
(30)

The theories that make up the standard model are all based on the

principle of local symmetry. The simplest example of a local sym-

metry is the extension of the global phase invariance discussed at the

end of Note 2 to local phase invariance. As we will derive below, the
requirement that a theory be invariant under local phase transforma-

tions implies the existence ofa gauge field in the theory that mediates

or carries the “force” between the matter fields. For electrodynamics

the gauge field is the electromagnetic vector potential .AV(-@and its

quantum particle is the massless photon. In addition, in the standard

model the gauge fields mediating the strong interactions between the

quarks are the massless gluon fields and the gauge fields mediating

the weak interactions are the fields for the massive 2° and @ weak

bosons.

To illustrate these principles we extend the global phase invariance

of the Lagrangian of Eq. 1 to a theory that has local phase invariance.
Thus, we require Jf’ to have the same form for @(x) and q(x), where

the local phase transformation is defined by

(p’(x) = e“(++(x) .

The potential energy,

V(q,(pt) = m4ptp + l(rpt(p)* ,

already has this symmetry, but

(31)

the kinetic energy, d~qtd~rp, clearly

does not, since

(3V(p’(x)= e“(~) [(?,(+3+ i((?y&)(p]. (32)

-%’does not have local phase invariance if the Lagrangian of the

transformed fields depends on s(x) or its derivatives. The way to

eliminate the ?Pe dependence is to add a new field AP(x) called the

gauge field and then require the local symmetry transformation law

for this new field to cancel the dye term in Eq. 32. The gauge field can

be added by generalizing the derivative dy to Dy, where

Dw = dp – ieAv(x). (33)

This is just the minimal-coupling procedure of electrodynamics. We

can then make a kinetic energy term of the form (Dhp)t(DVq) if we

require that

DjqY(x) = e“(-’)Dpq(x) . (34)

When written out with Eq. 33, Eq. 34 becomes an equation for ,4~(x)

in terms of.4P(x), which is easily solved to give

AL(X) = AK(X)+ + dye(x) . (35)

Equation 35 prescribes how the gauge field transforms under the local

phase symmetry.

Thus the first step to modifying Eq. 1 to be a theory with local

phase invariance is simply to replace tlP by DP in SE. (A slightly

generalized form of this trick is used in the construction of all the

theories in the standard model.) With this procedure the dominant

interaction of the gauge field ,4~(x) with the matter field (p is in the

form of a current times the gauge field, e.Y_’Av,where JY is the current

defined in Eq. 14.

We now show that spontaneous breaking of local symmetry im-

plies that the associated vector boson has a mass, in spite of the fact

that A~AV by itself is not locally phase invariant. Much of the

calculation in Note 3 can be translated to the Lagrangian of Eq. 38. In
fact, the calculation is identical from Eq. 16 to Eq. 18, so the first new

step is to substitute Eq. 17 into Eq. 38. The only significantly new part

of the calculation is replacing dhpt6’Vq by (D%p)t(DY~). However,

instead of simply substituting Eq. 17 for q and computing

(Dhp)t(DKq) directly, it is convenient to make a local phase trans-

formation first:

q’(x) = *[f3(x) + qo] exp[in(x)/(po] , (41)

where q(x) = [p(x) + qo]/ ~. (The local phase invariance permits us

to remove the phase of q(x) at every space-time point.) We

emphasize the difference between Eqs. 17 and 41: Eq. 17 defines the

p(x) and n(x) fields; Eq. 41 is a local phase transformation of q(x) by

angle rc(x). Don’t be fooled by the formal similarity of the two

equations. Thus, we may write Eq. 38 in terms of q(x)= [p(x) +

~011@ and obtain



This [eaves a problem. If we simply replace dPq by D~qr in the

Lagrangian and then derive the equations of motion for ,4P, we find

that AVis proportional to the current .JW.The ,41 field equation has no
space-time derivatives and therefore .4Y(x) does not propagate. If we

want ,4!, to correspond to the electromagnetic field potential, we must

add a kinetic energy term for it to Q?.

The problem then is to find a locally phase invariant kinetic energy

term for .4P(x). Note that the combination of covariant derivatives

DPDV– DVDW,when acting on any function, contains no derivatives

of the function. We define the electromagnetic field tensor of elec-

trodynamics as

Fw = ; [Dw , D,]= 3PAV– dvAl . (36)

