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“1 have multiplied visions and used similitudes. ” — Hosea 7:10

In his marvelous book Dialogues Concerning

Ttvo .N’w’Sciences there is a remarkably clear

discussion on the effects of scaling up the

dimensions of a physical object. Galileo re-

alized that if one simply scaled up its size, the

weight of an animal would increase signifi-

cantly faster than its strength, causing it ul-

timately to collapse. AS Galileo says (in the

words of Salviati during the discorso of the

second day), “. . you can plainly see the

impossibility of increasing the size of struc-

tures to vast dimensions . if his height be

increased inordinately, he will fall and be

crushed under his own weight. ” The simple

scaling up of an insect to some monstrous

size is thus a physical impossibility, and we

can rest assured that these old sci-ti images

are no more than fiction! Clearly, to create a
giant one “must either find a harder and

stronger material . . or admit a diminution

of strength,” a fact long known to architects.

It is remarkable that so many years before

its deep significance could be appreciated,

Galileo had investigated one of the most

fundamental questions of nature: namely,

what happens to a physical system when one

changes scale? Nowadays this is the seminal
question for quantum field theory, phase

transition theory, the dynamics of complex

systems, and attempts to unify all forces in

nature. Tremendous progress has been made

in these areas during the past fifteen years

based upon answers to this question, and I

shall try in the latter part of this article to give

some flavor of what has been accomplished.
However, 1 want first to remind the reader of

the power of dimensional analysis in

classical physics. Although this is stock-in-

trade to all physicists, it is useful (and, more

pertinently, fun) to go through several exam-

ples that explicate the basic ideas. Be warned,

there are some surprises.

Classicad Scaling

Let us first re-examine Galileo’s original

analysis. For simikzr structures* (that is,

structures having the same physical

characteristics such as shape, density, or

chemical composition) Galileo perceived

that weight W’increases linearly with volume
V, whereas strength increases only like a

cross-sectional area ,4. Since for similar

structures V cc 13and A @ /z, where 1is some

characteristic length (such as the height of the

structure), we conclude that

Strength A 1 1

Weight aFa7a J773”
(1)

Thus, as Galileo noted, smaller animals “ap-

pear” stronger than larger ones. (It is amus-

ing that J,trome Siegel and Joe Shuster, the

creators of Superman, implicitly appealed to

such an argument in one of the first issues of

their comic.t They rationalized his super

strength by drawing a rather dubious analogy

with “the lowly ant who can support weights

hundreds of times its own” (sic! ).) Inciden-

tally, the above discussion can be used to

understand why the bones and limbs of
largeranimals must be proportionately

stouter than those of smaller ones, a nice

example of which can be seen in Fig. 1.
Arguments of this sort were used ex-

tensively during the late 19th century to un-
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Scale and Dimension

(a) (b)
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*“ Fig. I. Two extinct ntammals: (a) Neohipparion, a small American horse and (b)
Mastodon, a large, elephant-like animal, illustrating that the bones of heavier
animals are proportionately stouter and thus proportionately stronger.

ders[and [hc gross features of [he biological

world: indeed. the general SIZCand shape of

animals and plants can bc viewed as na(urc’s

way of rcspondtng 10 the constraints of gral’ -

Ity. surface phenomena. VISCOUSflow. and

the Iikc. For example. one can understand

wh> man canno[ fly under his own muscular

power. why small animals leap as high as

Iargcr ones. and so on.

.4 classic example is the way melabolic

rale varws from animal 10 animal. .4

measure B of metabolic ralc IS simply [hc

heat lost by a body in a smad> inac[}vc s[atc.

which can bc cxpcclcd lo be dominated by

lhc surface IMTccIsofswcating and radiation.

S}mboltcally. (hercforc. one CXPCCIS

El x Lt”2”, The data (plotted Iogari[hmically

In Fig. 2) show that mctabollc rate does

“The concept of similitude is usuolly attributed to
Newton. who first spelled it out in the Principia
when deoling with grovitotiosrol attraction. Ott
reading the appropriate sect ion it is clear that this
was introduced only as a passing remark and does
not ha tsethe same profound content as the remarks
of Galileo.

f This amsssierRobservation was brought to my atreer-
tion by (’hris Llewellyn Smith.

: This relationship with a slopeof 3/4 is known as
Kfeiber’s la w (M. KIeiber, Hilgardia 6(1932) :31S),
whereas the areo law is usually atrributtd trs Rubner
(M. Rubrrer, 7.eilwhrift fur 13inloEie (%lunich)
19(1883):s3s).

tndccd scale. Iha[ is. all animals IIC on a

slnglc cur\c In spite of [hc fact {hat an

elephant is ncl(hcr a blown-up mouse nor a

blown-up chimparwcc. However. [hc SIOPCof

Ihc tscsI-fi I curve (the solid Ilnc) is closer 10

3/4 Ihan 10 2/3. indicating tha( cfl_cctsother

than [hc pure geomc’try of surface dc-

pcndcncc arc at work.$

II IS nol my purpose here [o discuss why

this is so but ralhcr 10 emphasize the im-

portance of a scaling curve not only for estab-

lishing the scaling phenomenon itself but for

revealing dcvla!lorrs from some nalvc

prediction (such as the surface law shown as

~hc dashed Iinc in Fig. 2). Typically, dcvia-

[Ions from a simple gcomelr]cal or

kinematical analysis reflect the dynamics of

the syslcm and can only be understood by

examining II in more detail. Put slightly dif-

ferently. onc can view deviations from naive

scaling asa probe of the dynamics.

Thcconversc of this IS also lruc: generally.

onc canno{ draw conclusions concerning

dynamtcs from naive scal]ng. .4s an lllustra-

[ion of this I now wan[ to discuss some

simple aspccls of birds’ CWS. I will focus on

[hc qucs{ion of breathing during incubation

and how ccflain physical variables scale

from hlrd to bird. Flgurc 3. adaplcd from a

,s(Ie}~II(h .l)ncrl[a)i arliclc by Hcrmann

Rahn, Amos Ar. and Charles V. Paganclli

en!illcd “HOW Bird Eggs Breathe.”- shows Ihe

dependence of okygcn conductance K and

pore lcng~h / (Iha[ Is. shell Ihickness) on cgg

mass LJ”.The aulhors. noting the smaller

slope for /. conclude that ““pore Icng[h

probably increases slower because the egg-

shell must bc thin enough for lhc embryo to

hatch.’” This is clearly a dynamical con-

clusion! However. is II warranted’?

From nali c gcomctnc sc’allng onc c\pccIs

Iha[ for slm]lar eggs / x [1”1‘. which IS In

rcasonahlc agrccmcn( wl(h the data: a best ti~

([he slratght Ilnc In the figure) acluall) gi\es /

X1’1 ‘1’. Since these data for pore Icngth agree

rcasorratrly WCII wi~h geometric scaling. no

djwuJt71[u/ conclusion (such as the shell be-

ing Ihln enough for [hc cgg 10 halch) can bc

drawn. Ironically. rather [ban showing an

anomalously slow growth wilh cgg mass. ~hc

da~a for / acluall> manlfcsl an anomalous}

fast growlh (().4 ~crsus ().33). not so dis-

similar from the example of ~hc mctabollc

ralc!

What aboul Ihc behavior of the conduc-

tance. for which A’ x J4’’9’?This rela~ionship

can also bc understood on geometric

grounds, (onductancc IS proporlmnal 10 ~hc

[/Mu/ available pore area and In\erscl}

proportional 10 pore Icnglh, Howc\er. [oIal

pore area IS made up of two factors: the tolal

numbcrofporcs Ilmcs the area of Individual

pores. If onc assumes that Ihc number of

pores frcr IInll urw rcmalns constanl from

bird 10 bird (a reasonable assumption consls-

tcnl with other data). then wc have Iwo

factors that scale like area and one ~hat
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scales Inversely as Icngth. One thus expects
~ ~ ~~~.2/J)2,J4.1/l = LJ’.again In reasonable

agreemcnl wl~h tbc data.

Dimensional Analysis. The physical con-

tenl of scaling IS very often ~ormulaled in

terms of the language of dimensional analy-

sis. The seminal idea seems to be due to

Fourier. He is. ofcoursc. most famous for [he

in~entlon ol_’’Four]cr analysis.” introduced

In hls grea~ Ircallsc 7’hc~w/c lna/!’/(qfw dc /u

(’hu/mr. first publlshcd in Parus in 1822.

