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ABSTRACT

This monograph consists of six papers on the theory of shocks
in solids and iiquids, reprinted from Phy.ical Review, together
with an introduction summarizing the complete shock theory
and its limitations.
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NOTATION

p = mass density

V =p’! = volume per unit mass

T = temperature

U = internal energy per unit mass

§ = entropy per unit mass

1, j = Cartesian coordinates

T;j= stresses

sl?j = clastic strains

sl?j = plastic strains

1 = effective shear stress (non-negative)

y = effective plastic strain (non-ncgative)

NOTATION FOR PLANEWAVE GEOMETRY

o = normal stress
1 = shear stress
€ = total compression

y = plastic strain



1 INTRODUCTION

In the early 1980s, six papers concerning the nature of sho. ks in solids and liquids appeared in Physical Re-
view. These papers, constituting a comprehensive analysis of t  .hock structure in dense materials, are seprinted in
this monograph. The theoretical basis of this analysis, and i+ amitations, are described in this Chapter, and u brief
summary of the main points of each paper is provided in Chapter 2.

In the classic text of Courant and Friedrichs,! a :..ock is treated as a discontinuity surface, . cross which
physical propertics change discontinuously. In order to ¢lucidate the complete shock process, which is hidden within
the mathematical discontinuity of Courant and Fr' .acns, one has to begin from an opposite point of view: 2 shock is
a continuous process, and in fact no discontn is allowable in the physical solution for a shoca. In the present
work, the term shock is used tomesnth .o cte continuous process of a compressive wave, from the initial state to
the final (Hugoniot) sta(-.

The material ccnsidered . _vystalline solid or a liquid, initially isotropic, but passing through 2 se-
quence of anisotropic states durin_ the  :ock. The material is treated as homogeneous, corresponding to local averag:
¢s over microscopic heterogeneities. - -userved in experiments such as VISAR measurements of shock profiles.
Plastic flow is defined as any tota.  1isipative volume-conserving rearrangement of the atoms in a solid, which docs
not atfect the thermoelastic materin'  irameters. While macroscopic heteroguneities, such as cracks, are not explicit-
ly acounted for, there ase two way - do so by extension of the present shock theory. The accurate way is (o account
for ali material boundarics and int.  1ces, and resolve the n....roscopically heterogeneous flow. The alternative is to
treat the heterogeneities in an aver;:  way, and hence account for their presence by an appropriate modification of the
thermoelastic and plastic material p:: ameters.

The shock theory of this m-  -graph is based on tl.¢ principles of irreversible thermodynainics, characterized
as follows. First, in equilibrium thern.. ‘lynamics, materials are required to pass through states which lic on the equi-
librium surface. In irreversible thenm.  .ynamics, matcrials pass through nonequilibrium states, but only those states
which are close o the equilibrium surfacc, specifically, those tates for which the equilibrium properties of tempera-
ture and entropy are still reasonably well d-fined. To construct an irreversible thermodynainic theory it is necessary to
define the variables which measure the depaurture from equilibrium, to express the effect of these variables by a mod-
ification of the equilibrium thermodynamic equations, and to wiile an equation for the (irreversible) entropy gencra-
tion. These principles are applied to planar sho .. in the reprints collerted here. Further discussions, covering many
small details, can be found in the monograph Thermoelastic-Plastic Flow in Solids,* and in the 1985 Shock Confer-

ence.3

R. Courant and K. Q. Friedrichs, Supersonic Flow and Shock Waves (Interscience, Newy York, 1948).
D.C. Wallace, Thermoelastiic-Plastic Flow in Solids (LA 10119, Los Alamos National Laboratory, Los
Alamos, 1985).

3 D. C. Wallace, "Computcr Simulation of Nonequilibrium Proc-+:ses,” in Shock Waves in Condensed Mat-
ter.ed. by Y. M. Gupta (Plenum, New York, 1986), p. 37.
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In an analysis su:h as this, the question arises as to whether or not isreversible thermodynamics is indecd
valid. A technique for answering this question consists of the following three steps.

(a) Assume irreversible thermodynamics is valid, and use it to construct a theory for the nonequilibrium
process in question,

(b) For a given material, evaluate the theory, and calculate the spatial and temporal rates-of-change which
occur in the process.

(c) From the appropr: .- relaxation times and mean free paths, estimate whether or not the material will ac-
tually remain close to equs.i* -* 1. it the calculated rates of change.

For shocks in solids 37 'iquids, steps (a) and (b) are carried out in the reprints collected here. The last step
can be formulated in terms of tiie electron-phonon picture of condensed matter, leading to the following conclusions.
Relaxation times among electrons and phonons are very short, and do not indicate a failure of irreversible thermody-
namics (for a detailed discussion, see Section V of the first reprint). With increasing shock strength, the first near-
equilibrium conditions to fail are the mean-free. path conditions, namely that the rclative change in temperature be
small in the distance of an electron, or phonon, mean free path. This failure results from the massive demand for heat
transport in the leading edge of the shock, for strongly overdriven shocks in solids and liquids. In metals, where heat
is carried mainly by the electrons, the irreversible thermodynamic theory remains valid for shocks up to several Mbar.
For stronger shocks, nonequilibrium hot clectrons will stream forward in the leading edge; the theory for this shock
process is beyond the scope of the present monograph.



2 SUMMARIES OF THE REPRINTS

Irreversible Thermodynamics of Flow in Solids

Phys. Rev. B 22, 1477 (1980).

The purpose of this paper is to construct the complete set of equations which govern thermoclastic-plastic
flow in solids. The complete set of equations comprises three theoretical disciplines, whose physical contents are
summarized as follows.

(1) Contiruum mechanics. This theory provides differential equations expressing conservation of mass, of
momentum, and of total energy, throughout a continuous moving material. The total energy cornsists of thermoelastic
internal energy, measured in center-of-mass coordinates, plus translational kinetic energy.

(2)Thermoelasticity. This theory gives the equilibrium relations among the thermoelastic state variables, in
the form of equations for dU, dtl.j. and dT, in terms of defj and dS. Tt coefficients in these equations are the
heat capacity, Griineisen parameters, and stress-strain coefficients.

(3)Thermoplasticity. There are three equations, each approximate.

(i) The Prandtl-Reuss flow rule (eq. (19)) relates all components of del?j to the single increment dy, hence
eliminates sle in terms of y. Under this rule, plastic strain is volume conserving.

(ii) The constitutive equation is supposed to express the actual flow surface of a given material. Itis written
in eq. (20) as an expression for T, but is more transparent when inverted to an equation for the plastic strainrate :

v =f(twyVS).
This tells us, for example, that y = O for an elastic process, and > 0 when plastic flow is being driven.
(iii) The entropy production equation (eq. (23)) assumes plastic work is entirely dissipated:
TdS = 2V1dy.

This is the key to the complete theory, since it closes the system of equations, and makes the three disciplines mutual-
ly consistent.

The formalism is valid for large strains, both elastic and plastic. When the complete set of eguctions is spe-
cialized to planewav¢ geometry, so as to apply to shocks, the only part of the Prandtl-Reuss flow rule which enters is
the volume conservation of plastic flow; hence no assumptions are made about the flow surface, the geometry of
strain hardening, and so on,



Flow Process of Weak Shocks in Solids
Zhys. Rev. B22, 1487 (1980).

From the thermoelastic-plastic theory of the previous paper, and knowing the appropriate material parame-
ters, namely the thermoelastic coefficients and the plastic constitutive data, it is possible to calculate a deformation
process for the material in question. For example, one can calculate the evolving structure of a shock as ii propagates.
On the other hand, given experimental data on the shock: structure, and knowing the thermoelastic coefficients, one
can use the thermoelastic-plastic theory to extract the plastic constitutive data. This is the point of the present paper.

The weak-shock profile data of Johnson and Barker,* for 6061.T6 Al, are analyzed. The profilcs are approx-
imately fitted with a uniform three. wave structure, consisting of (1) the elastic precursor, a stcady wavc traveling at a
constant velocity; (2) the piastic precursor, a nonsteady region connecting two stcady waves; and (3) the plastic wave,
a steady wave moving at velocity D, where D depends on the shock strength. The fitting procedure serves two pur-
poses: it allows us to average some small scatter in: the data, and it makes the analysis simple cnough so that the basic
concepis are fully revealed.

First, the equations of motion (cquations for conservation of mass and momentum) are integrated to give ¢
and ¢ through each profile. Second, the thermoelastic equations are integrated to give ¢ and T as power scries in the
strains € and y, to second order, and thesc equations are solved for T and y through cach profile. Third, making usc
of the VISAR time data, V is calculated through each profile. And finally, again from thermoelasticity, T and § are
calculated through each profile. It should be noted that the expansions developed here, being limited to second order
in strains, should in general be accurate for strains to around 0.1. To apply the shock theory at larger strains, on¢
reeds data for the elastic constants at the corresponding large strains.

The analysis yields plastic constitutive data for y in the range O - 0.05, for s in the range 10°. 107 s}, for
T in the range 295 - 380K, and for pressures up to 90 kbai. As in any analysis of experimental data, the results arc
subject to uncertainties. However, the important point is that the restults reveal the genuinc plastic behavior of the
material studied, anu are not constrained by any apriori modeling of this behavior.

Equation of State from Weak Shocks in Solids
Phys. Rev. B22, 1495 (1980).

The purpose of this paper is o define and study the locus of equilibrium thermodynamic states reached be-
hind weak shocks in an initially isotropic solid. These states are elastically anisotropic, and their locus is called the
anisotropic Hugoniot.

Shock experiments have been extensively used to detcrmine equations of state of solids. The experiments
measure shock velocity and pariicle velocity, and the data are analyzed in terms of liquid Hugoniot theory. This the-
ory is based on two assumptions: the shock is a single steady wave, and the material behind the shock is in a state of
isotropic pressure. With these assumptions, the Rankine-Hugoniot jump conditions hold, relating changes in €, G,
and U across the shock, and the stress-strain variables on the Hugoniot are merely pressure and volume.

For a weak shock in a solid, both of the above assumptions fail seriously. Since ihe weak shock is not a
steady wave, the changes in €, o, and U have 10 be found by integrating the conservation equations along the path of
the shock process. Further, states behind the shock are characterized by two stress variables, ¢ and T, and by two
strain variables, € and y. Since these states are equilibrium thermoelastic states, it is appropriate to replace € and y
by an equivalent pair of pureiy elastic strains (eqs. (5) and (6)).

41N. Johnson and L.M. Barker, J. Appl. Phys. 40, 4321 (1969).



With the results of the weak shock analysis for 6061-T6 Al, the anisotropic Hugoniot is constructed for ¢ in
the range 0 - 102 kbar. From this Hugoniot, by integrating out the elastic anisotropy, and integrating out the shock ¢n-
tropy, the principal adiabat is constructed. Though these results are subject to uncertainties, as in any analysis of ex-
perimental data, the solid theory is in principle more accurate than is liquid Hugoniot theory.

A significant result is that entropy on the Hugoniot, in the small strain region, is of second order in strains for
a solid, but is third order in the strain for a liquid. The reason is that a solid has nonzero yield strength at zero strain-
rate, whereas a liquid does not.

Irreversible Thermodynamics of Overdriven Shocks in Solids

Phys. Rev. B24, 5597 (1981).

This paper constitutes a theoretical study of the structure of overdriven shocks in solids. The shock is as-
sumed to be a steady wave, and the solid is considered capable of transportir . heat, and of undergoing dissipative
plastic flow. Hence the appropriate theory is thermoelastic-plastic flow in sulids, with heat transport included. This
work is the logical extension, tc solids, of Rayleigh's study of the structure of shocks in gases.’

The steady-wave condition makes it possible to integrate the conservation equations, and thus to express €,
o, and U through the shock. The o (&) relation for a shock is called the Rayleigh line, and for a steady wave it is a
straight line:

=0D2£
a

where P, is the initial density and D is the shock velocity. The following theorem is proved: For an overdriven
shock in a solid, no solution is possible without heat transport. The physical reason for this theorem is, for an over-
driven shock in the small- ¢ region, the Rayleigh line lies above the value of ¢ comresponding (0 a uniaxial elastic
compression, so heat must be transported to the shock front to increase ¢ there.

The coupled set of equations for thermoelastic-plastic and heat transport variables is analyzed on the Ray-

' leigh line, and several theorems are proved regarding the solution. Upper and lower bounds for these variables on the
Rayleigh line are established, when heat transport is governed by ordinary conduction. The entire analysis rests on
qualitative preperties of thermoelastic coefficients of solid materials, and nothing is assumed about the plastic consti-
tutive data. A final theorem is proved: For an overdriven shock in a solid with heat conduction, no solution is possi-
ble without plastic dissipation. The physical reason for this theorem is, the heat which must be transported to the
shock front, according to the first theorem, has to be generated by plastic dissipation in the later part of the shock.

Nature of the Process of Overdriven Shocks in Metals
Phys. Rev. B24, 5607 (1981).

The purpose of this paper is to estimate the actual structure of overdriven shocks in metals, for sliocks up to
melting on the Hugoniot.

If sufficient materials data are known, it is possible to calculate the shock structure for a solid, by numerical-
ly integrating the thermoelustic-plastic flow equations. The required data are the thermoelastic coefficients, the plas-
tic constitutive data, and for overdriven shocks, the thermal conductivity. Since plastic constitutive data are unknown
for the high plastic strainrates involved in shorks, a different approach has 1o be taken. In this paper, with the help of

SLord Rayleigh, Proc. Roy. Soc. London, Ser.A84, 247(1910).



the theoretical analysis of the preceding paper, an approximate solution is constructed, independent of the plastic con-
stitutive behavior.

An extensive study of the thermoelastic coefficients, in the region of the Rayleigh line for shocks up to a few
Mbar, is summarized. These coefficients are the heat capacity, including lattice and electronic contributions, the Grii-
neisen parameter, and the bulk and shear moduli. Numerical calculations of temperature, entropy, shear siress, and
plastic strain, as functions of compression, are shown for shocks up to around melting for 2024 Al, and for Pt. The
time dependence of the process is controlled by dissipation, and two dissipation mechanisms are going on simulta-
neously, namely plastic flow and heat conduction. Because the whole process is a steady wave, both dissipation
mechanisms have to operaie at the same rate. Hence an ¢stimate of the thermal conductivity, which is not difficult for
metals, gives an estimate of the previously inaccessible plastic strainrate within the shock.

Strongly overcriven shocks in metals have the following characteristics: the shock entropy is generated by
heat conduction in the leading part of the shock, the heat is generated by plastic flow in the last part of the shock, and
the shock rise time is of order 1071%s.

Theory of the Shock Process in Dense Fluids
Phys. Rev. A2S, 3290 (1982).

In his pioneering study of shocks in gases, Rayleigh’ established two important conclusions: (a) When the
gas has heat conduction but no viscosity, a continuous steady wave is possible only for weak shocks, and (b) Wlhen
the gas has viscosity but no heat conduction, a continuous steady wave is always possible.

The prescnt paper extends Raylcigh’s analysis to liqui-ds (dense fluids). Irreversible thermodynamics is as-.
sumed valid, and the liquid is characterized by heat conduction, and by viscoelastic response. Such response is vis-
cous at low strainrates, and elastic at high strainrates. The following three results are cstablished for liquids.

(1)There is a maximum shock strength, the inviscid limit, for which a continuous swédy solution can exist .
with heat conduction but without viscosity. This is Rayleigh’s first result, and for liquids the inviscid limit corre-
sponds to very weak shocks.

(2)For shocks at the overdriven threshold and above, no continuous steady-solution is pussible without both
heat conduction and viscosity. The physical reason is that heat must be transported to the shock front, to increasc ¢
there, and this heat must be generated by viscous flow behind the shock front. :

(3)For shocks near the viscous fluid limit and above the liguid | response atthe leading edge of the shock is -
elastic. The physical reason is that the suamrate increases as shock strcngth increases, and at some strainrate the liq-
uid respons= ceases (o be vnscous, and becomes elastic, e : :

The three thresholds are calculaicd for water, and for mercury.
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Dynamic de‘ormaiion of solid materials is described in 1enmne of noruniform maierial motion and simultaneous
thermoelastic strsin and plastic flow. For dcformations of arbitrary form and magnitude in an initially isoiropic
solid, an approximate expression for ihe emiropy production is given, and 1he inicrrelalions emong the
1thermodynamic variables of stresses, elastic and plastic scrains, and 1emperature and eniropy are derived. The theory
is specialized 10 plane-wave geomelry, appropriale for describing a weak planar shock, and s compared with 1the
relaxing solid model which has previously been used 10 analyze plane shocks in solids. A qualitative examinaiion of
the mechanics of elastic strain and plastic flow indicates 1hai a thermodynamic description is accuraie for many fast

deformation processes in solids.

1. INTRCDUCTION

The dynamic flow processes of solids have come
under careful study in recent years with the devel-
opment and use of high-speed, high-stress diag-
nostic capabilities [for a recent review see Ref.
1(a)). The resulting data have in turn provided
the main basis for new developments i1 both mi-
croscopic and macroscopic theories for the equa-
tion-of-state, transport, and flow properties of
solids at high stresses. Dislocation theory for ex-
ample has been extensively used in modeling the
flow properties of crystalline and pulycrystalline
materials. However, it is first of all necessary to
obtain a clear macroscopic characterization nf
material flow properties exhibited in the experi-
mental data. This necessitates a:. extended contin-
uum mechanic flow formalism for solids, whose
general foirmulation and thermodynamic validity is
studied in this paper.

The purpose of this paper is to present a phys-
ical description of fast deformation processes in
solids. The description is mechanic and thermo-
dynamic; it is embodied in a coupled set of equa-
tions which governs the motion of the matesial and

the simultaneous thermoelastic and flow processes.

Before going into the formal theory, some discus-
sion of the nature of these processes is useful,

In a thermoelastic process, the material passes
through a seguence of equilibrium states, i.e.,
states characterized by zero entropy production,
and the process is reversible. The variables are
the anisotropic stresses and elastic strains, the
energy, temperature, entropy, and so on; these
variables are related in differential form by the
standard equations of thermoelasticity.!t®»2 The
question arises: What are the limitations on the
space and time rates at which system variables
may change and still be treated by reversible ther-
modynamics? An answer in the spirit of statistical
mechanics is that in space the system variables

22

must change by a small amount over a region large
enough to contain many atoms, and in time the
variables must change slowly in comparison with
the characteristic rate (or rates) at which *he sys-
tem approaches equilibrium. Such restrictions do
not rule out some rather fast thermoelastic pro-
cesses; in transmitting an adiabatic sound disturb-
ance with wavelength of order 10°? em und period
of order 107® s, a solid can be described as a large
number of material elements, each passing through
a sequence of near-equilibrium states under the in-
fluence of slowly varying stresses imposed by nei-
ghboring material elements.

For the second type of process, a general and for
the moment not complete definition is as follows:
Flow is any dissipative rearrangement of the atoms
within a material. When thinking of solids, we us-
ually call this plastic flow. Such a process is by
definition irreversible. 1t can still be described in
thermodynamic te.ms, however, if the rate-of-
change limitations mentloned above are satisfied.
Then the material passes throngh a sequence of
states which are close to tiiermodynamic equilib-
rium states and, hence, the state of the material
is always described to a sufficient approximation
by thermodynamic variables. To complete the de-
scription of the process, it is required to devise
an explicit expression for the entropy production.
These two requirements are at the base of the the-
ory of irreversible thermodynamics.’* For ex-
ample, imagine a polycrystalline material with a
ghear stress T applied and slowly increased from
zero. At first the material deforms elastically,
and when 1 reaches the appropriate static yield
value the flow, as measured by a plastic shear
strain §, begins. The flow ie irreversible and en-
tropy productinn is positive, A phenomenological
relation® of the form T« y does not hold because T
reaches a finite value while y is still zero. This
essentiai nonlinearity cannot be treated by standard
irreversible thermodynamics; nevertheless there

1477 © 1980 The American Physical Sociely




1472 DUANE C. WALLACE 22

is a driving force and there is a reciprocal flow,
and it is possible in principle to relate these quan-
tities to the entropy production. Further, such a
relation can be determined, or verified, by experi-
ment,

It is interesting to compare time-rate effects for
the two types of process discussed. A thermoelas-
tic process is rate independent (up to some limit),
which means for example the stresses change “in-
stanily” in response to changes in the elastic
strains and the entropy. Flow, however, is in-
trinsically rate dependent. In the plastic shear ex-
periment mentioned ahove, there is a functional
relation, generally called the plastic constitutive
relation, among the var:iables r, y, and §, where
i 18 the time garivative of ¢ at a fixed material
point, Formally it is f(r, ¢, §) =0, which means the
driving stress T depends explicitly on how fast the
flow is being driven. We note in passing that the
indicated dependance on y is to account for strain
hardening, and that the plastic constitutive relation
depends also on the thermoelastic state variables.

Now with regard to time-rate effects, a point of
some significance is as follows. A thermoelastic
process can be very fast and still be, to a good ap-
proximation, reversible. On the other hand, again
w.th reference to the plastic shear experiment, it
1~ possible to control T so thai § is arbitrarily
small, but the flow is still irreversible. Entropy
production accompanies the process no matter how
slowly it proceeds. Hence the thermodynamic re-
versibility of a process is not determined by its
rate.

In the following section the general theory of dy-
namic deformation processes in an iritially iso-
tropic solid is presented. The theory is special-
ized in ec. Il to plane-wave geometry, appropri-
ate for describing a planar shock, and the theory
is compared in Sec. IV with the relaxing soli¢ mod-
el. In Sec. V we discuss in qualitative terms the
question of local thermodynamic equilibrium. In
applying the present theory to shocks in solids, we
limit consideration to weak shocks, i.e., ones in
which the shock velocity is not greater thar the
elastic precursor velocity, which means shock
stre< :es up to one hundred kbar or so.

1l. GENERAL THEORY
A. Equalions of motion

We consider a spatially continuous isotropic sol-
id. The definition of isotropic solid is given in Sec.
IV, but it should be noted in advance that such a
material can support anisotropic elastic strain and
in such a confifuration the material is physically
anisotropic. A any time ¢ the location of a given
infinitesim lement of the material is X(¢)

in laboratory coordinates; at some initial (refei-
ence) time ¢, it is Xif,)=X, sothat X is the Lagran-
gian coordinate of the mass element. The field
variable which denotes the whole material configu-
ration is X(X, ¢) for all X,¢. The velocity field
v(X, 1) is the velocity in laboratory coordinates of
each mass element:

- [8x
v= (-31—); . (l)
We also use X as an independent variable denoting
location in laboratory coordinates; for example,
divV in the laboratory system is (3v,/3x,),, where
i=1,2,3 are Cartesian indices and repeated indices
are summed.

The material density is p, the stress tensor
components are 7,,, and both are functions of )?, t,
or equivalently of X, f. The equations of motion are
conveniently expressed in mixed Lagrangian-
Eulerian form as follows®:

Conservation of mass:

&) . (_8_&) 2
(6! s P\ex, )’ (2)
Conservation of linenr momentum :
p(a_”.l.) =(.ﬂu) . (3)
at/x \ax /,

Conservation of angular momentur::
Tu=Tn: 4)

There is also anequatiun for conservation of energy.
We can write the total energy of each mass element
as a sum of two parts, the translational kinetic en-
ergy and the center-of-mass energy. It is easy to
show that the translationai kinetic energy is equal
to the translational work done by the stresses, be-
cause of Newton's law which is Eq. (3); the energy
balance for each mass element is then reducead to
center-of-mass contributions, which are discussed
below.

B. Thermoelasiicity !®)2

Consider an incremental process, in which the
material goes from the current state to the next
state in an incremental time d{. The incremental
displacement (motion) of each’mass element is
given by the field variable dii(X, t); the incre-
mental displacement gradients are

dul =(_8—£.’.‘.L. , (Sa)
! ax, /

related to the velocity gradients by
duy,=v,dt, (5b)

where v, =(38v,/8x,),. The du,, are precisely the
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same as the displacement gradients u,, of Refs.
1(b) and 2, when those u,, are limited to infinitesi-
mal magnitude and are always measured {rom the
(continually changing) current configuration, in-
stead of from a fixed Lagrangian configuration, In
the incremental process, the work done by stres-
ses in a local center-of-mass system is dW

=p 'r,,du,, per unit mass of material, and by con-
servation of energy this equals the increase dU of
thermodynamic internal energy per unit mass (we
are neglecting heat transport):

dU=dW=p"‘r, du,,. (6)

This equation, as with all thermodynamic equa-
tions, is Lagrangia:i in the sense that it holds for a
given mass element, no matter how the mass ele-
ment moves; hkence (6) is equivalent to

U=p™'ru;,=p 'y,
where the dot signifies a Lagrangian time deriva-
tive: U=l /a1)k.
The strains may be expressed as symmetric plus
antisymmetric parts, where the symmetric part

de,, = ¥ (du,; +du,,) (7)

measures the pure strain and the antisymmetric
part

dw,, = 5 (du,, - du,;) (8)

measures the pure (rigid) rotation. Furthker, the
pure strain is presumed to result from a combina-
tion of elastic strain de{,, and some "flow” or
"plastic” strain def, which is due to an internal re-
arrangement of the atoms of the material. .ts long
as the process is infinitesimal, the two strain con-
tributions are additive:

de,, =deS, +de}, . ' (9)

The meaning of the de}, will be made precise a lit-
tle later. We first set out the thermodynamic the-
ory which is coupled to the elastic strains dej,,
ignoring the explicit presence of the plastic
strains,

in the theory of thermoelasticity, a complete set
of variables which specify the thermodynamic state
of a material (the state variables) are the elastic
configuration and the entropy. In differential form
these variables are de}, and dS, where § is the en-
tropy per unit mass. Then the differential of any
thermodynamic function, e.g., U, can be written as

3 v
du = a(’ﬁ” deg,+ 32 as. (10a)
Repeated indices are summed; in each partial de-
rivative with respect to a given variable, all other
independent variables are held fixed. Thermoelas-
tic definitions of the stresses and the temperature

T are!®»?
X
TP Ga (100)
s

at constant §, and

au
T—(a'—s-) (10¢)

at constant ¢7,. Hence Eq. (10a) is
dU=p’'r,, de5, + TdS. (11

In a similar way the variations dr,, and dT may be
calculated and expressed as

T .

ar,, 2 Byadeg; + B0 L dw,, - py,, TdS, (12)
M

dT =Ty, d€5, +( T/C ,3dS, (13)

where C, is the heat capacity at constant elastic
configuration, B,,, are the adiabatic stress-strain
coefficients, which can be measured in stress-
strain experiments or in adiabatic sound-wave ex-
periments, and y,, are the anisotropic Griineisen
parameters defined by?

