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ABSTRACT

A new diffusion-synthetic acceleration scheme is developed for solving the 2-D S, equa-
tions in X-Y geometry with bilinear-discontinuous finite-element spatial discretization.
This method differs from previous methods in that it is unconditionally efficient for
problems with isotropic or weakly anisotropic scattering. Computational results are
given which deraonstate this property.

INTRODUCTION

The purpose of this work is to in:roduce a new diffusion-synthetic acceleration (DSA)
scheme for solving the 2-D Sy equations in X-Y geometry with bilinear-discontinuous
(BLD) finite-element spatial discretization. OQur method is the first DSA method for
the BLD Sy equations to be unconditionally efficient for problems with isotropic or
weakly anisotropic scattering. For instance, Adams and Martin! have developed a DSA
scheme based upon a BLD mixed finite-element discretization of the diffusion equation.
This diffusion equation has a non-standard asymmetric form and is not ameanable to
standard diffusion solution techniques. Adams and Martin were unable to define an
nnconditionally efficient solution technique for this rquation. Although the spectral
radius associated with their DSA method is always significautly less than one, their
method nonetheless becomes inefficient in problems with high scattering ratios because
their BLD diffusion equation becomes difficult to solve. Wareing, Larsen, and Adans=
attempted to circumvent this difficulty by developing a DSA method based upon a dif-
fusion discretization asymptotically derived from the BLD S, equations. This asyuip-
totic diffusion equation is inuch simpler than the BLD diffusion equation of Adams and
Martin, and lias a standard syminetric positive-definite fori. C‘onsequently, it can be
efficiently solved nnder all couditions using Dendy's black-box multigricd method.d Un.
fortunately, the DSA method of Wareing-Larsen-Adais gives a spectral radius which



approaches unity in probleins with both high scattering ratios and high aspect-ratio
spatial zoning.

BACKGROUND

Before describing our method in detail, it is appropriate to review the basic concept
of synthetic acceleration. Suppose that we wish to solve the following linear system of
equations:

AT =V . (1)

where A is a matrix, Z is the solution vector. and 7 is the source vector. If the matrix
A is too large to solve directly. a basic iteration scheme is defined by splitting A into
the difference of two matrices:

A=B-C , (2)

where the matrix B can be easily inverted. Tle coiresponding iteration scheme can be
represented as follows:

= BTIC + By (3)

where £ is the .t rarion index. Let us define the error associated with the ¢ + 1'th
solution as follows:
Tl+l - ? _ —;l"‘l ' (4)

wlere T denotes the solution to Eq. (1). It is not difficult to demonstrate that this
orror satisties the following equation:

—— —lp]
AT =R . (5)

where the residual is given by

=T—AI . (6)



In principle. one can obtain the error by solving Eq. (3), but this equation is just as
difficult to solve as Eq. (1). Consequently, an exact solution of this error equation is not
practical. However, it is conceivable that obtaining an approximate solution to the error
equation could yield an error estimate that would significantly improve the accuracy
of T, and thereby accelerate the convergence of the iterative process. This is the
basic theme of synthetic acceleration methods. For example, in the simplest synthetic
acceleration scheme, one would approximate A in Eq. (5) with a low-rank operator:

—_— 4] — 4]
<A>< €e> =< R> , (M)

where “<>" denotes a low-rank approximation. The low-rank residual appearing in
Eq. (7) would be obtained from the full-rank residual be means of a projection:

+1 —i+]

<R> =PR : (8)

where P is an operator which projects from the full-rank space to the low-rank space.
The low-rank error equation would be solved to obtain the low-rank error estimate:

<e>M=cA>< R > . (9)

A full-rank error estimate would be obtained from the low-rank error-estimate by in-
terpolation:

—tH T< T >l+l ‘ (10)

where T is an interpolation operator. The error estimate would then be added to the
iterate at step £ + | to obtain an improved or accelerated itera'e.

To suminarize, an accelerated iteration is rarried out as follows.