However. II IS generally not appreciated that

this same book contains another great con-

tribution. namcl}. {he usc ofdirncnsions for

ph>slcal quan[lllcs. Ii is the ght~st 01’Fourlcr

that IS the scourge of all freshman physics

majors. Ior 1[ v.as hc who iirst rcall.zcd that

even ph! slcal quantlly “has rmc di)t?cm$lfm

proper lo I[sclf. ~nd [hat ihc (errns ofone and

[he same cqua(ion could not bc compared. if

~hc} had not the same c.Yp~Jncn/ {I(

(111)1(’tl)l(lll. ” Hc goes on: “W’C have in-

troduced Ihls conwdera[ion ..10 vcnf} the

anal>sls II IS ~hc cqulvalcnt of the funda-

mental Icmmaswhlch lhe Grccks have Icfi us

ul[hout proof.”’ lndmd 1[ )s! (’heck the

dlmcnslon$!-the rall)ing call of all

ph)siclsts (and. hopefully. all cnglrwcrs).

Howe\ cr. it was only much Iatcr [hat

ph!slclsts twgan to usc the “’method of

dimensions” [o \(JIc ph! steal problems. In a

famous paper on the subject puhllshed In

6
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Fig. 2. Metabolic rate, measured as heat produced by the body in a steady state,
plotted logarithmically against body weight. An analysis based on a surface
dependence for the rate predicts a scaling curve with slope equal to 2/3 (dashed
line) whereas the actual scaling curve has a slope equal to 3/4. Such deviation from
simple geometrical scaling is indicative of other effects at work. (Figure based on
one by Thomas McMahon, Science 179(1973):1201-1204 who, in turn, adapted it
from M. Kleiber, Hilgardia 6(1932) :315.)

I 1 I I ● I

1

0.1

●

Warbler

1 10 100 1000

Egg Mass (g)

Fig. 3. Logarithmic plot of t wo parameters relevant to the breathing of birds’ eggs
durirrg incubation: the conductance of oxygen through the shell and the pore length

(or shell thickness) as a function of egg mass. Both plots have slopes close to those
predicted by simple geometrical scaling analyses. (Figure adapted from H. Rahn,
A. Ar, and C. V. Paganel[i, Scientific American 240(February 1979) :46-55.)
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Scale and Dimension

,Ya{urc In 1915. Rayle]gh Indignantly ‘begIns:

“[ have oflen been impressed by {hc scanty

at[entlon paid even by onglnal workers In

[he ticld 10 [hc grcal pnnclple of similitude.

II happens not in frcqucntl> that rcsulls In the

form of ’laws” arc put forward as no\ CIIIC’Son

the basis of elaborate chpcrimcnts. which

mighl ha~c been prcdtcled a priori af[er a fcw

mlnutcs considcratlon!” He then proceeds to

set things right by giving several examples of

the power ofdimenslcmal analysis. It seems

10 have been from about this [[me that (hc
method bccamc s[andard fare I’or [hc

ph>slclst. I shall Illustrate II wl[h an amusing

example.

Most of us arc familiar with the tradttlonal

Christmas or Thanksgl~ ing problcm of how

much tlmc IO allow for cooking the turkey or

goose. Many (Inferior) cookbooks simply say

somc~hlng like “20 minutes pcr pound.’” im-

plylng a I]ncar rclattonshlp wtth wclght.

Howe\ cr. there cxIst superior cookbooks.

such as the Bc/(cr /l~H~]c\ cJ)7d (;arclctl.\

C’,MA/J(MA. that rccogni~c the nonllrwar

nature oflhls relationship.

Figure 4 IS based on a chart from this

cookbook showing how cooking lime ( varies

wiih the weight of[he bird !4’, Lel us sec how

10 -
Slope ~ 0.6

7 -
●

4 -*

7 14 22

Weight (lb)

Fig. 4. The cooking time for a turkey or
goose as a logarithmic function of its
weight. (Based on a tabie in Better
Homes and Gardens Cookbook, Des
Moines:Meridith Corp., Better Homes
and Gardens Books, 1962, p. 272.)

.—
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onc can understand this varuatlon using “the

great principle of similitude.”’ Let 1’ be the

Iempcra[ure distribution Inside (he turkey

and 7}, Ihe oven temperature (both measured

relative 10 (he oulside air [cmpera[urc). 7“

sa~isfics Fouricr”s heat dlffuslon equation:

i~7/i/r= KV~7’. where K is the ditTusion coc~-

cwnt. Now, in general. for the dlmcnslonu)

quantltlcs In this problcm. [here will be a

functional rclattonship of Ihc form

where p IS the bird’s density. However.

Fourier’s basic observation /hu/ /hc ph,r.$1(.s

hc Im/f,frctrd(w/ of(hf, (A(ucc (JfirrI/.s. i reposes

a constraint on the form of the solution.

which can bc disccrncd by writing tt in terms

ofdlmcnsion/css quanll[ics. Only IWO inde-

pendent dimensionless quantities can be

cons[ructcd: T/To and p(Kf)3’2/ W’. If we use

the first of these as the dependent variable,

the solution. whatever i[s form. mus[ be

cxprcssiblc in terms of the other. The rcla-

llonship musl thcrcforc have (hc s[ructurc

~.

()p(Kl)”:

E)=” =-

The Important point is [hat. since the lcft-

hand sldc IS dimensionless. the “arbitrary”

Iuncllon /“musl bc a dimensionless func[lon

ofa dimensionless variable. Equation 3. un -

Ilkc [hc previous one. does not depend upon

thcchoiceofuni[s since dlmcnsionlcss quan-

tities rcma]n ln~arlant to changes tn scale.

LCI us now consider different hut

<’~’~~r~lf’{rl[’(~~11’$Il?l//c/r hlrds ~ook~d 10 ~h~

~amc [cmpcraturu dlstrtbutlon [II lhc xsmc

olcn icmpcraturc. (lcarl>. for all such birds

there will hea scallng law

P(KOW
— = constant

14
(4)

If [hc h]rds have [hc same ph!slcal

charactcns[lcs( thal Is. the same pand x), Eq

4 rcd UUC.Sto

/ = conslant X 11’2;’ . (5)

reflecting. not surprisingly. an area law. As

can bc seen from Fig, 4, \hls agrees rather

WCII wi!h [he “data.””

This formal t)pe of analysls could also. of

course. hake been carru?d out for the

mctabol!c rate and txrds’ eggs problems The

advanlagc of such an anal}sis is that tt d~-

Iincates the assumptions made In reaching

conclusions Iikc B x [~”:~]stnce. in principle.

It focuses upon all lhc relevant \ar!ables.

Naturall> this IS crucial In ihc dlst.usslon ot’

any physics prohlcm For complicated s!s-

stems. such as birds’ eggs. with a vcr} large

number of \ar]ahlcs. some prior Insight or

Intu[llon must Iw usc(i to dccldc who[ the

tmporlanl vartablcs arc. The ciimcnslons of

these variables arc dctcrmtncd by the t’unda-

mcntal laws that [hey obey (such as [he d] f-

fusion cquatlon). Once the dimensions are

known. the s~ructure of Ihe relationship be-

tween the variables IS determined by

Fourier’s prlnclple. There is therefore no

magic in dimensional analysls. only thear~ of

choos]ng [hc .’nght” ~ariahles. ignonng the

lrrclcl ant. and krmwlng [hc ph>slcal Iaus

they obc>

.As a slmplc example. consldcr the classlc

problcm ofthc drag force F’on a ship moi]ng

lhrough a viscous Ilulci ofcicnsl[} p We shrill

choose l’. p. the VCIOCII} r. the \ !scosil) ofthc

Iluld p. some Icngth parameter ot’ the ship /,

and the accclcratlon duc lo graklt> ,< as our
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variables, Notice that we exclude other
L-

variables. such as the wind velocity and lhe

amplitude of the sea waves because. under

calm conditions. these are of secondary im-

portance. Our conclusions may therefore not

be valid for sailing ships!

The physics of the problem is governed by

the Navier-Stokes equation (which in-

corporates Newton’s law of viscous drag.