It contains derivatives of Ap. Its transformation law under the local

symmetry is

Thus, it is completely trivial to write down a term that is quadratic in

the derivatives of AY,which would be an appropriate kinetic energy

term. A fully phase invariant generalization of Eq. la is

We should emphasize that Y has no mass term for Ap(x). Thus, when

the fields correspond directly to the particles in Eq. 38, the vector

particles described by AK(x) are massless. In fact, A~AY is not in-
variant under the gauge transformation in Eq. 35, so it is not obvious

how the Ap field can acquire a mass if the theory does have local

phase invariance. In Note 6 we will show how the gauge field

becomes massive through spontaneous symmetry breaking. This is

the key to understanding the electroweak theory.
We now rediscover the Lagrangian of electrodynamics for the

interaction of electrons and photons following the same procedure

that we used for the complex scalar field. We begin with the kinetic
energy term for a Dirac field of the electron V, replace ?, by Dw

defined in Eq. 33, and then add – Y4F~vFpv, where Fpv is defined in
Eq. 36. The Lagrangian for a free Dirac field is

where y) are the four Dirac y matrices and ~ = yrtyo. Straightening out

the definition of the yP matrices and the components of v is the

problem of describing a spin-% particle in a theory with Lorentz

invariance. We leave the details of the Dirac theory to textbooks, but

note that we will use some of these details when we finally write down

the interactions of the quarks and Ieptons. The interaction of the

electron field ~ with the electromagnetic field follows by replacing 13W

by DY.The electrodynamics Lagrangian is

where the interaction term in i~y~DYyJhas the form

where J~m= ~yp~ is the electromagnetic current of the electron.
What is amazing about the standard model is that all the electroweak

and strong interactions between fermions and vector bosons are

similar in form to Eq. 40b, and much phenomenology can be

understood in terms of such interaction terms as long as we can

approximate the quantum fields with the classical solutions.

m’
--y(p+tpo)z -;(p+(po)? (42)

(At the expense of a little algebra, the calculation can be done the

other way. First substitute Eq. 17 for ~ in Eq. 38. One then finds an

AYdVnterm in ~ that can be removed using the local phase trans-

formation AL = Aw – [l /(eqo)]dYn, p’ = p, and rc’ = O. Equation 42

then follows, although this method requires some effort. Thus, a

reason for doing the calculation in the order of Eq. 41 is that the

algebra gets messy rather quickly if the local symmetry is not used

early in the calculation of the electroweak case. However, in principle
it makes little difference.)

The Lagrangian in Eq. 42 is an amazing resul~ the n field has

vanished from W altogether (according to Eq. 41, it was simply a

gauge artifact), and there is a term ‘/2d9~ AYAV in Y, which is a mass

term for the vector particle. Thus, the massless particle of the global

case has become the longitudinal mode of a massive vector particle,

and there is only one scalar particle p left in the theory. In somewhat

more picturesque language the vector boson has eaten the Goldstone

boson and become heavy from the feast. However, the existence of

the vector boson mass terms should not be understood in isolation:

the phase invariance of Eq. 42 determines the form of the interaction

of the massive AY field with the p field.

This calculation makes it clear that it can be tricky to derive the

spectrum of a theory with local symmetry and spontaneous sym-
metry breaking. Theoretical physicists have taken great care to

confirm that this interpretation is correct and that it generalizes to the

full quantum field theory.



The standard model possesses symmetries of the type described in

Note 4, except that they are local. Thus, we need to carry out the

calculations of Note 5 for Lie-group symmetries. As the reader might

expect, this requires replacing s(x) of Eq. 13 by a matrix or, equiv-

alently, the matrix of Eq. 21 by a matrix function of x, S’(X)T=. The

Yang-Mills Lagrangian can be derived by mimicking with matrix

functions Eqs. 34 to 38.
The internal, local transformation of the q field (q is a column

vector with components q;, where i runs from 1 to n) is

q’(x) = e;’(~)q(x), (43)

which is formally identical to Eq. 30, except that E(X) is now an n-by-n
matrix. Thus,

e(x) = c=(x) T=, (44)

where the sum on a is over the N independent symmetries. Equation

43 is a symmetry of the potential energy

P’= ~+p+(p + x(qtQ)* , (45)

if e(x) in Eq. 44 is a Hermitian matrix (that is, if T. = T~ and the E“(X)

are real functions). The kinetic energy (dPq)+(dPq) can be made phase
invariant by extending du to DY, analogous to Eq. 33 for electro-

dynamics:

DP = dP –ieAY, (46a)

where

AP=A; TQ> (46b)

so that AY is an n-by-n matrix that acts on the T vector. Just as for Eq.

35, the transformation properties of A~ are derived from the equation

ll~q’(x) = e“(’) DPq(x). (47)

After some matrix manipulation one finds the solution of Eq. 47 for

A;(x) in terms of AU(x)tobe

AL(x) = e“(x) AV(x)e-’’(X) – ~ 8US(X), (48)

where e–@) is the inverse of the matrix eis(x) With these require-

ments, it is easily seen that (DWq?)t(DYq)is invariant under the group

of local transformations.
The calculation of the field tensor is formally identical to Eq. 36,

except we must take into account that AP(x) is a matrix. Thus, we
define a matrix Fgv field tensor as

Fv, = ~ [D! ,Dv] = dY-4v– ?W4P– ie [AYA] (49)

There is a field tensor for each group generator, and some further

matrix manipulation plus Eq. 26 gives the components,

F;v = c?pA$– avAf + e~bcAp/)Avc . (50)

The transformation law for the matrix FY. is

Ffv = e’6(X)F’Yve-i&(X). (51)

