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ABSTRACT

The diffusion and simplified Py equations are derived from the transport equation by means
of an asymptotic expansion in which the diffusion equation is the leading order approximation
and the simplified PN equations are higher-order approximations. In addition, the simplified Py
equations are reformulated in a “canonical” form that greatly facilitates the formulation of boundary
conditions and the implementation of the resulting problem in a conventional multigroup diffusion
code. Numerical comparisons of Sy, diffusion, and simplified Py solutions show that the simplified
PN solutions often contain most of the transport corrections for the diffusion approximation.

I. INTRODUCTION

‘The spherical harmonic or Py equations have been a well-known and widely-used approximation
to the transport equation for the past 50 years. This approximatiun has the following properties:

1. The angularly-dependent transport equstion is replaced by a finite system of equations in
which the angular variable is explicitly absent.

2. As the order N of the approximation increases, one recovers the exact transport solution.
3. 'The P equations are rotationally invariant; their solutions are free of ray effer.s.

4. In three-dimensional geometry, the number of Py equations equals N2. In planar geometry,
the number of PN equations is only N.

5. For N > 1, the PN equations are not known to have a positive solution.

To deal with the large number and complexity of the PN equations, Gelbard' =3 and other
researchers*=%11-1% have proposed a “simplified PN” (SPN) approximation in which the number of
equations equals N (hence is significantly less than with the multidimensional Py equations), but
one abandons the requirement that the exact transport solution is obtained as N — oo. Instead,



the goal is to obtain a relatively inexpensive generalization of diffusion theory that contains most of
the transport physics lacking in diffusion theory. Presently, the SPy 2quations have an incomplete
theoretical foundation. Nevertheless. they have been tested in 1-D as well as 2-D and 3-D problems,
and the reported numerical results are impressive. For many problems, low-order SPy equations
capture most (Gamino!? reports “greater than 80%") of the transport corrections to the diffusion
approximation.

In this paper, we show that the SPN equations are robust high-order asymptotic approxima-
tions of the transport equation in a physical regime in which the conventional P; equations are
the leading-order approximation. In other words, SPn theories contain higher-order asymptotic
corrections to P, theory. This explains the high accuracy often exhibited by numerical solutions of
the SPy equations.

We also reformulate the SP3 equations in a new “canonical” form. For planar-geometry prob-
lems, this form reduces to the second-order even-parity Sy equations, and for general isotropic
scattering problems, it reduces to a conventional system having the form of multigroup diffusion
equations. Because of these properties, the canonical form: (i) makes the question of boundary
conditions for these equations almost trivial, (ii) greatly facilitates the implementation of the SP3
problem in a standard multigroup diffusion code, and (iii) shows that for a proper choice of bound-
ary conditions. the solutions of the SP3 equations are positive. This canonical form can be obtained
for any odd-order system of SPn eguations.

Finally, we present multidimensional numerical resulis obiained from a test code utilizing the
canonical forn1 of the SPN equations. As earlier work has shown, we find that low-order SPN
solutions are a significant improvement over P) solutions and are obtained at a small fraction of
the cost uf an Sy calculation.

The remainder of this paper is organized as follows. In Section II we asymptotically derive the
P,, SP,, and SP3 equations for the cne-group transport equation with isovropic scattering. (Higher-
order SPN equations can be derived by continuing this procedure.) In Section III, we reformulate
the SP3 rquations into “canonical” form, and we propose boundary conditions for this new form.
In Section IV we present numerical results. We conclude in Section V with a discussion.

II. ASYMPTOTIC ANALYSIS

In this paper we shall consider the one-group three-dimensional transport equation with isotropic
scattering:

Q- ZU(r.Q) + Sdrwir.Q) = 20 D [ i,y + 9 (1)

More corr plex (multigroup, anisotropic scattering) problems require a more compllcat.cd asymptotic
analysis t hat we will present elsewhere. We consider Eq. (1) under the scaling:

ae(r)

Te(r) === (2)
Yalr) = €aa(r) (3)
() = Be(p) ~ Za(t) = B - coa(p) . (4
Q(r) = eq(r) (5)

where a¢, 74, and ¢ are O(1) and € <« 1. The physics iinplied by this scaling is:

The system is optically thick (¥ > 1).