~elling us Ihe dimensions of l.t) and the gravi-

tational force law (Ielling us the dimensions

\ ofg). lJsing these dimensions automatically

Incorporates (he appropnalc physics. Slncc

wc have Iim]tcd the variables to a SCI of six.

which must be expressible in terms of Ihree

I ‘% ,! basic units (mass M, Icngth L. and time 7’).
“w> [here WIII only bc (hree independcn[

, ~3

, ~z

,~-1

dimensionless combinations. These arc

chosen to bc /> = }~p~J/~ (the pressure coeffi-

cient), R = IYp/p (Reynold-s number). and

NJ = IJ//K (Froudc’s number). .4//hoI(.qh an\

thtw ,sItrrI/ur c(ntltvnu(l(m( ci)illd hcztc })(w1

chasm, these [hrcc arc spcYIal /MYui/~c IhCI

de/ineafc [ho phj.sm. For example. Re> -

nold”s number R relates [o the viscous drag

on a body moving through a fluid. whereas

Froude’s number .A’~ relates [o the forces

involved with waves and eddicsgcncratcd on

the surface of [hc fluld by the mo\t’nlcnl

Thus ~hc ratmnalc for Ihc conlblnatlons R

and .1’1 IS [o scpara[c the role ol’ [he \ Iscous

forces from tha( of [hc gravltallonal: R does

not depend on ,AJ.and Fdocs no! depend on

p. Fur(hcrmorc. /’dots not depend on either’

Dlnlcnslonal analysis now rcqulrcs [hat

(hc solution for the pressure coctliclcnl.

.

0 Schiller-Schmiedel 1928
. Libster 1924
0 AlIan 1900
A Cottingen 1921
~ Cottingen 1926

--- Results of higher pressures 1922–23

~-. .
0“

I I I I I I 1 I 1

,()-2 , ~o , ~z 104 ,.6

Reynolds Number R

Fig. 5. The scaling curve for the motion of a sphere through a pressure or drag coefficient P versus Reynolds number R.
fluid that results when data from a variety of experiments (Figure adapted from AI P Handbook of Physics, 2nd edi-
are plotted in terms of two dimensionless variables: the tion (1963):section 11, p, 253,)

8 Summer/Fall 1984 1,OS .AI,..\\loS S(’IENCE



Scale and Dimension

whalever it is. must be expressible in the

dimensionless form

P=, flR, A’f). (6)

The actual drag force F-can easily be ob-

tained from this equation byre-expressingit

in ~erms of the dimensional variables (see

Eq. 8 below).

First. however. consider a situation where

surface waves generated by the moving ob-

ject are unimportant (an extreme example is

a submarine). lnthlscaseg will nolenter [he

solution since ii IS manifested as the res[or-

Ing force for surface waves. NF can then be

dropped from the solution. reducing Eq, 6 to

the slmplc form

P=,f(R) (7)

In Ierms of ~hc ortglnal dimensional

variables. this iscquivalent to

F= pt’J/~,f(l’/p/Jl) (8)

Historically, these last equations have been

well tested by measuring the speed of dif-

ferent sizes and types of balls moving

through different liquids. [f the data are

plotted using the dimensionless variables.

thai is, F’versus R, then a//the data should lie

on just one curve regardless of the size of the

ball or the nature of the liquid. Such a curve

is called a ,sca/ing curve, a wonderful example

of which is shown in Fig, 5 where one sees a

scaling phenomenon that varies over seven

orders of magnitude! [t is important (o recog-

nize that if one had used dimensional

variables and plot[cd F’ versus /, for example,

then. instead of a single curve. there would

have been tt?anl, different and apparently

unrcla[cd curves for the different liquids.

Us[ng carefully chosen dimensionless

variables (such as Reynold’s number) is not

only physically more sound bu[ usually

grca[ly simplifies the task ofrcprescnl]ng [hc

data.

A remarkable consequence of this analysis

is that. for similar bodies, the ra[io of drag

I

1 2 4 8
Number of Oarsmen

Fig. 6. The time needed for a rowing boat to complete a 2000-meter course in calm
conditions as a function of the number of oarsmen, Data were taken from several
international rowing championship events and illustrate the surprisingly slow
dropoff predicted by modeling theory. (Adapted from T. A. Mciklahon, Science
173(1971) :349-351.)
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force to weight dccrvase.s as the size of the

structure Increases. From Archimedes’ prln-

ciplc the volume of waler displaced by a ship

is proportional to its weight. tha~ Is. It” x l?

(ihls. Incldcnlali). IS ~h> there IS no need to
include [!” as an lndcpcndcn! vartable In

dcrlving these cquallons). Combined with

Eq. 8 this Icads to the conclusion [ha[
~. I

(9)

This scaling law was extremely Important In

the 19th century because it showed !hat j[

Ita.s <,(~.s([,/)2[t irc [~~ hl~l/d hl,q~cr !/1Ip.s.

lhcrcbyjustif~lng [hc use of Iargc iron steam-

boats!

The great usefulness of scallng laws IS also

illustrated by the observa~]on that the

bchavlor of P for large ships (/ -- A) can be

derived from the behavior of small ships

moving very fasl (~ - K). This IS so because

both limits arc controlled by the same

asympto~lc behavtor of /(R) = /(l/p/p). Such

observations form the basis of mfM/c/[ng lhc-

ov so crucial In the design of aircraft. ships.

buildings. and so forth.

Thomas McMahon, In an article In &’I-

mwe. has pointed out another. somewhat

more amusing. consequence [o the drag force

cquatlon. Hc was intcrcstcd In how the speed

of a rowing boat scales with the number of

oarsmen n and argued (hat. at a stead} veloc-

ity. Ihc power cxpcndcd by the oarsmen E to

overcome the drag force IS glvcn by F“I, Thus

9
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Using Archimedes’ principle again and the

facl Iha[ boih L’ and M“should be directly

proportional [o tt leads 10 [he remarkable

scaling law

which shows a ]’crt’ slow grow[h wl[h n.

Figure 6exhibitsda~a collected by McMahon

from various rowing evenls for Ihe I[me I (CX

1/!) taken [o cover a fixed ?OOO-meter course

under calm condl~lons. C)ne can see qulle

plalnly [he verification of his predicted

law—a mosl sallsfylng resull!

There are many other fascinating and

exolic examples of [he power ofdlmensional

analysls. However. rather than belaboring

the poini, I would Ilke lo mcntlon a slightly

dlffcrcn[ application of scallng before I turn

to ~he mathematical formulation, All the ex-

amples considered so far are of a quantitative

nalure based on well-known laws of physics.

There arc. however. silua[ions where [he

qualitative observation of scaling can be

used to scientific advantage to reveal phe-

nomenological “laws,”

,4 nice example (Fig. 7). taken from an

arsicle by Dav]d Pilbeam and Stephen Jay

Gould, shows how the endocranial volume I‘

(loosely speaking. ihe brain size) scales wi[h

body weigh~ t!’ for various hominids and

pongids. The behavior for modern pongids is

typical of mosl SPCCICSin that ihe exponent

a. defined by the phenomenologlcal rela-

tlonsh]p I‘ z HU, ts approximate} 1/3 (for

mammals u varies from 0.2 10 0.4). II is very

satisfy ing~ha[ a similar behavior IS exhibited

by australopl[hcci nes. ex[lnct cousins of our

Iineageiha[ died OUI ovcra million years ago.

However. as Pilbcan and Gould Dolnl out.

our homo sapiens lineage shows a strikingly

different behavior. namely: u = 5/3. Nottce

thal neither this relationship nor the “stan-

dard”’ behavior(a s 1/3) is close to Ihe naive

geometrical scaling prediction of a = 1.

These data illustrate dramatically the

qualita[ivc evolutionary advance in the

brain dcvclopmen[ of man. Even though the

reasons for a s 1/3 ma> no{ be understood.

this value can serve as lhc “standard’- lot’

revealing deviations and provoking spccula-

l]on concerning evolutionary progress: for

example. what is the deep significance of a

brain size that grows linearly wi[h height

versus a brain size that grows like its fifth

power’) I shall not enter into such qucsticms

here, [cmpting though ihcy bc.

