the intrcxhzctionof this report



IIii!13E
l

I
I

II

4
J

gNo

91



Notes for Table 5.1

%!he composition of this mixture is given in Table 4.1.

b
The extremes of composition for which measurements are available.

cFor the solids, the maximum density is given. The detonation velocity

data extend to less than 1.0 g/cc in nmst cases. All of the densities -

given in the references below except for 02

the mixture densities from the ~ri.mental

(mlar volumes).

%is value was calculated.from those of RDX

(nmlar enthalpies).

03 for whichwe calculated

values assuming ideal mixing

and.TNT assuming ideal tiing

‘LA denotes previously unpublished Us Ale.unsdata described in Appendix C.

f
Idesl mixing is assumed. For c%, the value AHf = -17.33 kcal/nmle was

calculated from the gaseous heat of formation given in F. D. Ibssini,

et al., National Bureau of Standards Circular 461 (1947), and from the

heat of vaporization given in F. Dinj Thermodynamics Functions of Gases.—

(13utterworths,Iondon, 1961), Vol. 3, p. 47, with a 10° extrapolation.

For 022 the value AHf = -

polation from the data in

‘Ideal mixing is assumed.

1.009 kcsl/mole was obtained

reference 5 of this Table.

‘or 03’
the value AHf = 30.9

obtained from data given in reference 5 of this Tablej

by a mall. extra-

kcsl/mle was

and the liquid heat

capacity C = 0.45 cal/g, from Ekndbook of Chemistry and Physics (Chemical
P —

Rubber Publishing

he data used for

references in the

scored references

co., Cleveland, Ohio, 1961), 43rd Ed., p. 2237.

comparison with the calculations were selected from the

last three columns of the Table. Data from the under-

were omitted in this selection.
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References for Table 5.1.

Heats of Formation

1. E. J. Prosen, National Bureau of Standards, -private RDx
communication.

20 G. Stegeman, Report

39 A. Schmidt, Z. ges.

4. E. A. Christian and

5. F. D. Rossini, et
500, Feb. 1952.

Detonation Velocities

6.

79

8.

9*

10.

Il.

n?.

13.

W. Fickett, W. W.

~ 1324 (1957).

osmk5306, Jidy, 1945 (NDRCB.5306). m

Schiess- u Sprengstoffw. ~ 262 (1934) PETN, NG, CT

H. G. Smy, Report NAVORD.1508, Nov. 1956. EN

al., National Bureau of Standards Cir.

Wood, and,Z. W. Salsburg, J. Chem. Phys.

A. N. Dremin and.P. F. Pokhil, Doklad,yAkad. Nauk S.S.S.R.
(Physical Chemistry Section) ~ 1245 (1959);~ 989
(1959).

W. E. Deal, Phys. Fluids > 523 (1958).

M. J. Urizar, E. James, andL. C. Smith,
262 (1961); A. W. Campbell, et a., Rev.

~ 567 (1956).

D. P. McDougall, G. H. Messerly, andM.
OSRD-5611, J~. 1546.

Phys. ~UidS ~
Sci. Instruments

D. Ikmwitz, Report

H. Mxraour, Bull. Sot. Chim. France (4) 51, I-156 (1932);
H. Wst and A. H&id, Z. Angew. Chem. ~ 43 (1925);
W. Friederich, Z. ges. Schiess- u Sprengstoffw. ~ 113
(1933). The available data have been collected by
A. H.

A. W.
Phys.

I. M.
Tel&.

Blatt, Report OSRD-2014, Feb. 1*.

Campbell, M. E. MaJ.in,and T. E. Holland.YJ. Appl.

3%3 (1956)0

Voskoboinikov and G. S. Sosnova, Zhur. Prik. ~kh.
Fiz. 1961, 1933-35.

NM@)
c% 02

RDx, m,
Comp. B

RDx, TNT,
NM/@TM,NG

Comp. B

mm

CT

NM

mm
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References for Table 5.1.
(Conttnued)

14. A. G. Streng and A. D. 12Lrshenbaum,J. Chem. and Eng. Data cq@’2

~ 127’ (1959).

15. R. O. Miller, J. Phys. Chem. ~ 1054 (1959). 02/03

Pressures

16. W. E. Deal, J. Chem. Phys. ~ 7% (1957)0

17. W A. Cook, R. T. Keyes, andW. O. Ursenbachj Third Sympo.
sium on Detonation, Princeton University, Se-pt.1960, (Office
of Navs2 Research), Vol. 2, p. 357.