2. The rates of absorption and production due to interior sources are comparable and weak
[3a = O(e) and Q = O(€)).

3. The infinite medium solution ¢ = Q/X, = q/da is O(1).
4. The diffusion length L = (3£¢Z4)"Y2 = (30,04)" /2% is O(1).

5. If one introduces the scaling defined by Eqs. (2)-(5) into the standard diffusion approximation
to Eq. (1), the resulting equation is independent of €. In other words, the standard diffusion
equation is invariant under the scaling (2)-(5).

The scaling defined by Egs. (2)-(5) has long been known'®!7 to be one in which transport theory
asymptotically transitions into diffusion theory as ¢ — 0. In this paper, we show that higher-order
asymptotic corrections to diffusion theory yield simplified Py theories.

To begin, we introduce Egs. (2)-(5) into Eq. (1) and multiply by €/0; to get

(a-5)o={(1-e2)o-3]

o(r) = / w(r, 2)dQ’ . (7)

Next, we invert the operator on the left side of Eq. (6) and integrate over Q to obtain the Peierls
integral equation for the scalar flux:

[t lras) a[omeres] o

If there are non-vacuum boundary conditions, then extra terms occur in Eq. (8). However, these
are O(e~*/¢), where p is the optical distance to the boundary. Thus, in the interior of the system
these terms are exponentially small and we will ignore them.

Next, we formally expand the operator on the right side of Eq. (8) in powers of €. We obtain

6= (i; e’"L;,,) (1-e22)orel] (9)

where

where
‘ ( Lo v) (10)
o= [(523) @

‘T'he operators £g, L3, and L4 are explicitly defined by

Lo=1 (11)
a 1 1
— e = Y. 12
Juzl 6‘1)(0¢ 0x‘ a,Dm,) Ugy 30¢y ' ( )
1 & o [1 61 01 010
TI mm— - T (S e Spanies | Sy S S s o 1

AT Ug_l(éubu + Sinbst + 6abin) \ 5 821 2. 0z o, B o l)x,) (13)

If the systemn is homogeneous or the problem has spatial variation in only one direction, the formulas
for Lyn, n > 2, sitaplify to:

C'Jn =2

Jﬂ
"o 14)
2n +1 (La) (14]



In our analysis, we shall replace the original definition of £y, [Eq. (10)] by Eq. (14). This is
rigorously correct for a homogeneous system or for a spatially one-dimensional problem, but not
for a true multidimensional problem at material interfaces. We shall discuss this approximation
again in Sec. V.

Introducing Eq. (14) into Eq. (9), we get

e \954_2 ~7€ [( - ) 2‘1]
$—(1+5£2+ 552 ( ) 1 Eo o+ ol (15)
Formally inverting the operator on the right side of this equation, we obtain:
L2, delg M 8 _(_ ) 29
(1 T c3+0(f) o= (1 o) te (16)
or
44
(£2¢+——£¢+—i£¢+0( ))+a,,¢=q . (17)

[f we now retain terms of O(¢*") but discard all higher order terms, we obtain a partial differential
equation for ¢ of order 2n. This equation is an asymptotic approximation to the Peierls equation
(8), but it is not any of the simplified Pn approximations. To derive these approximations, we
must rewrite the equation obtained from Eq. (17) in an asymptotically equivalent form as either a
single second-order equation or as a coupled system of second-order equations. We shall now give
the details of this procedure.

