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DifFusion-Accelerated Solution of the 2-D S. Equations
with Bilinear-Discontinuous Differencing

J. E. Morel.J. E. Dendy, Jr., and T. A. Wareing
University of California

Los Alamoa National Laboratory
Los A1amos, New Mexico 87545

ABSTRACT

.A new diffusion-synthetic acceleration scheme is developed for solving the 2-D Sn equa-
tions in X-Y geometry with bilinear-discontinuous finite+element spatial discretization.
This method differs from previous methods in that it is unconditionally efficient for
problems with isotropic or weakly anisotmpic scattering. Computational results are
given which der,~onstate this property.

INTRODUCTION

The purpose of this work is to in ;roduce a new diffusion-synthetic acceleration (lISA)
scheme for solving the 2-D SN quations in X-Y geometry with bilinear-dimontinuous
(BLD) finite-element spatial discretization. Our method is the first DSA method for
the BLD SN equations to be unconditionally efficient for problems with isotropic or
weakly an isotropic scattering. For instance, Adarns and Martin 1 have developed a D!$A
scheme baaed upon a BLD mixed finite-element discretization of the diffusion quat ion.
This diffusion equation haz a non-standard asymmetric form and is not arneanable to
standard diffusion solution techniques. Adams and Martin were unable to define an
Ilnronditionally dlicirnt solution technique for this wplarion, /\lthough the spwtr;d

rwlius associated with their DSA method is always significantly Ims than onr, tlwir
method nonetheless becomes inefEcient in problemn with high mattering ratio~ Imcaus,y
their BLD diffusion equation becomes difficult to Holve. Wareing, Larsen, and Adams-
attempted to circumvent this difficulty by developing a I)SA method based upon a llif-
fusion di~cretization asymptotically derived from the BLD S. equations. Thin asymp-
fotir diffusion equation is much simpler than the BLD diffusion wluation of Adams MIII
\lartin, and has a ~tandard symmetric pooitive-definjte form. ( ‘onmqwmtly, it C?II Iw

f’ffirientiy solved unfh?r AI] {’ullditiollfi using th?ndy’!# hhck-hox Illllhigrid lnethod,’] [ ‘II.

fortunatdy, the t)SA method of Warping- Larmn-Adams given n ~prvtral mdius w hid)
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approaches unity
spatial zoning.

Before describing

in problems with both high scattering ratios and high aspect-ratio

BACKGROUND

our method in detail, it is appropriate to review the basic concept
of synthetic acceleration. Suppose that we wish to solve the following linear system ‘of
equation9:

,“17 = T,

where A is a matrix, ~ is the solution vector, and Y is the source vector. If the
.4 is too large to solve directly. a basic iteration scheme is defined by splitting
the difference of two matrices:

.4= B-C ,

(1)

matrix
A into

(’J)

where the matrix B can be easily inverted. The cm responding iteration scheme can be

represented as follows:

x t+ 1 ~ B-l~=c+ ~-1~ , (3)

where 4 is the jtl ral ion index. Let us define the error associated with the t + 1‘th

solution as follows:

-t+ I -t+ I
f = T-z 9 (4)

where ~ denotes the solution to Eq. ( 1), It is not difficult to demonstrate that this
{’rrm satistitw the f(J]klWillg t’quation:

A#+’ = Xt+’ , (fi)

whm~ the r~idual is given hy

-t+ 1
R

-@+l= r-h . ((;)



In principle. one can obtain the error by solving Eq, (5), but this equation is just as
difficult to solve u Eq. ( 1). Consequentlyl an exact solution of this error equation is not
practical. However. it is concei~’able that obtaining an approximate solution to the error
equation could yield an error estimate that would significantly improve the accuracy

—t
of J , and thereby accelerate the convergence of the iterative pro[ ess. This is the

basic theme of synthetic acceleration methods. For example. in the simplest synthetic
acceleration scheme, one would approximate A in Eq. (5) with a low-mnk operator:

(+1 C+l
<44> <7> ‘<x> 7 (7)

where ‘<>” denotes a low-rank approximation. The low-rank residual appearing in

Eq. (,7) would be obtained from the full-rank residual be means of a projection:

t’+1 —/+1
<%’> =PR , (8)

where P is an operator which projects from the full-rank space to the low-rank space.