4 9
pyl;="T ! % . (14a)

Derivatives at constant elastic configuration equi-
valent to (14a) are

o Or ar
pyy=-Cy' S+ =- 3+~ (14b)

The rotation coefficient (37,,/3w,,) in (12) is given
in Ref, 1(b); this term in d7,, accounts for simul-
tancous incremental rigid rotation of a mass ele-
ment and the stress tensor.

The thermoelastic equations (11)—(13) are not all
independent. In fact, they form a hierarchy of cou-
pled equations: The coefficients in dU, namely, 7,
and T, are first derivatives of U with respect to
independent variables; the coefficients in d7,, and
dT, namely, By, 7. and C,, are second deriva-
tives of U with respect to independeat variables;
and so on. In order to break the hierarchy at this
point, we regard the second-order coefficients as
known functions of the state variables.

A comment is in order concerning the convenient
choice of thermodynamic state variables. In a the-
ory which includes both elastic and plastic strains,
the elastic configuratinn is a complicated nonlinear
integral function of the 10tal and the plastic-strain
increments, de,, and def,. While it is easy to use
def, and dS for differential state variables, as
above, if integrated state variables are desired, it
is most convenient to use the vquivalent complete
set 7,, and S (equivalent because stresses are
elastically supported). The stresses are easily

ikl
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calculated by integratingdr,,, and with 7,, and S spec-
ified, all other thermodynamic functions, including
the elastic configuration, are uniquely determined.
To complete the thermodynamics, we need an
equation for dS; this is obtained below.

C. Thermoplasiicity

The mechanical theory of plastic flow is well de-
scribed in textbooks.®"® It is based on two condi-
tions on the plastic-strain increments; the first is
the experimental observation that plastic strain is
volume conserving. To express this, note that Eq.
(2) for conservation of mass i8 precisely equivalent
to

dinV =du,, =de,,, (15)

where V=p'! is the volume per unit mass. dlnV is
then a sum ot elastic and plastic contributions, and
the plastic contribution is set to zero:

de$, =0. (16)

The second condition is the Prandtl-Reuss flow
rule.” which requires some definitinns, The aver-
age compressive stress is P, and the stress devi-
ators are s,;:

P=—31,,,

" $%7]

Sy ST+ POy,
An effective shear stress 7, wkich is a measure of
the stress which drives the plastic flow, is defined
by

.-’=is”s”, 720. (18)

The Prandtl-Reuss flow rule then allows the sev-
eral variables de?, to be expressed in terms of a
single measure dy of the plastic strain:

det, =1 (s,,/T)dy . (19)

Since the definitions (17) imply s,, =0, then (17)
and (19) together contain (16). Equation (19) repre-
sents the intuitively reasonable idea that the plas-
tic-strain increments ought to be isotropicallv pro-
portional to the stress deviators; it has some ex-
perimental verification for cases of complex
flow.”*® Finally, the effective plastic-strain in-
crement d¢ is determined by the von Mises cri-
terion!® in terms of a generalized flow function K:

T<K(,¥,7,,,5), (20)

This equation has the following meaning: If <K,
the process is elastic and dy:=0; if T is on the flow
surface, dy >0 and is determined by the condition
7=K. = fdy is the integrated plastic strain, and
the dependences of K on y and § represent, re-
spectively, strain-hardening and strain-rate ef-
fects. K also depends on the thermoelastic state

variables 7, and §, as indicated.

The thermodynamic theory of plastic flow re-
quires, in addition to the above equations, a ther-
modynamic description of the energy associated
with the process. This energy can be identified as
part of the total center-of-mass energy. 1n Eq. (6)
for the conservation of total energy, because 7,,
=7,,, the antisymmetric parts of dr,, sum to zero,
giving

dW=p"'t  de;,=dW* +dW"?, 21

where dW* and dW?” are work increments done
against elastic and plastic strains, respectively:

dw*=p"'1, de},, (22a)
dw?=p''r, de}, =2VTdy . (22b)

The last form in (22b) follows by using (17)-(19).
In a classic experiment on metals, Farren and
Taylor'' observed that 87-95% of the plastic work
was dissipated;, we expert this same qualitative be-
havior for deformations involving dislocation mo-
tion, twinning, or viscous rearrangement of atoms
in amorphous solids. Because it is a good approx-
imation, and because it simplifies the theory con-
ceptually, we assume that the plastic work dw?* is
entirely dissipated:

TdS=2Vrdy. (23)

The plastic low is now completely defined. 1t fol-
lows the flew rule (19) and is totally dissipative. 1t
includes any process which approximates these
conditions. Further, the combined thermoelastic
and thermoplastic theory is internally consistent,
since the energy partition given by (21)-(23) makes
the thermoe!astic equation (11) for 4U identical
with (6).

As a matter of fact, in a real flow process in a
real solid, a small part of the plastic work may go
into creating a change in the defect structure of the
material; for example, energy may be stored 1n
the elastic strain field of an increased number of
dislocations, Such stored energy is presumably
responsible for work hardening (strain hardening),
This energy is not included in ordinary thermo-
elastic theory, hence an explicit accounting of it
will require a redefinition of the thermoelastic co-
efficients, Suppose, for ¢xample, that 90% of d1i’®
is dissipated in a give: srocess, while the rest is
stored; the entropy-production and energy-conser.
vation equations then read

TdS=0.94w?,
dU=p"'r,,(dej, +0.1de?,) + TdS .

Comparisonwith (11) shows that the first-order coef-
ficients 7, and T are no longer given by the thermo-
elasticdefinitions (10b) and (10c). The effect carries

12
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on to Eqs. (12) and (13}, changing the definitions of
the secoad-order coefficients B, y,,, C, and so
on. Thus in making the total dissipation approxi-
mation (23), we obtain a significant simplification
of the theory, in exchange for introducing small
errors into our thermodynamic computations, On
the other hand, the major effect of hardening s
properly contained in the theory, througn the de-
pendence of the fiow function K on the total plastic
strain y. It may also be noted that when a solid
melts, the defect structure anneals, and the eneryy
stored there is recovered as equivalent heat.

ill. PLANE-WAVE GEOMETRY

The theory is much simplified when it is special-
ized to the geometry appropriate for describing a
plane compressive wave, such as a weak shock.
This is an exampl?a of "principal axis flow": The
principal axes coincide at ail X.t with a single in-
variant orthogonal (not necessarily Cartesian) co-
ordinate system. Since the stress tensor is diag-
onal in this coordinate system, then for an iso-
tropic solid both the elastic and plastic strains are
diagonal; it is then convenient to express strains
in terms of the transformation matrix a which
transforms the initial configuration X to the cur-
rent configuration X at any time ¢ (Refs. 1(t ,2):

Ix
= _L .
%u (a‘\': )| ' (@4

Eecause all strain measures are diagonal, we can
use th. Voigt indices g=1,2, 3 to replace §j
=11, 22, 33, respectively, and write

2, =aa8,,,
I} 8%y (25)
de, = depd,, .
We now have diy, =de,, and the relation
d(g =dlnap. (26)

The logarithm appears in (26) because the a, are
measured from a fixed (initial) coafiguration,
while the ¢, are measured {rom a continually vary-
ing (current) configuration. Again because the
strain measures are diagonal, the total transform-
ation a is a matrix product of the elastic trans-

FIG. 1. Two-step transformalion of a mass element
in plane-wave geometry.

formation a* aad the plastic transformation a®,
as the following calculation shows:

ln05=fd(,=fd€§* fdeg

=Ilnag +1ney, (27

or in matsrix form

(@, 0 o}
a=z |0 a, 0
L0 0 a,;
(af 0 0) (a2 0 0
=10 a0 0 o 0| . (28)
L0 0 o) O 0 o

Ir plane.wave geomwnetry. the wave propagates
along Cartesian coordinate 1. and coordinates 2.3
are equivalent transverse directions. Hence. a,
=a, and so on. The transformation of a mass ¢le.
ment is shown in Fig. 1, from the initial configura.
tion of density p,. to an intermediate configuration
of density p,. to the current configuration ¢f dens-
ity p. No nhysical meaning is to be attached to the
intermediate configuration: it is not reached in the
physical process unless it coincides with the cur.
rent configuration. Th mass element has thick-
ness d in direction 1 and width s in the two trans-
verse directions. The initial dimeusions d,, i, are
presumed known, so there are four independent
strain variables in the transformation, namely
di,w, d,w. In terms of these we can write

@, =d/d,, ot=d/d,, af=d/d,, 29)
(
o= wlw,, af=w/w,, of=wlw,.
Plane-wave geometry requires the beundary condi-
tion that the total transverse strain of each mass
element is zero:

ww,. (30)

The volume conservation of plastic fl:.w, Eq. (16),
can be written

p=p,. (31)

With these couditions we are left only two indepen-
dent strain variables, and for these we introduce
the conventional plane-wave variables ¢, ¢, both
positive in compression and defined by

€=1-p,/p=1-V/V,. (32)
¢ =-Ilna?, (33)

The flow strain § is the same as the natural or
logarithmic plastic strain in simple tension or
compression experiments. The transformation co-
efficients now become

13
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e,=(1-¢), af=(1-¢l*, al=ze’®,
(34)

a,=1, af=e'*?, af=zet’?,

The stress system is also simple in plane-wave
geometry. The conventional variables are the nor-
mal stress ¢ and the shear stress 7, both positive
in compression and defined by

o=-7,,
1 (35)
TE=—ir,—T,).
These stresses are shown in Fig. 2. Note that the
above definitions are completely consistent with the
general thermoplastic theory of Sec. I: We have
incorporated the volume-conserving condition (16),
the shear stress T of (35) satisfies the definition
(18), and the plastic strains def = dlnaj satisfy the
flow ruie (19). In fact the Prandtl-Reuss rule is
superfluous in the case of plane-wave geometry be-
cause here we have only oue independent plastic-
strain variable.

Under the stress system (35), an originally iso-
tropic solid has tetragonal syminetry, and the
stress-strain cvefficients B,, (Voigt indices) have
the symmetry

(B, B, By )
B, B,, By, 0
Ba B Bz (36)
B, 0 O
0 0 By O
L 0 © By

The Griineisen parameters, Eqs. (14), have the
symme’ry y,, = yo8,,. and the thermoelastic equa-
tions for stresses and temperature reduce to

do =py,TdS - B,;dIn(1 - €)- ( By, — B,)dy, (37)

d7=1ply, —y,)TdS—3 ( By, - By MdIn(1 - ¢)
—4(By + 5By + 3 Byy— By, — By du, (38)

dT =C;'TdS— Ty,dIn(1 — €)= T(y, -, )dy. (39)

The equations of motion (2) and (3) for conserva-
tion of mass and linear momentum, respectively,

T2 o-2r

t :

! i

FIG. 2. Stresses in planre-wave geometry,

are

ap\ . _ (2o
() o).

av\ . (3¢
p(at),' (ax),' (41)

where x is the laboratory coordinate and ' the ma-
tarial velocity, both in the propagation direction.
The Eqgs. (37)-(41), together with the entropy pro-
duction equatior (23) and the flow criterion (20),
are sufficient to calculate any dvnamic flow pro.
cess in plane-wave geometry, provided the coef-
ficients C,, ya, Bap and the flow function

K(g, d,0,7,8) are known. The conservation of en-
ergy equation, which is uncoupled from the above
system unless U is taken as a state variable, re-
duces to

dU =—-gdV=0V,de. (42)

1V. COMPARISON WITH RELAXING SGLID MO1 .
A. Expansions for small anisoiropy

In order to make a comparison with other m.od-
els, we need to approximate the thermoelastic co-
efficients in the present theory. A systematic ap-
proximation can be based on the condition that the
stress system is always c!cse to isotropic, or
equivalently that the anisotropic part of the elastic
strain is small, We first construct a working def-
inition of isotropic solid.

Consider an isotropic solid under arbitrary iso-
tropic pressure P; take V,S for state variables, so
P,T,U, and =0 on are functiors of V,S. Through-
out this thermodynamic space, the solid is phys-
ically isotropic. Now froin zny state, say state 1,
in the isotropic thermodynamic space, change the
stress system to an anisotropic 7, at constant S;
this brings the solid to a state of anisotropic elas-
tic strains n¢,, where n{, = (afaf,~6,,) and all
strains are measured from state 1. The depen-
dence of any thermodynamic function on the strain
matrix n¢can be expressed in terms of the three
rotation invariants of n¢, which are

ll ='I§| 1
L =) cofnS,, (43)
J

I, =dety*,

where cofn$, stands for the cofactor of n§,. The
above observations constitute a definition of iso-
tropic solid. A strain expansion of the internal en-
ergy is given in Ref. 1(b), and this serves to define
the second-order adiabatic Lamé coefficients A, u,
and the third-order adiabatic Murnaghan coeffici-
ents £, &, v:

14
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o, U(V.n1,.8)2p U'(V,0,8) - PL+[ (A +2p )} - 201, ]
5 ‘25)1?—251112*”13] o,
(44)

where p, is the density at state 1, and the coeffici-
ents ( of the strain functions) are all avaluated at
state 1. The adiabatic bulk and shear moduli, B
and G. respectively, at state 1 aret™

B=-V(@P/aV =a+iu+3P, (45)
C=B,='(B,,—B)=u-P. (46)

For application to the present theory of dynamic
flow processes, it is convenient to restrict expan-
sions such as (44) to the condition of fixed V'; then
V.S are the same in the elastically anisotropic
state (the current state), as in state 1 where all
coefficients are evaluate.;. Hence V, S evaiuated in
the current state serve as state variables for the
coefficients. For the case of plane-wave geome-
try, we have expanded the second-order thermo-
elastic coefficients at constant ', S, and expressed
the results in powers of 7/G, which should always
be small. Results for the stress-strain coeffici-
ents are

By =(B-3G)-3(@2x+5u+2E-PNT/G)+ -+,
(B, -Bp)=G-(A+4u+E+Lv-2P)T/G)+ -+,
M3,,-B;,) =", (47)
f (B, + S'Bzz *5323"312 - B,)
=GC—-(u+5v—3PNT/G)+ -,

where + - -+ means terms of relative order 1%/(?
and higher. For the remaining coefficients, with
terms of order 7/G represented by O(7/G),

C,=C.{1+0G/G)],

Y-y =0(r/G), (48)

w=y[1+0(#/G)],

where C, is the heat capacity at constant volume,
and y is the ordinary Griineisen parameter,

(2B
py= (a(')‘. . (49)

We now gather up the thermoelastic and thermo.
plastic equations of the preceding section for
plane-wave geometry, put in the above expansions,
and write each equation explicitly to leading order
only as follows:

do =—(B+3G)dIn(l-¢€)-2Gdy + O(rdIn(l - €), Tdy),

(50)
dr =—G{dIn(l — €) +3dy] + O(rdIn(l — ¢), 7dy), (51)
T<K(0.4, V. 8). (52)

TdS=2Vrd). (53)
dT = [C,'TdS—yTdIn(1- )1 - 0(r/G)] . (54)

Note pTdS=0(rdl). the terms ({~dIn(l - ¢)) and
O(=dyp) in (50) and (51) are the TdS terms from
£gs. (37) and (38), and the terms of first order in
T from Fgs. (47).

B. Relaxing solid m.ufel

In 1867, Maxwell' wrote a constitutive equation
for a material which shows instantaneous elastic
response plus stress relaxation according to a :e-
laxation time. Malvern," in studying plane-wave
propagation in infinitesimal strain theory. gener.
alized the Maxwell model by introducing a stress
relaxation function. Taylor'! investigated the shape
of weak plane shocks with a constitutive equation
which is a special case of Malvern's. Herrmann'®
has used the relaxing solid model extensively in
analyzing plane shocks; his equations are the most
general since they allow for finite strain and in-
clude the shear stress 7. Equations (6) or (7) and
(9) or (10) of Ref. 15, transcribed to the present
notation,!® are

do=-(B+4G)dIn(l-¢)-2Gdy. (55)
dr=-G|dIn(1 - ¢}+1dy] . (56)
v=g'lo,€), (57)

where g'(v, €) is the stress relaxation function,
with g* for compressive loading and g° for unload-
ing.

By comparison with Egs. (50)—(54), it is seen
that the system (55)-(57) neglects all effects due to
entropy, and neglects all terms O{7dIn(1 - ¢)) and
O(rdy) in de,d7. In plane shocks we generally have
T <« ¢; this means the terms of order T neglected in
(55) are formally small, and (55) should integrate
to give a reasonably accurate value of ¢ throughout
the proc ss. Terms of the sanie order are not
negligible in (56), however, and the integral of that
equation wili give a value of 7 with an error form-.
ally of order r. With regard to the plastic-flow
constitutive equations, it is interesting to note
there is a formal equivalence between the von
Mises condition and the relaxation function. Equa-
tion (52) can be inverted to $ = f(=, 4.V, S). and
since 7, §, V are coupled by one equation, they can
be replaced by two variables, say o,¢, giving §
=f(o, €, 85 finally, if S is neglected as an indepen-
dent variable, a relation of the form (57) is ob-
tained,

V. THE QUESTION OF EQUILIBRIUM

A macroscnpic treatinent of a material process
without thermodynamics is conceptually difficult.
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Theory has to be founded in mechanicnl variables.
which are specified in terms of atomic motions and
inter~ ‘tions. For a given mas: element contalning
a fir J assembly of atoms, or at least a fixed num-
ber 1n the case where mass transfer is allowed,
the mechanical energy is always defined. and so
are mechanical stresses in the form of forces act-
ing across surfaces. Mechanical work is defined,
but temperature and entropy are not. In order to
examine the ouestion of thermodynamic equilibri.
um, we have lo imagine that we are first able to
find a comolete mechanical sosution to the problem
of motion: then we can study the space and time
variations of the solution.

We begin by -:onstructing a picture of continuum
mechanics. The material is divided into muss ele~
ments which are macroscopically small but which
still contain many atoms. The mass elements ave
considered as interacting mechanical systems, and
the entire flow problen: is expressed in terms of
variables which give tctal mechanical properties
of each mass element, for examgple, the position
of the center of mass, the coniiguration, the cner.
gv. momentum, and stresses. These are macro-
scopic variables because thev average the atomic
properties over all the atoms in a mass element,
they are functions of the time. To help bridge the
gap between mechanics and thermodvnamics it is
useful to div ie the deinrmation into twy separate
parts. defined as follows at anyv instant of time.
The homogeneous deformation 1s that part of the
deformation which 's essentially constant over a
mass element; this means the nieasure of strain
varies by only a small amount over ! region large
enough to contain many atoms (at a fixed time), and
het.ce it applies to the straia in any reversible
thermoelastic nrocess such as an adiabatic one. or
a nonadiabatic one where the heat flux is spatially
slowlv varving. The uther part of the deformation,
that iue to plastic flow, : heterogeneous on an
atomic scale: this heterogeneity dnes not appear in
detail in the macroscopic mechanic -1 variables,
only the average appears, but it is nevertheless
important in the question of therniodynamic equi-
librium. Incremental contributions to stresses,
strains, and energies from the two types of de-
formation are additive.

The next step is to construct a phy<ical model of
an individual mass element as a mechanical sys-
tem. A solid materi:l is composed of ions and band
electrons; the choice of which electrons are to be
put in the ion cores and which in the bands is some-
what arbitrary and does not affect the present dis-
cussion. The mechanical states are quantum
states. The ground state 1s a function only of the
con: uration. which is specified by the positions
of the ions. and it 1s the T = 0 thermodynamic

[

IIJ

state. For a giver configuration. we may think -f
a distribution of quantum states with a utique
ground state, such that the system’s mecl tnicat
properties are represent:-1 hy sot: . averaj.: over
the distribution. The mechanical variables ure then
written as a ground-state contribution plus an cx-
citation contribution. For a thermodyna. 1c equi.
librium distribution of states, -he excitation con-
tributior. becomes a ther—odynamic quantuy, gen-
erally called the therm:il contributinu, and 15
characterized by the temperature aud the configu.
ration. Thermod''namic variables are then wi:tten
as a grouud. state (7 - 0) contribution p.us a thern:
al contribution.

We now ask the following question 1f the ~on.
figaration is suddenly changed, at whal strain rale
can the ground state still be considered a ther.amo-
dynamic state? Or, how fast do the ground-state
¢’ --trons respond to a sudden niotion of the ions?
1f the ion motion is a homogeneous strain, 1.e.. it
is characterized by a wavelength long compared to
the interionic distance. The band electrot.s respond
collectively in a time of the arder of an inverse
plasma frequency,'”*'® say in about 10°!® 5. The
polarization response of the ion ciores saould in
principle be faster, but i1 will in practice be lim-
ited to the same rate as the collective response.
Finally, for a short-wavelength (locilized} motio:
of the ions, we expect the ground- state electron
response to be equally fast, so for all practical
purposes thermodynamic equilibrium car be as-
sumed for the ground-state contributions to system
variables.

The response of the excited states can also be
estimated for near-equilibrium conditions. In the
customary approximations of solid. state physics,
the excitation modes o1 the ion-electron systeni are
the phonons and the one-electron Fermi-Dirac ex-
citations. Among the phonons, in a distribution
which is anywhere near thermodynamic equilibrium
at room temperature and above, practically all of
the excitation energy is carried by short-wave-
length moticns, i.e., wavelengths of the order of
one or two interionic spacings. We may assume
that at room temperature and above. the lifetime
of such phonons is limited by phonon-phonon colli-
sions; experimental measurements for metals'
give T,, = 1072 s, and Peierls® has estimated 7,,

+ 10°'? s for nonmetals at room temperature.
These lifetimes should decrease as temperature
increases. Long-waveleugth phonons have niuch
longer lifetimes, but we should be able to neglect
their influence as long as we avoid low-tempera-
ture problems. For metals there are also elec-
tronic excitations. From the theory of thermal
conduction at temperatures of the order anc above
the Debye temperature,?® %2 and from the measured

™ - 7
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thermal. conductivity values, the relaxation time
which describes the approach to equilibrium of the
electrot:s due to cullisions wath phonons in equilib-
rium is eslimated as 7, ~10°1*-10""* s, This
should decrease with increasing temperature. The
electron-electron relaxation time is rather long at
room temperature,'®2°2! = ~107'2 5. but it is ex-
pected to decrease with temperature as 12,

We can now draw the following conciusion: For
a honmiogeneous deformation process, the electron-
phonon system ought to be able to mz.intain itself
near equilibriuta as long as the deformation at any
material point changes little in a time of order
10°* s; this means strain rates of order 10'° s"!
are easily allowed. Such strain rates are well be-
vond those :induced by weak shocks. This result is
helpful because in maay fast deformation proces-
ses the homogeneons part gives the major contri.
bution to thermal functions, and together with the
ground state it represents the dominant contribu.
tion to thermodynamic functions. For the example
of a 100-kbar shock in Al, the ground-state de-
formation and the thermal adiabatic homogeneous
deformation account for 9% of the increase in -
ternal energy and 9% of the increasc in the stres-
ses.

The last barrier to a complete thermodynamic
description of dynanmic deformation processes is
the heterogeneous nature of plastic flow. On the
finest scale. the flow is localized to atomic-sized
regions, as in dislocations, which act as dispersed
moving sources of mechaniczl excitations. The
problem is to determire how long it takes this
mechanical energy to become thermalized, We
might imagine that the higher the rate at which
plastic flow is driven, the finer the scale of this
heterogeneity, and that near thermal equilibrium
could be maintained for plastic strain rates up to
the same order as those which limit homogeneous
deformation processes. This argument then im-
plies approximately local equilibrium in the pres-
ence of heterogeneities on a larger scale. Evidence
for large scale thermal and mechanical inhomo-
geneities in the fast deformations of very brittle
solids has been discussed.??

1f the assumption of thermodynamic equilibrium
fails, it is possible to identify the errors which
can result. To illustrate, consider the passage of
a plane compressive shock through a polycrystal-
line material, assume the material remains in lo-

cal thermodynamic equilibrium except for those
mechanical excitations generated by plastic flow.
The initial and tfinal states are equilibrium states,
and we will use the thermodynamic theory of Sec.
{II to calculate thermodynamic variables in the fin-
al state. The first step is to integrate the conser-
vation equations (40) and (41). to fird the normal
stress g as a function of the normal strain ¢
through the process. The result for u(e) is lhe
proper thermodynamic value in the final stat~ The
sawne is true for {(c) in the final state, computed
by integrating Eq. (42). Through the process.
however, o(e) is 2 mechan :al variabie, its value
is given corr: 'tly by the consers ition equations,
but it does not represe - material :u thermcdyna-
mic equilibrium. We thus ma.e un error when we
use thermwiynani:cs to calculate 7 and ¢ from
o(e). But the err.-r should be small, at r 7st of
the sanie ord- r a- the contributior 5f the entropy
to the stresses. For a 100-kbar -hock i Al, this
is not greater than 1¢. This now becomes the
measure of the e1ror in all hermodyn..nic quan-
tities we calrulate. As for the increase in the tem-
perature from the initial to the final state, most is
due to homogeneous adiabatic compression. The
calculation of the ~ntropy in the final state, and of
the tempe rature increase due to dissipative heat.
ing, is based on integrating the inexact differential
1dy [ see Eqs. (22b) and (23)] along a path defined
by T and §, so the error in the integral is at most
of the same order as that in 7 and y along the path.
From this point of view the assumption of thermo-
dynamic equilibrium is seen as an approximation
of very good accuracy.