Such phcnomcnological scaling laws

(whether for brain volume. (ooth area. or

some other measurable parameter of Ihc fos-

10

SII) can also he used as corrobora!l\ c

evldencc for asslgnlng a ncwl> found fossil of

some large pnmalc 10 a particular Iincagc,

The fossil’s location on such curies can. In

pnnciplc. hc used 10 distinguish an auslralo-

pl[hccinc from a homo. NOIICC, howc\er,

Ihat lmpliclt in all this dtscuss)on IS knowl-

edge of hod> wcigh~: prcsumabl>,

anlhropt)lngls[s have dc\c’loped \crltishlt’

tcchntqucs I’orcstjnlallng Ihlsqu:]n!][!, Slnc’c.

[he> ncccssaril) work with fragments onl!.

some further scaling assump[lons /?/t/\J be

involved In Ihclr cstima[cs!

Relevant Variables. ASalrctsd} cmphaslmd,

the most Impor[ant anLi artful aspect of [h~.

mclhod of dlmcnslons IS lhc cho]cc ol’

v:irlablcs rclc\onl I() the problcm find their

grouping ln[o dlmcnstonlc.ss con]blnfi~lons

that dclinca[c the physics. In spite of !hc

?*

A’

/

/i
/

O Australopithecines

A Homo Lineage

● Pongids

/
/

X34/
30 40 50 75 100

Body Weight (kg)

Fig. 7. Scaling curves for endocranial volume (or brain size) as a function of bod~
weight. The slope of the curve for our homo sapiens lineage (dashed line) is
markedly different from those for australopithecines, extinct cousins of the homo
lineage, and for modern pongids, which include the chimpanzee, gorilla and
orangutan. (Adapted from D. Pilbeam and S. J. Gould, Science
186(1974) :892-901.)
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Scale and Dimension

relative simplicity of the method there are

inevitably paradoxes and pitfaIls, a famous

case of which occurs in Rayleigh’s 1915

paper mentioned earlier. His last example

concerns the rate of heat lost H by a conduc-

tor immersed in a stream of inviscid fluid
moving past it with velocity v (“Boussinesq’s

problem”). Rayleigh showed that, if K is the

heat conduct ivity, C the specific heat of the

fluid, tl the temperature difference, and 1

some linear dimension of the conductor,

then, in dimensionless form,

(12)

Approximately four months after Ray-

Ieigh’s paper appeared, Nature published an

eight line comment (half column, yet!) by a

D. Riabouchinsky pointing out that Ray-

leigh’s result assumed that temperature was a

dimension independent from mass, length,

and time. However, from the kinetic theory

of gases we know that this is not so: tempera-

ture can be defined as the mean kinetic

energy of the molecules and so is not an

independent unit! Thus, according to

Riabouchinsky, Rayleigh’s expression must

be replaced by an expression with an addi-

tional dimensionless variable:

(13)

a much less restrictive result.

Two weeks later, Rayleigh responded to

Riabouchinsky saying that “it would indeed

be a paradox if the~urther knowledge of the

nature of heat afforded by molecular theory

put us in a worse position than before in

dealing with a particular problem. . . It
would be well worthy of discussion.” Indeed

it would; its resolution, which no doubt the

reader has already discerned, is left as an

exercise (for the time being)! Like all
paradoxes, this one cautions us that we oc-

casionally make casual assumptions without

quite realizing that we have done so (see
“Fundamental I Constants and the Rayleigh-

Riabouchinsk~ Paradox”).

Scale Invariance

Let us now turn our attention to a slightly

more abstract mathematical formulation

that clarifies the relationship of dimensional

analysis to scale invariance. By scale in-

variance we simply mean that the structure

of physical laws cannot depend on the choice

of units. As already intimated, this is auto-
matically accomplished simply by employ-

ing dimensionless variables since these

clearly do not change when the system of

units changes. However, it may not be im-

mediately obvious that this is equivalent to

the form invariance of physical equations.

Since physical laws are usually expressed in

terms of dimensional variables, this is an

important point to considec namely, what

are the general constraints that follow from

the requirement that the laws of physics look

the same regardless of the chosen units. The

crucial observation here is that implicit in

any equation written in terms of dimensional

variables are the “hidden” fundamental

scales of mass M, length L, time T, and so

forth that are relevant to the problem. Of

course, one never actually makes these scale

parameters explicit precisely because of form

invariance.

Our motivation for investigating this

question is to develop a language that can be

generalized in a natural way to include the

subtleties of quantum field theory. Hopefully

classical dimensional analysis and scaling
will be sufficiently familiar that its gen-

eralization to the more complicated case will

be relatively smooth! This generalization has

been named the renormalization group since

its origins lie in the renormalization program

used to make sense out of the infinities in-

herent in quantum field theory. It turns out

that renormalization requires the introduc-

tion of a new arbitrary “hidden” scale that

plays a role similar to the role of the scale

parameters implicit in any dimensional

equation. Thus any equation derived in

quantum field theory that represents a physi-

cal quantity must not depend upon this

choice of hidden scale. The resulting con-

straint will simply represent a generalization

of ordinary dimensional analysis; the only

reason that it is different is that variables in

quantum field theory, such as fields, change

in a much more complicated fashion with

scale than do their classical counterparts.

Nevertheless, just as dimensional analysis

allows one to learn much about the behavior
of a system without actually solving the

dynamical equations, so the analogous con-

straints of the renormalization group lead to

powerful conclusions about the behavior ofa

quantum field theory without actually being

able to solve it. It is for this reason that the

renormalization group has played such an

important part in the renaissance of quan-

tum field theory during the past decade or so.

Before describing how this comes about, I

shall discuss the simpler and more familiar

case of scale change in ordinary classical

systems.

To begin, consider some physical quantity

F that has dimensions; it will, of course, be a

function of various dimensional variables

~i~ F(xI ,X2, . . .,x. ). An explicit example is
given by Eq. 2 describing the temperature

distribution in a cooked turkey or goose.
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L
et us examine Riabouchinsky’s paradox a little more carefutly
and show how its resolution is related to choosing a system of
units where the “fundamental com%ants” @tdt as Pkmek’s

constant h and the speed of light c) can be set equal to ussity.
The paradox had to do with whether temperature could be used as

an independent dimensional unit even though it can be defined as the
mean kinetic energy of the molecular motion. Rayleigh had chosen
five physical variables (length /, temperature difference 8, velocity V,
specific heat C, and heat conductivity K) to describe Boussinesq’s

problem and had assumed that there were four independent
dimensions (energy E, length L, time T, and temperature @. Thus
the solution for T/To necessarily is an arbitrary function of one
dimensionless combination. To see this explicitly, let us examine the
dimensions of the five physical variables:

[0= L+[01= e, [VI= L7_1, [Cl = m-3e-1,

and [Kl = EL-l~@-l .

Clearly the combination chosen by Rayleigh, IvC/K, is ditnension-
Iess. Although other dimensionless combinations can be formed, they
are not independent of the two combinations (lvC/K and T/TO)

selected by Rayleigh.
NOWsuppose, along with Riabcsuchinsky, we use our knowledge of

the kinetic theory to define temperature “as the mean kinetic energy
of the molecules” so that El is no longer an independent dimension.
This means there are now only rftree independent dimensions and the
solution will depend on an arbitrary function of Iwo dimensionless
combinations. With e ccE, the dimensions of the physical variables
become:

[/J= L., {6] = E, [v]- L.T_l, [q= L-3, and [K]= L-i T_’.

R is clear that, in addition to Raykigh’s dimensionless variable, there
is stow a new independent combination, C/3 for example, that is
dimensionless. To reiterate Rayleigh: “it would indeed be a paradox
if the .firlher knowledge of the nature of heat . . . put us in a Ivorse
position than before.. . it would be well worthy of discussion.”

Like almost all paradoxes, there is a bogus aspect to the argument.
It is certainly true that the kinetic theory allows one to express an
energy as a temperature. However, this is only useful and appropriate

for situations where the physics is dominated by molecular consider-
ations. For macroscopic situations such as Boussinesq’s problem, the
molecular nature of the system is irrelevant: the microscopic
variables have been replaced by macroscopic averages embodied in
phenomenological properties such as the specific heat and conduc-
tivity. To make Riabouchinsky’s identification of energy with tem-
perature is to introduce irre/evanf physics into the problem,

Exploring this further, we recall that such an energy-temperature

identification implicitly involves the introduction of Boltzmann’s
factor k. By its very nature, k will only play an explicit role in a
physical problem that directly involves the molecular nature of the
system; otherwise it will not enter. Thus one could describe Ihe
system from the molecular viewpoint (so that k is involved) and {hen
take a macroscopic limit. Taking the limit is equivalent to setting
k = O; the presence of a finite k indicates that explicil effects due 10
the kinetic theory are imporlant.