The low-rank error equation would be solved to obtain the low-rank error estimate:

t+l t+ 1
<7> =< A>-’<~> . (9)

A full-mnk error estimate would be obtained from the low-rank error-estimate hy in-
terpolation:

(10)

where T is an interpolation operator. The error edimate would then be added to the

iterate at step / + 1 to obtain an improved or accelerated itera :e.

To summarize, an accelerated iteration is rarried ollt aY follows.

I. ;\ Iwic Itrraticm is pmfornwd:

=1++ = l?-1(.’~f + H-’7 , (11;

(1’2)
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The low-rank residual is calculated from the high-rank residual via projectiull

@
G> = P%i+i . (

The low-rank error equation is solved:

3)

@ !++
<-z> =<.4>-’< 77> . (14)

The high-rank error estimate is calculated from the low-rank estimate via inter-
polation:

The high-rank error
accelerated iterate:

=C+l = =t+A
~+

estimate is added to the unacceierated iterate to obtain the

(16)

,A synthetic acceleration scheme will be effective if two conditions are met. First, the

low~rank equation must accurately estimate the errors which are poorly attenuated by
the basic iteration scheme. Second, the low-rank operator must not significantly over-
estimate the errors which are strongly attenuated by the basic iteration scheme.

For the specific case of diffusion-synthetic acceleration, A is the transport operator.
B is the sum of the streaming and removal operators, L’ is the scattering operator,
and < .4 > is the diffusion operator. The scattering may be anisotropic, bl]t only
Ihe isotropic romponent of the angular flux is accelerated. The projection operator,

f’, Inaps an angular tlux function to its isotropic or P. moment, and the interpolation
operator, T, maps a 1~ moment to the P. angular flux expansion. DSA is effective in

terms of the error reduction per iteration with isotropic or weakly anisotropic scattering
for two r~asons. First, the errors which are poorly attenuated by the transport swwp
are diffusive and thus accurately calculated with the diffusion operator. Second, the
Imn-diffusivr mrors which are strongly attcnuat-1 by t,he transport swtwp arr Illl(lrrm.
timated Ijy th~ ~liffusion oqualion.



More complicated synthetic acceleration methods have multiple levels of acceleration.
For instance. the low-rank operator used in the Eq. (14) may still be too large or compli-

cated to be SOIVede?%ciently using a direct or unaccelerated itera+ive method. Attempts

to further simplify the low-rank operator may be fruitless because an operator which is
simple enough to solve easily may be too simple to provide an effective approximation

to the high-rank operator. One possible solution is to develop an accelerated iteration
scheme for inverting the low-rank operator. This leads to a scheme with two acceler-
ation levels. Any number of levels is possible. The low-rank operator on each level

approximat~ the higher-rank operator on the level above it. Such schemes are also
referred to u multigrid schemes. In multigrid terminology, the high-rank and low-rank
operators are called the ‘finegrid” and ‘coarse-grid” operators. In general, optimum

efficiency in a multilevel scheme is obtained by fully solving the error equation only
on the lowest level. The error equations on the intermediate levels are solved approxi-

mately.

THE NEW DSA METHOD

The DSA method which we have developed can be thought of as a multi-level synthesis
of the Adams- ,Martin and Wareicg-Larsen- Adams methods. In particular, at the first

level, the BLD SN iterations are accelerated with a slightly modified version of the
Adams-Martin BLD diffusion equation. At the second level, the BLD diffusion iter-
ations are accelerated with a hi-linear continuous (BLC) diffusion equation which is
equivalent to the Wareing- Larsen-Adams asymptotic diffusion equation. Finally, at the
third level, the BLC diffusion iterations are accelerated with Dendy’s black-box multi-

grid algorithm. The overall DSA algorithm resulting from this multi-level approach is
unconditionally eflicient. In particular, a homogeneous infinite-medium Fourier analysis
performed by Adams and ,Martin for the first iteration level gives a worst-c~~e spec-
Iral radius of about 0.5. We have performed a similar Fourier analysis for the swwl]tl

iteration level which also gives a worst-case spectral radius of about 0.5. Dendy ’s al-
gorithm, which is used on the third level of acceleration, has previously been shown to
have a worst-case spectral radius of about 0.1. Unconditional efficiency for the over-
all DSA scheme follows directly from the unconditional efficiency achieved on each level.