V1. CONCLUSION

1n this work we have shown that within the con-
ventional assumptions of plasticity theory. the
complete thermoelastic-plastic equations of flow
can be expected to have a wide range of applicabil-
ity. Evaluation of these equations for general flow
problems would require a large computer.?* How-
ever, for one-dimensional strain problems a rela-
tively simple system of equations results. These
equations will be applied in the following two pa-
pers to experimental data on an extensively studied
Al alloy in order to obtain model-independent in-
formation concerning its flow function and equation
of state.
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(1979); () D. C. Wallace, in Solid State Physics, ed-
ited by H. Ehrenreich, F, Seitz, and D. Turnbull (Aca-
demic, New York, 1970), Vol. 25, p. 301.

D, C. Wallace, Thermodynamics of Crystals (Wiley,

New York, 1972).

31. Prigoglne, Thermodynamics of Irreversible Proces-
ses, 2nd ed. (Interscience, New York, 1961),

4S. R. deGroot, Thermodynamics of Irreversible Pro-
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Experimental measurements of wezk-shock profiles in 1the alloy €061.76 Al are analyzed by irreveisible.
thermodynamic finile-sirain theory 10 obtain a complele description of the flow process 1hrough the shock
compression. including the eniropy produclion and 1he relations among the flow variables of shear siress. plasiic
sirain, and plasiic strain rale. The primary quantilies, the normal siress and the normal sirzin. are delermined
enlirly from 1the equations of motion and 1he shock-profilc data; 1he secondary quaniities. the shear siress, plasiic
sirain, lemperaluce. and eniropy, are then determined by thermodynamics. 11 is shown 1hal infinitesimal sirain
theory gives unreliable results as soon as the plasiic sirain becomes of 1the same order of magnilude as 1lie elasiic

strain.

I. INTRODUCTION

A rich source of experimental information on
dynamic deformation processes in solids is shock
profiles in the weak-shock region!; the term
weak shock is here used to mean a shock whose
velocity is not greater than the elastic precursor
velocity. The profile measurements are capable
of determinirg the particle velocity as a function
of position and time in a solid through which a
planar shock is propagating. This gives a one-
variable map of the shock-induced deformation
process, since the particle velocity is one of the
several variables which are coupled into the pro-
cess. The complete process is governed by three
coupled subsets of equations®: the equations of
motion, which express conservation of mass,
momentum, and energy; the thermoelastic equa-
tions, which are relation among stresses, elastic
strains, temperature, and so on, and whose co-
efficients are reasonably well known experimen-
tally in the weak-shock region; and the plastic
constitutive equation which relates the plastic-
flow variables. The plastic constitutive relation
is experimentally the least-known material
property involved in the whole process. Experi-
mental shock profiles have generally been ana-
lyzed by constructing parametrized dislocation
models to represent the plastic flow. The decay
of the elastic precursor in iron® was so analyzed
by Taylor* and by Rohde,® and in aluminum by
Arvidsson ef al.® In a series of papers on single-
crystal LiF, the Washington State University
group develnped a model based on nucleation and
growth of dislocation loops.” A detailed numeri-
cal study of dislocation multiplication effects on
profile shapes has been carried out by Herrmann
and co-workers at Sandia.*

In the present work we take an alternative
approach: Given the weak-shock profiles and the
relevant thermoelastic properties of the solid

under consideration, we set out to extract from
this information the constitutive relations govern-
ing the plastic flow. The results so obtained can
be considered experimental results, independent
of a dislocation-dynamics theory. A profile
analysis of the present kind is made possible by
the great increase in experimental precision in
recent years, as illustrated by the example of
6061-T6 Al: The 1963 measurements of Lunder-
gan and Herrmann,® with a time resolution of
approximately 2 us, gave a value of 6.4 +0.7 kbar
for the Hugoniot elastic limit; the 1969 measure-
ments of Johnson and Barker'® with resolution of
a few ns gave 4.1 kbar.

The Johnsonand Barker data are analyzed in
the following section, and the flow variabies,
which are the shear stress, plastic strain, ana
plastic strain rate, are determined with respect-
able precision through each shock profile.

Il. PROFILE ANALYSIS
A. Shock velocity 2. 1 parniicle velocity

We have chosen to study 6061-T6 Al because
there are available a set of shock , ofiles and
also measurements of the polycrystal third-order
elastic constants. The profile data of Johnson
and Barker!°® are chown in Fig. 1, in the form of
the particle velocity as a function of time ¢,
where { =0 when the elastic precursor arrives at
the aluminum surface. The measurements were
accomplished with a laser velocity interferometer
looking at the aluminum through a fused-quartz
window; a small impedance-difference correction
was applied to transform surface velocity to
particle velocity.

The qualitative character of the profiles is
illustrated in Fig. 2, where the various states in
the shock compression process are lettered,
from the initial state g at zero stress and room
temperature to the final state e. The experi-

1487 © 1980 The American Physical Society
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FIG. 1. Data of Johnson and Barker [Ref, 10) for six
Impact expertments on 6061-T6 Af.

ment supports the following description: The
front from state a to state b, called the elastic
precursor, is a steady wave; the region from
state b to state ¢, which we call the plastic pre-
cursor, is nonsteady; the plastic wave from state
¢ to state e is steady with velocity D. We gener-
aily refer to D as the shock velocity.

A precision method for measuring all three of
the adiabatic polycrystal third-order elastic con-
stants ¢, &, v was described by Clifton.!' His re-

a 1
FIG. 2, Schematic representation of a shock profile

moving as two steady waves and an intervening unateady
reglon. Particle velocity v as a function of time ¢,

sults for these for 6061-T6 Al, and also for the
two adiabatic second-order elastic constants A,

u (the Lamné constants), and for the initial-state
density p,, are

p,=2.703 g/cm®, {~-1.40 Mbar,
A=0,544 Mbar, =-2.82 Mbar, (1)
u=0.276 Mbar, v=-4.69 Mbar.

The first step in the analysis is to determine
the shock velocity for each profile. For the first
five shots of Fig. 1 (all but 926), the original
data time record runs from impact time; hence
it is possible to compute for these shots the elas-
tic precursor velocity c, (in mm/us):

¢,~6.46£0.01, (2)

where the £+0.01 represents merely the experi-
mental scatter. This velocity is considerably
faster (1.4% faster) than Clifton's value'! of the
longitudinal sound speed ¢, (in mm/us):

c,=6.37. (3)

The difference is mostly due to finite-<train
effects in the elastic precursor: The normal
strain on tie precursor is ¢, =0.0037 and this is
not exactly infinitesimal. With the elastic con-
stants of Eq. (1), I calculate a velocity of 6.43
mm/ us in finite-strain theory for a steady wave
of this strain amplitude.

Since the profile analysis is going to be based
on the treatment of the plastic wave of each pro-
file as a steady wave, the appropriate velocity D
has to be computed from the difference in arrival
times of two similar steady waves. This pro-
cedure eliminates any nonsteady effects which
may have been present in the time immediately
following impact. In this way we obtain one
velocity from the two shocks at 21 kbar and two
independent velocities from the three shocks at
37 kbar. Comparing these results with velocities
determined from the arrival time of each separ-
ate plastic wave shows small differences (of order
1%) for the 21-kbar shocks and no differences
(random scatter of order 0.2%) for the 37 kbar
shocks. It is therefore safe to compute the
shock velocity for the 89-kbar shock from the
precursor velocity (2) together with the profile
time record shown in Fig. 1.

A well-established experimental result for
shocks up to the Mbar range is that shock veloc-
ity is proportional to the final-state particle
velocity v,.'* In the present work, where one D
is computed from two profiles, we assign the
corresponding value v, as the average for the
two profiles; there is no averaging for shot 926,
The resulting collection of four D(r,) points is

20
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plotted in Fig. 3, along with the least-squares-
fitted straight line

D=5.26+1.47v, mm/us. (4)

Also shown for comparison is the result of Marsh
and McQueen'’ for 6061 Al of unspecified hard-
ness; they measured D for shocks of 70 to 680
kbar and fitted the data to the line D =5.29
+1.38yv,. The agreement is good in the pressure
region of comparison. In the subsequent analy-
sis, we take D from the relation (4).

B. Integraiion of 1he equations of molion

The equations for conservation of mass and
conservation of linear momentum in plane-wave
geometry are given in Ref. 2, Eqs. (40) and (41),
in a mixed Eulerian-Lagrangian form; it is con-
venient here to use the Lagrangian forms

a¢ ar

=T )
éo v

?i——pQX' (6)

where X is the Lagrangian coordinate, i.e., the
position in the initial configuration of a material
plane, ¢ =1-p,/p is the normal strain, c is the
normal stress, all variables are functions of X
and ¢, and v(X,!) is the particle velocity, i.e.,
the velocity in the shock propagation direction

of that material plane whose Lagrangian coor-
dinate is X.

We define a steady wave as one which propa-
gates at a fixed velocity without changing its
shape; in mathematical terms this means v(X,!)
is a function of only one variable, namely X - c1,
where ¢ is the propagation velocity:

wX, ) =v(X-ct). (7)

If a wave is steady, or if any portion of the wave
in a fixed range of the particle velocity is steady,
then we can argue that the flow process is steady
in that range, i.e., each successive planar slab
of material passes along the same physical path
while the steady wave passes over the material
plane. This means each thermodynami« variable
is also a function of only X — ¢¢, and in particular

e=¢e(X -ct),

0=O(x—§‘l).

(8)

Under the condltions (7) and (8), the equations
of motion (5) and (6) become the total differential
equations ‘ )
de =c"dv, (9)
do=p,. 3. (10)
Equations (5) and (6) can now be integrated

throngh the profile illustrated in Fig. 2, as
follows.

1 I

6.0

o
[+ ]
1

D(mm/ps)
o
T

54}-

I 1 1

70 kbar

D=5.26+147 v,

o o PROFILE VELOCITIES

— = LASL (70-680 kbar)
i ]

FIG. 3.

52 1 1 L
o 0.1 0.2 03 04 05 06
Ve (mm/u.s)

Shock velocity versus particle veiocity for 6061-T6 Al.

Data points are from the Johnson and Barker pro-

files, the straight line is a lcast-squares fit to these points, the dashed line is the fitted result of Marsh and McQueen

‘Ref, 13).
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Elastic precursor. The front is steady and
moves at velocity c,; the initial conditions are
¢=0, 0,=0; Eqgs, (9) and (10) then give

6=1,/c,, (11)
Gy =PCply . (12)

Plastic precursor. States b and c are charac-
terized by constant values of v, and v, moving at
the velocities c, and D, respectively; an approxi-
mation compatible with the experimental data for
v(X, 1) between states b and c is the straight line

v:v.-’-(vc_v.)(sﬂ)' 6:&2_ (13)

X5 D
For this function, (5) and (6) integrate to
v—v 8(v - v,)
e=¢+ c’h(l+2(vc_t;.)), (14)

Plastic wave. We can again use the steady
wave forms (9) and (10) to integrate from ¢
toward e and find

e=e.+D W (v-v,, (16)
og=0.+pD(v-v,). (17)

It may be noted tnat we have relied heavily on
the experimental data in devising the above inte-
gration procedure. For the six profiles of Fig. 1,.
v, lies in the range 0.023.-0.026 mm/ us, with
nothing in the data to indicate a dependence on
either the shock strength or the propagation dis-
tance. As for the value of v, this can be ciiosen
somewhat arbitrarily, but all the profiles are
consistent with v, =0.050 mm/us, which was
used in the present calculations. For the v(X,¢)
curve in the unsteady region from b to ¢, we are
fortunate that expertment provides a simple ana-
lytic approximation. This also allows us to see
clearly a result which may be expected to hold
in general: For the unsteady flow region, the
Rayleigh line, which is the o{¢) relation, is not
a straight line. The Rayleigh line is straight for
a steady wave; this is obvious from the combina-
tion of Eqs. (9) and (10) to give do =p,c*de. But
for o and ¢ on the plastic precursor, the combina-
tion of (14) and (15) produces a g(e) relation
which is slightly curved (concave downward) in
this region.

We used the above equations to calculate o and
€ as functions of v for each of the six profiles.
The raw data points for v were used. The re-
sults for the two profiles at 21 kbar, and for the
three at 37 kbar are in excellent internal agree-
ment.

C. The flow behavior

The thermoelastic differential equations for
the normal stress o and the shear stress r for
plane-wave geometry are given in Ref. 2, Egs.
(37) and (38), The independent strain variables
are the total normal strain ¢ and the plastic
strain y. Since the strains are small in weak
shocks, it is convenient here to integrate do, dr
and express ¢, T as power series in¢, y. This
can be done in either of the following two ways:
(a) Expand the stress-strain coefficients in pow-
ers of elastic stra!ns, convert toe, ¢, and inte-
grate do, dr or (b) expand the internal energy in
powers of elastic strains and calculate stresses
from their thermoelastic definition as strain
derivatives of the internai energy.'*!* We carry
the expansion of g, 7 only to second order in
strains because coefficients of third-order terms
involve the fourth-o=der elastic constants, whose
values we do not know,

In addition to the strain terms, the equations
for do, dt coutain the following terms in the
eatropy: py,TdS in do and {p(y, - ¥,)TdS in dr,
where T is the temperature, S is the entropy
per unit mass, and y, are the anisotropic
Griineisen parameters. Since TdS is propor-
tional to rdy,? and since 7 is of lewest-order
linear in strains, TdS is a secor«.- arder quan-
tity. Hence to express the above I'dS terms
correct to second order, ¥% may be evaluated to
lowest order in strains, which means y, may be
taken as the ordinary Griineisen parameter eval-
uated in the initial state y,. The completed re-
sults for o and.r to second order in strains are

o=(A+2u) —2pPp— (I + Ju+ [+ 28
+ (42 + 10u + 4E)ey— (A +6pu + 38 + Lol

oy, [ e v, (18)

r=pule—2p) -+ 3p+E)2
+( A+ Fu+ie+iviep—($u+Fo?.  (19)

The integral in (18) is the entropy contribution to
0; an entropy contribution to v would appear in
third order.

By integrating the equations of motion, we have
already determined the variables g, ¢ through
each shock profile; note for a given profile the
variables correspond to a fixed Lagrangian coor-
dinate, i.e., to a fixed planar slab of material.
With o,¢ given, Eqs. (18) and (19) were then
30lved for 7, y. Because of the frdw in (18), it
was necessary to solve (18) and (19) simultane-
ously by numerical iteration. For y,, we used
the value for pure aluminum,*
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ve=2.16. (20)

The results for 1 as a function of § through each
shock profile are shown in Figs. 4-6. Since the
time variable through each profile is also known
from experiment, it is possible to calculate J:,
the Lagrangian time durivative of y. These re-
sults are also shown in Figs. 4-6. The shaded
area at the top of each § curve is meant to indi-
cate the experimental scatter there; this scatier
is not significant in the overall analysis since we
have § spanning a range of four orders of magni-
tude.

It is seen from Figs. 4-6 that the shear stress
increases rapidly, and 4rives up the {low rate, at
the beginning of the flow process; toward the end
of the process the plastic flow slows, and It
finally stops when the material reaches the
static state ¢, where ¢ reaches its maximum.
For the 89-kbar shock the rise of the plastic
wave was possibly too fast to be foliowed by the
instrumer.@ation, so the observed rige time of
5 ns is an upper limit (see Fig. 1); therefore the
maximum plastic strain rate of 10” s in Fig. 6
may be only a lower limit. The flow curves of
Figs. 4-6 support two qualitative conclusions for
6061-T6 Al, as follows:

(a) The rapid increase of the shear stress at
the flow front is due mainly to strain-rate effects.

(b) Except for possibly the weakest shocks, the
shear stress decreases in the approach to static
eqnilibrium behind the shock.

We comment now on the errors in the 7,y
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FIG, 5. Plastic-flow process for three shocks at 37
kbar,

curves. At the front of each curve the error in
7 is small since the total strain there is mostly
elastic. Later, however, 7 no longer increases
even though e continues to increase strongly.
This is because the metal is flowing in such a
way as to keep the shear stress from increasing,
i.e., plastic flow is canceling cut much of the
increase in the anisotropic part of the purely
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FIG. 6. Plastic-flow process for the 89-kbar shock.
The four points Indicated were interpolated 2s a straight
line In particle velocity versus time on the plastic wave
front (see Flg. 1).
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elastic strain. because of thi< b .+ cancella-
tion, the error in our compu. . which comes
ultimately frrm e+ - .vs in our thermoelastic
strens-strain 1 lations. can be significant in the
late stage of each shuck compression profile
«near *he firal state). The effect depends in a
complicated way on the coupling between the

e --< for ¢ and 7. To learn something about
this we cor:puted ! and 7 at the final state in in-
finitesimal strain theory; that is, from equations
(18} and (19) with the second-order strain terms
omitted. The results are compared with the
second-order calculations in Table 1. It is seen
that infinitesimal strain theory produces unac-
ceptable results for al! the shock groips. It is
further obvinus that inclusion of the next-higher-
order strain terms, corresponding to fourth-order
e;astic constants, would be desirable for the 89-
kbar shock.

D. Consiilulive relalions

In addition to the steady-wave profiles analyzed
above. Johnson and Barker! also presented a
series of 9.5-kbar profiles which show the decay
of the elastic precursor through a material dis-
tanre X of 4 to 38 mm. In these experiments they
measured the free surface velocity, which gives
quite accurately the particle velocity at the pro-
file point b thrcugh the relation: ¢, equals half
the free surface velocity at b. These data can be
analyzed by Taylor’s theory,! which is based on
the obser ations that the elastic precursor travels
on the lead C, characteristic and that ¢ =C there.
With the characteristic velocity c,, the equations
of Ref. 4 give

% =0,
(21)
by = —Pa2 4%
u dx
From this and (19), the shear stress is
fb":“fb"("*'%#"'ik:. (22)

where €, is given inleading order by (11). Thusfrom
the elastic precursor data for y,(X), we canfind the

TABLE I. Final-state values y,, T, as calculated
in infinitesimal strain theorv and in second-order
theory. a“eraged for each shock group. Also the en-
tropy contributions to ,, 7,. 7, 1is in kbar.

Shock Infinitesimal Second order FEntropy contribition
group v T, v, 7, ¢, B
’kbar) e e (3 e (J e

21 0.010 2.6 0.013 1.6 12 —4%

37 0.016 5 0.024 1.8 1% -9%

59 0.016 18 0.053 3.5 3% —25%

7,4 relation on the line ¢ =0.

The flow relations we have determined are
shown in Fig. 7 as curves of 7 vs § at fixed ¢.
The =0 curve is from the elastic precursor
decay, Eqs. (21) and (22). The curves for ¢
=0.001,0.002,0.004 are each romposed of three
points; one from the 21-kbar shocks (Fig. 4),
one from the 37-kbar shocks (Fig. 5), and one
from the 89-kbar shock (Fig. 6). Though the
values of y are very small, all of these curves
are quite accurate; recall that cancellation errors
in 7 are not important when ' is small. A set of
points at the largest plastic strains we could
determine were taken from near the end of the
89-kbar shock; these have ¢ values of 0.048—
0.054, and we expect them to be accurate in /. and
i but possibly in significan* error in 7. It should
also be noted that these points represent material
under a pressure of approximately 84 kbar and
at a temperature of about 380 K. Results re.
ported recently by Herrmann,!® based on analysis
of part nf the same experimental data through a
relaxation function formalism, differ significantly
from the present results, presumably due to the
inclusion here of third-order elastic constants
and entropy effects (the two methods are com-
pared analytically in Ref. 2). The plastic-flow
behavior of 6061-T6 Al was measured by Holt ¢!
al.’” for ¢ up to 0.08 and | from 10 to 10° s**:
they observed essentially no strain-rate depend-
ence at all, and a mild strain hardening. The
curves of Fig. 7, extrapolated to low strain rates,
are consistent with the measurements of Holt
et al. Note that in the extrapolation to iow strain
rates, the four curves for small ¢ values will all
cross, giving 7 as an increasing function of ¢ at
a fixed ¢ of say ¢ =10 s"'.

E. Temperaiure and eniropy

The theory of Ref. 2 also enables us to calculate
the temperature and entropy through the shock
protiles by meansz of the equations

TdS =2Vrdy, (23)
TdS = C,[dT + Ty,dIn(1 —¢) + Ty, - v,)dv], (24)

where V =p’! is the volume per unit mass and C,
is the heat capacity at constant elastic configura-
tion. The anisotropic Griineisen parameters may
be expressed as derivatives of the stresses t,
with respect to the internal energy U at constant
elastic configuration®!*;

Pyg= _(fa-’;})n. (25)

A set of approximations which simplify the
numerical integration of (23) and (24), and which
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are of acceptable accuracy for the present calcu-
lations, are

Y=Y =7,
C,=Cy,

C,=0.88x107, (26)

py = constant =p,y, ,

where the C, for 6061-T6 Al is measured in erg/
gmK. The first approximation expresses the
idea that the thermal energy exerts outward
forces in an essentially isotropic way, i.e., it
contributes nearly equally to all three principal
stresses |see Eq. (25)]. C,=C, is the same sort
of approximation. To support taking C, constant,
we note that for any characteristic temperature
theory, as e.g., the Debye theory, with charac-
teristic temperature © a function only of the vol-
ume, the relations hold:

$=S(e/T), e=06(V);

then S = constant implies 6/T = constant, which
implies C, = constant, Since entropy generation
is small in the weak-shock region, the thermody-
namic states are not far from §=S§,, and C, is
not far from its value in the initial state, which
is the value given for 6061-T6 Al in (26), Fin-
ally the approximation py =constant is in keeping
with dlny/dInV=—1 for pure Al,'* and with the
exteasive shock-related study of Neal'® for Al

and Al alloys for compressions up to a factor
of 2.

The initial temperature for our calculations
was taken as T,=295 K. The values of T and
§ - S, in the final state, along with stresses and
strains at some intermediate profile points, are
listed for each shock group in Table II.

111. DISCUSSION

The application of the general thermoelastic—
plastic-tiow theory to accurate one-dimensional
strain experiments on 6061-T6 Al has been shown
to be relatively simple. With the velocity profiles

TABLE 1I. Thermodynamic quantities at state b and
at the final state e. Averages are listed for each shock
group. Stress is in kbar, temperature in K. entropy in
10® erg/gmK. T,=295K. The number in parentheses
is the last significant digit.

Quantity 21 kbar 37 kbar 89 kbar
€, 0.0036 0.0038 0.0038
o 4.0 4.1 4.1
T 1.0 1.0(6) 1.0(5)
€, 0.0240 0.0414 0.089
0, 21.0 36.7 89
'R 0.0127 0.0244 0.055
T, 1.6 1.8 3.5
T, 313 327 380

Se— S, 0.5 1.2 5.3
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divided into steady and self-similar parts in the
stress range 20-90 kbar, only algebraic compu-
tations are required. For more general profiles
the analysis will be more complicated. A more
complex space- and time-dependent representation
of material velocities is required for the initial
evolution of shock profiles, as illustrated by the
data of Johnson and Barker'® at approximately

9 kbar.

Lipkin and Asay'® have recently reported veloc-
ity measurements on 6061-T651 Al at 20 kbar
which are approximately seMf-similar throughout,
implying a very weak flow-rate dependence for 7.
The present analysis also shows a small strain-
rate dependence at the 21-kbar stress level (Figs.
4 and 7). In addition, Asay and Lipkin®® used the
same raeshock and release measurements to esti-

(L]
[

mate the shear stress for 6061-T651 Al in the
shocked state at 20 kbar. Their result for Y =27
is 2.6 kbar; the present result from Fig. 4 at 21
kbar is 27=3.1 kbar. The difference is not un.
reasonable in view of uncertainties in either
analysis. A new experimental method for propa-
gating large one-dimensional shear waves at high
stresses?! should provide valuable new data for
improving our knowledge of the flow functions of
metals.
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The Rankine-Hugoniol jump conditions for 1he increases across a shock of 1the normal siress. normal sirain. and
intemnal energy are noi valid for weak shocks in solids. Correci jump equations for a solid van he obiained by
inlegraling 1he equalions for conservalion of mass. momentum, and energy along the Rayleigh line through the
shock process: these jump equations then depend on the delails of 1he shock profile. Further. because a uniaxially
compressed solid supports a nonzero shear siress. 1he locus of thermodynamic siales reachea behind planar shocks.
which we call 1he anisoiropic Hugoniot, requires for its description 1wo siress variables and 1wo sirain vanables. In
the preseni paper 1the thermodynamic description of 1he anisoiropic Hugoniot is given, and for 1he example of 6061-
T'6 Al the shock-profile jump equaiions are derived. 1the weak-shock equation of siale is compuled. and 1he pressure
on 1he principal adiabai is found 10 differ from 1he resulis of Rankine-Hugoniot theory by several perceni in the

range 0 100 kbar.

I. INTRODUCTION

Shock experiments have been extensively used
to determine equations of sta‘~ of solids.!'™ The
quantities measureu are the shock and particle
velocities, and from these the Hugoniot equation
of state, a pressure -volume -energy curve, is
computed by means of the Rankine -Hugoniot jump
conditions. Since these jump conditions were
constructed specifically to describe shocks in
gasas or liquids,*™ their use to analyze shocks in
solids represents the neglect of differences in
solid and liquid behavior. This situation has been
recognized in the past,'™ but the theory and the
experimental data needed tc correct for solid-
liquid differences were not available. Ir the pre-
sent paper we present the needed theory for the
case of weak planar shocks in initially isotropic
solids.