With this in mind, we can return to Boussinesq’s problem and
derive Riabouchinsky’s result in a somewhat more illuminating
fashion. Let us fo}low Rayleigh and keep E, L, T, and 0 as the

Each of these ~arlahlcs. Including /“ l~sclf. is as “the dimensions”- of .v,. Now suppose wc

always cxprcsslhlc in terms ofsomc slandard change the system of unl[s by some scale

SCI of Indcpcndcnl units. which can he (mns!brmation of’the f’orm

chosen lo be mass .11. Icngih l.. and [Imc Y“.

These arc [hc hlddcn scale parameters. Ob- ,!/ + ,!/’ = i,,,
VI OUSI>. other cornhlnations could bc used,

There could c~cn hc olhcr Indcpcndcn( 1. .1.’ = ii 1.

units. such as lcmpcra[urc (hul rcmcmhcr and
Rlahouchlnsk}!). or more ~han onc lndc-

pcndcn[ Icngth (sa}. trans\ crsc and long-
~. - ~.! = ~,~ (16)

itudinal). In this discussion. wc shall simply

usc the conventional .Jf. /.. and T. An) Each variable then responds as follows:

gcncrallzatlon IS straightforward.

In terms of [his standard SCI of units. ~he .\, . .V,’ = z,(l. ).\”,. (17)

magnlludc nfcach ], is gl\cn h}

where
(15)

The numbers a,. fl,, and y, WIII be rccognlrcd Zl(l. ) = ;.’~;i.~’ ;.~. (lx)

12

and A IS shorlhand for ).~~. kl and ;./. Slncc

/’ IS IIsclfa dlmcnslonat ph)sIcal quan~l[!. II

[ransli}rms in an idcnllual Itishlon under ~hls
scale ~hangc:

t .L”’=z(;.)1(1,.1:..,..l,,). (191

where

~().) = i.’h ;L ~ j.’j

Here u. l}. and y :Irc Ihc dlnwn~l{~ns (Jf/

“l_h~,rt.Is, howc\ cr. an allcrnaw truI cqul\a-

Icnt way 10 Iranslhrm (mm /“ 10 /“. namcl~.
by [r:{tlstt~rmlng each {JI lhc) var\ahlcs \,

scpara(cl!, E~pl IcI[ly wc [hcrctorc also ha~c
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Scale and Dimension

RayH~--y Paradox

independent dimensions but add k (with dhtsasions EQ3”i) as a new
physical variable. The soiutim? will now be ass asWtwry &net&n of’
two independent dimmsaiorsless vtwkMe&‘&vCYKmidktY.Wisest
Riabouchinsky chose to make C13Isis other dimetssidess variabk,
he, in effkct, chose a system of units whew k S=1. But that was a
terrible thing to do here since the physics di-tea thatk-9! htdm$,

if k = Owe regain Rayleigh”5ori#tMd reaw~ that&we ha%e* @e
dimensionless variable. It is somewhat iwmic that Rayhigh’s remarks
miss the point “further knowledge of the nature of heat afforded by
molecular theory” does not put one in a better position for solving
the problem—rather, it leads to a microscopic description of K and
C. The important point pertinent to the problem setup by Ray!&b is

that knowledge of the molecular theory is irrelevant and k must not
enter.

The lesson here is an important one because it illustrates the role
played by the fundamental constants. Consider Planck’s constant
h = h/2~ ii would be completely inappropriate to introduce it into a
problem of classical dynamics. For example, any solution of the
scattering of two billiard balls will depend on macroscopic variables
such as the masses, velocities, friction coellicients, and so on. Since
billiard balls are made of protort~ it might be tempting to the purist
to include as a dependent variable the proton-proton total cross
section, which, of course, involves h. This would clearly be tots@y
inappropriate but is analogous to what Riabouchinsky did in
Boussinesq’s problem.

Obviously, if the scattering is between two microscopic “atomic
billiard balls” then h must be included. In this case it is not oniy quite
legitimate but often convenient to choose a system of units where
h == 1. However, having done so one cannot directly recover the

cksierd limit corresponding to h = O. With h = 1, one is stuck in
sIust@rxmmechaaies just as, with k = 1, one is stuck in kinetic theory.

.4 simlhr sitsatiomobviowsiy occurs in relativity the velocity of
Ii@t e must stat occur’in tlse classieai Newtonian limit. However, in a
twktivistie situatimr one is quite at liberty to choose units where
c = t. &g@tingtlvJMchoice, though, presumes the physics involves

reks$iwity.
The core of particle physics, relativistic quantum field theory, is a

synthesis of quantum mechanics and relativity. For this reason.
particle physicists find that a system of units in which h ==c ==1 is
not only convenient but is a manifesto that quantum mechanics and

relativity are the basic physical laws governing their area of physics.
In quantum mechanics, momentum p and wavelength L ate related
by tlw & Bro@e relation: p = 2xft~, similarly, energy E and fre-
quency to tire related by Planck’s formula: E = ha). In relativity we
have the famous Einstein relation: E = m~. Obviously if we choose
h = c = 1, all energies, masses, and momenta have the same units
(for example, electron volts (eV)), and these are the same as inverse
Iengttts and times. Thus larger energies and momenta inevifabl.v

correspond to shorter times and lengths.
Using this choice of units automatically incorporates the profound

physics Oftite usteertainty principle to probe short space-time inter-
vals one needs lame ersergks. A useful number to remember is that
10-’3 eemimeter, or 1 fermi (frn), equals the reciprocal of 200 MeV.
We then find that the eketrott mass ( = I/2 MeV) corresponds to a
km@h of z 400 fro-its Comptcm wavelength. Or the 20 TeV
(2 X lt37 MeV) typically proposed for a possible future facility
corresponds to a length of 10–’8centimeter. This is the scale distance

that such a machine will probe! ■

~d~t=

F’(z,(k).v,. z:(k).1~. . .,z,,(l).vn) (~1)

Equating [hcse two different ways of effecting

a scale change leads to the identity

F(zI(A).v, .Z2(N.Y2. . ..Z.(M.V.) =
z(a) F(.vl ..\-J. . . ...Y.I). (22)

.4s a concrete example. consider the equation
E = m(2. To change scale one can either

transform L’ directly or transform m and c

separa[cly and multiply the resul!s ap-

propriately—obviously the final result must

be the same.

We now want 10 ensure that Ihe resuhing

form of Ihc equation dots not depend on A.

This is best accomplished using Euler’s trick

LOS ALAMOS SCIENCE Summer/Fall 1984

of taking iI/r7L and then setting A = 1, For

example, if we were to consider changes in

the mass scale, we would use il/i)ltf and the

chain rule for partial differentiation to arrive
at

(23)

When we set L,if = 1, differentiation of Eqs.

18 and 20 yields

and .\,’ = r,. so that Eq. 23 reduces to

,.
+ a,pvt,$ =aF.

n
(25)

Obviously this can be repeated wi~h ll.
and lT to obtain a set of three coupled partial
differential equations expressing the funda-
mental scale ln)artunce olph \,~wa/ Ialts (that

/.s, Ihc lrr~ar(un(,e o(’[he ph~w(,.s 10 (he ch(IIce

@t{nl/.\) Implicit In Fourier’s original work.

These cquaiions can be solved withou~ 100

much di~cully: their solutlon Is. in facl. a

special case of the solution 10 lhe re-

13
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normalization group equation (given ex-

plicitly as Eq. 35 below). Not too surpris-

ingly, one finds that the solution is precisely

equivalent to the constraints of dimensional

analysis. Thus there is never any explicit

need to use these rather cumbersome equa-

tions ordinary dimensional analysis takes

care of it for you!