‘Ii) he fully consistent with the Fourier analyses which we have performed, the FILD

;LIId B LC difflision solutions used in our acceleration scheme should be iterated to con-
vmgence. Howwer, it is much more Micient to accept the solutions to these low-rank
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equations after a fixed number of iterations. In particular, the BLD solution is accepted
after three iterations, and the BLC solution is accepted after one iteration.

In order to facilitate a more detailed description of our acceleration technique, we now
describe certain basic aspects of the spatial differencing schemes used on each level.
Both the BLD S. differellcing scheme and the BLD diffusion differencing scheme have
unknowns at the corners of each spatial cell. These locations are shown in Fig. 1. The
BLD S. scheme has an angular flux unknown at each location while the BLD diffusion
scheme has a scalar flux unknown at each location. The BLC diffusion differencing
scheme has a scalar flux unknown at each corner of the mesh. This is illustrated in
Fig. 2.

The BLD S. differencing scheme which we use is identical (af~er a similarity transfor-

1 and the BLC diffusion differencing schememation) to that used by Adams and Martin,

which we use is identical to that used by Wareing, Larsen, and Adams.2 However, the

BLD diffusion differencing scheme which we use is equivalent only on the interior of the
mesh to the Adams-Martin scheme. Our scheme has additional scalar flux unknowns
along the outer boundaries of the mesh, as illustrated in Fig. 3. These fluxes are re-
ferred to as “void” fluxes because they are associated with cells which are outside of
the mesh. Although the void fluxes couple to the regular fluxes on the outer boundaries

of the mesh, the solutions obtained for all of the regular fluxes are identical to those
obtained with the Adams-Martin scheme. Since only the regular fluxes are explicitly
used to estimate the BLD Sn iterate errors, our BLD diffusion scheme is completely
equivalent (for acceleration purposes) to that of Adams and Martin. However, far rea-
sons explained below, we can solve our BL D diffusion equations more efficient Iy than
we can solve those of Adams and Martin.

Wareing, Larsen, and Adams a..ymptoticallv derived their BLC diffusion equations from

the BLD S. equations. However, they substituted standard Marshak boundary condi-
tions for the asymptotic conditions because the later are not suitable for acceleration
purposes. We found that the BLC diffusion equations can also be derived asymptot-

icall,v from the Adams-Martin BLD diffusion equations. It was this result which first
suggested to us that the BLC diffusion equations might be an effective low-rank approx-
imation to the Adams-Martin BLD difhsion eauations, As expected, we found that the
asymptotic boundary conditions for the BLC equations are not suitable for accelera-

tion purposes, so we substituted standard Marshak conditions. Unexpected difficulties
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Figure 1: 15i-Linear-Discontinuous Spatial Mesh

● Location of Unknowns

Figure 2: Bi-Linear-Continuous Spatial Mesh

● l.ocatkm of Unknowns
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arose on the outer boundaries of the mesh when we attempted to accelerate the iterative
convergence of the Adams- iMartin Big diffusion scheme with the BLC diffusicn scheme.

We were able to eliminate these difficulties after recognizing that a simple relationship
exists between the Adarns- Martin BLD equations and the BLC equations on the interior
of the mesh. Specifically, the interior-mtsh BLC diffusion equations can be derived from
the interior-mesh Adams-Martin BLD diffusion equations in the following manner:

1. Assume that four BLD fluxes associated with each corner of the m~h are identical.
This is equivalent to requiring continuity of the scalar flux solution, and leaves a
single scalar flux unknown at each corner.

2. Obtain au equation for each ‘continuousn corner flux by summing the BLD equa-

tions for the four scalar fluxes associated with that corner.

Having recognized the existence of this relationship on the interior of the mesh, we pos-
tulated that it should also apply on the mesh boundaries. Our BLD diffusion scheme
was obtained by modifying the Adams-Martin scheme to achieve this property. Specif-
ically, if one follows the derivation procedure defined above using ow BLD diffusion

equations. and one carrim out the procedure at all cell corners (including those on the
outer mesh boundaries,) one obtains the BLC diffusion equations with Marshak bound-
ary conditions. The difficulties which we encountered on the outer boundaries when
trying to accelerate the Adams-Martin BLD diffusion scheme with the BLC diffusion
scheme do not arise when our scheme is substituted for the Adams-Martin scheme.