It is helpful at “1e outset to identify the charac-
teristics of shocks in solids which are to be ac-
counted for in thi: work. The Rankine-Hugoniot
jump conditions and related thermodynamic analy-
ses®"” will be referred to as "liquid Hugoniot
theory.” This theory assumes that the shock is a
single steady wave, which means the jump con-
ditions can be calculated by the black box treat-
ment: The enlire shock front is considered a
black box of !ixed thickness which moves at the
shock speed; ahead of the box is material in the
initial equilibrium state and behind the box is uni-
formly moving material in the fina! 2quilibrium
state. Without knowing ary details uf the shock
structure it is still possible to apply conserva-
tion laws: Whatever flows into the box must flow
out. In this way conservation of mass, momen-
tum, and energy give relations among the fol-
lowing three quantities: the normal strain from
initial to final state, the corresponding change

in the normal stress, and the change in the in-
ternal energy. Since these are therniodynamic
quantities, by the assumption of initial and final
equilibrium, it is then possible to calculate the
increase in entropy through the shock, a very
appealing result of the theory. Unfortunately,
however, the black-box treatment does not work
for a weak shock in a solid. For since the elastic
precursor travels faster than the plastic wave,
the entire shock front is not a steady wave; it
spreads continuously and takes in an ever in-
creasing mass of material, and momentum and
energy. This means the shock is a sink for these
quantities, and the steady Rankine -Hugoniot jump
conditions across the shock do not hold: All of
what flows in does not flow out. Conservation of
mass, momentum, and energy still hold on the
local scale, but the total change in these quantities
across the shock will depend on the spreading of
the shock profile.

The other approximation of liquid Hugoniot
theory is that the material behiund the shock is in
a state of isotropic pressure. This means there
is only one stress variable and one strain variable
on the Hugoniot, namely the pressure and the
volume, and the liquid jump conditions are suf-
ficient to specify these uniquely. A solid, how-
ever, after unjaxial compression by a planar
shuck, presumably supports a uonzero shear
stress, so the final state is characterized by two
stress variables and two struin variables; jump
conditions on the normal stress and the normal
strain are insufficient to determine all four of
these stress and strain variables.

In Sec. 1I we set up a thermodynamic descrip-
tion of the anisotropic (tetragonal) Hugoniot for a
solid; this description is not limited to weak
shocks. In Sec. III we show how the weak-shock
Hugoniot can be constructed from shock profiles,
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and carry out the construction for 6061-T6 Al.
Once the anisotropic Hugoniot is determined, it

is possible to calculate isotropic pressure curves,
including the principal adiabat; the theory for this
is also derived in Sec. 1II, and the adiabat for
6061-T6 Al is compared with the corresponding
curve calculated from liquid Hugoniot theory.

1. ANISOTROPIC HUGONIOT THERMODYNAMICS

The term Hugoniot will be used here to mean
the sequence of thermoaynainic equilibrium states
reached behind each shock for a sequence of dif-
ferent-strength shocks from a given initial state.
Our first ‘ob is to specity the Hugoniot in terms
of thermodynamic variables. Since they are equili-
brium states, they may be reached by a thermo-
elastic (reversible) process from the intial state.
For an initially isotropic solid in plane-shock
geometry, the stress and configuration variables
are shown in Fig. 1. Cartesian coordinate 1 is
the norma! (propagation) direction and coordinates
2 and 3 are equivalent transverse directions. An
element of mass in the initial configuration has
dimensions d,, w,, and density p,, and zero ap-
plied stress; in the final configuration it has di-
mensions d, w, density g, and normal compres-
sive stress ¢ and transverse comprec=sive stress
g —271. The final shear stress is 7. The con-
figuration transformation from initial to finai
state is given by the elastic transformation matrix
a‘,*? whose elements for the simple transforma-
tion of Fig. 1 are (Voigt notation)

al=d/d,, aj=al=w'w,, 1)

ai=af =af=0.
The conservation of mass equation for a* is®
p./5=V/V, =deta’ =alatal, (2)

where V =p’! is the volume per unit mass. As
shown in Fig. 1, there is also an increase in the
entropy, from S, in the initial state to S in the
final state.

o-2¢

w5 [ . L
K at ! s o
2 Ps+9a ‘ I '—*1 P.
' _J "o8 L_f p
|
;_. 1
FIG. 1. Thermoelastic transformation of a mass ele-

menl from the infijal stale to a final stale which is on 1he
anisoiropic Hugonlol.

WALLACE
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There is a different process by which the ma-
terial can be brought from the same in:tial to fina)
states shown in Fig. 1. This is the dynannc (ir-
reversible) process which occurs during planar
shock compression.®'" 1t is characierized by
simultaneous elastic strain a® and plastic flow
a®, so there are four strain variables, but with
the restrictions that the total tran: verse strain
is zero and the plastic flow is volume conserving,
there are only two independen! strain variables,
which can be taken as the total normal strain ¢
and the plastic strain ¢:

€=1-v/v,, (3)
J=-Ina?. (4)
The elastic strains are then related tc € and { by
af=(1 ~¢)e*, 19)
ag=e*”. (6)

For the moment, however, let us forget about
shocks. We consider the Hugoniot to be an equili-
brium thermodynamic curve nf states reached
through anisotropic elastic compression by a
tetragonal stress sysiem, while sonie reversible
heat dQ =TdS is put in from an extern:1 source.
For stress-strain variables on the Hugoniol we
take the set 0,7,a{, a;, or what is equivalent
through Eqs. 2and 3, o, 7, V or €, a5. Then we
proceed to find relations between these and other
thermodynamic functions. Mote the use of the
variable V does not imply that the compression
is isotropic or that the stress system is isotropic.
Alsc noie that there is no plastic flow on the Hu-
guniot; nevertheless the maierial must be pre-
sumed to be hardened in some way, so as to sup-
port elastically the shear stress r. This point
*ill be examined at the end of this section.

The thermodynamics of elastically anisotropic
materials is wel! described in textbooks.*!' For
the geometry of Fig. 1, the combined first and
second laws are

TdS =dU +0dV - 4VrdIna?, (1)

where U is the internal energy per unit mass, S
is the entropy per unit mass, and T is the tem-
perature. An independent equation for dS is the
identity which results from considering T as a
function of S and the elastic strains,

TdS =C,dT +TC, [y, dInV - 2(y, —y,)d1nag), (8)

where C, is the heat capacity at constunt elastu
configuration and v,, v, are the anisotropic
Grilneisen parameters (Voig! indices, see Ref.

9 or 11 for definitions). Between Eqs. (7) and (8),
T and S can be calculated by integrating up the
Hugoniot if the other quantities are known on the
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Hugoniot. The entropy is small in weak shocks,
but not as small as in liquid Hugoniot theory. In
particular, because ¢ and 7 are of lowest-order
linear in strains [Eqs. (9) and (10) below], the
lowest-order terms in (7) and (8) are of second
order. and these terms do not cancel in [dS, so
S -5, on the Hugoniot is of second order in strains.
In liquid Hugoniot theory,**’ because 7 =0 on the
Hugoniot, the second-order terms cancel and
S -S, is of order € at small ¢.

Another useful set of equations results from
considering o and 7 as functions of S and the elas-
tic strains, and calculating variations:

do =py,TdS —B,,dInV +2(B,, -8,,)dIna}, (9}
dt =3%p(y, - 7,)TdS —3(B,, —-B,,)dInV
+(B,; +3By;, +3Byy — B, — By )dInag, (10)]

B, =\ +2u — (4X +Bu +2f +4&)e — (BA +20u +8&)Inat,

B, —B;=2p —(4\+10u +42)e — (6 +24u +6% +v)lnag
B,, —B,; =24 —(4x +8u +4£)e — (6 +18u +6£ +v)lnas,
By, +3B,, +3B,, —B,, =B, =3u — (3 +9u +3£ +3v)e —

Equations (12)—{15) are correct to first order in
strains at constant entropy; they are also correct
te first order in strains in the region of the Hugo-
niot, because entropy contributions are formally
of second order there.

We car now clarify the point of work hardening
on the d+.goniot. The Hugon:ct described by Eqs.
(7)-(10; 1s entirely thermoelastic; the elastic
strains are presur.ed homogeneous (or at least
slowly varving on an a.omic scale), and the energy
stored in these strains {8 recoverably by reduc-
ing the stresses to ze;-0. In the conservation of
energy, Eq. (7'. no energy has been allotted to
work hardening. However, wren a real solid is
shocked to the Hugoniot, a small amount of energy
is used to acc mplish the work hardening and re-
mains stored in the defect structure of the solid.
Such eneryy is elastic in nature, inhomogeneous
on an atomic sc:1le, and recoverable by annealing;
it does not correspond to the same stress-strain
relation. or anv nther thermoelastic relation, as
does the energy stured in homogeneous elastic
strain. Now ir our dynamic theory of the shock
process, the energy associated with work harden-
ing 15 accuomted for through conservation of
energy, but it is not stored in any "recoverable”
form; it is instead assigned as part of the dis-
sipation. Hence if we use the dynamic theory and
shock data to calculate the thermodynamic varia-
bles in the shock-compressed state, we construct
a Hugoniot which is the same as the one described
hy Eqs. (7)-(10) and which approximates the real
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where B, are the adiabatic stress.strain coef-
ficients. Equations (9) and (10) hold everywhere
for the configuration change of Fig. 1, i.e., they
hold for arbitrary strains and entropy, or for
arbitrary stresses and entropy. For the present
tetragonal geometry, two of the B,, are related by

B:l =B|z"2"- (11)
If enough were known of the quantities on the k. -
goniot, Egs. (9)and (10)could be v-ed to find in-
formation about the B,, coefficients; :this is ana-
logous to the calculation of the bulk modulus in
liquid Hugoniot theory.?

In the small strain region the By, can be ex-
panded at constant S in terms of the two adiabatic
second-order elastic constants A, u and the three
adiabatic third-order elastic constanis ¢, £, v, as®

(12)
(13)
(14)
(15)

(18u +3v)lnaj .

r
physical Hugcniot by replacing energy stored in
the defect structure by heat. The error is small,
as discussed in Ref. 9.

111. THE SHOCK EQUATION OF STATE
A. Consiruction of 1the Hugoniol

We proceed now specifically for the case of
6061 -T6 Al and base our calculations on the pro-
file measurements of Johnson and Barker'? and
on the methods previously developed for analy-
zing them.'® The experimental profiles are de-
scribed by three regions on the graph of particle
velocity v as a function of time (Fig. 2):

(1) The front from state a to state b is the elas-

‘4

p b
- —
Q
FIG. 2. Schematlc represenialion of 2 shock moving

as two steady waves and an intervening unsieady region.
Pariicle velocity v as a funcilon of 1ime ¢{.

oy
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tic precursor, a steady wave nioving at velocity
€,; U, =constant.

(2) The plastic precursor is an unsteady region
from state b to state c; r,=constant.

(3) The plastic wave extends from state ¢ to the
final Hugoniot state e, is steady, and moves at
velocity D.

The experimental profile data needed here are

v,=¢,%0,=0,

17, 20.0236 mm/us, v,=0.050 mm/us, 16)
c,=6.46 mm/us,

D=5.26 +1.47p,mm/us.

The jump conditions for ¢, o, U are obtained
by integrating the conservation equations through
the profile with the following results.'°
At b:
€,=v,/c,,
0y =P, Col'y s (17)
U,-U,=35c%3.
Atc:

€ =c;'

ret %c;l(l'c - "6)6 ’
0, =P,C,v, — 1P, (v — )0+ - - (18)
U -U, =32 =3 De,le, —¢) 0+ -+,

Ate:
¢, =€, *D"(r, - 1)

a,=0,+2,Dly, -v,i.
U, - U,= D% —€) + 3% (19)
+Dc'[(£, +e,)le, —¢,)
e, -6+
The small quantity 8(5 <« 1) is
6={c,-D) D, (20

and in (18) and (19) the +--* represent terms
of second and higher order 1n 6 which arise from

(T3

[#3

a series expanston of o(y) in the unsteady region
froni state b to state ¢ The expansion was made
10 facilitate analytic wtegration of the internal
energy dU =V ode. The final-state particle ve-
locity u, may be elimmated from Eqs. (19) in
favor of the shock velocity D by the experiniental
relation (16). The shock velocity is not defined
for y,<v,.

Equations (17)—(19) constitute the junip condi -
tions for €. ¢, U, from the nitial state a to the
final Hugoniot state ¢. Final-state values for
6061-76 Al up to o =100 kbar are listed 1n Ta-
ble I.

The equations for the shear stress + and the
plastic strain ¢ through the profile are the same
as Egs. (9) and (10). with TdS replaced by the
dynamic entropy production2V7dy and with ¢1na$
replaced by —3dl according to (6). It is not pos-
sible iu principle to find jump conditions for <
and ¢ because the equations for them at state ¢
contain [¢rdd. the integral to be evaluated along
the path of the process. In practice this problem
can be eliminated by constructing an apprcxiniate
jump conditicn for the imegral itself We expect
the integrai to be roughly p-oportional to c:. since
§,—S, 1s of second order in strains For 6061-T6
Al the integral was evaluated numerically in
Ref. 10 for six shock profiles ranging from 21
to 89 kbar; a check of these integrations shows

f'mu-: (32..3)2 . (21)

(in kbar) for all the profiles. We taerefore cal-
cuiated r and lna%= - 3¢ on the Hugoniot. from
integrals of Eqs. (9) and (10) with the expansions
(12)-(15) for the B,, coefficients. the resulting
equations being the same as (18) and (19) of Ref.
10. We also used the function 32¢ kbar as an
interpolation approximation for the integral (2')
and the experimental elastic constants of Clifion. 1?

TABLE 1. The anisotropic Hngonlot for 6061-76 Al in the weak-shock reglon.

D o U-U,
€ (ram/us) (kbar) (10° evg/g) —lnag
0 0 0 0
0.0037% 4.1 0.003 ]

0.0082° 5.3335 8.2 0.013 0.0009
0.020 5.364 17.7 0.072  0.0049

0.040 5.5506 35.4 0.274 0.0117
0.060 3.775 35.4 0.63 0.0183
0.080 5.966 71.9 1.17 0.0247

0.100 6.169 103.4 1.92 0.0305

T T S~8, s—8§,
(kbas) (K) (10% erg/gK) (Liguid the-.1y)

0 295 0 0

1.1 297 0 0

1.6 300 0.07 -0.003

1.7 310 0.4 0.04

1.8 326 1.2 0.31

2.2 345 2.4 1.1

3.1 368 4.3 2.7

4.7 398 7.4 5.4

2 Corresponds to profile point b.
b Corresponds 10 profile point c.
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The results are listed 11 Table i.

With the energy and the stresses and strains
known. :t 1s possible to mtexrate Eqs. (7) and
(8) up the Huguniot to fan.d T and §. The thermo-
dyranuc coefficients in these equations were
evalualed by - <et of approximatious whose justi-
fication was <iscussed 1w the prof:le analysis.'”
and which are of sufficitent accuracy here as well:

IR TN p:.:p",‘, y=:2.16.
(22)
C,=C,=0.88> 10 erg gk.

Values of temperature and entropy on the Hugoniot
are also listed in Table I.

B. Construction of isolropic pressure curves

The next problem is the following: Giveno, 7.
at, afonthe Hugoniot, constructa P-1‘curve. This

can be done in different ways by carrving outa ther .

moelastic st rain from the anisotropic Hugoniot
to conditions of 1sotropic pressure. We could.
for example. hold o constant and increase the
transverse compressive stress unt:l it equals

o, adiabatically. An alternate process, which we
use here vecause of ils simplicity in plane-wave
geometry. 1S to bring the shear stress to zero
under conditions of constant density and entropy.
The thermoelastic process is described by equa-
1ions of the preceding section, in particular
(7)—(10), specialized to ¢V =0 and 7S =0:

AU = 4Vd Ina$, (23)
dT =2T(3, —;.)d lnaf. (24)
do=2(B,, - By;)d Ina§ , (25)
dT = bd Inoj , (26)

where b is the combination
b= By v 3By +: By — By — By (27)

For abbrewviation, the P-V curve to be constructed
will be called the isctrope. Equations (23)-(26)
are to be integrated from a point on the Hugoniot
(denoted by subscript H) to the corresponding
point on the isotrope (denoted by subscript /).

The independent variable of the integration is 7,
which goes from 7, to 0; Eq. (26) may be used

to eliminaie d lna$ in favor of A7 in (23)—(25).
Since the integration ranges are small increments
(the isotrope is close to the Hugoniot), the B,, are
taken constant for each integral. To integrate

dT, the approximations (22) for the anisotropic
Gruneisen parameters are used, which implies
dT =0. The isotrope may then be calculated from
the Hugoniot oy the equatious

S, =Sy, (28)
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Vi=V¥y, (29)
Uy =1y =2(V/0)TY (30)
T, =Ty, (31)
P, =0, -2((8), - By hlr, . (32)

The difference o, — /% at a comnion value of I and
5 15 approxmmately § 7, Egs. (12)—(15) can be
used to make a small-strain expausion of (32)

to find

ou-Py =371, 1=+ 2u v -1
x (e +3Ina,)+ |
=371 —ut(a+2u +E-Lv)
X (Tu/n)+ o] (33)

The term of order 7,/u should usually be quite
small.

To evaluate the isotrope for 6061-T6 Al, we
used the expressions (12;—(15) for the B,, and the
elastic-constant data of Clifton.'* This constitutes
2 neglect of contributions to the B,, from the en-
tropy on the Hugoniot and from fourth.order elas-
tic constants. The thermodynamic functions so
calculated are listed in Table II. Regarding the
principal elastic strains a{ ..d a3, we have avail-
able two equations from which they may be evalua-
ted on the isotrope: the integral of Eq. (26),

In(ag,/ag) =b"r,, (34)
and Eq. (2) for conservation of mass,
Inp,/p, = - Inaf, —21naf, . (35)

However, as there is only one stress measure
to the isotrope, na/nely P,, there is for an iso-
tropic material only one strain measure, say

V, or p;, and it is not necessary to evaluate o}
and 3. In other words, af and a; become equal
on tne isotrope, and (34) and (35) are not inde-
pendent.'* The change in the material configura-
tion in going from the Hugoniot to the isotrope is

TABLE 1l. The isotrope and the principal adiabat
for 6061-T6 Al.

Isotrope Adiabat
P P T P T
(g/cm?) (kbar) (K) (kbar) (K,
2.703 0 295 0 295
2.713 2.7 297 2.7 297
2.72% 6.1 300 6.1 300
2,758 15.5 310 15.4 308
2.816 32.9 326 32.7 322
2.876 52.4 345 51.9 336
2.938 3.7 368 72.8 351
3.003 97.0 398 5.4 366
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shown in Fig. 3.

1t is now straightforward to calculate the princi-
pal adiabat, which is the pressure-volume curve
at constant entropy S =S,. A convenient process for
going from isotrope to adiabat is to reduce S from
S; to S, at constant V bv extracting reversible heat
from the material. Ordinary P-V thermodyna-
mics gives!!

dU=TdS —-PdV , (36)

TdS =C,dT +pyC,TdV, (37)
(22

p"(au )'. (38)

From these equations, the differentials at con-
stant V are

dU = TdS =C,dT = (py)"dP. (39)

In going from the isotrope to the adiabat, the in-
dependent integration variable is S. Again since
the integration ranges are small increments, the
coefficients C,. and py can be set constant for each
integral. The adiabat, denoted by subscript A,
may then be calculated from the isotrope by the
equations

S,=S,, (40)
Vazvy, (41)
T,=T,exp[-(S, -S,)/C,l, (42)
P, =P, +pyC (T, -T,), (43)
U,=U +Cu(T,~T,). (44)

The principal adiabat for 6061-76 Al is listed
in Table II. The stresses on the anisotropic Hu-
goniot and the pressure on the isotrope and the
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FIG. 3. Change in ti.e elastic-strain variables in going
vom the anlsotrupic Hugoniol to the isotroplc pressure
curve. The density p; on the isotrope is related to the
elastic strains on the isotrope by Eq. (35).
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FIG. 4. Stresses as a function of clastic sirain: oy
and 7, are n the anisotropic Hugoniol, P, is on the iso-
trope, and P, is on the principal adiabal, and representi-
Ing liquid Hugonlot theory, P, (liquid) is on 1the Hugoniol
and P, (liquid) is on the princi-.al adiabai.

adiabat, as functions of the compression, are
compared graphically in Fig. 4.

C. Approximate P-V curves

Having carried out an accurate calculation of the
weak-shock equation of state for 6061-T6 Al, it is
interesting to calculate the same property by
means of liquid Hugoniot theory based on the same
experimental data, The difference of fiquld Hu-
goniot theory**” from the present anisotropic Hu-
goniot theory can be made clear in two separate
steps.

(1) Liquid Hugoniot theory says the elastic and
plastic precursors do not exist; jump conditions
for a single steady wave then follow. These jump
conditions may be obtained as a special case of
Eqs. (19) by eliminating the elastic and plastic
precursors, i.e., by setting v, =1, =0:

€, =D",,
o, =p,Dr, , (45)
U, -U,=3D%:.

(2) Liquid Hugoniot theory then says 7, =0, which
means Lthe Eqs. (45) determine an isotropic pres-
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sure curve with

o,=P,. (46)

When the shock velocity is a lirear function of the
final -state particle velocity, the above equations
of liquid Huygoniot theory simplify to’

D=c+sr,,

P,=p e (1 —s€,)?, (47)

U,-U,=:V P,e,.

We used the experimental shock-velocity—par -
ticle-velocity relation (16) to calculate the pres-
sure and energy as functions of compression on
the liquid Hugoniot for 6061 -T6 Al. We also cal-
culated T and S on the liquid Hugoniot by inte-
grating Egs. (7) and (8) and then constructed the
principal adiabat by means of Eqs. (40)—(44), all
using the same approximations (22) for y and C,,
as before. The liquid results are compared with
results of the anisotropic theory in Fig. 4.

A well-known approximation for the P-V curve
is due to Murnaghan'?; this is simply a first-
order Maclaurin expansion in pressure for the
bulk modulus and we will apply it here for the
adiabatic bulk modulus on the line of constant
entropy:

B(P,S,) =B, +B.P, (48)

where B is the adiabatic bulk modulus, B, is B at
P=0andS =S, and B, is (36/aP)g at P=0 and

S =5,. Equation (48) iategrates to the Murnaghan
form for P(V) in the present case along the prin-
cipal adiabat,

P(V,s,)= %‘5—[(—‘{})%_1] : (49)
o

For 6061 -T6 Al at room temperature and zero
pressure, Clifton’s'* measurements give
B, =728 xbar,

B} =5.215.

(50)

The differences frum our accurate adiabat of the

Murnaghan approximation and of the adiabat con-

structed from liquid Hugoniot theory are shown in
Fig. 5§, in the form of aP, at a fixed volume, de-
fined by

PA(V)uprul —PA(V)
P,V '

D. Errore

On the Hugoniot, the relations o(e€) and U(e) - U,
are determined entirely from shock-profile data,
through the profile jump equations (17)-(19), and
these relations as listed in T=b’e [ should be quite
accurate, ¢ to within 1’ und U - U, to 2%. The

ap, = (51)

010 T T T T T
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002
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P (kbar)

FIG. 5. Relative difference AP 4 In the pressure P
on the princlpal adiabat for two approximalions as com-
pared with the accurate calculatlons of the preseni
paper. AP, Is defined by Eq. (51).

main source of error is expected to be the shock-
ve'nrzity —particle -velocity data. The error most
significant in specifying the Hugoniot, and in de-
termining the isotrope and the adiabat, is the
error in 7. This arises rnainly from errors in the
a(e) relation and in the B,, coefficients. We have
rot attempted to estimate the fo:rth-order-elastic-
constant contributions to B,,; it 1s hard to ima-
gine, however, that the r values listed in Table I
can be in error by more than 25% up to 50 kbar
and by more than 502 up to 100 kbar. The error
in S =S, on the Hugoniot comes from our approxi-
mations for y and C, and from evaluation of the
profile integral f;rdw. The latter is determined
with good precision, say of order 10%, indepen-
dently of larger errors in 7 in the final state.

S -5, should be accurate to within 20% on the Hu-
goniot.

In transforming from the Hugoniot to the iso-
trope, the process is approximately equivalent
to replacing the stress system o, T at each den-
sity and entropy by a pressure P,~ g —-§r. Hence
the error in P on the isotrope is essentially the
sum of the errors in g and T on the Hugoniot.
Finallv in going to the adiabat, the pressure
change P, — P, will be in error by about the same
percentage as is S, ~S,, giving an error in P, by
at mos! a few tenths kbar at 100 kbar. All in all
the pressure on the adiabat, Table I, should be
accurate to 1 kbar at 50 kbar and to about 4 kbar
at 100 kbar.

The error in liquid Hugoniot theory can be es-
timated with more precision, by comparing its
results with those of the anisotropic Hugoniot
theory, because the same shock-velocity —par-
ticle-velocity relation was used in both calcula-
tions, and the same approximations for : .ud C,
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as well. There are two differences between the
two theories: The anisotropic Hugoniot has non-
zero 7 (the major effect) and it has a slightly lar-
ger entropy than the liquid Hugoniot. The role of
these two effects is easily seen at the point where
the shock velocity is equal to the elastic precursor
velocity because here the ¢, o, U jump conditions
are the same for both theories [compare Eqs.
(17)—(19) with (45) for the case D=c,). At this
value of ¢, then, o is equal for the two Hugoniot
curves, at about 143 kbar for 6061-76 Al. Inte-
grating out the shear stress from the anisotropic
Hugoniot, say at constant €, reduces the pressure
by about $7 below the liquid Hugoniot Integrating
out the entropy from either curve to reach the
adiabat also reduces the pressure, but more so
in the case of the anisotropic Hugoniot because it
has the higher entropy. Both effects work in the
same direction, although in the present aluminum
calculations the entropy effect is only about 5% of
the $ T effect. These comments, and our numeri-
cal results, are summarized as follows:

(a) For shocks in the neighborhood of D =c¢,,
liquid Hugoniot theory produces a pressure which
is too high by about $7.