Thus, we can write down a kinetic energy term in analogy to

electrodynamics:

%ki~~~i~~n.~g~= – ~ p. ~ .-! FO F~V (52)

The locally invariant Yang-Mills Lagrangian for spinless fields cou-

pled to the vector bosons is

% = – ~ FfvF~ + (Dwq)t@vq) – IL2qtq – ?L(q7q)2. (53)

Just as in electrodynamics,

the form

-Y?f~,~io.= ~(il’yDP – m)w ,

we can add fermions to the theory in

(54)

where DP is defined in Eq. 46 and y is a column vector with nfentries

(nf = number of fermions). The matrices T. in Dv for the fermion

covariant derivative are usually different from the matrices for the

spinless fields, since there is no requirement that q and v need to

belong to the same representation of the group. It is, of course,

necessary for the sets of T= matrices to satisfy the commutation

relations of Eq. 26 with the same set of structure constants.

We will not look at the general case of spontaneous symmetry

breaking in a Yang-Mills theory, which is a messy problem

mathematically. There is spontaneous symmetry breaking in the

electroweak sector of the standard model, and we will work out the

steps analogous to Eqs. 41 and 42 for this particular case in the next
Note.



The SU(2) X U(l)

The main emphasis in these Notes has been on developing just

those aspects of Lagrangian field theory that are needed for the

standard model. We have now come to the crucial step: finding a

Lagrangian that describes the electroweak interactions. It is rather

diflicult tc~be systematic. The historical approach would be com-

plicated by the rather late discovery of the weak neutral currents, and

a purely phenomenological development is not yet totally logical

because there are important aspects of the standard model that have

not yet been tested experimentally. (The most important of these are

the details of the spontaneous symmetry breaking.) Although we will
write down the answer without excessive explanation, the reader

should not forget the critical role that experimental data played in the

development of the theory.

The first problem is to identify the local symmetry group. Before

the standard model was proposed over twenty years ago, the elec-

tromagnetic and charge-changing weak interactions were known. The

smallest cc,ntinuous group that can describe these is SU(2), which has

a doublet representation. If the weak interactions can change elec-

trons to electron neutrinos, which are electrically neutral, it is not

possible to incorporate electrodynamics in SU(2) alone unless a

heavy positively charged electron is added to the electron and its

neutrino to make a triplet, because the sum of charges in an SU(2)

multiplet i:szero. Various schemes of this sort have been tried but do

not agree with experiment. The only way to leave the electron and

electron neutrino in a doublet and include electrodynamics is to add

an extra U(1) interaction to the theory. The hypothesis of the extra

U(1) factor was challenged many times until the discovery of the
weak neutral current. That discovery established that the local sym-

metry of the electroweak theory had to beat least as large as SU(2) X

u(l).

Let us now interpret the physical meaning of the four generators of

SU(2) X U(1). The three generators of the SU(2) group are 1+, 13,

and 1–, and the generator of the U(1) group is called 1’, the weak

hypercharge. (The weak SU(2) and U(1) groups are distinguished

from other SU(2) and U(1) groups by the label “W.”) I+ and I- are

associated with the weak charge-changing currents (the general def-

inition of a current is described in Note 2), and the charge-changing

currents ccluple to tbe W+ and W– charged weak vector bosons in

analogy to Eq. 40b. Both 13and Y are related to the electromagnetic

current and the weak neutral current. In order to assign the electron

and its neutrino to an SU(2) doublet, the electric charge Qem is

defined by

Qem= 13+ Y/2, (55)

so the sum of electric charges in an n-dimensional multiplet is n Y/2.

The charge of the weak neutral current is a different combination of
13and Y, as will be described below.

The Lagrangian includes many pieces. The kinetic energies of the

vector bosons are described by ~Y.M, in analogy to the first term in

Eq. 38. The three weak bosons have masses acquired through spon-

taneous symmetry breaking, so we need to add a scalar piece SY~mla,to

the Lagrangian in order to describe the observed symmetry breaking

(also see Eq. 38). The fermion kinetic energy ~~ermion includes the

fermion-boson interactions, analogous to the electromagnetic inter-

actions derived in Eqs. 39 and 40. Finally, we can add terms that

couple the scalars with the fermions in a term ff’y.k~~~. one physical

significance of the Yukawa terms is that they provide for masses of

the quarks and charged leptons.
The standard model is then a theory with a very long Lagrangian

with many fields. The electroweak Lagrangian has the terms

%~]~~~r~Weak= ~Y.M + ~y.~1~, + ~f~~~i~~ + &yukawa . (56)

(The reader may find this construction to bead hoc and ugly. If so,

the motivation will be clear for searching for a more unified theory

from which this Lagrangian can be derived. However, it is important

to remember that, at present, the standard model is the pinnacle of

success in theoretical physics and describes a broader range of natural

phenomena than any theory ever has.)
The Yang-Mills kinetic energy term has the form given by Eq. 52

for the SU(2) bosons, plus a term for the U(1) field tensor similar to

electrodynamics (Eqs. 36 and 38).

where the U(1) field tensor is

Fpv = dpBv – avBp

(57)

(58)

and the SU(2) Yang-Mills field tensor is

where the e.hc are the structure constants for SU(2) defined in Eq. 24

and the Wfi are the Yang-Mills fields.