Quantum Field Theory

We have gone through this little mathe-

matical exercise to illustrate the well-known

relationship of dimensional analysis to scale

and form invariance. I now want to discuss

how the formalism must be amended when

applied to quantum field theory and give a

sense of the profound consequences that fol-
low. Using the above chain of reasoning as a

guide, I shall examine the response of a

quantum field theoretic system to a change

in scale and derive a partial differential equa-

tion analogous to Eq. 25. This equation is

known as the renormalization group equa-

tion since its origins lay in the somewhat

arcane area of the renormalization procedure

used to tame the infinities of quantum field

theory. I shall therefore have to digress

momentarily to give a brief r6sum& of this

subject before returning to the question of

scale change.

Renormalization. Perhaps the most unnerv-

ing characteristic of quantum field theory for

the beginning student (and possibly also for

the wise old men) is that almost all calcula-

tions of its physical consequences naively

lead to infinite answers. These infinities stem

from divergences at high momenta as-

sociated with virtual processes that are

always present in any transition amplitude.

The renormalization scheme, developed by

Richard P. Feynman, Julian S. Schwinger,

Sin-Itiro Tomonaga, and Freeman Dyson,
was invented to make sense out of this for

quantum electrodynamics (QED).

To get a feel for how this works I shaIl

focus on the photon, which carries the force

associated with the electromagnetic field. At

the classical limit the propagatofl for the

14

photon represents the usual static 1/r

Coulomb potential. The corresponding

Fourier transform (that is, the propagator’s

representation in momentum space) in this

limit is I/q*, where q is the momentum car-

ried by the photon. Now consider the

“classical” scattering of two charged particles

(represented by the Feynman diagram in Fig.

8 (a)). For this event the exchange of a single

photon gives a transition amplitude propor-

tional to .&q2, where e. is the charge (or

coupling constant) occurring in the La-

grangian. A standard calculation results in

the classical Rutherford formula, which can

be extended relativistically to the spin-1/2

case embodied in the diagram.

A typical quantum-mechanical correction

to the scattering formula is illustrated in Fig.

8 (b). The exchanged photon can, by virtue of

the uncertainty principle, create for a very

short time a virtual electron-positron pair,

which is represented in the diagram by the

loop. We shalI use k to denote the momen-

tum carried around the loop by the two

particles.

There are, of course, many such correc-

tions that serve to modify the 1/g* single-

*Roughly speaking, the photon propagator can be
thought of as the Green’s function for the elec-
tromagnetic field. In the relativistically covariant
Lorentz gauge, the classical Maxwell’s equations
read

❑2 A(x)= j(x),

where A(x) is the vector potential and j(x) is the
current source term derived in QED from the mo-
tion of the electrons. (To keep things simple I am
suppressing all space-time indices, thereby ignoring
spin.) This equation can be solved in the standard
way using a Green’s function:

A(x) = ~d4x’ G(x’ –x) j(x’) ,

with

E12G(x)= 6(x) .

Now a transition amplitude is proportional to the
interaction energy, and this is given by

HI= ~d4x j(x) A(x)=

/d4x ~d4x’ j(x) G(x-x’) j(x’),

photon behavior, and this is represented

schematically in part (c). It is convenient to

include all these corrections in a single multi-

plicative factor Do that represents deviations

from the single-photon term. The “full”

photon propagator including all possible
radiative corrections is therefore Do/q*. The

reason for doing this is that Do is a

dimensionless function that giVe5amea5ure
of the polarization of the vacuum caused by

the production of virtual particles. (The ori-

gin of the Lamb shift is vacuum polariza-

tion.)
We now come to the central problem:

upon evaluation it is found that contribu-

tions from diagrams like (b) are infinite be-

cause there is no restriction on the magni-

tude of the momentum k flowing in the loop!

Thus, typical calculations lead to integrals of

the form

(26)

which diverge logarithmically. Several

prescriptions have been invented for making

such integrals finite; they all involve “reg-

illustrating how G “mediates” the force between
two currents separated by a space-time interval
(x-x’). It is usually more convenient to work with
Fourier transforms of these quantities (that is, in
momentum space). For ~xample, the momentum
space solution for G is G(q) = l/q2, and this is
usually called the free photon propagator since it
is essentially classical. The corresponding
“classical” transition amplitude in momentum
space is justj(q)(I/q2)j (q), which is represented
by the Feynman graph in Fig. 8 (a).

In quantum field theory, life gets much more
complicated because of radiative corrections as
discussed in the text and illustrated in (b) and (c)
of Fig, 8. The definition of the propagator is
generally in terms of a correlation function in
which a photon is created at point x out of the
vacuum for a period x-x’ and then returns to the
vacuum at point x’. Symbolically, this is repre-
sented by

G(x-x’) - (vaclA(x’) .A(x)[vac) .

During propagation, anything allowed by the
uncertainty principle can happen—these are the
radiative corrections that make an exact calcula-
tion of G almost impossible.

Summer/Fall 1984 LOS ALAMOS SCIENCE



Scale and Dimension

Classical Scattering

‘o

(a)

Typicsd 0u8mwsm-Machanicd Corraaitim

‘o

Virtual Etectron-
Positron Pair

(b)

Gmsxal fWadWxMtm

‘o

/ All Possible \
Virwal-t%rtide
Combinations

(c)

ularizing” Ihe integrals by introducing some

large mass parameter A. + standard tech-

nique is the so-called Pauli-Villars scheme In

which a fac[or A2/(/i2 + A~) is introduced

into the integrand wi[h the understanding

(hat A is 10 be taken [o infinit) at the end of

the calculation (notice that In [his limit the

regulating factor approaches one). With ~his

prescription. [he above integral IS therefore

replaced by

The integral can now be evalualed and its

divergence expressed in terms of the (in-

finite) mass parameter A. .%11Ihe lntlrrltles

arising from quantum fluctuations can be

dcal[ wi~h in a similar fashion with Ihe result

that the following series is generated:

(
.

Do(q, q))
)

=l+ultilnfi~ +,.. +
~-

4[.+ :) q: ]+lrlln ~-+.,. +. ...

(28)

In this way the struclure of the infinite

divergences In the theory are parametrized

in ierms of A. which can serve as a finite

cuff?flin Ihe integrals over vlrtuai momenta. *

The remarkable triumph of the re-

normalization program is that. rather than

imposing such an arbitra~ cutoff. all these

divergences can bc swallowed up by an In-

firrlrermdln,q of Ihe fields and coupling con-

Fig. 8. Feynman diagrams for (a) the classical scattering of two particles of ‘In this discussion I assumed, for simplicity,

charge eO, (b) a typical correction that must be ,made to that scattering—here that the original Lagrangian was massless; that

because of the creation of a virtual electron-positron pair—and (c) a diagram is, it contained no explicit mass parameter. The

representing al! such possible corrections. The matrix element is proportional for
addition of such a mass term WVMId only com -

(a) to eilqz and for (c) to DO/q2 where D@includes all corrections.
plicate the discussion unnecessoril), without giv-
ing any new insights.
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stants. Thus, a finite propagator D, that does

not depend on A, can be derived from Do by

resealing if, at the same time, one rescales the

charge similarly. These resealings take the

form

D= Zfloande= Z&. (29)

The crucial property of these scaling fac-

tors is that they are independent of the physi-

cal momenta (such as q) but depend on A in

such a way that when the cutoff is removed,
D and e remain finite. In other words, when

A + m, ZD and Z@must develop infinities of

their own that precisely compensate for the

infinities of Do and eo. The original so-called

bare parameters in the theory calculated

from the Lagrangian (D. and eo) therefore
have no physical meaning—only the re-

normalized parameters (D and e) do.

Now let us apply some ordinary dimen-

sional analysis to these remarks. Because

they are simply scale factors, the Z’s must be

dimensionless. However, the Z’s are func-

tions of A but not of q. But that is very

peculia~ a dimensionless function cannot

depend on a single mass parameter! Thus, in

order to express the Z’s in dimensionless
form, a new jinite mass sca[e p must ye

introduced so that one can write

Z = Z(A2/p2,eo ). An immediate consequence

of renormalization is therefore to induce a

mass scale not manifest in the Lagrangian.