(b) For the 6061-T6 Al adiabat from 0 to 100
kbar, liquid Hugoniot theory produces a pressure
which is too high by several percent (Fig. 5).

The Murnaghan adiabat (49) was evaluated en-
tirely from elastic constant data, Eq. (50). In the

low-pressure region this represents the most
reliable determination of the P (V) curve, ltis
gratifying to find that the anisotropic Hugoniot,
which is mainly determined by shock data, gives
a P,(V), after integrating out the sizable shear
stress, in agreement with the Murnaghan curve
in the low-pressure region.

E. Sironger shocks

The relative error in using liquid Hugoniot
theory for solids depends primarily on the value
of 7/o on the anisotropic Hugoniot. In the present
analysis this ratio is ronghly constant in the range
50-100 kbar, but it 1= reasonable to expect it
eventually to decrease as 2 function of s: uck
strength, and hence to expect liquid Hugoniot
theory to become more acrurate for stronger
shocks.

1V. CONCLUSIONS

A method for extracting true thermodynamic
information from a wave-profile analysis has been
illustrated with data on 6061-T6 Al. In addition to
obtaining proper thermodynamic variabies of the
material undergoing fast one-dimensional deforma-
tion, an equation of state for the material can be
measured at stresses intermediate between the
low values obtained in static experiments and the
higher values in shock experinients where strength
corrections presumably become smaller.
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An 1sotropic solid, capabie of transporting heat and of undergoing dissipative plasiic
flow. is 1reated. The shock is assumed to be a steady wave, and any phase changes or
macroscopic inhomogeneities which might be induced by the shock are neglected. Under
these conditions it is established that for an overdriven shock, no solution is possible
without heat transport, and when the heat i1ransport is governed by 1he steady conduction
equanon, no solution is possible without plastic dissipation as well. Upper and lower
bounds are established for the thermodynamic variables, namely the shear stress, tempera-
ture, entropy, plastic strain, and heat flux, as funciions of compression through the shock.

1. INTRODUCTION

We have recently discussed the irreversible-
thermodynamic theory of flow processes in
solids.!~* The processes considered include simul-
taneous elastic strain and plastic flow, where plas-
tic flow is any dissipative rearrangement of the
atoms in a solid. The theory is expressed in three
coupled subsets of equations: the continuum-.
mechanic equations for conservation of mass,
momentum, and energy; the thermonelastic equa-
tions which relate variations in the elastic strains,
stresses, entropy, temperature, and so on; the ther-
moplastic equations which define plastic flow and
specify the entropy generation. When the thermoe-
lastic coefficients, which are the stress-strain coeffi-
cients, the anisotropic Griineisen parameters, and
the heat capacity at constant elastic configuration,
and the plastic constitutive relations are known,
the equations can be integrated from initial condi-
tions to find a general flow process of a solid.

When applied to the problem of weak shocks in
solids,* this work provides an improvement in the
description of the shock process in two ways: En.
tropy terms in the stress equations are properly in-
cluded (instead of using Hooke's law) and the en-
tropy production is properly expressed in terms of
plastic {low (instead of using viscous fluid dissipa-
tion).! Further, the theory can be used to determine
the plastic flow behavior in the weak-shock pro-
cess, from measurements of the shock profiles and
the polycrystalline thermoelastic coefficients.? Fi-
nally, a solid-state Hugoniot theory has been given
for the first time, from which it is possible to
determine accurate equation-of-state data from
weak shocks in solids.?

For overdriven shocks,® there is very little exper-
imental information about the nature of the shock
process. The shock is generally too fast to be ex-
perimentally resolved; an experimental upper limit
for the rise time for shocks of several hundred kbar
in several metals is 3 ns.*> However, by applying
the same principles we have previously used in the
weak-shock theory, it is possible to learn a great
deal about the process of overdriven shocks in
solids, even without knowing details of the plastic
constitutive behavior of the material. The purpose
of the present paper is to develop this theory of
overdriven shocks in solids.

The solid matenial is assumed to be isotropic, ac-
cording to the definition of Ref. 1, and capable of
transporting heat and of undergoing dissipative
plastic flow. Polycrystalline effects are neglected;
some justification for this is given in the Appendix.
Shock-induced phase transitions, such as melting
+1d other structural changes, and shock-induced
macroscopic inhomogencities, such as cracks and
local hot spots, are also neglected. The shock is
assumed to be a steady wave. The theory has been
developed with application to polycrystalline met.
als in mind, but it might be valid for some non.
metals as well.

I1. RAYLEIGH-LINE EQUATIONS

A. The conservation equations

The shock is a plane wave which propagates in
the x direction; y and z are equivalent transverse
directions. Lateral edge effects are eliminated by
specifying that there is no material motion in
transverse directions. Mass elements of the maten-

5597
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al are planar slabs of infinitesimal thickness, nor-
mal to the propagation direction. The Lagrangian
coordinate of each mass element is X, which is
equal to the laboratnry coordinatz x of the mass
element before the shock arrives, i.e., at the time

= — 2. The mechanic and thermodynamic prop-
erties of each mass element are functions of ¢, so
for the whole material these properties are func-
tions of X and 1. The density is p, the volume per
unit mass is ¥ =p~!, the material velocity is v,
compressive stresses in the normal and transverse
directions are, respectively, o and o — 27, so the
shear stress is 7. Quantities in the initial state (be-
fore the shock) are denoted by subscript a, and
€=1-V./V, measures the total compression from
the initial state. The heat flux is J.

The shock is assumed to be a steady wave, mov-
ing at constant velocity D. The steady-wave condi-
tion is that any property F(X,1) depends only on
the Lagrangian steady-wave variable Z=X —Dr:
F(X,n=F(Z). Equivalently, with z=x —Dr the
laboratory steady-wave variable, the condition is
F(x,t)=F(z). The two vaniables are related by

dZ =(p/p,)dz . M

Bec..use of the steady-wave condition, the entire
space and time dependence of any function F(e)
on the Rayleigh line is specified by a single van-
able.

The initial conditions are that the stresses, the
material velocity, and the heat flux are zero in the
state ahead of the shock,

O, =Tg=,=J,=0. 2)

First integrals of the equations for conservation of
mass and conservation of momentum are, respec-
tively,

e=v/D (3)
o=p,Dv . (4)

The Rayleigh line is the o(€) relation through the
shock process; from (3) and (4) this is

o=p,D% . ()

Since tne transverse stresses do no work, the in-
cremental center-of-mass work done on the materi-
al is dW = —odV per unit mass. The incremental
heat transferred to the material is dQ per unit
mass, so conservation of energy requires

dU=—odV+dQ . (6)

This equation includes arbitrary entropy genera-

tion, corresponding to whatever part of the work

dW is dissipated, in addition to the entropy genera-
tion due to heat flow. It is convenient to eliminate
Q for J, because J is the function customarily relat-
ed to the material heat-transport properties. For a
steady wave the continuity equation is simply
aQ=dJ /p,D, and the energy is integrated on the
Rayleigh line to give

U-U,=3D*+J7/p,D . )

B. The thermodynamic equations

The thermodynamic equations include both ther-
moelastic and thermoplastic subsets; the derivation
proceeds as follows.! Total symmetric strain mea-
sures may be taken as é,, =-;- (v +v;; ). where v;;
are velocity gradients; €;; increments are composed
of elastic and plastic parts: de;; =dejj+defj; the
dej) are related in the usual way to variations in
stresses, energy, entropy, and so on, and def,’ are
related to plastic constitutive behavior and to the
entropy production. Note that all these thermo-
dynamic equations are Lagrangian, in that they re-
late various properties of a given mass element. In
the present case of plare-wave motion there are
only four independent strain variables: deg,, de,,
=deg, def,, and dej, =def. The boundary
condition of no transverse motion requires
de,, =d€5 =0, and the assumption that the plastic
flow is volume conserving means def, + 2dej, =0.
There remain only two independent strain vari.
ables, which may be taken as the total compression
€ and the plastic strain ¢, where dy= —de¢f;. Itis
also convenient on occasion to use ¥ or p in place
of €.

The thermoelastic equations may be derived in
complete tenso1 Jorm, appropriate for arbitrary
elastic strains, hy taking de;; and dS as indepen-
dent variables, where S is the entropy per unit
mass. These equations may then be simplified for
the present geometry. The results for the energy
U, the stresses o and 7, and the temperature T are
the following!:

dU=TdS—odV —2Vrdy, (8)
do=py,TdS —B,,d\nV —(B,, —B,)dV (9)
dr=3ply,—.))TdS — 3(By, — By )dInV

— $(Byy4 3By + 7By —Biy—By v, (10)
dT =C;'TdS — Ty dinV —T(y, --y,)d¥ . (an
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Here the Voigt indices are 1 =xx, 2=yy, 3=22.
B,g are the adiabatic stress-sirain roefficients. yg
are the anisotropic Griineiseit parameters, and C,,
is the heat capacity at constant elastic configura.
tion.® We also have to specify the entropy produc-
tion. There are two sources in the present theory:
dQ contributes to 7dS, and also the plastic work
dW?=2V1d{, which is assumed to be totally dissi-
pative,

TdS =dJ /p,D +2V7dy . (12)

Concerning the energy equation, we note that
the continuum mechanic form (6) and the thermo:
dynamic form (8) are the same when (12) for TdS
is used. Because we have used the entropy as an
independent variable, the energy e:;uation is not
coupled to the other thermodynamic equations
(9)—(12), and so the energy equation does not have
to be solved simultaneously with them.

To complete the description of the process, two
more equations describing dynarmic response
characteristics of the materiai are needed. The
plastic constitutive behavior is expressible as a
dependence of the stress which drives the plastic
flow, namely the shear stress 7, on the plastic
strain and strain rate and on the thermodynamic
state, approximately

r=r. 0. V.S). (13)

The heat transport behavior relates the heat
current J to the temperature gradient and other
variables

J=J(grad T, V,S,...) . (14)

The complete set of Rayleigh-line equations is
then (5) together with (9)—(14). We assume the
thermoelastic coefficients B,g.y5,C, are known as
functions of the thermoelastic state. There are
then seven coupled Rayleigh-line equations in the
seven variables: ¢,7,7,S,v¥,J, arid one space-time
variable, z, for example. These equations are in
principle solvable for the shock process. On the
other hand, if one of the Rayleigh-line variables
were known from experiment, e.g., z(¢), or T(€), or
for example v (1) at a fixed X, then these equations
can in principle be used to determine the plastic
constitutive relation (13) through the shock. An
altcrnate point of view, which we pursue in the fol-
lowing because there is no experimental data on
the Rayleigh-line variables, and because the plastic
constitutive behavior in overdriven shocks is entire-
ly unknown, is to omit the last two equations of
the set, and to study Eqgs. (5) and (9)—(12), which

are five equations in the six vanables ., 7.7 S.¢.J.
Following this, sbme information on ihc heat
transport mechanism will be used to extend ilie
study to the space-time dependence of the process.

111. THEOREMS ON THE SHuiCK PROCESS
A. Necessity of heat transport

Theorem 1. For an overdriven shock in a solid,
no solution is possible without heat transport.

The proof does not depend on 'ne mechanisin of
hea! transport. Heat transport is needed at the be-
ginning of the shock, :o bring o up to the Rayleigh
line, as shown in Fig. 1. The elastic line corre-
sponds to adiabatic (dS =0! uniaxial elastic com.
pression of the material under plane-wave boun-
dary conditions (no transverse motion). The slope
of this line at €=0is p,cf. where ¢, is the longitu-
dinal sound velocity in state a. The elastic precur-
sor velocity is ¢, > ¢;, where ¢, can be greater than
¢; by only very small finite-strain corrections. The
definition of an overdriven shock is D >c,, the
slope of the Rayleigh line for a steady-wave shock
is p,D?, so for an overdriven shock the Rayleigh
line is steeper than the elastic line, as shown in
Fig. 1. If plastic flow takes place in the small-€ re-
gion, it can only reduce o below the elastic line at
small €. Therefore heat must be transported to the
material in the initial stage of the shock.

HUGONIOT ————,

RAYLEIGH
CINE

ELASTIC LINE

€
F1G. 1. Showing the proof of Theorem 1. The elastic

line has a fixed slope of p,c/ a1 € =0; the Rayleigh line

has slope p, D? which increases with shock velocity D.
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The proof may be shown directly from the
Rayleigh-line equations. We set the h.at transport
to zero: dJ=0. Then from (12), TdS =0 at state
a, since 7, =0. Also at state a, p=p,, By, =p,cf.
B, - B;>=2G, where G is the adiabatic shear
modulus, so (9) at state a is

do =p,c;zde— 2Gdy .

Differentiating the Rayleigh-line equation (5) for a
fixed D gives

do=p,De .

Since dv¥ > 0 by definition, no solution is possible
when D >c¢;. When heat transport is included,
dJ > 0 and a solution is possible.

B. Family of partial solutions

Consider a given material with specified proper-
ties and a fixed shock strength corresponding to a
shock velocity D. The state behind the shock is
the thermodynamic equilibium Hugoniot state,
denoted by subscript H, where the Rayleigh line
reaches the Hugoniot at €;;. The thermodynamic
variables have the values oy,74,TH,Sy. ¥y, and
bevause of equilibrium the heat current vanishes:

Jy=0. (15)

Because the shock is a continuous process, the
Rayleigh-line solution is continuous, i.e., all the
variables are continuous functions of € for
O<ce<ey.

We define a partial solution as a set of six func-
tions ale), rle), 7(e), S(e), Yle), and J(€) which
are continuous on 0 < € < €4, which take on the
correct values at €=0 and €y, and which satisfy
the five Rayleigh-line equations (5) and (9)—(12).
A partial solution can be constructed by taking any
function for one of the variables, for example S (¢),
which is continuous and which takes on the correct
values at €=0 and €y, and by solving the five
hayleigh-line equations for the other five functions.
Given S (¢), < ‘"ition for the other five functions is
unique, beca. for the tetragonal symmetry of the
material under plane-wave compression there are
three independent thermoelastic state variables,
which can be taken as S,¢,0, and ol€) is fixed by
Eq. (5). Because one function of a partial solution
is arbitrary, the family of partial solutions is infin-
ite. Among these, many will be unacceptable ou
simple physical grouuds, as we wi’l see shortly;
among the physically acceptable partial solutions,
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one is the correct solution for the material under
constderation.

It is possible to establish an important ordering
of the partial solutions. Starting from one partial
solution, we generate another one infinitesimally
removed by adding to S(¢€) an increment &S (¢),
which is continuous and which does not change
sign on 0 < € < €4, and which vanishes at €e=0 and
at €. From one given partial solution, all partial
soluticns can be generated in this way. Functional
relations among the variations &S (¢€), 8T (¢), and so
on, at a fixed value of €, can be found from Egs.
(5) and (9) —(12) evaluated at 8¢=0:

60=0,
80=pY|TSS—(B|| _BIZ )8d’ »

(16
(amn
8r=7p(r1—2,T8S

— 3B+ ';'Bzz'f' $By— By, — By 160,
(18

(9
(20)

8T =C;'T8S —T(y,—7:08¢ ,
TS =8J/p, D +2V7d¢ .

These relations will eventually be useful in estab:
lishing bounds for the Rayleigh-line solution
throughout the sh_ck.

The coefficients 1n these equations are complicat-
ed, but a consistent use of the small-anisotropy ex-
pansion is sufficient to determine the relative signs
of the variations &S (¢€), 5T (), and so on. The
small-anisotropy expansion is defined as follows':
Throughout the shock process, the shear stress 7
should be small compared to the shear modulus G,
so any thermodynamic coefficient f =f(¢,S,7) can
be expanded in powers of /G at constant €,S:

[l€,S,7)=f(€,5,0)+ (coefficient(/G)+ - - - .
2D

For the needed coeflicients we write expliciily the
leading term in the expansion, which is defi:icd in
tsotropic thermodynamic space (r=0), and denote

by + - - - all terms of relative order /G and
higher:

Nn=r+ -

2=v+

By=B+5G+ ",

22
By —B;=2G+ """,
$(B.-+1Fy;+ 1By —By—By)=3G+ -,

Cp=Cyt -,
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where y is the ordinary (isotropic) Griineisen
parameter. B is the adiabatic bulk modulus, and
C- is the heat capacity at constant volume.

Relative signs of the variations 8S, 87, and so
on, are given by the leading order evaluation of
Egs. (16)—(20). In view of (1€) and (17), the first
term on the right of (18) may be neglected because
it is of order /G times the second term. Also be-
cause TC, < VG for shocks in solids,” the second
term on the right of (19) is < (7/G) times the first
term. Then to leading order the functional varia-
tions at fixed € are related by

sute)=pyT/2G)6S (€) , (23)
8T(€)=(T/C,)85(e) , (24)
&Jie)=p,DTES (€}, 125)
Srie)= — +pyToS(c) . (26)

Therefore, given any partial solution, functional
variation to a new partial solution has &S (¢),

8T (e), dule), 8J (¢€) of the same sign everywhere,
and 8rte) of the opposite sign everywhere. The
next step is to introduce physical restrictions that
will limit the range of partial solutions which are
acceptable.

C. The minimum.r partial solution

For a solid, 7 cannot be negative during shock
compression, hence =0 is a lower bound for {€)
on the Rayleigh line. We can construct a partial
solution, the minimum.r partial solution, by speci-
fying rte) as follows: rl€)=0for 0<e<ey —b,
where & is a positive infinitesimal, and (€) in-
creases continuously to ry at €4. If we want to set
7y =0. i.e., to approximate the solid Hugoniot by a
fluid Hugoniot. then the minimum- partial solu-
tion has €)=0 everywhere. Specifying r{¢€) deter-
mines a partial solution, whose properties follow
directly from Eqs. (5) and (9)—(12), and from the
ordering of the family of partial solutions:

Theorem 2. The minimum-7 partial solution
represents, in the regicn where r(€)=:0, an inviscid
tluid with heat transport, and it constitutes a
oound for physically acceptable solutions, in which
T(e), Ste). Ule), J(€) are all upper bounds.

The qualitative forms of T(€) and J(¢) for the
minimum-r partial solution are shown in Fig. 2.
The Rayleigh-line equations simplify in the region
where 7=0. The stress becomes an isotropic pres-
sure P. and all the thermodynamic coefficients are
evaluated at =0, which is the state corresponding

€

FIG. 2. Behavior of T(¢€) and J(¢€) on the Rayleigh
line for an inviscid fluid with heai transport or a solid
with {€)=0.

to the leading terms in (22). Equation (10) is
0= —G(dInV + 3dV), vy

which allows d¥ to be eliminated from the set.
Equations (5), (9), (11), (12) then become

og=P=p,D’¢, (28)
dP =pyTdS +pV,Bde , (29)
dT =pyV,Tde+Ci'TdS . (30)
TdS =dJ /p,D . (3D

D. The minimum-¢ partial solution

The plastic strain must be nondecreasing by de-
finition: d¥>0. Hence ¥=0 is a lower bound for
¥(€) on the Rayleigh line. The condition ¥ =0
represents the response of an elastic solid with heat
transport and with infinite yield strength; we refer
to this hypothetical material as a nonplastic solid.
If we set Y(e) =0 the Rayleigh-line equations can
be solved. Figure 3 shows the behavior of J(¢€) and
T(e) in this case: J(e€) has a maximum at some
point €, and T(€) has a maximum at €4 > €.
This solution is not a partial solution because the
variables do not reach the Hugoniot values at €j;
we find, in particular, T(ey) < Ty and J(ey) <O.
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€

F1G. 3. Behavior of T(€) and J(€) on the Rayleigh
line for a solid with heat transport and with ¢ =0 (a
nonplastic solid). J(e€! has a maximum at ¢, and T (¢€)
has a maximum at €4 > €.

in other words, the nonplastic solid does not pos-
sess a steady-wave shock solution. But we are only
interested in this solution in the region 0 <€ <é€y;
beyond this, one of the thermodynamic variables
can be arbitrarily continued to the Hugoniot state,
generating a partial solution. This partial solution,
with Yle)=0 for 0< e < €y, is called the mini-
mum-¥ partial solution. Properties which follow
at once from Eqgs. (5) and (9)—(12) and from the
ordering of the family of partial solutions are the
following.

Theorern 3. The minimum-y partial solution in
th= region where Y(€)=0 represents a nonplastic
solid, and constitutes a bound for physically ac-
ceptable solutions in which T(e¢), S(er, J(€) are
iower bounds and r{e€) is an upper bouna.

The condition di¥=0 simplifies the Rayleigh-line
equations considerably. Combining (5) and (9)
gives

py\TdS =(p,D*—pV,B,,)de , (32)
and (11) and (12) become

dT =py,\V,Tde +C; 'TdS, (33)

TdS =dJ /p,D . (34)

These are three equations in T(€), S(¢), J(€). The
equation for 7{€) is then uncoupled from the above
set:

dr=5plyy—¥))TdS + +pV, (B, —ByMde . (35)
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E. Solutions continuous in space and time

To study the space and time dependence of the
shock process, we need to know something about
the dynamic response characteristics of the materi-
al. There is currently no sound basis for estimat-
ing plastic flow behavior under conditions of over-
driven shocks. However, a respectable estimate of
the heat transport mechanism can be made, and we
will do this specifically for metals.

For an ordinary metal, solid, or liquid phase, un.
dergoing a shock to the fev* Mbar range, the
compression is about a factor of 2, and the tem-
perature rises to the order of 10 K. These
changes are mild for most metals, so the nature of
the electron-phonon system in its simplest approxi-
mation is not significantly changed. We can still
think of electrons carrying the heat, and being scat-
tered by electrons and phonons. Further, if irrever-
sible thermodynamics is approximately valid, the
heat current should be given appraximately by the
steady conduction equation J = —«x gradT.

Elementary solid-state theory for electronic con-
duction at high temperatures (T > Debye tempera-
ture) expresses the conductivity x as®—!!

1
K= -,-Cvfr:, ,

where C is the electronic heat capacity per unit
volume, v is the Fermi velocity, and ¢, is the
dominant electronic relaxation time. The
electron-phonon relaxation time is t,, ~10™'* s at
room temperature and should decrease through the
shock approximately as T~'. The electron-
electron relaxation time is T,, ~ 10~'2 s at room
temperature and should decrease approximately as
T~ Hence t,, will become dominant at suffi-
ciently strong shocks, but up to a few Mbar, ¢,,
should ordinarily be dominant. With ¢,, as the
electronic relaxation time, the above expression for
x has the following properties®~!!: « is indepen-
dent of T, and « has only a small density depen-
dence of order p to p>. So in the shocks under
consideration, « is roughly constant.

The thermodynamic variables o, 7, T, S, ¥, J
should be continuous single-valued functions of
space and time through the shock, or what is
equivaient, they should be continuous single-valued
functions of z. This requirement leads to a condi-
tion on the behavior of T (¢) and J(€), which we
will derive. The heat-conduction equation for a
steady plane wave is

J=—«(dT /9x), = —«(dT /d2) , (36)
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or with de>0.

« dT /de
dz/de

For overdriven shocks. Theorem 1 implies J (¢€)
and dT /de are both positive at small €. As € in.
creases Eq. (37) allows the following possibilities.
If dT /de =0 on a finite interval while J(€)> 0,
then €(2) is discontinuous. If 47 /de <0 on a finite
interval while J(€)> 0, then €(2) is double valued.
If J(€)=0 on a finite interval while dT /d€ >0,
then z(€) is undefined. If J(€) <0 on a finite inter-
val while dT /de > 0, then €(z) is double valued.
All of these vases can be rejected, because if € is
discontinuous or double valued in z, then the ther.
modynamic variables are also discontinuous or
double valued in z. Then either J(¢€) and dT /de
both remain positive on 0 < € < €4 or else both are
zero at some €' < €y.

In fact, both J(€) and dT /de must remain posi-
tive, as can be shown from the Rayleigh-line equa-
tions. In (11) the last term on the right is of order
7/G relative to the second term, so the sign of the
last two terms together is the sign of the second
term. from which it follows that T(dS /d€) <0
when dT /de <0. Then because r{d¢/de) >0, (12)
implies dJ/de <0 when dT /de <0. Now suppose
J and dT /de are zero at € <€y. Then if
dT /de <0 all the way to €4, dJ /de <0 all the way
10 €4, and J ey ) <0, which violates the final con.
dition (15). If instead dT /de <O for €’ <€ <€”,
where € <€y and dT /de > 0 for a finite interval
of > €. then J(€) <O for a finite interval of
€>¢€" and €(2) is double valued. Hence we have
the following theorem.

Theorem 4. For an overdriven shock in a solid
with heat conduction and dissipative plastic flow, a
steady-wave solution coatinuous and single valued
in z 1s possible ouly under the conditions J(€) >0,
dT /de >0, on 0 <€, < €4, where either equality
can hold on a sum of intervals whose total length
is zero.

J=- (3n

F. Bounds throughout the shock

It is now possible to construct upper and lowet
bounds for the temperature through the shock pro-
cess. The construction is shown in Fig. 4, where
the curves are those computed for a 0.8 Mbar
shock in 2024 Al, with the approximation 75 =0.
The inviscid fluid curve is the *=0 partial solution
[Theorem 2 and Egs. (27)—(31)); it reaches T}, at
€* and so, because d7 /de >0 for 0 <€ <€y by

T . . 1 ]
al. 2024 Ai 08 Mpar e \\ d
/ \
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FIG. 4. Solid lines show upper and lower bounds for
T(e) on the Rayleigh line. Curves plotied are for a 0.8
Mbar shock in 2024 Al, where 7, =0 has been taken for
approximation (€5 = 0.324, T, =2365 K).