@ continued
W(2) X U( 1) has two factors, and there is an independent coupling

constant for each factor. The coupling for the SU(2) factor is called g,

and it has become conventional to call the U(1) coupling g’/2. The

two couplings can be written in several ways. The U(1) of elec-

trodynamics is generated by a linear combination of 13and Y, and the

coupling is, as usual, denoted by e. The other coupling can then be

parametrized by an angle 6w. The relations among g, g’, e, and Ow

are

e = gg’/ ~$+g’2 and tan OW= g’/g. (60)

These definitions will be motivated shortly. In the electroweak theory

both couplings must be evaluated experimentally and cannot be

calculated in the standard model.

The scalar Lagrangian requires a choice of representation for the

scalar fields. The choice requires that the field with a nonzero
vacuum value is electrically neutral, so the photon remains massless,

but it must carry nonzero values of 13and Y so that the weak neutral

boson (the Z$) acquires a mass from spontaneous symmetry break-

ing. The simplest assignment is

assignment that the q doublet has Y = 1. After the spontaneous

symmetry breaking, three of the four scalar degrees of freedom are

“eaten” by the weak bosons. Thus just one scalar escapes the feast

and should be observable as an independent neutral particle, called

the Higgs particle. It has not (?) yet been observed experimentally,

and it is perhaps the most important particle in the standard model

that does not yet have a firm phenomenological basis. (The mini-

mum number of scalar fields in the standard model is four. Ex-

perimental data could eventually require more.)

We now carry out the calculation for the spontaneous symmetry

breaking of SU(2) X U(1) down to the U(1) of electrodynamics. Just

as in the example worked out in Note 6, spontaneous symmetry

breaking occurs when m2 <0 in Eq. 62. In contrast to the simpler

case, it is rather important to set up the problem in a clever way to

avoid an inordinate amount of computation. As in Eq. 41, we write

the four degrees of freedom in the complex scalar doublet so that it

looks like a local symmetry transformation times a simple form of the

field:

q(x) = exp[im”(x)~./2~O]
( [P(x) +:ol/v2 )

(64)

We can then write the scalar fields in a new gauge where the phases of

q(x) are removed:

where q+ has 13= 1/2and Y = 1, and go has 13= —1/2and Y = 1. Since

q does not have Y = –1 fields, it is necessary to make q a complex

doublet, so (T+)t = –q- has 13= –Y2 and Y= – 1, and (q”)t has 13= %

and Y = —1. Then we can write down the Lagrangian of the scalar

fields as

qI’(x) = exp [–ina(X)T./290]q(X) =
( )[lxx) +% ‘

(65)
(61)

l?,,.,,, = (D’q)+(qq)) –n’z+p~qPL((pt(p)* ,

where

(62)

(63)

is the covariant derivative. The 2-by-2 matrices ~a are the Pauli

matrices. The factor of 1/2k required because the doublet represen-

tation of the SU(2) generators is ~a/2. The factor of 1/2in the BY term
is due to the convention that the U(1) coupling is g’/2 and the

where we have used the freedom of making local symmetry trans-

formations to write q’(x) in a very simple form. This choice, called

the unitary gauge, will make it easy to write out Eq. 63 in explicit

matrix form. Let us drop all primes on the fields in the unitary gauge

and redefine Wfi by the equation

(66)

where the definition of the Pauli matrices is used in the first step, and

the W+ fields are defined in the second step with a numerical factor
that guarantees the correct normalization of the kinetic energy of the

charged weak vector bosons.

Next, we write out the DYV in explicit matrix form, using Eqs. 63,

65, and 66:

( –iv%wi(p + TJOW

)“9= & dvp – i(g’BU– gw~)(p + ~o)/2 “
(67)



Finally, we substitute Eqs. 65 and 67 into Eq. 63 and obtain

2
~,ca,ar = ~ w!! w~(p + (p(J)2+ ; CY’pdpp

+ + (g’11~ – gw’$)(g’By – gw’:)(p + (po)2

++2(P+90)2 +:(P+ 90)4> (68)

where p is the, as yet (?), unobserved Higgs field.

It is clear from Eq. 68 that the Wfields will acquire a mass equal to

gqo/2 from the term quadratic in the W’ fields, (~/4)9~ w!Yvj.
The combination dBp – gW~ will also have a mass. Thus, we

“rotate” the Bw and !+’; fields to the fields Z! for the weak neutral

boson and AYfor the photon so that the photon is massless.