This is extremely interesting because it

provides a possible mechanism for generat-

ing mass even though no mass parameter

appears in the Lagrangian. We therefore

have the exciting possibility of being able to

calculate the masses of all the elementary

particles in terms ofjust one of them. Similar

considerations for the dimensionless D’s

clearly require that they be expressible as
Do= Do(q2/A2,eo), as in Eq. 28, and

D = D(~/~2,e). (The dream of particle

theorists is to write down a Lagrangian with

no mass parameter that describes all the

integrations in terms ofjust one coupling con-

stant. The mass spectrum and scattering

amplitudes for all the elementary particles

16

would then be calculable in terms of the

value of this single coupling at some given

scale! A wonderful fantasy.)
To recapitulate, the physical finite re-

normalized propagator D is related to its bare
and divergent counterpart Do (calculated
from the Lagrangian using a cutoff mass) by
an infinite resealing

D($,e)=f:mZ.(~, eo)Do($,eo).
(30)

Similarly, the physical finite charge e is given

by an infinite resealing of the bare charge e.

that occurs in the Lagrangian

()e= ]i~ z !!2
A-=

.A2, e0 eO. (31)

Notice that the physical coupling e now de-

pends implicitly on the renormalization

scale parameter I.L.Thus, in QED, for exam-
ple, it is not strictly sufficient to state that the

fine structure constant a s 1/137; rather,

one must also specify the corresponding

scale. From this point of view there is

nothing magic about the particular number

137 since a change of scale would produce a

different value.
At this stage, some words of consolation to

a possibly bewildered reader are in order. It is

not intended to be obvious how such infinite

resealings of infinite complex objects lead to

consistent finite results! An obvious question
is what happens with more complicated

processes such as scattering amplitudes and

particle production? These are surely even

more divergent than the relatively simple

photon propagator. How does one know that

a similar resealing procedure can be carried

through in the general case?
The proof that such a procedure does in-

deed work consistently for any transition

amplitude in the theory was a real tour de

force. A crucial aspect of this proof was the

remarkable discovery that in QED only a

jirzite number (three) of such resealings was

necessary to render the theory finite. This is

terribly important because it means that

once we have renormalized a few basic en-

tities, such as eo, all further resealings of
more complicated quantities are completely

determined. Thus, the theory retains predic-

tive power—in marked contrast to the highly

unsuitable scenario in which each transition

amplitude would require its own infinite

resealing to render it finite. Such theories,

termed nonrenormalizable, would ap-

parently have no predictive power. High

energy physicists have, by and large, restrict-

ed their attention to renormalizable theories

just because all their consequences can, in

principle, be calculated and predicted in

terms of just a few parameters (such as the

physical charge and some masses).
I should emphasize the phrase “in pri-

nciple” since in practice there are very few

techniques available for actually carrying out

honest calculations. The most prominent of

these is perturbation theory in the guise of

Feynman graphs. Most recently a great deal

of effort, spurred by the work of K. G.
Wilson, has gone into trying to adapt quan-

tum tield theory to the computer using lattice

gauge theories.* In spite of this it remains

sadly true that perturbation theory is our

only “global” calculational technique. Cer-

tainly its success in QED has been nothing

less than phenomenal.
Actually only a very small class of re-

normalizable theories exist and these are

characterized by dimensionless coupling

constants. Within this class are gauge the-

ories like QED and its non-Abelian ex-

tension in which the photon interacts with
itself. All modern particle physics is based

upon such theories. One of the main reasons

for their popularity, besides the fact they are

renormalizable, is that they possess the prop-

erty of being asymptotically free. In such
theories one finds that the renormalization

group constraint, to be discussed shortly,

requires that the large momentum behavior

*Zn recent years there has been some effort to
come to grips analytically with the
nonperturbative aspects ofgauge theories.
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be equivalent to the small coupling limit;

thus for large momenta the renormalized

coupling effectively vanishes thereby allow-

ing the use of perturbation theory to calculate

physical processes.

‘This idea was of paramount importance in

substantiating the existence of quarks from

deep inelastic electron scattering experi-
ments. In these experiments quarks behaved

as if they were quasi-free even though they

must be bclund with very strong forces (since

they are never observed as free particles).

Asymptotic freedom gives a perfect expla-

nation for this the effective coupling, though

strong at IC)Wenergies, gets vanishingly small

as ~ becomes large (or equivalently, as dis-

tance becomes small).

/

In seeing how this comes about we will be

led back to the question of how the jield

~heory responds to scale change. We shall

follow the exact same procedure used in the

classical case first we scale the hidden pa-

rameter (~, in this case) and see how a typical

transition amplitude, such as a propagator,

responds. A partial differential equation,

analogous to Eq. 25, is then derived using

Euler’s trick. This is solved to yield the gen-

eral constraints due to renormalization

analogous to the constraints of dimensional

analysis. I will then show how these con-

straints can be exploited, using asymptotic

freedom as an example.

The Renormalization Group Equation. As

already mentioned, renormalization makes

the bare parameters occurring in the La-

grangian effectively irrelevant the theory has

been transformed into one that is now speci-

fied by the value of its physical coupling

constants at some mass scale K. In this sense

p plays the role of the hidden scale parameter

M in ordinary dimensional analysis by set-

ting the scale of units by which aIl quantities

are measured.
This analogy can be made almost exact by

considering a scale change for the arbitrary

parameter v in which y + L’/*p. This change

allows us to rewrite Eq. 30 in a form that

expresses the response of D to a scale change:

(32)

(From now on I will use g to denote the
coupling rather than e because e is usually
reserved for the electric charge in QED.)

The scale factor Z(k), which is independ-

ent of g2 and g, must, unlike the Z’s of Eqs.

30 and 31, be finite since it relates two finite

quantities. Notice that all explicit reference

to the bare quantities has now been

eliminated. The structure of this equation is

identical to Eq. 22, the scaling equation de-
rived for the classical case; the crucial dl~

ference is that Z(?L) no longer has the simple

power law behavior expressed in Eq. 18. In

fact, the general structure of Z(k) and g(~) are

not known in field theories of interest.

Nevertheless we can still learn much by con-

verting this equation to the differential form

analogous to Eq. 25 that expresses scale in-

variance. As before we simply take d/dk and

set k = 1, thereby deriving the so-called re-

normalization group equation:

–q$+~(g)#=y(g)D,

where

and

l’(g) = !&#t ,=, .

(33)

(34)

(35)

Comparing Eq. 33 with the scaling equation

of classical dimensional analysis (Eq. 25), we

see that the role of the dimension is played by

y. For this reason, and to distinguish it from

ordinary dimensions, y is usually called the

anomalous dimension of D, a phrase ori-

ginallycoined by Wilson. (We say anomalous

because, in terms of ordinary dimensions

and again by analogy with Eq. 25, D is actu-

ally dimensionless!) It would similarly have

been natural to call fl(g)/g the anomalous

dimension of g however, conventionally,

one simply refers to ~(g) as the ~-function.

Notice that ~(g) characterizes the theory as a

whole (as does g itself since it represents the

coupling) whereas y(g) is a property of the

particular object or field one is examining.

The general solution of the renormaliza-

tion group equation (Eq. 33) is given by

‘($4= eA(g)f($eK(g)) ‘3’)

where

and

(37)

(38)

The arbitrary functionfis, in principle, fixed

by imposing suitable boundary conditions.

(Equation 25 can be viewed as a special and
rather simple case of Eq. 33. If this is done,
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the analogues of y(g) and (3(g)/g are con-

stants, resulting in trivial integrals for A and

K. One can then straightforwardly use this

general solution (Eq. 36) to verify the claim

that the scaling equation (Eq. 22) is indeed

exactly equivalent to using ordinary dimen-

sional analysis.) The general solution reveals

what is perhaps the most profound conse-

quence of the renormalization group,
namely, that in quantum field theory the

momentum variables and the coupling con-

stant are inextricably linked. The photon

propagator (D\~), for instance, appears at

first sight to depend separately on the

momentum q2 and the coupling constant g.

Actually, however, the renormalizability of

the theory constrains it to depend effectively,

as shown in Eq. 36, on only one variable

(~@g)/p.2). This, of course, is exactly what

happens in ordinary dimensional analysis.

For example, recall the turkey cooking prob-

lem. The temperature distribution at first

sight depended on several different variables:
however, scale invariance, in the guise of

dimensional analysis, quickly showed that

there was in fact only a single relevant

variable.

The observation that renormalization in-

troduces an arbitrary mass scale upon which

no physical consequences must depend was

first made in 1953 by E. Stueckelberg and A.