IL.1 Diffusion (F*y) Equation

We delete terms of O(e?) and higher in Eq. (17) and use the definition (12) to get

1
—Z":"'a‘;yd"*‘aod’zq . (18)
Multiplying this equation by € and using the definitions (2)-(5), we obtain
- { .
Y35, ( E)Zcﬁ(z) + Za(r)o(r) = Qr) (19)

T'his is the conventional diffusion (Py) equation,
I1.2 Simplified P; Equation

We delete terms of O(e*) and higher in Eq. (17) and rearrange slightly to get

4 2 a -
(1 + -E—c,) Lap = 22221 (20)
5 [+£}
Operating on this equation by {/ — 4¢2£3/5) and again deleting, terms of O(¢*), we obtain
4e? Ta® -
= [ [ = — , (21
La¢ ( T Cz) o {21)

or, using liq. (12),
| Ae? o, —~
-V =¥ (q) ¢ -~-—'5%¢——3) b aad=q . (22)



Multiplying this equation by € and using the definitions (2)-(5), we obtain

1 4 Za(00(r) - Qr) _
- ¥ s (o) + 3RS s o) = Q) (23)

This is the SP5 equation.

I1.3 Simplified P53 Equations

Now we delete terms of O(e®) in Eq. (17) to obtain

- oLy (¢ + ———£2¢ + fﬁﬁécﬁ) toap=9q . (24)
Hence, if we define
6r) = 2 Lante) + 222 clotr) - (1 ¥ ‘—‘E—cz) 2 Lot (25)
then Eq. (24) can be written
—0tla(p+2) +oad=q . (26)

Operating on Eq. (25) by (I - 11€2£3/7) and again deleting terms of O(c®), we get

(—1—1—6—[.2 + l)e = ——cw : (27)

Now, multiplying Eq. (26) by € and using the definitions (2)-(5) and (12), we obtain

-y qE(I:Zld>r)+2€r)l+ Za(D)o(r) = Q) - (28)
Likewise, multiplying Eq. (27) by ¢,/ and using the definitions (2)-(5) and (12), we obtain
1 11 2
-9 g e + 5o + e =0 (29)

Eqgs. (28) and (29) are the SP; equations.
We note that the three-dimensional P;, SP3. and SPj results derived above could have been
obtained by the following ad-hoc procedure:

1. Write the planar-geometry Py approximations to Eq. (1) in second order form (i.e., eliminate
the odd angular flux moments).

2. Replace the one-dimensional diffusion operator by its three-dimensional generalization:

(s~ (0 59) &

‘I'his, in fact, i8 the procedure that has previously been used to derive the SPN equations. The
asymptotic analysis presented above, which can easily be extended to higher-order SPn approxi-
mations, legitimizes the results of this procedure by showing that for certain problems, the SPy
oquations are an asymptotic approximation to the transport equation. The problems for which this
I8 strictly true are ones for which Eq. (14) holds for n 2> 2, i.e.,



1. Multidimensional problems in a medium in which I, is constant (but L, can vary).
2. One-dimensional problems in an inhomogeneous medium.
‘The problems for which this is approzimately true are:

1. Truly diffusive problems, in which L2n¢ = 0 for n > 2. (For these problems, the higher-order

asymptotic corrections are negligible, so the approximations made in deriving them play no
role.)

2. Multidimensional problems in inhomogeneous media for which the solution at interfaces is
locally one-dimensional in the direction normal to the interface.

Thus, for multidimensional heterogeneous nondiffusive problems, the SPN equations for n > 2 are
not strict asymptotic approximations to the transport equation. Hcwever, they are very closely
related to asymptotic approximations, and numerical calculations show that in many problems,
they contain most of the transport physics that is lacking in the P, approximation.