I. A\ basic teration is perforied:
S =plc+ 8y (11}

where the index ¢ + 1 is uscd in anticipation of the acceleration step.
2. The residnal associated with the basic iterate is calculated:

VT G .
it Ly oA (12)



3. The low-rank residual is calculated from the high-rank residual via projection:

<R> "=PR . (13)
4. The low-rank error equation is solved:

— 4 —_ 4
et oA« R > t . (14)

<
5. The high-rank error estimate is calculated from the low-rank estimate via inter-
polation:

—l+d — (43
e ‘=T< e > ° , (15)

6. The high-rank error estimate is added to the unacceierated iterate to obtain the
accelerated iterate:

1 _ ) T“"* . (16)

r
A synthetic acceleration scheme will be effective if two conditions are met. First, the
low-rank equation must accurately estimate the errors which are poorly attenuated by
the basic iteration scheme. Second, the low-rank operator must not significantly over-
estimate the errors which are strongly attenuated by the basic iteration scheme.

For the specific case of diffusion-synthetic acceleration, A is the transport operator,
B is the sum of the streaming and removal operators, (' is the scattering operator,
and < 4 > is the diffusion operator. The scattering may be anisotropic. but only
the isotropic component of the angular flux is accelerated. The projection operator,
P. naps an angular flux function to ity isotropic or P, moment, and the interpolation
operator, T', maps a £, moment to the Py angular flux expansion. DSA is effective in
terms of the error reduction per iteration with isotropic or weakly anisotropic scattering
for two reasons. First, the errors which are poorly attenuated by the transport sweep
are diffusive and thus accurately calculated with the diffusion operator. Second, the
non-diffusive errors which are strongly attennated by the transport sweep are nuderes.
timated by the iliffusion equation.



More complicated svnthetic acceleration methods have multiple levels of acceleration.
For instance, the low-rank operator used in the Eq. (14) may still be too large or compli-
cated to be solved efficiently using a direct or unaccelerated itera‘ive method. Attempts
to further simplify the low-rank operator may be fruitless because an operator which is
simple enough to solve easily may be too simple to provide an effective approximation
to the high-rank operator. One possible solution is to develop an accelerated iteration
scheme for inverting the low-rank operator. This leads to a scheme with two acceler-
ation levels. Any number of levels is possible. The low-rank operator on each level
approximates the higher-rank operator on the level above it. Such schemes are also
referred to as multigrid schemes. In multigrid terminology, the high-rank and low-rank
operators are called the “fine-grid” and “coarse-grid” operators. In general, optimum
efficiency in a multilevel scheme is obtained by fully solving the error equation only
on the lowest level. The error equations on the intermediate levels are solved approxi-
mately.

THE NEW DSA METHOD

The DSA metkod which we have developed can be thought of as a multi-level synthesis
of the Adams-Martin and Wareirg-Larsen-Adams methods. In particular, at the first
level, the BLD Sy iterations are accelerated with a slightly modified version of the
Adams-Martin BLD diffusion equation. At the second level, the BLD diffusion iter-
ations are accelerated with a bi-linear continuous (BLC) diffusion equation which is
equivalent to the Wareing-Larsen-Adams asymptotic diffusion equation. Finally, at the
third level, the BLC diffusion iterations are accelerated with Dendy’s black-box multi-
grid algorithm. The overall DSA algorithm resulting from this multi-level approach is
unconditionally efficient. In particular, a homogeneous infinite-medium Fourier analysis
performed by Adams and Martin for the first iteration level gives a worst-case spec-
tral radius of about 0.5. We have performed a similar Fourier analysis for the second
iteration level which also gives a worst-case spectral radius of about 0.5. Dendy's ai-
gorithm, which is used on the third level of acceleration, has previously been shown to
have a worst-case spectral radius of about 0.1. Unconditional efficiency for the over-
all DSA schemie follows directly from the unconditional efficiency achieved on each level.

To be fully consistent with the Fourier analyses which we have performed. the BLI)
and BLC diffusion solutions nsed in our acceleration scheme should be iterated to con-
vergence, However, it is imuch more efficient to accept the solutions to these low-rank



equations after a fixed number of iterations. In particular, the BLD solution is accepted
after three iterations, and the BLC solution is accepted after one iteration.