Theorem 4. an upper bound for T(€) on €*

<€ <€y is Ty. The nonplastic solid curve is

the ¥'=0 partial solution [Theorem 3 and Eqgs.
(32)—-(35)]; it has a maximum of T, at €4 and so,
because dT /de >0 for 0 < € < €4, a lower bound
for T(e)on ey <€<ey is Ty.

For the real shock process in a solid with heat
conduction and dissipative plastic flow, the T(€)
curve must lie within the bounds illustrated in Fig.
4, must be a nondecreasing function of €, and must
reach T at €4. Further, with the upper bound
for T'(£) prescribed as in Fig. 4, a partial solution
of the Rayleigh-line equations can be found, in
which S(¢€), ¥(e€), J'€) are upper bounds and r{¢)
is a lower bound. Also for the lower bound T'(¢)
shown in Fig. 4, another paitial solution can be
found, in which S(€), ¥(¢€), J(€) are lower bounds
and r{e€) is an. upper bound. This gives a great
deal of information a’out the shock process.

G. Necessity of plastic dissipation

With reference to Fig. 4 and with ry =0 for ap-
proximation, we consider the possibility that the
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inviscid fluid solution for T(€) remains less than
Ty, for O <€ < €y and reaches Ty at €4. In his
classic oaper on shocks in gases, Rayleigh'’ has
shown that this is the case for sufficiently weak
shocks. but not for shocks stronger than a certain
limit. We express this limit in the form D
=(1+x)cg, where cp is the "bulk sound veloci-
ty,” given by pcj =B. For dense systems such as
Po 21 g/cm’, and corresponding values of y, and
C,, we find x ~ 10~°. This value of D is certainly
less than the longitudinal sound velocity, so we
conclude that for overdriven shocks the inviscid
fluid curve of T (€) passes above T at some

€® < €y, as shown in Fig. 4. It is therefore possible
to establish the following theorem.

Theorem 5. For an overdriven shock in a solid
with heat conduction, no solution is possible
without plastic dissipation.

The theorem is most easily proved from Fig. 4.
The inviscid fluid T (€) corresponds to r=0; there-
fore, in order to have T(€) £ Ty for € >€°®, we
must have r{e)> 0 for € > €*. The nonplastic solid
T (¢} corresponds to ¥ =0; therefore, in order that
T(€)> T, for € > €4, we must have y(€)> 0 for
€>€4. Thus in the last part of the shock process,
for € > €* and € > €4, the plastic dissipation
dW?=2Vrdy is greater than zero.

This result is approximately the counterpart for
solids of Rayleigh's theorem'? for viscous heat-
conducting gases. Physically it arises because the
heat which must be transported to the initial re-
gion of an overdriven shock, in order to bring o up
to the Rayleigh line according to Theorem 1, has
to be generated by plastic dissipation in the later
stage of the shock.

1Vv. SUMMARY AND DISCUSSION

We have studied the irreversible thermodynamic
process of overdriven shocks in an isotropic solid
with heat transport and dissipative plastic flow.
Shock-induced macroscopic inhomogeneities and
shock-induced phase changes are not considered.
The theory developed is expected to apply to poly-
crystalline metals, and possibly to ductile non-
metals as well. Arguments can be given for the
neglect of polycrystalline effects (the Appendix),
but more experimental information on this question
is needed.

Some comments can be made concerning the
steady-wave assumptioun. When a shock is initiat-
ed, for example by a plate impact, the wave front
presumably evolves as it moves. The assumption is
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that it approaches a steady wave (evolution ap-
proaches zero). and that for all practical purposes
the real shock is well approximated by the limiting
steady wave, after a distance of travel of many
shock widths. The steady-wave assumption does
not hold for weak shocks in solids®* because the
elastic precursor travels faster than the plastic
wave and the entire shock continues to spread in-
definitely. Also, for overdriven shocks a phase
change could split the wave into two components
traveling at different velocities. Obviously, then,
the steady-wave assumption implies some re-
strictions on the dynamic response of a material.
We note that heat transport according to the
steady conduction equation is compatible with a
steady wave.

The concept of the fam.ily of partial solutions is
quite useful in analyzing the shock process because
these solutions depend only on the best-known ma-
terial properties, namely. the thermoelastic coeffi-
cients. For a given matenal, with thermoelastic
coefficients known as functions of the thermoelastic
state, the family contains all continuous solutions
with the proper initial and final values, which are
consistent with the thermoe'astic coefficients and
consistent with arbitrary (unspecified) dynamic
response properties. Members of the family are or-
dered by observing that given a partial solution
functional vaniation leads to a new partial solution
with 8S(¢€), 8T (¢€), ule), &J (€) of the same sign
everywhere, and &(e) of the opposite sign every-
where. Then because r must be non-negative,
r{€)= 0 defines a unique partial solution which
gives upper bounds for S(e), T(€), ¥le€), J(€)
(Theorem 2). And because ¥ must be non-
negative, ¥(€) =0 defines a partial solution, unique
up to €4 where dT /de=0, which gives lower
bounds for S(€), T(e), Yle), J(€), and an upper
bound for rt¢), for 0 <€ < €4 (Theorem 3). Fur.
ther, the condition that the solution be continuous
and single valued in z, coupled with the steady
heat-conduction equation, requires J(¢€) to be non.
negative and T(¢€) 10 be a nondecreasing function
of € (Theorem 4). This theorem then narrows the
bounds on T (€) and on the other variables as well
(Fig. 4). Finally, it is established that for an over-
driven shock in a solid no solution is possible
without the operation of both dissipative mechan-
isms, heat transport and plastic flow (Theorems 1
and 5).

An observation is in order on the use of thermo-
dynamics in the theory of shocks. In the present
work, irreversible thermodynamics is assumed
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valid: this means thermodynamic functions are de-
fined throughout the shock, and they are reiated by
irreversiblc-thermodynamic relations. It is then
possible to solve for. or at least to estimate, the
space and time dependence of the shock process.
and from this solution it is possible to determine
whether or not irreversible thermodynamics is in
fact valid. We will pursue this line of investigation
in the future. In the following paper, the present
theory is used as basis for numerical calculations
for some representative metals, and it is found that
the Rayleigh-line solution is narrowly bounded and
the nature of the shock process is revealed in some
detail.
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APPENDIX: POLYCRYSTALLINE EFFECTS

The question is. for overdriven shocks in suiids,
is the shock width ior rise time) influenced by po-
lycrystalline effects: more specifically, does the
polycrystal structure give rise to a significant dissi-
pation in the shock process. Such dissipation
could result if the shock velocity is different in dif-
ferent crystallographic directions and it the shock
thickness is small compared to the grain size.
Then in any two neighboring grains of different
orientation. the shock will move faster in one and
will 1ransfer energy sideways to the other grain
ahead of the shock frout there: this is dissipative,

and it broadens the shock front. We note that dil-
ferent shuck vetocities in different crystal directions
can result if 1there is a noticeable shear stress in the
shocked state, and especially il that shear stress is
different for the different directions. On the other
hand. if the Hugoniot shear stress is insigniticant
for shocks in all crystal directions, and if the shock
is a stcady wave. then the Hugoniot lies in isotrn.
pic thermodynamic space (stress system is isotrc.pic
pressure) and the shock velocity must also be 1so-
tropic.

As for experimental data, there is very little to
help resolve the question. Grains in metals range
nominally from 10~ to 10~* cm. According to
the present theory, the width of overdriven shocks
in metals is of order 107° ¢m, so the shock thick-
ness is small compared to the grain size. The same
should be true for any nonmetals to which the
present theory might apply. For very weak shocks
in NaCl (3 - 135 kbar), a large difference in plastic
wave velocities in different crystal directions has
been observed.!’ This has been explained by attri-
buting the plastic flow entirely to primary slip.*
For stronger shocks, driving higher order slip,
dependence on crystal orientation is expected to be-
come weaker. Shock velocity-particle velocity
measurements for NaCl in different crystal direc-
tions all lie on the same curve up to 230 kbar (Ref.
15); a phase change which begins at 230 kbar in-
troduces effects with which we are not converned
here. This result suggests that polycrystal cfficts
should not be important in NaCl up to 230 kbar.
For metals we might speculate that 7, << oy, for
shocks in the Mbar range. so that shock velocity 1s
insensitive to crystat direction and polycrystal ef-
fects are correspondingly negligible. Any experi-
mental information which bears on this question
would be welcome in the future.
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Within the bounds established by the formal theory of overdriven shocks in solids. an
approximate solution is constructed, and a consistent set of approximations for the ther-
modynamic coefficients is described. Numerical calctlations of the temperature. entropy,
shear siress. and plastic sirain. as {unciions ol' compression, are shown for shocks up to
0.8 Mbar in 2024 Al. and up to 3.0 Mbar in Pt. For well-overdrniven shocks in metals
the shock entropy is generated by heat conduction in the front part of the shock, the heat
is generated by plastic flow in the last part of the shock, and tke shock nse time is of or-

der 107" s.

1. INTRODUCTION

We have obtained extensive theoretical informa-
tion about the irreversible-thermodynamic process
of overdriven shocks in soiids.! This theory was
developed for an isotropic solid with heat transport
and dissipative plastic flow, and a steady-wave
shock which does not induce phase changes or
macroscopic inhomogeneities in the solid. The
purpose of the present work is to carry out numeri-
cal calculations tc see what can be learned about
the details of the shock process, without assuming
anything about the plastic flow behavior. Calcula-
tions are done for 2024 Al for shocks of 0.4 and
0.8 Mbar, and for Pt for shocks of 0.5 — 3.0
Mbar. Information iz obtained 7n temperature, en-
tropy, shear stress, plastic strain, and heat current,
as functions of compression, and the space and
time dependence of the process is estimated.

All the approximations used in the numerical
evaluations are described in Sec. II, and their phys.
ical bases and implicaiions are discussed. Results
are tabulated and . 4 in Sec. 111, and the
salient features of ovc. shocks in metals are
summarized in Sec. IV. ... .tatus of an investiga.
tion into the validity of irreversible thermodynam-
ics in shock theory is mentioned in Sec. IV. For
the two metals studied here, properties on the
Hugoniot are tabulated in the appendixes.

1. AN APPROXIMATE SOLUTION
A. The conduction front

In general, except for shocks not far above the
overdriven threshold, the shock process is narrowly

- 24

bounded by the theory of Ref. 1. The bounds for
the temperature T'(¢) for a 2.5 Mbar shock in Pt
are shown by the solid lines in Fig. 1. Our aim is
to construct an approximate 7'(€) curve within
these bounds, thus defining a partial solution, and
then to solve as far as possible the Rayleigh-line
equations for the other functions of this partial
solution, the entropy per unit mass S(€), the heat
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F1G. 1. Solid lines show upper and low er bounds for
T(e) for a 2.5 Mbar shock in Pt. Our ar.proximaie solu-.
tion takes the lower bound (nonplastic solid curve) up 10
point ¢, and the linear interpola‘ion (dashed line) from
T.(€.)to Tylep)
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current J(€), the plastic strain ¥{¢), and the shear

stress r(€).
_ At the beginning of the shock, in state a, 7 and

¥ are zero. As the uniaxial compression begins, 7
increases due to elastic response of the material but
¥ remains zero unit]l 7 reaches the static yield
value. When 7 increases above the static yield,
plastic flow proceeds. However, since the shock
process is quite fas?, its timescale being governed
by heat conduction, the plastic flow will be of
negligible importance until = rises high enough to
drive ¢ ai a very high rate, a rate commensurate
with the shock rise time. Thus in the leading part
of the shock we should have d¥=0 to a good ap-
proximation, i.e., we have nearly the response of an
elastic solid with infinite yield strength, as de-
scribed in Theorem 3.! We take this approxima-
tion to hold up to a point c, at €., to be determined
later. The region 0 < € <€, is called the conduction
front because heat must be transported to this re-
gion, according to Theorem 1.! The Rayleigh-line
equations for the conduction front as function of €
are Eqgs. (32) — (35) of Ref. 1. These equations are
accurately represented by their leading terms in the
small-anisotropy expansion, and this representation
is used in the present calculations.

B. The flow region

After the point c the plastic flow gets going at a
high rate, and the temperature rises significantly
above the nonplastic solid curve. From €, to €y,
T(e) goes from the nonplastic solid curve to Ty,
increasing monotonically with ¢, as illustrated by
the dashed line in Fig. 1. The region €. <€ <€y is
called the flow region, because here the dissipative
plastic flow is essential to the process. Before ap-
proximating T(€) in the flow region, we will study
the Rayleigh-line equations here in some detail.

In the flow region, it is necessary to keep both
dissipative mechznisms in the equations. First
consider the equation for dr; in the small-
anisotropy expansion this is written

r=—GldInV +3d¥)+ -+ . (N

The leading terms in dr are thus of order Gde.
There are a host of first-order terms, indicated by
+ + -+ in (1), of relative order /G, which means
of order (r/G)Gde€ in dr. These terms involve the
third-order elastic constants, the anisotropic
Gruneisen parameters, and so on. From Eq. (1) we
learn two things:
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(a) Since dt is of order rde, the leading terms
must cancel to relative order 7/G, which implies

dy=—3dinV . (2)

(b) dr depends essentially on the first-order
terms in (1).

In practice it is not possible to make respectable
estimates of all the coefficients appearing in the
first-order terms in d 7 along the Rayleigh line for
overdriven shocks in solids. If we cannot estimate
all the coefficients in the first-order terms in d'7,
we cannot make a meaningful evaluation of dr in
the flow region. We conclude that we cannot use
Eq. (1) in the flow region.

There are three equations which couple the nor.
mal stress o(e), and T(¢), S(€). ¥l€) on the Ray-
leigh line, namely Eqgs. (5), (9), and (11) of Ref. 1.
When o(¢€) is eliminated, the results can be written
as two equations for S(€) and ¥(€) in terms of
T(€). Neither of these equations depends critically
on the terms of relative order r/G; meaningfu
evaluations of both are obtained in zeroth order in
the small-anisotropy expansion. In this order the
equations are the following:

TdS =Cy(dT —pyV,Tde) . )

dy=(2G)"{ pyTdS

—[psD*—pV,(B+$G))de] . (4)

Thus if we have an acceptable approximation for
T(e) in'xhe flow region, (3) can be integrated to
find S(€), then (4) can be integrated to find v(e).
The coefficients in (3) and (4) can be evaluated
with respectable accuracy on the Rayleigh line for
real metals.

Finally there is the equation for the entropy pro-
duction,’

TdS =dJ /p,D +2V1dy . (5)

This cannot be solved because it contains two un-
knowns, J and . However, because of the initial
and final conditions J, =Jy =0, we have an in.
tegral condition on dJ, namely fa”d.l =0. Hence
JHTds=["2v-dy, and thisis [#2vr du be.
cause d¥=0o0n 0<e<e,. This last integral is
used to define a mean shear stress (7) in the flow
region:

[ v do=V, +Vy)(n) [Mdu . (6)
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Then () can be evaluated from

(m f°HTdS 1))
=W o Vy (

To emphasize an imporant point, this estimate of
(7) is not based on Eq. (1) for dr, which is essen-
tially a first-order equation and hence is extremely
difficult to evaluate, but is based on an integral
condition for TdS. namely the requirement that the
shear stress must do the correct amount of work in
the flow region to generate the correct amount of
heat, so the material reaches the correct Hugoniot
state at the end of the shock. A reasonably accu-
rate evaluation of () can be made for real metals.

The above results for S(€) and ¥{€) in the flow
region and for (7) do not depend strongly on the
curve of T(€) in the flow region. We take simply a
straight line interpolation for T'(¢) from T_(¢.) to
Tyley), and define ¢ as the point on the nonplastic
solid T(e) curve which is tangent to the straight
line drawn from Tyley). This approximation is
shown for a 2.8 Mbar shock in Pt by the dashed
line in Fig. 1. There is a technical point which
should be mentioned: The approximation for T(€)
in the flow region should be consistent with the
physical requirement that dv/de be non-negative.
Now dJ /de=0 at €,, and for the nonplastic solid
partial solution both terms on the right side of (4)
are zero at €,, and €, is close to €, so dy/de is al-
ways small at €, but it can be negative. In the nu-
merical calculations of the present work, dy/de is
found to be essentially zero at €..

C. The Hugoniot

We are studying shocks upwards from a few
hundred kbar, where nothing is known of the shear
stress on the Hugoriot. While the shear stress dur-
ing the shock becomes large, driving plastic flow at
a high rate, all strain rates go to zero at the end of
the shock, and the final-st.te shear stress is the
static yield siress on the Hugoniot. For overdriven
shocks in metals ry /04 should be at most a few
percent, so neglecting vy should not introduce a
significant error in the present calculations. We

therefore set 4 =0, which reduces oy to an isotro-

pic pressure Py.

The Hugoniot jump conditions are the first in-
tegrals of the equations for conservation of mass,
momentum, and energy, evaluated at the final state
H [see, e.g., Ref. 1, Egs. (3) — (5)].

Since our approximate Hugoniot lies in isotropic

thermodynamic space, the thermoelastic coefli-
cients on the Hugoniot are reduced to isotropic
coefficients, e.g., 1=y1=7Y, where

lid

. ®
au |, ‘

pY=

Equations for calculating 7 and § on the
Hugoniot and the adiabatic bulk modulus on and
off the Hugoniot are well known.” A well-
established experimental result for shocks in solids
up to a few Mbar, and excepting cases where phase
changes occur, is that the shock velocity is a linear
function of the final-state particle velocity’~*:

D=c4svy. )]

The constant ¢ and s are commonly measured for
overdriven shocks in solids.

D. Thermodynamic coefficients

In the small-anisotropy expansions,' anisotropic
coefficients on the anisotropic Rayleigh line at
V.S.7 are given in lowest order by isotropic coeffi-
cients at V,S; for example,

Co V.S I=CuV.S)4 - - . (10a)

This relation is to be understood when we say "C,
on the Rayleigh line.” In the present work we w.l’
need y, Cy, B, and G on the Rayleigh line. Fur-
ther, because. the relation between T and S is
evaluated to lowest order in the small anisotropy
expansion, which is Eq. (3), the T,V,S relation on
the Rayleigh line is in fact the isotropic-space
T,V,S relation, so (10a) can also be written

C,V,\T,=Cp(V. T+ - -+ . (10b)

For the Griineisen parameter we use the approxi-
mation® py = const:

PY=PaYa - an

Thz heat capacity is the sum of a lattice part C,
and an electronic part C,. The lattice part is
described in terms of a characteristic temperature
O, e.g., the Debye temperature, where for most
metals O is less than or equal to room temperature
at P=0. If T, > ©, then the Hugoniot and Ray-
leigh lines all lie in the region T > ©, where

C, = 3Nk, with k = Boltzmann’s constant. For the
conduction electrons, degenerate electron theory
gives C, =TI'T. We will neglecs the explicit
temperature-dependence of I',® and use low-
temperature measurements for I.” The volume-
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dependence is® g =dInT"/dInV =1 -2, and we take
g = const for a given metal. The total heat capaci-
ty is then approximately

Cy=3Nk-i T,
F=T,(V/V,5.

(12a)
(12b)

The shear modulus is entirely unknown in the
moderate shock region. The common behavior of
polycrystalline materials at P=0is G/B = con-.
stant in T, except near melting. We will assume
this holds for shocks in the solid phase, and calcu-
late G on the Rayleigh line from 3,

G/B=G,/B, . (13)

As a point of curiosity we calculated B and G for
Al from ultrasonic data,’ in the form of expan-
sions linear in T and P from state a, and found the
remarkable results that B(ultrasonic) = B(shock),
and G /B(ultrasonic) = const, up to 2 Mbar
(neglecting melting) on the Hugoniot. These calcu-
lations are tabulated in Anpendix B.

The thermal conductivity « is needed only to
compute the explicit space and time dependence of
the shock process, from the equation®

—xdT
(1—eW '

where Z =X —Dr. For electronic conduction in
the region T/ > |, we expect « to be nearly in-
dependent of T, and to have a density dependence
of order p to p2.! This density dependence is negli-
gible for the present purposes, and we simply take
k= constant and use the measured value of « at
T/©>1,P=0.

dZ = (14)

E. Shock thickness and plastic strain rate

The Lagrangian shock thickness AZ, th~ same as
AX at a fixed time, is usually defined in verms of
the compression €(Z) (Ref 10); we call this the
compression thickness AZ(€):

Ae ! de

AZ(e) fd_z' (15

The temperature profile T(Z} is noticeably broader
than the compression, so we define also the tem-
perature thickness AZ(T):

AT _\dT
AZ(T)  |dZ

(16)

max
’

Either derivative |de/dZ | or |dT /dZ | is near

DUANE C. WALLACE 24

its maximum at point c, and this gives a simple
approximation for the right sides of (15) and (16).
For example,
Ki T” - Ta )
(1—€. W,

AZ(T =

The Lagrangian rise time is then Aty =AZ/D.

The plastic strain rate ¢ is approximated as foi-
lows: dy is given by (4), dJ is approximated in the
flow region by (5) with 2Vrdy=(V, + Vy)(r)dV,
then dZ is given by (14), and

9 pd¥
o¢ dZ

U= (an

A useful measure of plastic strain rate in the shock
is the average of ¢ in the flow region, defined by

f”w'de .

€y — €,

(¥)= (18)

F. On the electronic contributions

There are several important points to note re-
garding the electronic contribution to thermo-
dynamic coefficients.

(a) For shocks in the Mbar range, electronic
contributions to thermal energy and thermal pres-
sure are not always negligible anii should at least
be estimated. This was pointed out by Al'ishuler."

(b) In shock analysis, if the electronic heat capa-
city C, =TT cannot be neglected, then she volume
dependencz of " also cannot be neglected because
of the significant compression. Including C,=TT
with a constant value of I" seriously overestimates
C..
(c) The Grineisen parameter ¥ is not simply the
sum of a lattice part ¥; and an electronic part y,
(Ref. €, p. 287). Specifically, Eq. (8) can be
transformed to py= — Cy '(3*F/3V3T)yy, where F
is tiie Helmholtz free energy, the sum of a lattice
and an electronic part, F = F;+F,, from which it
follows:

Y=(C[/CV)Y[+‘.C,/CV)Y, .

It is y we want for shock analysis, to calculate total
P, U relations from Eq. (8), and it is ¥ which satis-
fies py= const in Neal's’ compilation.

(d) Degenerate electron theory is satisfactory for
kT /¢€f is less than or equal to a few tenths, where
€r is the Fermi energy. For sufficiently strong
shocks, which may be above the melting tempera-
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ture on the Hugoniot, the temperature will rise so
high that the electrens are no longer degenerate.

III. RESULTS AND DISCUSSICN

The experimental information for the present
shock calculations for 2024 Al and Pt is listed in
Table I. The Hugoniot was calculated first, and
resuits are tabulated in Appendix A. Several obser-
vations follow from the Hugoniot caiculations.

(a) The elastic precursor velocity c, is very close
to the longitudinal sound velocity ¢, so the over-
driven threshold at D =c, is close to D =c,; we
find

Py (D =¢;)=0.145 Mbar for 2024 Al ,
PytD =c¢;)=0.308 Mbar for Pt .

(19

(b) From the Kraut-Kennedy melting rule,'
melting on the Hugoniot is found to occur at

T‘,=2715 K. P.\I =0.88 Mbar for 2024 Al ,
TM =5800 K. P.\I =13.04 Mbar for Pt . (20)

To the extent this approximation is in error. we ex-
pect it to be low for Ty, Py,.

(c) Neglecting the electronic heat capacity gives
a calculated temperature on the Hugoniot too high
by about 4% at 0.9 Mbur for 2024 A1, and too
high by about 33% at 3 Mbar for Pt. For details
see Appendix A.

The approximate solution for the shock process
was computed for 2024 A for shocks of 0.4 and
0.8 Mbar, and for Pt for six shocks of strength 0.5
— 3.0 Mbar. The main results are listed in Table

TABLE 1. Inpui data for shock calculations. Shock
measurements 1¢,s) are from McQueen e: al. (Ref. 2! for
2024 Al and from Morgan (Ref. 12) for Pt: G,/8B, are
from the poly- crystal averages of Simmens and Wang
{Ret. 9t: and g are from White and Collins (Ref. 8).

Quamity 2024 Al Pt
T, 110" K1 0.293 0.293
pa (g/cmh 2.785 21.44
¢ tem/us! 0.533 0.363
s 1.338 1.472
Ye 205 2.66
G,/B, 0.34 0.23
I, (10~* cal/moleK’) 3.30 16.4
g 1.8 2.28
x (cal/ems K) 0.48 0.20

I1. The shape of the shock process as a function of
the compression €, and as a function of shock
strength, is shown by the Pt sequence in Figs.
2—4. Note that as rhe shock strength increases,
e width €, of the cond:ction front becomes
larger compared to the width € of the entire
shock. In the weakly overdniven shock at 0.5
Mbar. only about a quarter of the shock tempera-
ture rise Ty — T, occurs in the conduction front,
and the entropy continues to increase in the flow
region. In the well-overdriven shocks, 1 Mbar and
stronger, at least three quarters of the shock tem.
perature rise occurs in the conduction front, and
the entropy decreases in the flow region. The re-
sults for 2024 Al show the same qualtitative
behav'or. We conclude that for well-overdriven
shocks, in the present calcultions at shock pressure
around three times the overdriven threshold or
greater, heat conduction is a major part of the pro-
cess, and most of the shock temperature rise occurs
in the conduction front. For weaker shocks the =f
fect of heat conduction becomes smaller as the
shock strength decreases toward the overdriven
threshold. In fact since the initial compression of
the solid is presumably elastic. in the small € re-
gion J(€)—0 as D —c;, and for D <¢; a solution
can be obtained without heat transport. We con-
sider the effect of heat transport to tc generally
negligible for underdriven shocks in solids.'*

Because of the shape of T(€) on the Rayleigh
line, it appears that for shocks near melting on the
Hugoniot, but still in the solid phase there, Tt(e¢)
will rise above the equilibrium melting temperature
for a time in the center of the shock. When T
passes the melting temperature, the material should
begin to respond as a fluid after a time of order ¢,,
the shear relaxation time of the fluid phase. For
most monatomic fluids, 1, ~ 10~ s at zero pres-
sure, and should decrease roughly as (V/V,) in
compression. However, fluid behavior depends on
the presenc: of vacancies, and during the shock
there may not be time to develop the equilibrium
concentration of vacancics, s*nce this is presumably
a diffusion process. The time required for fluid
response to occur during a shock is an interesting
open question.