()(z; sin ew

)( )

—Cos ew Bp

Av = COS8W sin ew w; ‘
(69)

where

cos EIw= g/ - and sin Ow = g/ ~ (70)

Upon substituting Eqs. 69 and 70 into Eq. 68, we find that the .?$

mass is ‘Y,q. ~’, so the ratio of the Wand Z masses is

A4WIMZ = coseW. (71)

Values for Afw and A4z have recently been measured at the CERN

proton-antiproton collider Mw = (80.8 ~ 2.7) GeV/c2 and Mz =

(92.9 * 1.6) GeV/c2. The ratio .Vfw/A4z calculated with these values
agrees well with that given by Eq. 71. (The angle 9W is usually

expressed as sin28w and is measured in neutrino-scattering experi-

ments to be sin20w = 0.224 ~ 0.015.) The photon field .4Vdoes not

appear in ~~calar, so it does not become massive from spontaneous

symmetry breaking. Note, also, that the na(x) fields appear nowhere

in the Lagrangian; they have been eaten by three weak vector bosons,

which have become massive from the feast.

The next term in Eq. 56 is ~fermiom.Its form is analogous to Eqs. 39

and 40 for electrodynamics:

YfemiOn ~ C~y~DM~ (72)

The physical problem is to assign the left- and right-handed fermions

to multiples of SU(2); the assignments rely heavily on experimental
data and are listed in “Particle Physics and the Standard Model.”

Our purpose here will be to write out Eq. 72 explicitly for the

assignments.

Consider the electron and its neutrino. (The quark and remaining

lepton contributions can be worked out in a similar fashion.) The left-

handed components are assigned to a doublet and the right-handed

components are singlets. (Since a neutral singlet has no weak charge,
the right-handed component of the neutrino is invisible to weak,

electromagnetic, or strong interactions. Thus, we can neglect it here,
whether or not it actually exists.) We adopt the notation

()
y/L = “:

eE
and ~R = (e~) , (73)

where L and R denote left- and right-handed. Then the explicit

statement of Eq. 72 requires constructing D! for the left- and nght-

handed leptons.

&l,P,O” = @RY’(~V + Z#BY)VR

+ iijL’#[f?K + ~ (g’~v – g’ra W~)]VL . (74)

The weak hypercharge of the right-handed electron is –2 so the

coefficient of Bv in the first term of Eq. 74 is (–g’/2) X (–2) = g’. We

leave it to the reader to check the rest of Eq. 74. The absence of a mass

term is not an error. Mass terms are of the form ~~ = @L~R+ ~R~L.

Since ~L is a doublet and $R is a singlet, an electron mass term must

violate the SU(2) X U( 1) symmetry. We will see later that the electron

mass will reappear as a result of modification of 4f’YuhWadue to

spontaneous symmetry breaking.

The next task is exciting, because it will reveal how the vector

bosons interact with the Ieptons. The calculation begins with Eq. 74

and requires the substitution of explicit matrices for z. W$ ~R, and

YE. We use the definitions in Eqs. 66, 69, and 73. The expression’s

become quite long, but the calculation is very straightforward. After

simplifying some expressions, we find that %lePtOnfor the electron

Iepton and its neutrino is

~lqmn = k“fpdfie + i;LyYd~”L – e ~~eAp

+ * ‘;Ly’eLwi+ ‘LypvLwi)

2
[tan28w(2&”fv@+ ;L”#@ – ~L~’eL]zY

–2-

– ~ - ~LyWLZW. (75)



a]continued

The first two terms are the kinetic energies of the electron and the

neutrino. (Note that e = eL + eR.) The third term is the elec-

tromagnetic interaction (cf. Eq. 40) with electrons of charge –e,
where e is defined in Eq. 60. The coupling ofAP to the electron current

does not distinguish left from right, so electrodynamics does not

violate parity. The fourth term is the interaction of the J@ bosons

with the weak charged current of the neutrinos and electrons. Note

that these bosons are blind to right-handed electrons. This is the

reason for maximal parity violation in beta decay. The final terms

predict how the weak neutral current of the electron and that of the

neutnno couple to the neutral weak vector boson ZO.

If the left- and right-handed electron spinors are written out

explicitly, with eL = Y2(1 – y5)e, the interaction of the weak neutral

current of the electron with the ZO is proportional to ~P[( 1 –

4sin28w) – y5]eZW. This prediction provided a crucial test of the

standard model. Recall from Eq. 71 that sin2t3w is very nearly 1/4)so

that the weak neutral current of the electron is very nearly a purely

axial current, that is, a current of the form ~~y5e. This crucial

prediction was tested in deep inelastic scattering of polarized elec-

trons and in atomic parity-violation experiments. The results of these

experiments went a long way toward establishing the standard model.

The tests also ruled out models quite similar to the standard model.

We could discuss many more tests and predictions of the model

based. on the form of the weak currents, but this would greatly

lengthen our discussion. The electroweak currents of the quarks will

be described in the next section.
We now discuss the last term in Eq. 56, ~YUk~~~. In a locally

symmetric theory with scalars, spinors, and vectors, the interactions

between vectors and scalars, vector and spinors, and vectors and
vectors are determined from the local invariance by replacing 6’Wby
Dy. In contrast, ~Yuk.W~, which is the interaction between the scalars

and spinors, has the same form for both local and global symmetries

This form for @Yuk~~, is rather schematic; to make it explicit we must

specify the multiples and then arrange the component fields so that

the form of~YUk~W~does not change under a local symmetry trans-

formation.