III. CANONICAL FORM OF THE SP3 EQUATIONS
We now rewrite Eqs. (28) and (29) in “canonical” form. To do this, we multiply Eq. (29) by a
constant A and add the result to Eq. (28). This yields

_y-—QVHQE+AC—+%$H+24¢+My=&¢+q. (31)

Now we seek constants 42 and A such that for arbitrary functions ¢(r) and &(r),

6+ 2% (2¢ 11¢
EE a2+
15

. E) =64 (32)

We easily obtain two solutions; for n = 1 and 2,

— n
ul = 154 ( 315) 2v30 © 41~ 0340 , pug =~0.861 , {(33)
5
M= 3 (3u.. 1) © A ~-1.633 , Ax3.061 . (34)
llence, if we define
Un(r) = &(2) + Mné() , n=12, (35)
then Eqgs. (31) and (32) imply
Ha
—Y'§Z¢n+2¢%=8.¢+Q , n=12 . (36)
Also, if we define \
_ 1
w; = M_'\ ~ 0.652 , wQ«Al_MzO.MS , (37)

then
() = vi(pwr +va(r)wa (38)



and Egs. (36) can be written

pa
Ce(r)

This is the “canonical” form of the SP3 equations. The constants uy, W, in these equations consti-
tute the usual planar-geosmetry S4 Gauss-Legendre quad-ature set. Therefore, in planar geometry,
the canonical SP; equations reduce to the even-parity S; equations. In general geometry, the
canonical SP3 equations (with isotropic scattering) take the form of two-group diffusion equations
with upscaitering.

Egs. (39) could have been obtained from Eq. (1) by the following ad-hoc procedure:

-

[4

2
V() + Ee(r)¥n(r) = Eu(r) Z: Ym(wm +Q(r) , n=12 . (39)
m=1

1. Write the planar-geometry even-parity Sq approximation to Eq. (1) using the S; Gauss-
Legendre quadrature set:

¥

d u? d 2
—E.’; tawn+E¢Wn=zs;L:lwmwm+Q v n=1,2 . (40)

v}

2. Make the same operator replacement as shown in Eq. (30), i.e.,
d 1 d 1
(Znz) ~(T59) “y

Eqgs. (39) are algebraically equivalent to the the SPN equations for the lollowing reason. The
planar geometry even-parity S4 equations (40) are algebraically equivalent to the planar geometry
P3 equations. Thus, introducing the operator replacement (41) in Lqs. (40), we ob’ ain Egs. (39),
and introducing the same operator replacement in the planar geometry Pj; equations, we obtain
Eqs. (28) and (29).

We now turn to the question of boundary conditions for Eqs. (39). In principle, one could
derive SP3 boundary conditions using a high-crder asymptotic boundary layer analysis, but this
leads to a very complex result that is difficult to implement. Instead, we shall invoke the following
“one-dimensional” principle: because Eqs. (39) reduce to the even-parity Sy equations (40) for
planar geometry problems, the boundary conditions for Eqgs. (39) should reduce to the standard
cven-parity S;4 boundary conditions for planar geometry problems. For multidimensional problems
in which the solutions have a iocally one-dimensional character near the boundary, this principle
seems reasonable and intuitive.

Thus, for r a point on the outer boundary with 3 the unit outer normal, reflecting boundary
conditions that satisfy the one-dimensional principle are

Also, for 7 a boundary point at which an incident flux f(r, ) is prescribed for Q - < 0, boundary
conditions that satisfy the one-dimensional principle are

- Hn -
In() = ¥n(r) + E‘(I:)ll Yiyn() » n=12 . (43)
Here we have defined i
M= [ Rl (44)

0<-f}-n<w)



1
falz) = [ 12ense o (45)
Hawe
w <-An<l
We note that f, and f, are proportional to the incoming partial currents over the angular “cones”
that correspond to i) and p2. The definition of these functions easures that

2
3 tinfal)un = [ 2-niseode . (46)

2n<0

Therefore, for one-dimensional and multidimensional problems that behave in a loce!ly one-dimen-
sional manner near the outer boundary, the total incoming partial current is preserved.

We have shown that the canonical SP3 equations are useful for prescribing boundary conditions.
However, these equations have other important advantages:

1. They can easily be implemented in a conventional multigroup diffusion code.

2. Because soi:itions of standard multigroup diffusion problems are guaranteed to be positive,
this is also true for solutions of muitigroup diffusion SP3 problems. This guarantee does not
exist for solutions of standard SP3 problems (with boundary conditions that are not equivalent
to those given above) or of conventional P3 problems.