As mentioned before, our approximate solution
for T(e) is reasonably accurate because of the nar-
row bounds imposed by the formal theory' (see,
e.g., Fig. 1; also Fig. 4 of Ref. 1). In the flow re-
gion, these bounds limit T(€) to within a deviation
from the mean of +20% for the two weakest
shocks in Table II, namely 0.4 Mbar for 2024 Al

49



5612 DUANE C. WALLACE 24
TABLE II. Results of the shock process calculations.

Quaniity 2024 Al Pt
Py (Mbar) 0.4 0.8 0.5 1.0 1.5 2.0 2.5 3.0
€ 0.2363 0.324]1  0.1200  0.1863 0.2311 0.2642 0.2903 0.3114
D (cm/us) 0.779 0.941 0.441 0.500 0.550 0.594 0.634 0.670
Ty (10°K) 0.930 2.365 0.534 1.132 2.032 3.138 4.374 5.697
Sy —S, (cal/moleK) 4.10 8.83 1.84 5.79 9.29 12.1 14.5 16.5
€ 0.0565 0.1130  0.0155  0.0544 0.0825 0.1044 0.1210 0.1355
J./psD (10’ cal/mole) 1.8l 8.17 0.34 3.61 3.77 15.0 21.9 29.2
T. (10°K) 0.648 1.903 0.359 0.919 1.755 2.699 3.685 4.680
S.—S, (cal/moleK) 4.15 10.19 1.06 6.79 11.23 14.5 17.1 19.3
7. (%ibar) 0.019 0.048 0.011 0.044 0.075 0.107 0.136 0.167
Un 0.162 0.226 0.081 0.126 0.158 0.182 0.202 0.219
() (Mbar) 0.027 0.064 0:021 0.053 0.086 0.121 0.16 0.19
(¥ (10'/s) 0.06 0.27 0.011 0.12 0.32 0.43 0.48 0.51
AZ(e) (10-° cm) 1.30 0.48 2.47 0.32 0.18 0.17 0.18 0.19
AZ(T) (10°® cm) 2.23 1.41 2.90 0.90 0.71 0.65 0.61 0.58

and 0.5 Mbar for Pt, and to within a deviation of
+10% for the other shocks. The T'(¢) bounds can
be transformed to bounds on (¢}, from the varia-
tional relation’

drie)= — +pyCy8Te) .

From this we estimate that our computed values of
() have error bounds of +23% for the two weak-
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FIG. 2. Shape of the shock process for a 0.5 Mbar
snock in Pt.

cos

est shocks in Table 11, and of +10—159% for the
other shocks.

The space-time dependence of the Pt 2.5 Mbar
shock is shown in Fig. 5, where Z =0 is at point ¢
in the shock. The difference in behavior of the
temperature and entropy, as compared with the
compression, is clearly seen: Because of the mas-
sive long-range transport of heat in the conduction
front, the profiles of T and S extend far ahead of
point ¢, and the increases of T and S are large
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FIG. 3. Shape of the shock process for a 1.0 Mbar
shock in Pt.
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there; then behind point ¢, T and S change little
while most of the compression takes place. Note,
however. that in the limits Z — + «, all three func-
tions T,S.€ have formally the same Z dependence.
In particular, for Z —+ =, T —T,, S—S,. and € all
approach zero as e %%, with a a constant; and for
Z—~—x,|T—Ty', 1S—Sy|.and |e—e€y! all

T T T

Pt 25 Mbor

02 0 c2 04 06 08
Z(i0%em)

F1G. 5. Shock process as function of Z for a 2.5
Mbar shock in Pt.

approach zero as e"z, with £ another constant.
In the same way, ¥— ¥ and ¢¥-—0 behind the
shock.

Concerning the plastic constitutive behavior
through the shock process, we note that (1) is
larger than 7, for all the shixcks. This is consistent
with setting ¥ =0 up to point ¢. In a real solution.
of course, plastic flow will start at a much lower
value of 7 than 7, but ¥ should still be small in
the conduction front, and should increase signifi-
cantly around point ¢, so the qualitative behavior
of ¥ and ¥ should be siill as shown in Figs. 2—5.
Since the total ¢ is small in a planar shock, strain
hardening should be correspondingly small, and the
high shear stress we find in the flow region is
presumably due to the high strain rate ¢. Finally,
while we expect our estimates of (7) and ¥(€) to
be reasonably accurate. it is difficult to establish
bounds for ¥(€), and only order-of-magmtude
meaning can be claimed for our values of (y).

For all but the weakest Pt shock in Table II, the
ratio (r)/(¥) lies in the range 0.2—0.4 g/cms.

1IV. NATURE OF THE SHOCK PROCESS

We review the nature of shocks in solids, for dif
ferent ranges of shock strength. Recall that the
elastic line is the o(e€) relation corresponding to
isentropic uniaxial elastic compression of the solid
(see, e.g., Fig. 1 of Ref. 1). In a weak (underdriven)
shock, the initial compression is on the elastic line;
this signal travels as the elastic precursor. Follow-
ing this initial elastic compression, the normal .
stress o falls below the elastic line; henve a solution
can be obtained by allowing plastic flow to occur,
to relax o below the elastic line.'* The effect of
heat transport on the shock process is presumably
negligibie. Since the elastic precursor travels faster
than the plastic wave, the entire shock is not a
steady wave.

For an overdriven shock, we assume the shock is
a steady wave. The normal stress rises above the
elastic line at small ¢, so heat transport is neces-
sary to obtain a solution in the leading edge. As
the shock strength increases from the overdriven
threshold, the quantity of heat which must be
transported to the conduction front increases from
zero. Also in the vicinity of the overdriven thresh-
old, as shock strength increases, there is a dramatic
decrease in the shock rise time, a decrease of a fac-
tor of order. 10° for metals.

As a qualitative definition, a well-overdriven
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TABLE 1{l. Hugonio: for 2024 Al. Units are the
following: P (Mbar), T (K), S (cal/mole K).

€ P T S-S, Ton
0 0 293 0 293
0.04 0.035 319 0.018 319
0.08 0.079 354 0.157 354
0.12 0.135 411 0.56 411
0.16 0.205 507 1.35 509
0.20 0.295 675 2.59 679
0.24 0.412 962 4.27 974
0.28 0.566 1446 6.30 1474
0.30 0.662 1799 741 1842
0.32 0.774 2252 8.58 2319
0.34 0.905 2835 9.79 2938
0.36 1.060 3583 11.04 3741

shock is one in which most of the shock tempera.
ture risc occurs in the conduction front. For well.
overdriven shocks in solids, the theory we have
developed is characterized by the following proper-
ties:

(a) Essentially all of the shock entropy is gen-
erated in the conduction front, by heat conduction.

(b) The heat is generated in the flow region, by
plastic flow.

(c) For metals the shock thickness is AZ ~ 10~
cm, the risetime is Ar ~10"'% s,

(d) For shocks near melting on the Hugoniot,
but still in the solid phase there, T(¢) rises above
the equilibrium melting temperature for a time in
the center of the shock.

Once the detailed space and time dependence of
the shock process is found, it is possible to examine
conditions on the validity of irreversible thermo-

TABLE 1V. Hugoniot for Pt. Units are the follow-
ing: P tMban. T (K). S (cal/mole K).

€ P T S-S, Tion

0 0 293 0 293
0.04 0.128 329 0.067 329
0.08 0.290 395 0.56 398
0.12 0.500 534 1.84 546
0.16 0.773 816 4.00 859
0.20 1.135 1348 6.81 1478
0.24 1.621 2282 10.03 2646
0.26 1.928 2967 11.7 3557
0.28 2.289 3839 13.5 4782
0.30 2.718 4942 15.4 6127
0.32 3.231 6327 17.3 8630

24

TABLE V. Eiastic moduli calculated on the Hugo-
nint for Al neglecting melting. Units are the following:
F£a.qbar). T (K). B (Mbar), G (Mbar).

Py Ty-T7, By 8,78, G./8,
0 0 0.79 0.96 0.345
0.2 207 1.5 1.04 0.37
04 637 2.20 1.10 0.37
0.6 1274 2.80 1.15 0.37
0.8 2072 3.37 1.18 0.36
1.2 4015 447 1.21 0.35
1.6 6270 5.54 1.23 0.34
2.0 8730 6.58 1.25 0.33

dynamics, in terms of the relaxation times and the
mean free: paths of electrons and phonons. The
preliminary cor.clusion from this study, for steady-
wave shocks in solid or liquid metals, is that the
present theory is a valid approximation for shocks
up tc a definite limit and is invalid for all stronger
shocks. The breakdown of irreversible thermo-
dynamics results from the massive demand for heat
transport and the consequent inability of electrons
and phonons to remain near equilibrium. The lim.
it is in the range of a few Mbar for metals.
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APPENDIX A: THE HUGONIOT

Thermodynamic functions on the Hugoniot for
2024 Al and for Pt are listed in Tables III and 1V,
respectively. The effect of neglecting the electronic
contribution to Cy is shown by the column T ,,.
which is computed by taking for C; only the ion
vibrational part, 3Nk per mole.

APPENDIX B: ELASTIC MODULI
ON THE HUGONIOT

A linear expansion of B from state a (P =0,
T=T,is

B =B, +(3B/3P);P+(3B/3TpT -T,) ,

where the coefficients are to be evaluated at state a.
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A similar equation may be written for G. Evalua-
tions of these equations from ultrasonic data are
denoted B,, G,. For single crystal Al, Thomas'?
measured variations in ultrasonic transit times due
to variations in anisotropic stresses up to ~ 25 bar,
variations in P up to ~ 50 bar, and variations in T
of ~10 K. Polycrystalline averages® of Thomas's
results give

B, =0.759+4 42P —0.16(107°XT - T,) ,

G,=0.262+1.82P-0.13(10"*(T-T,),

in Mbar, with P in Mbar, T in K, and T, =293.
The bulk modulus computed on the Hugoniot
from shock data is denoted By,. We ignore melting
and the presence of the liquid phase, and we also
ignore the difference between pure Al and 2024 Al
in order to compare the ultrasonic and shock re-
sults, Table V. It is seen that B, =By and
G, /B, = const to 2 Mbar on the Hugoniot.
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A shock is assumed to be a steady plane wave. “nd irreversible thermodynamics is as-
sumed valid. The fluid is characterized by heat conduction and by viscous or viscoelastic
response, according to the strain rate. It is shown that setting the viscosity zero ptoduces
a solution which constitutes a lower bound through the shock process for 1he shear stress,
and upper bounds for the temperature, entropy, pressure, and heat current. It is shown
that there exists an upper bound to the dynamic stresses which can be achieved during
shock compression, that this bound corresponds to a purely elastic response of the fluid,
and that solution for the shock process along this bound constitutes lower bounds for the
temperaiure and entropy. It is shown that a continnous steady shock is possible only 1f
the heat current is positive and the temperature is an increasing function of compression
2. 7ost everywhere. In his theory of shocks in gases, Rayleigh showed that there is a
maximum shock sirength for which a continuous steady solution can exist with heat con-
duction but without viscosity. Two more llmits are shown to exist for dense fluids, based
on the fluid response in the leading edge of the shock: for shocks at the overdriven
threshold and above, no solution is possible without heat transport; for shocks near the
viscous fluid limit and above, viscous fluid theory is not valid, and the fluid response in
the leading edge of the shock is approximately that of a nonplastic solid. The viscous
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fluid limit is estimated to be 13 kbar for water and 690 kbar for mercury.

1. INTRODUCTION

The nature of the shock process in a viscous
heat-conducting gas was clarified in detail by P.ay-
leigh in 1910.! He examined the conditions under
which a compressive shock can propagate as a con-
tinuous steady wave. When the gas has heat con-
duction but no viscosity, this is possible only for
weak shocks, with shock compression <1.4. With
viscosity but no heat conduction, the continuous
steady wave is always possible, and the same is
presumably true with both viscosity and heat con-
duction.

For dense fluids, say with density > | g/cm?,
there are two main differences from a gas: (a)
thermodynamic characteristics are markedly dif-
ferent, and (bs at sufficiently high frequencies a
dense fluid exhibits elastic solidlike response.

When these properties are taken into account, we
discover that the nature of shocks in dense fluids is
quite different from that in gases.

In the present paper we examine the conse-
quences of an irreversible-thermodynamic theory of
shocks in dense fluids. The theory considers sim-
ple fluids, characterized by viscous and viscoelastic
responses at the appropriate frequencies, and by
heat conduction. We neglect ionization, radiation,

25

chemical reactions, and any other degrees of free-
dom which might be excited by the shock; such to-
pics are treated in detail for gases by Zel'dovich
and Raizer.?

The question arises as to whether or not irrever-
sible thermodynamics is valid, i.e., whether or not
the temperature and other thermodynamic func-
tions can be defined through the shock process.
One might expect that thermodynamics is valid for
shocks up to some critical strength, and not valid
for stronger shocks. In a recent study of
Lennard-Jones systems, Hoover® has shown that
Navier-Stokes theory agrees with molecular-
dynamics calcuiations for shocks of approximately
12 and 30 kbar in liquid Ar. Holian and cowork-
ers* have further shown that for a shock of 400
kbar in liquid Ar, just below the strength of shock
which ionizes the Ar, Navier-Stokes still provides a
qualitatively correct representation of the process
but gives a slightly narrower shock profile than
does molecular dynamics. The molecular-
dynamics technique is promising because it can in
principle treat problems where irreversible thermo-
dynamics fails. In the present paper, we simply as-
sume irreversible thermodynamics is valid because
there are still some new results which can be
learned from this theory.
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25 THEORY OF THE SHOCK PROCESS IN DENSE FLUIDS

11. VISCOUS FLUID SHOCKS
A. Viscous fluid theory

We summarize the irreversible-thermodynamic
flow theory for a compressible viscous heat-
conducting fluid. The complete system of equa-
tions is organized into three subsets: continuum
mechanics, the viscous stress, and thermodynamics.

Location in the laboratory reference frame is X,
and the Lagrangian coordinate of an infinitesimal
mass element of the fluid is X. The flnid velocity
is V, the density is p, the stress tensor is 7, =17,
subscripts £,/,... are Cartesian indices and repeated
indices are to be summed. The continuum-
mechanic conservation equations are’®

Conservation of mass:

aU‘

% __ %
X pax,

D
o! (

Conservation of linear momentum:
|

L]
- ot

a‘r,,

2)
X 9x (

t
To write conservation of energy we define the velo-
city gradients vy, and their symmetric parts €;:

aU, .
vy=|{z—1 - (3aj
dxl ]'
éu=‘;'(UU "UI,) . (3b)

The rate at which work is done by the stresses oa a
unit mass of fluid is

W=p—lfuéu » (4)
and the rate at which heat flows into a unit mass
of fluid is Q. Then subtracting out the translation-
al kinetic energy of the fluid leaves only the
center-of-mass energy U per unit mass, and there
results®

Conseruation of energy:

U=W+Q. ()
The total stress tensor is
‘r,}=—P8U+‘rf, ’ (6)

where P is the pressure, determined by equilibnum
thermodynamics, and 7J; is the viscows stress,
presumed to be linear in velocity gradients®:

7 =2m,& +(m, — $7, éudyy - M
The shear and bulk viscosities, 7, and 7, respec-
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tively, are functions oniy of the thermodynamic
state and are non-negative. From conservation of
mass, the sum ¢ is given by

€y=—-p/p=V/V, (8)
where ¥ =p~! is the volume per unit mass. While
the conservation equations are valid for any dissi-
pative continuum flow, including plastic flow in a
solid” or viscoelastic flow (Sec. III below), the
stress (6) represents specifically a viscous fluid. and
the combination of (6) and (2) is the Navier-Stokes
equation.

To complete the sysiem of equations we assume
the vaniables U,V,S,P,T are related by equilibrium
thermodynamic relations, where S is entropy per
unit mass and T is temperature. There are dif-
ferent (but equivalent) ways to proceed. One can
take V,U as independent state variables, eliminate
S from the system, and determine P and T from
the equations of state, which are formally
P=P(V,U)and T =T(V,U). Or one can take V.S
as independent state variables and generate a
hierarchy of differential equations as follows.

Zeroth order:

dU=—PdV +TdS . 9
First order:

dP = —pBdV +pyTdS , (10)

dT = —pyTdV +C7'TdS , ()
where B is the adiabatic bulk modulus, y is the
Grineisen parameter, and Cy is the heat capacity
at constant volume. We generally break the hierar-
chy a; this point by assuming the second-order
coeff-cients B,y,Cy are known functions of V,S.
We dlso eliminate U by combining (3) and (9) to

give

TdS =dQ +dW’, (12)

where
dw?v= Vf}‘,de,, . (13

Hence the work done by the viscous stress is en-
tirely dissipated. _

The heat flux J is assumed to be given by the
steady conduction equation, J = —xV T, where « is
the thermal conductivity, with x=«x(V,S) and -
x>0. It is convenient 10 eliminate Q in favor of J
by the relation pQ=—-V - J.
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B. Rayleigh-line equations

The shock is a plane wave traveling in the x
direction, fluid mass elements are planar slabs nor-
mal to the x direction, and edge effects are neglect-
ed. Quantities in the initial state (before the shock)
are denoted by subscript a, the inittal time is

1, = — o, and the compression from the initial
state 1s measured by €:
e=1-V/¥,. (14)

In the following, ¢, V, and p are used interchange-
ably as a single independent variable. Compressive
stresses in the nonral and transverse directions are,
respectively, o and o — 27, so the shear stress is 7.
The stress equations (6) and (7) simplify to

o=P+ jar, (15)
r=—n,(V/V), (16)
where
ta=ty e an
N

The shock is assumed to be a steady wave with
velocity D. Any fluid property F(x,!) within the
shock is a function only of the variable z:

z=x—Drt,

Fix,0)=F(2) .

(18)

The steady-wave condition allows partial deriva-
tives to be transformed to total derivatives. The
heat flux lies in the x direction and is

dT

J=—x—,
K (19
while the Lagrangian time :Jerivative V/V becomes
14 de
—{= | =D—. 0)
Vier |, dz 2
Then the shear stress (16) may be written
n,DJ
"= \dT/de) @y

With the steady-wave condition, the conservation
equations can be integrated alorg the shock pro-
cess. The initial conditions are that the fluid
ahead of the shock has zero stress, zero velocity,
and is in thermodynamic equilibrium. Thermo-
dynamic equilibrium requires V/V =J =0, so the
initial conditions can be written

T =T =0;=J,=0. (22)

First integrals of conservation of mass and
momentum give the equations e=v/D and

o =p,Dv, respectively. Hence the Rayleigh line,
which is the o(e) relation, is

o=p,D% . (23)

This and five more coupled equations describe the
shock process for the case of V,S variables; they
are (12) for the entropy production, which becomes

TdS =dJ/p,D + sarV,de, (24)

the thermodynamic equations (10) and (11), and
the stresses (15) and (21). We call this set the
Rayleigh-line equations. They are six equations in
the six vaniables o,P,7,T,S,J and they can be
solved in principle for these variables as functions
of €. From this solution, the space and time
dependence of the process can be computed with
(19). The final state of the shock is the Hugoniot
state, denoted by subscript H. This is also a ther-
modynamic equilibrium state, so the final condi-
tions are

(V/Vy=Jy=0. (25)

The Hugoniot state is presumed known as a func-
tion of D.

C. Family of partial solutions

Consider a viscous heat-conducting fluid, with
given values of the thermodynamic coefficients
B,y,Cy,a,n,/x as functions of V,S and a given
shock velocity D, with corresponding value of €.
There is presumably a unique solution of the
Rayleigh-line equations, for which the six variables
o,P,7,T,S,J are continuous functions of ¢,

0 <€ <€y, and for which the initial and final con-
ditions are satisfied Consider the subset of equa-
tions obtained by omitting (21) for r. This subset
is five equations in the same six variables, and the
subset does not contain the coefficient 7, /x. Any
solution of this subset for which ¢,P,7,T,S,J are
continuous functions of €, 0 <€ <€y, and for
which the initial and final conditions are satisfied,
is called a partial solution. The family of partial
solutions is infinite. It is a one-variable family be-
cause if one of the six variables is specified on

0 <€ <€y, the subset of equations can be solved for
the remaining five variables, and the solution is
unique. The family can be viewed as solutions for
a family of fluids, each fluid having the given
values of B,y,Cy.a as functions of V.S and having
its own characteristic 7, /x as a function of V,S.
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28 THEORY OF THE SHOCK PROCESS IN DENSE FLUIDS

Among the famity of partial solutions, some are
unacceptable on physical grounds, as will be shown
below. This will allow us to find bounds for the
correct solution for the shock process, independent
of the coefficient 7, /x.

For illustration, take T () as the genzrating vari-
able for partial solutions. For any pre_-ribed T (¢€)
continuous on 0 <€ <€y, and taking on the values
T, at €=0 and T at €, there corresponds a
unique partial solution. From one partial solution,
to generate another one infinitesimally removed,
we add to T'(€) the infinitesimal variaton 87 (¢),
which is continuous on 0 < € < €4, and which van-
ishes at €=0 and at €4. Continuing in this way,
all partial solutions can be generated from one ini-
tial partial solution. From the defining subset of
Rayleigh-line equations, relations can be found
among the variations 8T (¢), 8S(e), and so on, at a
fixed €. These relations are

bote)=0, (26a)
8S(€)=(Cy/TI8T(e€) (26b)
8J(€)=p, DCy8T () , (26¢)
8P(e)=pyCy8T (€) , (26d)
T8(arie))=—8P(e) . (26¢)

Now py>0,Cy >0,D >0, so &S (¢), 8J(¢), and
8P(¢) are everywhere of the same sign as 57 (¢),
and 8(a7) is everywhere of the opposite sign.

The shear stress cannot be negative during shock
compression, hence 7=0 is a lower bound for
physically acceptable values of r{€) on the Ray-
leigh line. Since the constant r{€)=0 is continuous
in € and takes on the correct initial and final
values for a fluid, this condition d=fines a partial
solution. Since a >0 for a viscous fluid, the r=0
partial solution is also a lower bound for ar on
the Rayleigh line; hence from the variational rela-
tions (26b) —(26¢), the =0 partial solution consti-
tutes upper bounds for T (e), S(e), P(e), and J(e).

In the subset of Rayleigh-line equations which
defines partial solutions, if one sets =0, one has
five equations in the five vanables o,P,T,S.J.
These are precisely the Rayleigh-line equations for
an inviscid heat-conducting fluid, which is a fluid
with the properties 7, =7, =0 and a =finite, x> 0.
The properties of the r=0 partial solution are
summarized in the following theorem.

Theorem |. For a viscous heat-conducting fluid,
the =0 partial solution represents the same fluid
made inviscid, and the r=0 partial solution gives a
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lower bound for (<), and upper bounds for
T(e',S(e),Ple)J(e),on 0<€e<ey.

D. Solutions continuous in space and ume

t. 3 continuous steady wave, the material state
must e a continuous single-valued function of
space and time, or equivalently of z, and the in-
verse function must also be continuous and single
valued. The Rayleigh-line equations ensure that
the material state is continuous and single valued
in €, and € is continuous and single valued in the
material state. Hence we require €(z) and z(€) to
be continuous and single valued. Sinze € increases
in the shock, as z decreases, then € must be a
nonincreasing function of z:

&8

- < <0, 2n

where either equality can hold on a finite number
of points at most. In fact, for a viscous fluid we
can rule out the possibility de/dz = — «, because
by (16) and (20) this makes  infinite.

With finite D, the variables o,P,7,7°.S.J, and
their first derivatives with respect to ¢, are finite
on 0<e<ey. From (24) and (11) it follows

dJ o dT
e <0 if e <0.

i28)

The heat-conduction equation (19) can be written

J=—xd—T§—€-

de dz (29)

Equations (27) and (29) require that J and d7T /de
must have the same sign, except possibly on a fin-
ite number of points. This result, together with
(28) and the final condition J(€;) =0, rules out the
possibility dT /de <0, except possibly on a finite
number of points. Hence we have the following
theorem.

Theorem 2a. For a viscous heat-conducting
fluid, a continuou: steady-wave shock is possible
only under the conditions J >0,dT /de >0, on
0 < £ < €y, where either equality can hold on a fin-
ite number of points at most.

The above argument was used by Rayleigh' to
show that for shocks beyond a cettain strength, a
continuous steady-wave solution is not possible for
an inviscid heat-conducting gas.

Y
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111. VISCOELASTICITY

An important physical property of viscous fluid
response 1s that, at least under some conditions of
flow. inctuding shock compression, viscous flow is
a relaxation vrocess, which can only act to reduce
the stress that drives it. At sufficiently high strain
rates, there is not time for significant relaxation to
take place: under this condition the stresses are
sur. ported by elastic forces, and are strain-rate in-
dependent. Thus, viscous stresses cannot rise arbi-
trarily high. In order to include this behavior, ap-
proximatety, in the theory of shocks in dense
fluids, we will construct Rayleigh-line equations
for steady-wave shocks in a viscoelastic fluid.