Let us write Eq. 76 explicitly for the part of the standard model we

have examined so far: q is a complex doublet of scalar fields that has

the form in the unitary gauge given by Eq. 65. The fermions include

the electron and its neutrino. If the neutrino has no right-handed

component, then it is not possible to insert it into Eq. 76. Since the

neutrino has no mass term in SElcPtOn,the neutrino remains massless

in this theory. (If vR is included, then the neutrino mass is a free

parameter.) The Yukawa terms for the electron are

[( o )‘Yukawa=‘y ‘iL’‘L)(p+ qoyti ‘e’)

1

= T ‘Y:’(P + ‘0) ‘
(77)

where we have used the fact that ~LeL= ~ReR= O, and e = e’ + e’ is

the electron Dirac spinor. Note that Eq. 77 includes an electron mass

term,

“=+ ‘Yqo ‘
(78)

so the electron mass is proportional to the vacuum value of the scalar

field. The Yukawa coupling is a free parameter, but we can use the

measured electron mass to evaluate it. Recall that

~w. f10=_f!!.._=81GeV,
2 2 sin 8W

where #/4rc - 1/137. This implies that ~. = 251 GeV. Since me =
0.000511 GeV, Gy = 2.8 X 10–6 for the electron. There are more than

five Yukawa couplings, including those for the p and ~ leptons and

the three quark doublets as well as terms that mix different quarks of

the same electric charge. The standard model in no way determines

the values of these Yukawa coupling constants. Thus, the study of

fermion masses may turn out to have important hints on how to

extend the standard model.



Particle Physics and the Standard Model

Quarks

Discovery of the fundamental fields of the strong interactions was

not straightforward, It took some years to realize that the hadrons,

such as the nucleons and mesons, are made up of subnuclear constit-

uents, primarily quarks. Quarks originated from an effort to provide

a simple physical picture of the “Eightfold Way,” which is the SU(3)

symmetry proposed by M. GelI-Mann and Y. Ne’eman to generalize

strong isotopic spin. The hadrons could not be classified by the

fundamental three-dimensional representations of this SU(3) but

instead are assigned to eight- and ten-dimensional representations.

These larger representations can be interpreted as products of the

three-dimensional representations, which su~ested to Gell-Mann

and G. Zweig that hadrons are composed of constituents that are

assigned to the three-dimensional representations: the u (up), d
(down), ands (strange) quarks. At the time of their conception, it was
not clear whether quarks were a physical reality or a mathematical

trick for simplifying the analysis of the Eightfold-Way SU(3). The

major breakthrough in the development of the present theory of

strong interactions came with the realization that, in addition to

electroweak and Eightfold-Way quantum numbers, quarks carry a

new quantum number, referred to as color. This quantum number

has yet to be observed experimentally.

We begin this lecture with a description of the Lagrangian of a

strong-interaction theory of quarks formulated in terms of their color

quantum numbers. Called quantum chromodynamics, or QCD, it is

a Yang-Mills theory with local color-SU(3) symmetry in which each

quark belongs to a three-dimensional color multiplet. The eight

color-SU(3) generators commute with the electroweak SU(2) X U(1)

generators, and they also commute with the generators of the Eight-
fold Way, which is a different SU(3). (Like SU(2), SU(3) is a recurring

symmetry in physics, so its various roles need to be distinguished.

Hence we need the label “color.”) We conclude with a discussion of

the weak interactions of the quarks.

The QCD Lagrangian. The interactions among the quarks are

mediated by eight massless vector bosons (called gluons) that are

required to make the SU(3) symmetry local. As we have already seen,

the assumption of local symmetry leads to a Lagrangian whose form

is highly restricted. As far as wc know, only the quark and gluon fields

are necessary to describe the strong interactions, and so the most

general Lagrangian is

~~c~ = – ~ F;,, F~v + iX~,y~Dv~, + X ~,,kfj,~, , (79)
! /,/

where

F;v = PP.4: – dv,4fi + g,,~h,.4~.4: (80)

The sum on a in the first term is over the eight gluon fields.4 ~. The

second term represents the coupling of each gluon field to an SU(3)

current of the quark fields, called a color current. This term is

summed over the index i, which labels each quark type and is

independent of color. Since each quark field V, is a three-dimensional

column vector in color space, Dv is defined by

DPV, = dvy, – ~ igd:k~yi,, (81)

where 1. is a generalization of the three 2-by-2 Pauli matrices of

SU(2) to the eight 3-by-3 GelI-Mann matrices of SU(3). and g, is the

QCD coupling. Thus, the color current of each quark has the form

~1#’v. The Ieft-handed quark fields couple to the gluons with

exactly the same strength as the right-handed quark fields, so parity is

conserved in the strong interactions.