In order to facilitate a more detailed description of our acceleration technique, we now
describe certain basic aspccts of the spatial differencing schemes used on each level.
Both the BLD S, differe.cing scheme and the BLD diffusion differencing scheme have
uoknowns at the corners of each spatial cell. These locations are shown in Fig. 1. The
BLD S, scheme has an angular flux unknown at each location while the BLD diffusion
scheme has a scalar flux unknown at each location. The BLC diffusion differencing
scheme has a scalar flux unknown at each corner of the mesh. This is illustrated in
Fig. 2.

The BLD S, differencing scheme which we use is identical (afier a similarity transfor-
mation) to that used by Adams and Martin,! and the BLC diffusion differencing scheme
which we use is identical to that used by Wareing, Larsen, and Adams.2 However, the
BLD diffusion differencing scheme which we use is equivalent only on the interior of the
mesh to the Adams-Martin scheme. Our scheme has additional scalar flux unknowns
along the outer boundaries of the mesh, as illustrated in Fig. 3. These fluxes are re-
ferred to as “void” fluxes because they are associated with cells which are outside of
the mesh. Although the void fluxes couple to the regular fluxes on the outer boundaries
of the mesh, the solutions obtained for all of the regular fluxes are identical to those
obtained with the Adams-Martin scheme. Since only the regular fluxes are explicitly
used to estimate the BLD S, iterate errors, our BLD diffusion scheme is completely
equivalent (for acceleration purposes) to that of Adams and Martin. However, for rea-
sons explained below, we can solve our BLD diffusion equations more efficiently than
we can solve those of Adams and Martin.

Wareing, Larsen, and Adams asymptotically derived their BLC diffusion equations from
the BLD S, equations. However, they substituted stancard Marshak boundary condi-
tions for the asymptotic conditions because the later are not suitable for acceleration
purposes. We found that the BLC diffusion equations can also be derived asymptot-
ically from the Adams-Martin BLD diffusion equations. It was this result which first
suggested to us that the BLC diffusion equations might be an effective low-rank approx-
imation to the Adams-Martin BLD diffusion equations. As expected, we found that the
asymptotic boundary conditions for the BLC equations are not suitable for accelera.
tion purposes, so we substituted standard Marshak conditions. Unexpected difficulties



Figure 1: Bi-Linear-Discontinuous Spatial Mesh
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Figure 2: Bi-Linear-Continuous Spatial Mesh
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arose on the outer boundaries of the mesh when we attempted to accelerate the iterative
convergence of the Adams-Martin BLD diffusion scheme with the BLC diffusicn scheme.

We were able to eliminate these difficulties after recognizing that a simple relationship
exists between the Adams-Martin BLD equations and the BLC equations on the interior
of the mesh. Specifically, the interior-mesh BLC diffusion equations can be derived from
the interior-mesh Adams-Martin BLD diffusion equations in the following manner:

1. Assume that four BLD fluxes associated with each corner of the mesh are identical.
This is equivalent to requiring continuity of the scalar flux solution, and leaves a
single scalar flux unknown at each corner.

2. Obtain an equation for each “continuous” corner flux by summing the BLD equa-
tions for the four scalar fluxes associated with that corner.

Having recognized the existence of this relationship on the interior of the mesh, we pos-
tulated that it should also apply on the mesh boundaries. Qur BLD diffusion scheme
was obtained by modifying the Adams-Martin scheme to achieve this property. Specif-
ically, if one follows the derivation procedure defined above using our BLD diffusion
equations. and one carries out the procedure at all cell corners (including those on the
outer mesh boundaries,) one obtains the BLC diffusion equations with Marshak bound-
ary conditions. The difficulties which we encountered on the outer boundaries when
trying to accelerate the Adams-Martin BLD diffusion scheme with the BLC diffusion
scheme do not arise when our scheme is substituted for the Adams-Martin scheme.