The basic iteration scheme used for our BLD diffusion equations is a lin&Jacobi scheme.4

One complete line-Jacobi iteration consists of an x-lineJacobi iteration followed by a y-
line-Jacobi iteration. An x-line consists of all of the fluxes having the same y-coordinate,
and a y-line consists of all of the fluxes having the same x-coordinate. An x-line is il-

lustrated in Fig. 4. The iteration equations for each x-!ine iteration are constructed
from the full equations by lagging the coupling to all other fluxes not in the x-line. The

lagged fluxes are held at iterate values associated with tk,u beginning of the x-line-Jacobi
iteration, and the fluxes in all x-lines are calculated with the same lagged values. A
y-line-Jacobi iteration is analogously defined. The lagged fluxes are updated betwmn
the x-line-Jacobi and y-line-Jacobi iterations,

The accelerated iteration scheme used for the BLC equations is Dendy’s black-box
multigrid scheme. 3 This is a true multigrid scheme which uses diffusion operators de-
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Figure3: Bi-Linear-Discontinuous Void F1uxes
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Figure4: Fluxea In One X-Line
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fined on coarse spatial grids as low-rank operators.

We now give a final and more detailed description of our DSA method. One accelerated
S. iteration proceeds in the following manner:

1. The BLD S. scattering sources are calculated and the sweep equations are solved.

2. The isotropic moments of the S. residuals are calculated for use in the BLD
diffusion equation.

3. A hne-Jacobi iteration is performed on the BLD diffusion equations.

4. The BLD diffusion residuals are calculated and projected onto the BLC diffusion
mesh by suming the four BLD residuals associated with each corner to obtain a
single corner residual.

5. One V-cycle of Dendy’s black-box multigrid algorithm is performed on the BLC
diffusion equations.

6. The BLC diffusion iterate is interpolated onto the BLD diffusion mesh by assum-
ing coritinuit y, i .e,, the four BLD-mesh values needed for each corner are set equal

to the single BLC corner value.

7. The interpolated BLC iterate is then added to the BLD iterate.

8. Steps 3 through 7 are repeated twice, resulting in three “accelerated” BLD dif-
fusion iterations.

9. The BLD diffusion iterate is added to the BLD S. scalar flux iterate. This com
pletes one accelerated S. iteration.

COMPUTATIONAL RESULTS

In this section we give computational results which demonstrate that our DSA method
remains efficient for problems that cause the Adams-Martin 1 and Wareing Larsen-

Adams* methods to become inefficient. We have performed a set of calculations cor-
responding to a homogeneous rectangular region with isotropic scattering, a scattering
ratio ot’ unity, and a uniform isotropic inhomogeneous source. There are 25 zones along
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the x-ax% and 25 zones along the y-axis. The zone widths are fixed in each calcula-
tion, but vary between adulations. The x and y widths are not necessarily identical

in each calculation. The rectangle has reflective boundaries on two actjacent sides and
vacuum boundaries m the other two sides. All of the calculations were performed on
a CRAY-YMP computer ushg % quadrature. The scalar flux in each calculation was
subject to a pointwise relative convergence criterion of 10-4. In Table 1 we give for
each problem conl@ration, the number of iterations required to converge the Sm so
lution, the associated CPU time, and the CPU time spent doing the DSA. It can be
seen from Table 1 that our method is efEcient even with a scattering ratio of unity and
extremely high aspect-ratio spatial zoning. The former condition cauw difficulty for
the Adams-Martin method, and the latter oondition causes difku.lty for the Wareing-
Larsen-Adams method. The theoretical analyses and the computational testing which
we have done indicate that our method is efHcient for all problems with isotropic or
weakly anisotropic scattering.

Table 1. Commtational Ibsults

Ax (nafp)<

0.1

0.1
0.1
0.1

0.1
1.0
1.0
1.0
1.0

5.0
5.0
5.0
10.0
10.0

100.0

ALuL
0.1
1.0
5.0
10.0
100.0
1.0
5.0
10.0
100.0
5.0
10.0
100.0
10.0
100.0
100.0

wP~

2.31
2.70
2.32

2.32
2.32
3.08
3.08
3.08
3.08
2.32
2.32
2.32
1.93
1.93

1.93

DSA CPU (SC!C)

0.67
0.78
0.67
0.67
0.67
0.90
0.90
0.90
0.90
0.67
0.67
0.67
0.56
0.56
0.56

Iterations

T
7
6
6
6
8
8
8
8
6
6
6
5
5
5
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