3. The SP; equations are tightly coupled and often require acceleration for efficient solution.
However, the canonical SP3 equations, which so closely resemble the even-parity S4 equations,
can easily make use of diffusion acceleration procedures that apply to the even-parity S
equations!8. Lack of space prevents a full discussion of this here.

The procedure described above can easily be applied to higher order SPN appproximations.
For example, the canonical SPs equations take the form of a three-group diffusion problem with
houndary conditions that are patterned after Eqs. (42)-(45). For planar geometry, these equations
reduce to the conventional even-parity Sg equations.

IV. NUMERICAL RESULTS

First we shall consider two 3-D k-eigenvalue test problems for which the conventional diffusion
solutions are inaccurate. These problems utilize a 3-D 2-group model of a small light-water reactor
containing a core, a reflector and a control rod. They are described as Model 1, Case 1 (control
rod out) and Model 1, Case 2 (control rod in) in the benchmark problems compiled by Takeda
and lkeda!?. We solved these problems using the NIKE code?®?!, with a uniform 1.0 cm® mesh,
on the CM2 computer at Los Alamos National Laboratory, The diffusion, canonical SPyn, and Sy
eigenvalues and running times are plotted in Figure 1.

We see that for both problems, the low-order canonical SPy calculations require significantly
less computational timne than the S4 calculations. Also, the low-order SPy results for the “rod in”
problem are significantly more accurate than the diffusion results. The SPy results for the “rod
out” problem are more accurate than the diffusion results, but are less accurate than the “rod
in” problem results. This is because the “rod out” problem contains a region with long neutron
streaming paths. Hence, this problem contains transport effects that are not well-described by any
diffusion or SPyN approximation,

Next, we consider a 3-D problem in which classic ray effects are observed in Sy solutions. This
problem consists of 8 homogencous, one-group, isotropically scattering 130 cm cube with o, = 0.05



em™}, g, = 0.0025 cm™! (¢=0.05), six vacuum boundaries, and a uniform isotropic source in a 17.3
cm sub-cube situated in one corner. The system is depicted in Figure 2. In Figure 3, various Sy
and canonical SPn scalar fluxes are plotted along the line z = 26 cm, = =43.3cm, and 0 <y < 80
cm. These results were also calculated with NIKE. Figure 3 shows that the Sy solutions all contain
ray effects, which tend to diminish as N increases. However, the SP, (diffusion) and SP3 solutions
contain no ray effects, the diffusion solution is inaccurate, and the SP3 solution agrees basically
with the S solution. (The SPs solution. which is not shown in the figure, agrees very closely with
the SP3 solution.)

We conclude that although SPy solutions do not limit to the exact transport solution as N — oo,
they also do not contain the ray effect errors that are inherent in the Sy equations, which do limit
to the exact transport equation as N — oc.

V. DISCUSSION

In this paper, we have derived the conventional and canonical SPN equations from the transport
equation using a high-order asymptotic expansion in which the diffusion equation is the leading-
order approximation and the SPy equations are higher-order approximations.

Problems in which the SPN equations are not accurate contain significant multidimensional
heterogeneities that generate strong multidimensional space and angular variations in the angular
fiux. Problems in which the SPn equations are accurate are ones in which the multidimensional
spatial and angular variations are weak. or if strong spatial and angular variations occur, they are
locally one-dimensional in nature. This is depicted in Figure 4.

In summary, we have shown that the excellent numerical SPn results obtained by previous
researchers is not accidental. The SPn equations are often jus: as theoretically valid an approxi-
mation of the transport equation as the P; equations, and as a practical matter, they are usually
much more accurate, They should be useful in many problems for which conventional diffusion
theory is not a sufficiently accurate approximation to transport theory.
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Figure 1: Model LWR Problems - Results
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Figure 2: 3-D Ray Effect Problem (Geometry)
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Figure 4: Qualitative Performance of Diffusion and SPy Solutions
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