/
Termeratures

18. I. M. Voskoboinikov, and A. Ya. Apin, Doklady Akad. RDx,

Nauk S.S.S.R. (Physical Chemistry Section) ~ ~ (1~0 ). NM/!ClNM,NG

19. F. C. Gibson, et al..,J. Appl. Phys. ~ 628 (I-958). RDx, mm
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assumes one-dimensional.flow behind,a plane shock frent. Edge effects

in the necessarily finite charges used,in practice of course produce curved

shock fronts followed by a two-dimensional expzding flow. The usual method,

of bridging the ga~ is to perform experiments at several chsrge diameters and.
s

then to extrapolate the results to infinite diameter, where the edge effects

disap~ear. For pressed solids, of course, the particle size must be small,

so that the material.is as homogeneous as possible.

Recent experimental work has revealed new difficulties: apparently

one-dimensional reactive flow is not always stable. White51 has observed,

that the reaction zones of gas detonations are turbulent. The turbulence

is probably associated with chemical reaction, for it appesrs close to the

52shock front and decays when reaction is complete. Denisov and Troshin,

Duff,53 and,others have shown, again for gas detonations, that transverse

waves similar to those associated with spinning detonations are much more

common than was once believed. These waves exhibit regular patterns which

are probably associated with reflection from the tube walls. Recent ex-

2
4periments with liquid,explosives at this laborato also show effects

which suggest the

These poorly

may cause serious

presence of similar phenomena.

understood effects, if present in condensed e~losives,

difficulty. They probably arise more from the unstable

nature of one-dimensional flow than from edge effects, and,may not be eli-

minated by extrapolation to infinite charge diameter.
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5.2 Interpretation of the Data

Four quantities associated with the detonation will be considered:

the velocity, CJ pressure, and CJ teml?eratue of the steadY unsul?lWrted

detonation wave, and the strength of the shock produced in a light gas

at an explosive-gas interface yarallel to the front. We discuss briefly

the methods of measurement and the interpretation of the data.

Detonation Velocity

The measurement of detonation velocity is relatively straightforward.

The much-used.smesr csmera method gives single velocity measurements

accurate to within 50 to 100 m/s. With careful attention b detail, in-

cluding the chsrge preparation, the nmre accurate pin method has given

errors as small as 10 m/s, about one-sixth of one Ter cent, in the extra-

polated infinite diameter velocity.
55 For nmst explosives the extrapola-

tion to ~inite diameter is facilitateaby the app~ently lfie~ form Of

the detonation velocity as a function of reciprocal charge diameter.

Pressure

The most common method,of measuring CJ pressure is an indirect one.

Flat plates of metal (or other inert material) of different thicknesses are

placed on the ends of explosive charges, and the free-surface velocities

produced by the detonation are measured. ~ the metal shock Hugoniot is

%



known, the metsl pressures can be obtained from this data. ‘I’he”resulting

pressure-plate thickness curve,

P

L

THICKNESS

is sn approximate magnified image of the pressure -profilein the detonating

explosive. The break in the curve is assumed to correspond.to the CJ @ane

in the explosive, and.the explosive pressure is obtained.from the metal

pressure at this point by the hydrodynamic conservation conditions. Again

the experiment should be repeated.at different charge diameters, and the

results extrapolated.to infinite diameter.

This is difficult to do, both because the method.involves “looking

behind!!the CJ plane into a flow region sffected by edge effects, and

because the pressure depends strongly on the diameter. Caref’ulattempts

to perform the extrapolation at this laboratory suggest that perhaps the

instability effects described above may be present.

The plots of pressure vs.reciprocal diameter appear to be linear -

with slopes on the order of 10 - 15% change in pressure per reciprocal

inch of diameter.
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The metal plate velocities can be

pressures in any given geometry can be

fig for impurities in the material and

the infinite-diameter figure, an error

measured to within 0.5$, and the

determined within about 2$, allow-

impetiections in the charges. For

of 3 to 51 should probably be

assigned, depending on the lsrgest di-eter used ~a the waY ~ which the

extrapolation is done. These figures da not snow for uncertainties which

may be introduced by the possible presence of instability effects.

Temperature

Temperature is measured by aualyzfig the visible light from the detona-

tion. A color temperature is obtained from measuremnts at two or nmre

wavelengths or a brightness temperature from a single absolute measurement.

In either case, it is assumed that most of the radiation seen by the

tector originates near the CJ plane, and that the radiating material

haves like a blackbody. With the detector facing the oncoming wave,

de-

be-

it is

desirable that the detonation products be opaque and the cooler reaction

zone thin, so that only light from the CJ plane is emitted and is trans-

mitted unchanged

this is the case

satisfied.

through the reaction zone. There is some evidence that

for msmy explosives and that the blackbody assumption is

Since unreacted solid explosives are opaque, they me ~re ~ffic~t

to measure then liquids. The technique of inserting plastic lILightpipes;!

used by Gibson et sl.
56 may be questioned on the groundE that the results

are affected by the shock interactions at the explosive-plastic interface.
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