The gluons arc massless because the QCD Lagrangian has no

spinless fields and therefore no obvious possibility of spontaneous

symmetry breaking. Of course, if motivated for experimental

reasons, one can add scalars to the QCD Lagrangian and spon-

taneously break SU(3) to a smaller group. This modification has been

used, for example, to explain the reported observation of fractionally

charged particles. The experimental situation, however, still remains

murky, so it is not (yet) necessary to spontaneously break SU(3) to a

smaller group. For the remainder of the discussion, we assume that

QCD is not spontaneously broken.
The third term in Eq. 79 is a mass term. In contrast to the

clectrowcak theory, this mass term is now allowed. even in the

absence of spontaneous symmetry breaking. because the left- and
right-handed quarks arc assigned to the same multiplet of SCJ(3). The

numerical coefficients M,, arc the elements of the quark mass matrix;

they can connect quarks of equal electric charge. The Y’~c~ of Eq. 79

permits us to rcdctine the QCD quark fields so that M,, = )M,6,,.The



@continued
mass matrix is then diagonal and each quark has a definite mass,

which is an eigenvalue of the mass matrix. We will reappraise this

situation below when we describe the weak currents of the quarks.

After successfully extracting detailed predictions of the electro-

weak theory from its complicated-looking Lagrangian, we might be

expected to perform a similar feat for the -fEQcDof Eq. 79 without too
much difilculty. This is not possible. Analysis of the electroweak

theory was so simple because the couplings g and g’ are always small,

regardless of the energy scale at which they are measured, so that a

classical analysis is a good first approximation to the theory. The

quantum corrections to the results in Note 8 are, for most processes,

only a few percent.

IIn QCD processes that probe the short-distance structure of

hadrons, the quarks inside the hadrons interact weakly, and here the

classical analysis is again a good first approximation because the

coupling g, is small. However, for Yang-Mills theories in general, the

renormalization group equations of quantum field theory require

that g, increases as the momentum transfer decreases until the

momentum transfer equals the masses of the vector bosons. Lacking

spontaneous symmetry breaking to give the gluons mass, QCD

contains no mechanism to stop the growth of g,, and the quantum

effects become more and more dominant at larger and larger dis-

tances. Thus, analysis of the long-distance behavior of QCD, which

includes deriving the hadron spectrum, requires solving the full

quantum theory implied by Eq. 79. This analysis is proving to be very

difficult.

Even without the solution of 9QCD, we can, however, draw some

conclusions. The quark fields V, in Eq. 79 must be determined by

experiment. The Eightfold Way has already provided three of the

quarks, and phenomenological analyses determine their masses (as

they appear in the QCD Lagrangian). The mass of the u quark is
nearly zero (a few MeV/c2), the d quark is a few MeV/c2 heavier than

the u, and the mass of the s quark is around 300 MeV/c2. If these

results are substituted into Eq. 79, we can derive a beautiful result

from the QCD Lagrangian. In the limit that the quark mass dif-

ferences can be ignored, Eq. 79 has a global SU(3) symmetry that is

identical to the Eightfold-Way SU(3) symmetry. Moreover, in the

limit that the u, d, and s masses can be ignored, the left-handed u, d,

ands quarks can be transformed by one SU(3) and the right-handed

u, d, and s quarks by an independent SU(3). Then QCD has the

“chiral” SU(3) X SU(3) symmetry that is the basis of current algebra.

The sums of the corresponding SU(3) generators of chiral SU(3) X

SU(3) generate the Eightfold-Way SU(3). Thus, the QCD Lagrangian

incorporates in a very simple manner the symmetry results of

hadronic physics of the 1960s. The more recently discovered c

(charmed), b (bottom), and t(top) quarks are easily added to the QCD

Lagrangian. Their masses are so large and so different from one

another that the SU(3) and SU(3) X SU(3) symmetries of the Eight-
fold-Way and current algebra cannot be extended to larger sym-

metries. (The predictions of, say, SU(4) and chiral SU(4) X SU(4) do

not agree well with experiment.)

It is important to note that the quark masses are undetermined

parameters in the QCD Lagrangian and therefore must be derived

from some more complete theory or indicated phenomenologically.

The Yukawa couplings in the electroweak Lagrangian are also free

parameters. Thus, we are forced to conclude that the standard model

alone provides no constraints on the quark masses, so they must be

obtained from experimental data.

The mass term in the QCD Lagrangian (Eq. 79) has led to new

insights about the neutron-proton mass difference. Recall that the

quark content of a neutron is udd and that of a proton is uud. If the u

and d quarks had the same mass, then we would expect the proton to

be more massive than the neutron because of the electromagnetic

energy stored in the uu system. (Many researchers have confirmed

this result.) Since the masses of the u and d quarks are arbitrary in

both the QCD and the electroweak Lagrangians, they can be adjusted

phenomenologically to account for the fact that the neutron mass is

1.293 MeV/c2 greater than the proton mass. This experimental

constraint is satisfied if the mass of the d quark is about 3 MeV/c2

greater than that of the u quark. In a way, this is unfortunate, because

we must conclude that the famous puzzle of the n-p mass difference

will not be solved until the standard model is extended enough to

provide a theory of the quark masses.