A. Viscoelastic siress (Ref. 8)

In the low-frequency (low strain rate) region, a
viscoelastic fluid is charactenzed by the adiabatic
bulk modulus By =B, the shear modulus G4 =0,
and ordinary viscous siresses are supported by
velocity gradients, with shear and bulk viscosities
1, and 7, respectively. At high frequencies (high
strain rates), the fluid exhibits adiabatic bulk
modulus B, > By, adiabatic shear modulus
G, >0, and stresses are supported elastically.
Crossover between the two types of response occurs
at strain rates around 1~ or :,,"’. where 1, and ¢,
are, respectively, the shear and bulk relaxation
times and are defined by®

7,=4G, . (30)
nu='v(8m"80)' a3

Litovitz and Davis® find many fluids satisfy the
approximate relations, tncluding temperature
dependence,

=1l (32)
B, —By=3G, . (33)

These relations imply 7, /7, is approxiiiately tem-

perature independent. An estimate which we

might expect to hold crudel; for monatomic fluids,

e.g., liquid merals, at arbitrary temperatures and

pressures is I, =1, = one atomic vibration time.
The viscoelastic stress tensor is

fl'l = —P(S;‘; + f',j . (34)

Here P is the pressure, determined by equilibrium
thermodynamics, and -r,’,- is the dynamic stress,
which vanishes at equilibrium and is determined by

the constitutive equation
T+ T, —1,)708;
. 2 .
=27],€.'j +(ny— s )6”8!'] . 135)

Under approonate conditions, this equation can
reduce to the ordinary viscnus stress, or to an elas-
tic stress-strain relation, or it can display stress-
relaxation behavior, or strain-relaxation behavior.
The equation for P is

dP = —Byd InV +pyTdS , (36)

the same as (10) berause By Lere is the same as the
viscous fluid B. Note (36) has no rate dependence,
which means P is always instantaneously in equili-
brium with elastic and thermal forces. This ap-
proximation will fail at sufficiently high strain
rates, where irreversible thermodynamics fails.

B. Plane-wave geometry

For uniaxial motion in a viscoelastic fluid, there
are two independent components of the dynamic
stress tensor, namely, the shear stress 7 and the
dynamic pressure P*, where

o= _oth. (37)

The constitutive equation for each component is
obtained from (35):

T+t —n(V/VY, (38)

P® +1,P*=—q (V/V). (39)
The normal stress is

o=P+P*+ 7. (40)

Let us examine the viscoelastic stresses in plane-
wave geometry under limiting conditions of slow
and fast response. For slow response we have

Viscous response limit:

L,T<<T, I,,}"‘ << P*. (40

With these conditions, Eqs. (38) and (40) are re-

duced to the viscous fluid stresses. Egs. (16) and

(15), respectively. In the opposite extreme we have
Elastic response limit:

r<<t,t, P*<<t,P*. 42)

With these conditions, 7 and P* become propor-
tional to V' /V. We write the relations as differen-
tials for d+ and dP*® and include (40) and (36) to
express do as well:
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25 THEORY OF THE SHOCK PROCESS IN DENSE FLUIDS 3295

dr=—-C_dInV, 43
dP* -~ —\B_ —Bo)dInV , (44)
do=—(B_+5G_dInV+pyTds . (45)

The expressions for d+ and do are the same as for
an elastic solid with infinite yield strength (a non-
plastic solid), when for the solid 'he thermoelastic
coefficients B,g and yg are evaluated to lowest or-
der in the small-anisotropy expansioa, and B,G are
then replaced by B_,G _.° The variable P* does
not appear in elastic-solid theory.

C. Rayleigh-line equations

The dynamic stress is linear in variables which
measure the departure from the fluid equilibrium
state; in the viscous regime it is linear in strain
rates and in the elastic regime it is linear in strains.
Nonlinear effects are not included. In uniaxial
motion, the viscoelastic fluid has elastic tetragonal
symmetry and the elastic anisotropy is measured
by the small quantity r/G . The small-anisotropy
expansion for a solid consists of expanding the
thermoelastic coefficients in powers of /G ; the
corresponding expansion for a viscoelastic fluid is
in powers of both r and P®. Consistent with the
neglect of nonlinear effects in the dynamic stress,
we evaluate the transport coefficients and the
second-order thermoelastic coefficients at
T=P* =0. This reduces all the adiabatic stress-
strain coefficients to combinations of B,G, as
in (43) —(45), reduces the anisotropic yg to y as in
(36), and allows us to use the fluid equation (11)
for dT.

Another point should be mentic. 1. If there is
an elastic precursor in a viscoelastic fluid, it will
travel at (or near) the longitudinal sound velocity ¢,
given by

pci=B,+5G, .

For skocks with D < ¢; thie present theory, by as-
suming a steady wave, neglects the elastic precur-
sor. To include precursor effects, the theory has to
be generalized along the lines of the theory of weak
shocks in solids.'?

We continue under the assumption that the
shock is a steady wave. For the viscoelastic
Rayleigh-line equations we list seven equations in
the seven variables o,P,P*%,,T,S,J, although some
of the equations can be easily combined with the
climination of variables. The Rayleigh line, Eq.
(23), remains the same. The entropy production is

dJ

Pa

TdS = +dWs* | (46)
where dW* is the wark dissipated. dW* is compli-
cated because in a given time increment only part
of the work done by the dynamic stresses r and P*
is dissipated. and the rest is stored elastically and
dissipated later. However, an important property
can be observed:

dw*>0. (47)

There are four equations in P,7,P*. o, namely, Eqgs.
(36) and (38) —(40), and the last equation is (11) for
dT.

Just as in the viscous fluid case, we can define
the family of partial solutions for a viscoelastic
fluid. These are solutions of the viscoelastic
Rayleigh-line equations with (38) and (39) omitted:
the remaining subset is five equations in the six
variables o. P,P* + -:--r. T,S,J. Given one variable,
say T(¢), continuous on 0 <€ < €4 and taking on
the correct values T, at €=0 and T at €y, the
equations can be solved for the remaining five van-
ables, giving a partial solution. A new partial solu-
tion is generated by the infinitesimal variation
8T (€), continuous on 0 < € < €5 and vanishing at
€=0 and at €4. Corresponding to T (¢€) are the
variations &S (€) given by (26b), 8P (€) given by
(26d), and

5P*(€)+ 8rl€) = —BP(e) . (48)

Hence 8S(¢€) and 8P(¢) are everywhere of the same
sign as 8T (¢), and 8(P* + -:--r) is everywhere of the
opposite sign. In the absencc of a more detailed
specification of dW*, we are not able to determine
the relative sign of the variation &J(¢).

Co~:der Theorem 2a proved for a viscous heat-
conducting fluid. We still have (27) and (29) for a
viscoelastic heat-conducting fluid, and (28) holds
becauvse dW* is non-negative, so the proof goes
through as before.

Theorem 2b. For a viscoelastic heat-conducting
fluid, a continuous steady-wave shock is possible
only under the conditions J >0,dT /de >0, on
0 <€ <€y, where either equality can hold on a fin-
ite number of points at most.

D. The elastic bound

During siock compression of a viscoelastic
fluid, the dynzmic stresses must be non-negative;
also because of (20) and (27), V' /V is nonpositive:
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>0, P*>0.
'/V<0.

With these conditions it is possible to show that
there are upper bounds for r and P* during shock
compression. Rewrite (38) in the form

rt,[5+G (V/V)]=0. (50)

7 can be positive or negative. If 7|

<< G, V/V .we have viscous fluid behavior,
and we also have d-° <<G_ .dInV . which
means dr is small. On the other hand, for (50) to
have a solution with 7 >0, we must have

1< -G .(V/V). Hence —G_dInV is always an
upper bound for dr during shock compression.
Note that as long as > 0. dr never reaches this
upper bound. Also, (39) can be written

P*+1.[P*+(B_ —Bo)XV/N]=0. (SN

It follows that —(B_ —By)d InV is always an
upper bound for dP* during shock compression,
and as long as P* > 0, dP* never reaches this upper
bound. These upper bounds are just the expres:
sions (43) and (44) for d+ and dP* in the elastic-
response limit.

As noted above, the entropy generation during
viscoelastic flow is complicated in generul. How-
ever, in the elastic response limit there is not time
for viscous flow to occur, so there is no viscous
dissipation: dW* =0, and the entropy generation is

dJ
pD

TdS = (52)
We make the following definition.

Definition. The elastic bound is the solution of
the Rayleigh-line equations for a viscoelastic fluid
in the elastic-response limit.

This set of equations reduces to six equations in
the six variables o.7,P*.T,S.J. The equations are
(23) for the Rayleigh line, (52) for TdS, (43)—(45)
for d-.dP*.do. and (11) for dT. Since the solution
gives upper bounds for r(€) and P*(e), it gives
lower bounds for T(€) and S(€). Omitting the
equation for dP®, the remaining five equations are
the same as the Rayleigh-line equations for a non-
plastic solid.” evaluated to lowest order in the
small-anisotropy expansion and with B,G replaced
by the high-frequency moduli B ,G,. The results
are summarized as follows.

Theorem 3. For a viscoelastic heat-conducting
fluid, the elastic bound is an upper bound for 7€)
and P*(¢) and a lower bound for T(€) and S(e¢),
and the elastic bound represents a nonplastic solid

(49)

in lowest order in the small-anisotropy expansion
with B,G given by B_,G ..

It should be noted that the elastic bound cannot
constitute a partial solution of the Rayleigh-line
equations because it does not reach the correct
Hugoniot state at €y4. In other words, the nonplas-
tic solid does not possess a steady-wave shock sclu-
tion.® However, just as in the theory for solids, we
will be interested in the elastic bound only in the
initial part of the shock, up to the point where the
T (€) curve has a maximum.

E. Bounds for fluid shocks

A real fluid will display viscous response when
the strain rates are not too high. Under this condi-
tion we refer to the fluid as a viscous fluid, and use
the viscous fluid theory of Sec. I1. At sufficiently
high strain rates, a real fluid will display approxi-
mately elastic response. When it is necessary to in-
clude this behavior we work with a viscoelastic
fluid, as represented by the theory of this section.
An important property of viscoelastic fluid theory
is that it establishes a limit on the rarge of validity
of viscous fluid theory, at least in the treatment of
the shock process. This follows from the existence
and properties of the elastic bound. Denote by
r¢(€) the elastic-bound shear stress. Now suppose
we solve the viscous fluid Rayleigh-line equations,
and find 7.S.7, and so on. We then know that,
viscous-fluid theory is valid when r€) << 7¢(€), or
strictly when << 7¢; that viscous-fluid theory is in
error when 7{€) is near tc(€); and that viscous-
fluid theory is strictly invalid if it gives
re)> rele).

It is possible to construct curves of the thermo-
dynamic vanables which are bounds for physically
acceptable fluid shock solutions. We construct in
particular the bounds for T(€); curves representa-
tive of a Mbar shock in a liquid metal are shown
in Fig. 1. The lower bound is the elastic bound for
0 < € < €4, where the elastic-bound T'(€) curve has
a maximum at €4. Since T (€) is a nondecreasing
function of €, according to Theorem 2b, a lower
bound in the region € > €4 is T4. For € well
beyond €4, T (€) has to be much higher, and 7{¢)
has to be much lower than the corresponding
values or the elastic bound; we therefore must
have viscous-fluid behavior in the final part of the
shock. A viscous fluid partial solution is defined
by J(e)=0. From Theorem 2a, J(¢€) is non-
negative, so from the ordering of the viscous fluid
family of partial solutions, the temperature corre-
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FIG. 1. Solid lines show upper and lower bounds for
T (¢) through the sh~zi process. Shape of the curves
represents qualitatis =ly a 1.Mbar shock in a liquid met-
al.

sponding to J(€)=0, denoted by T(J =0), is a
viscous fluid lower bound. As shown in Fig. 1,
T(J =0) lies above T, in the last part of the
shock, and passes through T and €y.

From Theorem 1, the solution for an inviscid
heat-conducting fluid gives an upper bound for
T(e). This solution has the following properties,
as shown by Rayleigh! for gases: for sufficiently
weak shocks, T(€) < Ty on 0 <€ <€y iur shocks
stronger than some limit, T'(¢€) passes above Ty, at
some €' <€y. The latter case is shown in Fig. 1.
For dense fluids, the inviscid solution has
T(€) < Ty only for very weak shocks, as shown in
Sec. IV A below. The complete upper bound for
T (e) is the inviscid fluid curve for 0 < e < €', and
Ty for € > €', as shown by the solid line in Fig. 1.

1V. BEHAVIOR AT SMALL €

Much information can be obtained by studying
the Rayleigh-line equations in the small-€ region.
The results will apply to weak shocks, where €y is
small, and also to the leading edge of arbitrarily
strong shocks. We write the shock-velocity —
particle-velocity relation as

D=c +s,v”+-:-szv,2,+ Ty, (53)

where c,s,,5, are experimentally determined quan-
tities. This can be convared to the following ex-
pansion in €4:

3297

D=c{l+sey+(si+7cs)eh+ 1. (54)

Relations which hold at state a, for fluids, are

B, =p,c?, (55)
[31nB

212 B P (56)
alnV |

Formal cxpansions of the thermodynamic variables
on the Rayleigh line are

T=T,+Tie+ 5T+ - , (57a)
S=S,+S€+ 75+ -, (57b)
J=Ji€+ ", (57c)
T=TIE+ " . (57d)

From (43), 7, on the elastic bound is
T1=G ua» (58)

and this is an upper bound for 7,.

A. Inviscid fluid

Definition. The inviscid limit is the maximum
shock strength for which a continuous steady-wave
solution is possible for a fluid with heat conduc-
tion but without viscosity.

The inviscid limit was shown to exist by Ray-
leigh,! who calculated it numerically for gases.
For dense fluids, the inviscid limit corresponds to
very weak shocks and so it can be estimated
analytically. For the r=0 partial solution, which
represents an inviscid fluid, the Rayleigh-line equa-
tions can be solved for dT to give

dT =[pyV,T +(pyCy)~Np,D*—pV,B)}de . (59)

The procedure is to expand the right side in
powers of € and €5, then find the coefficients
T,,T,... of \57a), each coefficient as a power
series in €.

The quantity p,D2—pV, B is of first order in
€,€4. From this together with (11) it follows that
S-S5, is of second order in €,64. Hence in expan-
sions of thermodynamic coefficients on the Ray-
leigh line, the entropy change does not contribute
in first order. We have the general expansion
3B

B(V,S)=B,+(V-V,) Y%

s

+(s--5, |38

as +---.

v
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On the Ruyleigh line for an inviscid fluid this be-
comes

Ble)=B,[1+4s, - 1e+ ---]. (60)
In the same way,
PY =PalYoll +5€+ - ), (61)

where S= —(d1Inpy /3 1n¥g is evaluated at state a.
Magnitudes of the various parameters for dense
fluids are commonly

Yoa~S1~Csy~5~1. (62)
The natural small parameter of the theory is
re r;n:cr,
c

<<l. (63)

The range of interest for the inviscid fluid is
€y <&, and in this range the following magnitudes
hold:

T~T7,.
€”T35T1 . (64)
Ty~T,.

From these results it follows that expansion of (59)
to first order in €,€y is sufficient to find the invis-
cid limit to the leading order in €.

A continuous steady-wave solution requires
dT /de >0 for 0<e <€y. For a fixed D, hence
fixed €y, we find dT/de >0 at €=0, and dT /de
decreases as ¢ increases, and so is minimum at €.
For variable €4, dT/d€| 4 >0 at €4 =0, and de-
creases as €y increases. Hence a continuous
steady-wave solution is possible for €4 <€;, and is
not possible for €4 > €;, where dT/de| ;=0 at
€y =¢€;. The inviscid-limit shock pressure, corre-
sponding to €;, is P;. To lowest order the solution
is

& _ &
€= =24, (65)
T - +0E 2
Py =p,D%€;=pycie;+ - - . (66)

B. Fluid without heat transport

The shock strength is now arbitrary; the only ex-
pansiou parameter is €. The condition of no heat
transport is J =0. We consider first a viscous
fluid and use (24) to show that S —S, is of order
€. Then eliminating o from Eqgs. (15), (23), and
(10) gives the following condition in leading order:

paD}=B, +3a,7, . (67)

Thus for a viscous fluid, 7, must increase as D in-
creases. But there is an upper bound for 7, given
by (58), so (67) implies

p,D2<B,+-:-a,G,,, . (68)

These results of viscous fluid theory are sunma-
rized in a definition and a theorem.

Definition. An overdriven shock in a viscous
fluid is one for which p,D?> B, + 7a,G ,.

Theorem 4a. For an overdriven shock in a
viscous fluid, no solution is possible without heat
transport.

Now consider a viscoelzstic fluid. TdS is given
by (46). At small €, dW* must be of order ede¢ at
the lowest because dW* is driven by the dynamic
stresses T and P*®, which are zero in state a. Hence
for a viscoelastic fluid with J =0, § —S, is again
of order € or higher. Then eliminating o from
Egs. (23), (36), and (40) gives the following condi-
tion in leading order:

peD*=Bg, +P} + 57, . (69)

As D increases, the right side must increase. But
the right side cannot increase indefinitely because
both P} and r, are bounded. From (43) and (44),
the elastic bound is

P} + 37 =B_o—Bo+5G g - (70)
Hence Eq. (69) implies
PaD?<B g+ 3G o0 - (71

These results are summarized as follows.

Definition. An overdriven shock in a viscoelastic
fluid is one for which p,D?>B_, + -;-G,,,.

Theorem 4b. For an overdriven shock in a
viscoelastic fluid, no solution is possible without
heat transport.

The existence of this theorem for a fluid results
from the same physical properties as does the cor-
responding theorem for a solid.” Without heat
transport, there is an upper limit to the normal
stress o which can be developed by uniaxial
compression of a material; this upper limit corre-
sponds to pu.ely elastic compression, without any
plastic flow or viscous flow to relax the shear
stress. If o is required to go above this limit in the
leading edge of a shock, it can only be accom-
plished by carrying heat to the leading edge and in-
creasing the thermal pressure there.

In practice, the viscous overdriven threshold is
about the same as the viscoelastic one, since the
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right sides of (68) and (71) are about the same.
For both a viscoelastic fluid and a solid,’ the over-
driven threshold is at D =c,, with ¢; the appropri-
ate longitudinal sound velocity.

C. Viscous heat-conducting fluid

The viscous-fluid Rayleigh-line equations can be
reduced to three equations in ri€), T(e), and J(¢).
We expand these functions as in (57a)—(57d), and
equate the first-order terms in the three equations
to find

7 =D /K WJ /Ty, (72)
Sa,m=p, D =B, —(y, /D, , (73)
Ty=%:Ts +pa DCys) "y . (74)

This set of equations identifies the minimum shock
strength, namely zero, as corresponding to J, =0,
7,=0, D =c. We want to solve under the condi-
tion J, >0, which implies 7,50, T, >v,T,. D>c.
From (73), the presence of the heat current acts to
reduce 7y; thus for a viscous fluid with heat con-
duction, the range of shock strengths for which a
solution exists (a solution with 7, <G ) is extend-
ed beyond the viscous fluid overdriven threshold.
However, J, is not arbitrary, and there is still a
limit to the range of shock strengths for which a
physically acceptable solution exists. To discuss
this limit, we will solve explicitly for ;.

Equations (72) —(74) produce a quadratic equa-
tion for 7:

La,A—(f +Fa.g +hin+/g =0, (75)
where
f=psD*-B, >0, (76)
g8 =poD* (1, Cyy/6,)>0, an
h=p,viCy;T,>0. (718)

The two solutions are denoted r; and ri. They
are real and distinct for D > c and are positive for
D >c. We want the branch which approaches zero
as D—c; this is 7;, which is called simply 7, hen-
ceforth. Properties of 7, are summarized as fol-
lows.

Limit D—c

: Y S (79)

fare
4 h/tage)

a,

The expansion is in powers of f. As D—sc, 11—0,

and &/ %a,g —const.
Limit D —
(a) Large-viscosity case: -‘;a,n,a Cyo /K > 1.

This implies -‘,—a,g >fas D-—+o. Then r, gocs as
D*, and the expa~sion is in powers of D ~*:

1—

A (80)
T8 _f

.
sa,1 =/

(b) Small viscosity case: —a, N Cra/ng < 1.

This implies -:-a,g <fas D— . Again 7, goes as
D?, and the expansion is in powers of D~

n=g l-————’:———+--~ (81)
S —7a.g
ForallD>c
f-5a,m>0, (82)
g—7n>0, (83)
7, is monotone increasing with D , (84)
7, i1s monotone increasing with 0, /k, .  (85)

Qualitative behavior of 7, as a function of D* is
shown in Fig. 2, for the two cases of large and
small viscosity. Implications of the solution for 7,
are discussed below.

D. Interpretation

The above results of viscous fluid theory have
several important consequences. First, because
7,—0 as D —»c, according to (79), viscous fluid
theory is always valid for sufficiently weak shocks.
On the other hand, suppose we use viscous fluid
theory to describe a sequence of shocks of increas-
ing strength in a given fluid. Since 7, increases as
D increases, by property (84), and 7, is not bound-
ed, then 7, always reaches the elastic bound at a
finite shock strength.

Definition. The viscous fluid limit is the shock
strength for which viscous fluid theory gives
W= G ©g*

The significant point is that for shocks of
strength near the viscous fluid limit and stronger,
viscous fluid theory is not valid at small e. Note
that without heat transport, the viscous fluid limit
is the same ac the viscous fluid overdriven thresh-
old; with heat conduction, the viscous fluid limit is
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case (a)

FiG. 2. Qualitative behavior of 1, as a function of
D’ —¢*. Case (a) is large viscosity. case (b) is small
viscosity. as defined in the text.

always greater than the viscous fluid overdriven
threshold.

Consider again a sequence of shocks of increas-
ing strength in a given fluid. As the elastic bound
is approached, the fluid in the leading edge of the
shock will no longer respond as a viscous fluid; 7,
will not continue to increase stronigly with D, but
will remain approximately constant somewhat
below G ., as D increases without limit. For
shocks in this region, the initial response of the
fluid is approximately that of a nonplastic solid,
according to Theorem 3. One has to say "approxi-
mately” here, because the elastic bound is never
quite reached. We therefore have the theorem:

Theorem 5. For shocks in a viscoelastic fluid, of
strength near the viscous fluid limit and above, the
fluid behaves approximately as a nonplastic solid
in the leading edge of the shock.

It is of interest to consider a fixed shock
strength and iet the coefficient 7,, /x, be varied.
From property (85), r, increases as 7,,/x, in-
creases, hence there is a unique elastic-bound value
of 1, /x,, which corresponds to r,=G _,. For
1 /%, well below the bound we have viscous fluid

TABLE 1. Data needed to calculate the small-e
behavior of water and mercury. All quantities are
evaluated at state a: P =0, T =293 K.

Quantity Water Mercury
plg/cm?) 1.00 13.55
Cylcal/gK) 0.99 0.0290
clem/us) 0.148 0.146
S 2.0 2.1
v 0.11 2.75
x(cal/cmsK) 0.0014 0.020
7.(g/cms) 0.010 0.0155
/7 2.8 1.2
G . (kbar) 10 50
¢ 0.0067 0.126
7,Cv/x 7.1 0.0225
h(xbar) 0.15 36

response in the leading edge of the shock, while for
N /K, near the bound and above it, we have ap-
proximately nonplastic solid response. The bound
is a function of D. For shocks below the viscous
fluid overdriven threshold, i.e., when (68) holds,
the bound is infinite. As D— o, the condition
71=G ,, implies that the solution is case (b), the
small viscosity case; then the bound is

Na/Ka =G oo /paD*Cyy (86)

Hence as D — w, the elastic-bound value of
e /K —0 as D2,

E. Water and mercury

Data needed to calculate the small-¢ behavior of
water and mercury are collected in Table I. The
shock measurements of Walsh and Rice'! were
used to determine s,. Litovitz and Davis® gave
values of 7,/7,, and they also estimated G, for
water at 273 K. We used the following method to
estimate G, for mercury. In the solid phase,

G /B =w is nearly indemendent of temperature for
most materials, ext =pt near melting. With @ deter-
mined from this constant range, w=0.17 for mer-
cury, we set G, =B, in the liquid phase. Such
an estimate may be accurate within a (actor of 2;
the procedure gives 9 kbar for G, in water. To
caiculate the overdriven threshold, we used the ap-
proximation ¢, /t, =1 in state a, so the viscoelastic
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overdriven threshold is the same as the viscous
fluid overdrivea threshold.

For a given fluid, we generally have to solve (75)
numerically for 7, vs D*, to find the viscous fluid
limit. For water, however, the entire solution
range r, < G . is in the D —c limit, Eq. (79). This
circumstance results from a number of factoss, the
most significant being that 1,Cy /«x is large com-
pared to | for water at 293 K. For water, we find
the inviscid limit is at a shock pressure of 0.040
kbar, the overdriven threshold is at 13 kbar, and
because the factor h/%a,g in (79) is extremely
small, the viscous fluid limit is barely beyond the
ovardriven threshold; the shock pressure at the
viscous fluid limit is 1.0003 times the shock pres-
sure at the overdriven threshold.

For mercury, the inviscid limit is at 9 kbar and
the overdriven threshold is at 33 kbar. The solu-
tion of (75) for 7, when the viscous fluid limit is
reached is in the D — oo limit, small-viscosity case,

3301

Eq. (81). This situation is probably representative
of liquid metals in general and is duc to a number
of factors, the most significant being 7,Cy /x << |
in state a. Our calculation gives 690 kbar fu: the
viscous fluid limit of mercury.

As mentioned in Sec. I, we expect irreversible
thermodynamics to be valid for shocks up to some
critical strength, and not valid for stronger shocks.
For metals, solid or liquid phase, our preliminary
estimate places this critical limit in the region of a
few Mbar.'? Hence the present computations for
liquid mercury should be in the range of validity
of irreversible thermodynamics.
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