The basic iteration scheme used for our BLD diffusion equations is a line-Jacobi scheme. 4
One complete line-Jacobi iteration consists of an x-line-Jarobi iteration followed by a y-
line-Jacobi iteration. An x-line consists of all of the fluxes having the same y-coordinate,
and a y-line consists of all of the fluxes having the same x-coordinate. An x-line is il-
lustrated in Fig. 4. The iteration equations for each x-line itcration are constructed
from the full equations Ly lagging the coupling to all other fluxes not in the x-line. The
lagged fluxes are held at iterate values associated with th.e beginning of the x-line-Jacobi
iteration, and the fluxes in all x-lines are calculated viith the same lagged values. A
y-line-Jacobi iteration is analogously defined. The lagged fluxes are updated between
the x-line-Jacobi and y-line-Jacobi iterations.

The accelerated iteration scheme used for the BLC equations is Dendy’s black-box
multigrid scheme.3 This is a true multigrid scheme which uses diffusion operators de-
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fined on coarse spatial grids as low-rank operators.

We now give a final and more detailed description of our DSA method. One accelerated
S, iteration proceeds in the following manner:

1.

2

The BLD S, scattering sources are calculated and the sweep equations are solved.

. The isotropic moments of the S, residuals are calculated for use in the BLD

diffusion equation.

A line-Jacobi iteration is performed on the BLD diffusion equations.

. The BLD diffusion residuals are calculated and projected onto the BLC diffusion

mesh by suming the four BLD residuals associated with each corner to obtain a
single corner residual.

. One V-cycle of Dendy’s black-box multigrid algorithm is performed on the BLC

diffusion equations.

. The BLC diffusion iterate is interpolated onto the BLD diffusion mesh by assum-

ing continuity, i.e., the four BLD-mesh values needed for each corner are set equal
to the single BLC corner value.

The interpulated BLC iterate is then added to the BLD iterate.

Steps 3 through 7 are repeated twice, resulting in three “acccelerated” BLD dif-
fusion iterations.

The BLD diffusion iterate is added to the BLD S, scalar flux iterate. This com
pletes one accelerated S, iteration.

COMPUTATIONAL RESULTS

In this section we give computational results which demonstrate that our DSA method
remains efficient for problemns that cause the Adams- Martin! and Wareing-Larsen-
Adams? methods to become inefficient. We have petformed a set of calculations cor-
responding to a homogeneous rectangular region with isotropic scattering, a scattering
ratio of unity, and a uniform isotropic inhomogeneous source. There are 25 zones along



the x-axis and 25 zones along the y-axis. The zone widths are fixed in each calcula-
tion, but vary between calculations. The x and y widths are not necessarily identical
in each calculation. The rectangle has reflective boundaries or: two adacent sides and
vacuum boundaries on the other two sides. All of the calcuiations were performed on
a CRAY-YMP computer using S4 quadrature. The scalar flux in each calculation was
subject to a pointwise relative convergence criterion of 10~4. In Table 1 we give for
each problem configuration, the number of iterations required to converge the S, so-
lution, the associated CPU time, and the CPU time spent doing the DSA. It can be
seen from Table 1 that our method is efficient even with a scattering ratio of unity and
extremely high aspect-ratio spatial zoning. The former condition causes difficulty for
the Adams-Martin method, and the latter condition causes difficulty for the Wareing-
Larsen-Adams method. The theoretical analyses and the computational teating which
we have done indicate that our method is efficient for all problems with isotropic or
weakly anisotropic scattering.

Table 1. Computational Results

AX (mfp) | AY (mfp) [ Total CPU (sec) | DSA CPU (sec) | Iterations

0.1 0.1 2.31 0.67 6
0.1 1.0 2.70 0.78 7
0.1 5.0 2.32 0.67 6
0.1 10.0 2.32 0.67 6
0.1 100.0 2.32 0.67 6
1.0 1.0 3.08 0.90 8
1.0 5.0 3.08 0.90 8
1.0 10.0 3.08 0.90 8
1.0 100.0 3.08 0.90 8
5.0 5.0 2.32 0.67 6
5.0 10.0 2.32 0.67 6
5.0 100.0 2.32 0.67 6
10.0 10.0 1.93 0.56 5
10.0 100.0 1.93 0.56 5
100.0 100.0 1.93 0.56 5
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