Weak Currents. We turn now to a discussion of the weak currents of

the quarks, which are determined in the same way as the weak

currents of the leptons in Note 8. Let us begin with just the u and d
quarks. Their elcctroweak assignments areas follows: the left-handed

coniponents ui, and d[ form an SU(2) doublet with Y = lA, and the
right-handed components uR and dR are SU(2) singlets with Y = 4/3



and –2/3, respectively (recall Eq. 55).

The steps followed in going from Eq. 73 to Eq. 75 will yield the

electroweak Lagrangian of quarks. The contribution to the Lagran-

gian due to interaction of the weak neutral current .l~) of the u and d
quarks with 2° is

C&(m)= e
J~J Z~ ,

sin OWcos OW
(82)

where

(Jr)= 1 2c.in?.ew) 2—.— fi~~v~L ——sin2&;R~~ uR
23 3

( )+ – ; + ; Sin*@w dL~pdL + ; Si112f)w&yydR . (83)

The reader will enjoy deriving this result and also deriving the

contribution of the weak charged current of the quarks to the

electroweak Lagrangian. Equation 83 will be modified slightly when
we include the other quarks.

So far we have emphasized in Notes 8 and 9 the construction of the

QCD and electroweak Lagrangians for just one Iepton-quark

“family” consisting of the electron and its neutrino together with the

u and d quarks. Two other lepton-quark families are established

experimentally: the muon and its neutrino along with the c and s

quarks and the ~ lepton and its neutrino along with the tand b quarks.
Just like (\~e)Land eL, (vp)L and ~L and (v.)1- and ~Lform weak-SU(2)

doublets; eR, PR and ~R are each SU(2) singlets with a weak hyper-

charge of—2. Similarly, the weak quantum numbers of c ands and of

tand b echo those of u and d cL and ~_Lform a weak-SU(2) doublet as

do tRand bL. Like uR and dR, the right-handed quarks cR, sR, tR,and

bR are all weak-SU(2) singlets.

This triplication of families cannot be explained by the standard

model, although it may eventually turn out to be a critical fact in the

development of theories of the standard model. The quantum

numbers of the quarks and Ieptons are summarized in Tables 2 and 3

in “Particle Physics and the Standard Model.”

All these quark and Iepton fields must be included in a Lagrangian

that incorporates both the electroweak and QCD Lagrangians. It is

quite obvious how to do this: the standard model Lagrangian is

simply the sum of the QCD and electroweak Lagrangians, except that

the terms occurring in both Lagrangians (the quark kinetic energy

terms i~17VdVYiand the quark mass terms ~iLfijVj) are included just

once. Only the mass term requires comment.

The quark mass terms appear in the electroweak Lagrangian in the

form ~YU&,~ (Eq. 77). In the electroweak theory quarks acquire

masses only because SU(2) X U(1) is spontaneously broken. How-

ever, when there are three quarks of the same electric charge (such as

d, s, and b), the general form of the mass terms is the same as in Eq.

79, ~,kf,,y,, because there can be Yukawa couplings between d ands,

d and b, ands and b. The problem should already be cleac when we

speak of quarks, we think of fields that have a definite mass, that is,

fields for which Mti is diagonal. Nevertheless, there is no reason for

the fields obtained directly from the electroweak symmetry breaking

to be mass eigenstates.

The final part of the analysis takes some care: the problem is to find

the most general relation between the mass eigenstates and the fields

occurring in the weak currents. We give the answer for the case of two

families of quarks. Let us denote the quark fields in the weak currents

with primes and the mass eigenstates without primes. There is

freedom in the Lagrangian to set u = u’ and c = c’. If we do so, then

the most general relationship among d,s, d’, and s’ is

( )-(d’ Cos (3C

)()

–sin Oc d

s’ — sin ec COS ec s
(84)

The parameter Etc, the Cabibbo angle, is not determined by the

electroweak theory (it is related to ratios of various Yukawa cou-

plings) and is found experimentally to be about 13“. (When the b and

t (=t’)quarks are included, the matrix in Eq. 84 becomes a 3-by-3

matrix involving four parameters that are evaluated experimentally.)

The correct weak currents are then given by Eq. 83 if all quark

families are included and primes are placed on all the quark fields.

The weak currents can be written in terms of the quark mass

eigenstates by substituting Eq. 84 (or its three-family generalization)

into the primed version of Eq. 83. The ratio of amplitudes fors -+ u

and d ~ u is tan Oc; the small ratio of the strangeness-changing to

non-strangeness-changing charged-current amplitudes is due to the

smallness of the Cabibbo angle. It is worth emphasizing again that the

standard model alone provides no understanding of the value of this

angle. 0
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