Peterman. Shortly thereafter Murray Gell-

Mann and F. Low attempted to exploit this
idea to understand the high-energy structure
of QED and, in so doing, exposed the in-
timate connection between g and ~. Not

much use was made of these general ideas

until the pioneering work of Wilson in the

late 1960s. I shall not review here his seminal

work on phase transitions but simply remark

that the scaling constraint implicit in the

renormalization group can be appiied to cor-

relation functions to learn about critical ex-

ponents.* Instead I shall concentrate on the

*Since the photon propagator is defined as the
correlation function of two electromagnetic
fields in the vacaum it is not difficult to imagine
that the formalism discussed here can be directly
appIied to the correlation functions of statistical
physics.

particle physics successes, including

Wilson’s, that led to the discovery that non-

Abelian gauge theories were asymptotically

free. Although the foci of particle and con-

densed matter physics are quite different,

they become unified in a spectacular way

through the language of field theory and the

renormalization group. The analogy with di-

mensional analysis is a good one, for, as we

saw in the first part of this article, its con-

straints can be applied to completely diverse

problems to give powerful and insightful re-

sults. In a similar fashion, the renormaliza-

tion group can be applied to any problem

that can be expressed as a field theory (such

as particle physics or statistical physics).

Often in physics, progress is made by ex-
amining the system in some asymptotic re-

gime where the underlying dynamics

simplifies sufficiently for the general struc-

ture to become transparent. With luck,

having understood the system in some ex-

treme region, one can work backwards into

the murky regions of the problem to under-

stand its more complex structures. This is

essentially the philosophy behind bigger and

bigger accelerators keep pushing to higher

energies in the hope that the problem will

crack, revealing itself in all its beauty and

simplicity. ‘Tis indeed a faithful quest for the

holy grail. As I shall now demonstrate, the

paradigm of looking first for simplicity in

asymptotic regimes is strongly supported by

the methodology of the renormalization

group.

In essence, we use the same modeling-

theory scaling technique used by ship de-

signers. Going back to Eq. 36, one can see

immediately that the high-energy or short-

distance limit (< * ~ with g fixed) is iden-

tical to keeping ~ fixed while taking K--+ CO.

However, from its definition (Eq. 38), K

diverges whenever j3(g) has a zero. Similarly,

the low-energy or long-distance limit (~ ~ O
while g is fixed) is equivalent to K* —m,

which also occurs when ~ -0. Thus knowl-

edge of the zeros of p, the so-called jixed

points of the equation, determines the high-

and low-energy behaviors of the theory.

If one assumes that for small coupling

quantum field theory is governed by or-
dinary perturbation theory, then the j3-func-

tion has a zero at zero coupling (g ~ O). In

this limit one typically finds ~(g) ~ –b$

where b is a calculable coefficient. Of course,

(J might have other zeroes, but, in general,

this is unknown. In any case, for small g we

find (using Eq. 38) that K(g) = (2b~)-[,

which diverges to either +COor —rndepending

on the sign of b. In QED, the case originally

studied by Gell-Mann and Low, b <0 so that

K ~ —m, which is equivalent to the low-

energy limit. One can think of this as an

explanation of why perturbation theory
works so well in the low-energy regime of

QED: the smaller the energy, the smaller the

effective coupling constant.

Quantum Chromodynamics. It appears that

some non-Abelian gauge theories and, in

particular, QCD (see “Particle Physics and

the Standard Model”) possess the unique

property of having a positive b. This

marvelous observation was first made by H.

D. Politzer and independently by D. J. Gross

and F. A. Wilczek in 1973 and was crucial in

understanding the behavior of quarks in the

famous deep inelastic scattering experiments

at the Stanford Linear Accelerator Center. As

a result, it promoted QCD to the star posi-
tion of being a member of “the standard

model.” With b >0 the high-energy limit is
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related to perturbation theory and is there-

fore calculable and understandable. I shall

now give an explicit example of how this

comes about.

First we nc,te that no boundary conditions

have yet been imposed on the general solu-

tion (Eq. 36). The one boundary condition

that must be imposed is the known free field

theory limit (g= O). For the photon in QED,

or the gluon in QCD, the propagator G

(= D/F) in this limit is just l/g2. Thus
D(~/~2,0) = 1. Imposing this on Eq. 36 gives

2

()-
D ;,0

()
=.jmo#w)j” j2 #(&?)

=1. (39)

Now when g -O, y(g) LZ—a~, where a is a
calculable co,efflcient. Combining this with

the fact that ~(g) = –b$ leads, by way of Eq.
37, to A(g) = (a/b) in g. Since K(g) z
(2b~)-1, the boundary condition (Eq. 39)

gives

3f(i$’’’’[2b2)) ag-a’b(40)

Defining the dimensionless variable in the

function f as

()42
)-- 1/(2bg2)~e,

P
(41)

it can be shown that with b > 0 Eq. 40 is

equivalent to

lim f(x)= (j!b in x~f2b.
x-cc

(42)

An important. point here is that the x + ~

limit can be reached either by letting g ~ Oor

by taking ~ -+ ~ . Since the g + O limit is

calculable, so is the q2 ~ ~ limit. The free
field (g -+ O) boundary condition therefore

determines the large x behavior offix), and,

once again, the “modeling technique” can be

used—here to determine the large ~

behavior of the propagator G.

In fact, combining Eq. 36 with Eq. 42 leads

to the conclusion that

(43)

This is the generic structure that finally

emerges: the high-energy or large-~ behavior

of the propagator G = D/@ is given by free

field theory (l/~) modulated by calculable

powers of logarithms. The wonderful miracle

that has happened is that all the powers of

ln(A2/~) originally generated from the

divergences in the “bare” theory (as il-

lustrated by the series in Eq. 28) have been

summed by the renormalization group to

give the simple expression of Eq. 43. The

amazing thing about this “exact” result is

that is is far easier to calculate than having to

sum an infinite number of individual terms

in a series. Not only does the methodology

do the summing, but, more important, it

justifies it!
I have already mentioned that asymptotic

freedom (that is, the equivalence of van-

ishingly small coupling with increasing

momentum) provides a natural explanation

of the apparent paradox that quarks could

appear free in high-energy experiments even

though they could not be isolated in the

laboratory. Furthermore, with Iepton probes,

where the theoretical analysis is least am-

biguous, the predicted logarithmic modula-

tion of free-field theory expressed in Eq. 43

has, in fact, been brilliantly verified. Indeed,

this was the main reason that QCD was

accepted as the standard model for the strong
interactions.

There is, however, an even more profound

consequence of the application of the re-

normalization group to the standard model

that leads to interesting speculations con-

cerning unified field theories. As discussed in

“Particle Physics and the Standard Model,”

QED and the weak interactions are partially

unified into the electroweak theory. Both of

these have a negative b and so are not

asymptotically free; their effective couplings

grow with energy rather than decrease. By the
same token, the QCD coupling should grow

as the energy decreases, ultimately leading to

the confinement of quarks. Thus as energy

increases, the two small electroweak cou-

plings grow and the relatively large QCD
coupling decreases. In 1974, Georgi, Quinn,

and Weinberg made the remarkable observa-

tion that all three couplings eventually be-

came equal at an energy scale of about 10]4

GeV! The reason that this energy turns out to

be so large is simply due to the very slow

logarithmic variation of the couplings. This

is a very suggestive result because it is ex-
tremely tempting to conjecture that beyond

1014 GeV (that is, at distances below 10–27
cm) all three interactions become unified

and are governed by the same single cou-

pling. Thus, the strong, weak, and elec-

tromagnetic forces, which at low energies

appear quite disparate, may actually be

manifestations of the same field theory. The

search for such a unified field theory (and its

possible extension to gravity) is certainly one

of the central themes of present-day particle

physics. It has proven to be a very exciting

but frustrating quest that has sparked the

imagination of many physicists. Such ideas

are, of course, the legacy of Einstein, who

devoted the last twenty years of his life to the

search for a unified field theory. May his

dreams become reality! On this note of fan-

tasy and hope we end our brief discourse

about the role of scale and dimension in

understanding the world—or even the uni-

verse—around us. The seemingly innocuous

investigations into the size and scale of
animals, ships, and buildings that started

with Galileo have led us, via some minor

diversions, into baked turkey, incubating

e~s, old bones, and the obscure infinities of

Feynman diagrams to the ultimate question

of unified field theories. Indeed, similitudes
have been used and visions multiplied. ❑
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