
88 Los Alamos Science Number 22  1994

A Fast Tree Code for 
Many-Body Problems Michael S. Warren and John K. Salmon



Parallel computing is bringing
about a revolution in the study of
the large-scale structure in the

universe.  Popular models, such as the
cold-dark-matter model discussed in the
main article, assume that a nearly ho-
mogeneous initial matter distribution
has evolved through gravitational inter-
actions to the froth-like distribution of
galaxies observed in the night sky.  But
which of the proposed models actually
predicts a matter distribution that
matches those observations?  Cosmolo-
gists use analytical methods to predict
how the matter distribution evolves up
to the time when nonlinear growth be-
comes important.  If those preliminary
results do not rule out a particular
model, cosmologists turn to computer
simulations to follow the nonlinear
growth of structure.  Only now, howev-
er, through the use of the latest mas-
sively parallel computers, can the simu-
lations include enough particles to
resolve simultaneously the many scales
relevant to the problem.

We have developed a fast tree code
that can handle tens of millions of par-
ticles and used it in the first high-reso-
lution test of the cold-dark-matter
model.  The simulations were run on
the Intel Touchstone Delta, a prototype
massively parallel machine; results are
presented in “Experimental Cosmology
and the Puzzle of Large-Scale Struc-
ture.”  Here we discuss the innovative
aspects of our tree code and its applica-
bility not only to cosmology but also to
a wide range of hydrodynamic and
other many-body problems.

The challenge of simulating millions
of particles as they move under the in-
fluence of mutual gravitational attrac-
tion is quite formidable.  Because grav-
ity is a long-range force (falling off
only as the square of the distance), an
exact algorithm would require calculat-
ing the force between each pair of par-
ticles at each timestep of the simula-

tion.  If there are N particles, there are
(N22N)/2 pairs.  Thus when N is large,
the computation time for the force cal-
culation is proportional to N2—in the
language of computer science, the time
is O(N2).  A brute-force simulation in-
volving millions of particles would
have required months on what is cur-
rently the fastest computer at Los
Alamos (and arguably the fastest com-
puter in the world), the 1024-processor
CM-5 Connection Machine.  Fortunate-
ly, there are approximation methods
known as hierarchical tree methods that
reduce the time needed for the force
calculation from O(N2) to O(Nlog N) or
O(N), a dramatic reduction when N is
in the millions.

Hierarchical tree methods were in-
vented in 1985 and have been applied
successfully to simulations of large-
scale structure on scalar and vector
computers.  However, all those simula-
tions lacked resolution on the desired
range of scales desired for cosmology.
Our particular challenge was to imple-
ment a tree method to simulate millions
of particles on a massively parallel
computer.

Three main difficulties arise in
adapting tree codes to such a computer.
First, the problem must be divided into
similar or identical parts, one for each
processor in the parallel machine, such
that the parts require roughly equal
amounts of computation; in computer
jargon, the processors should be load-
balanced.  A standard method for prob-
lems of this type is to divide space into
regions called processor domains and
have each processor perform the calcu-
lations for the particles in the domain
assigned to it.  However, since the par-
ticles in cosmological simulations are
distributed irregularly, there is no a
priori division of space into domains
that are load-balanced by virtue of hav-
ing roughly equal numbers of particles.
Moreover, since the particles move

with respect to one another, domains
that are initially load-balanced do not
necessarily remain load-balanced.

The second difficulty relates to com-
munication between processors.  Most
currently popular parallel computers
have a distributed memory; that is, each
processor is connected to its own mem-
ory, which stores the data for its do-
main.  Communication between one
processor and another is slow.  Unfor-
tunately, because we are studying long-
range forces, considerable communica-
tion between processors is inevitable.
If the communication is not minimized,
the program will take prohibitively long
to run.

The third difficulty relates to how
the instructions for interprocessor com-
munication are written.  “Data-parallel”
languages such as FORTRAN 90 hide
the details of interprocessor communi-
cation from the programmer only when
the same steps are performed simulta-
neously on a fixed large number of data
elements, as in arithmetic involving
large arrays.  Since the calculations for
particles in tree codes depend on how
many other particles are nearby, the
communication instructions must be
programmed explicitly.  Of the few cal-
culations achieving high performance
on massively parallel computers, most
have been relatively regular and static
problems that did not present difficul-
ties comparable to those presented by
complex many-body problems.

We have overcome these difficulties
by applying what is called a key
scheme for storing and retrieving data.
That scheme provides an efficient way
to describe both the particle locations
and the organization of particle data
into a computational tree.  The key
scheme, along with other innovations
described below, produces a consider-
able advance in computing speed and
resolution in the solution of N-body
problems.  For example, we know of

A Fast Tree Code for Many-Body Problems

Number 22  1994  Los Alamos Science  89



another astrophysical simulation, which
was run on an IBM vector supercom-
puter, that used approximately the same
number of particles as ours (marginally
fewer).  Our simulation provided twen-
ty times greater spatial resolution than
that simulation while requiring only a
twentieth of the computation time.
This article will discuss our tree code,
focusing on a few aspects that can be
described briefly.  A more complete
discussion appears in our paper “A Par-
allel Hashed Oct-Tree N-Body Algo-
rithm,” listed in the Further Reading.

We have taken care to produce a
“friendly” code.  Each part of the cal-
culation is performed by a different
section of the code, and the sections are
as independent of one another as possi-
ble.  The modularity was achieved
through a large expenditure of program-
ming time—we had to start from
scratch, rather than modify a less well-
organized program that we had origi-
nally written for sequential computers.
But the modular structure has a large
payoff:  The code is easily adapted to
solve other N-body problems.  As the
few modules specifically determined by
cosmology can easily be replaced with
modules describing interactions other
than gravity, users do not need to be fa-
miliar with the details of the code that
deal with parallel computation.  An ad-
ditional payoff is portability.  We have
developed modules for the machine-de-
pendent parts, such as input-output and
interprocessor communication of the
program that allow it to run on comput-
ers ranging from ordinary sequential
machines to clusters of workstations to
massively parallel machines such as the
CM-5 Connection Machine.

Our program is now serving several
purposes.  It has been indispensable in
performing statistical analyses and data
processing on the output of our simula-
tions, since their size prohibits analysis
on anything but a parallel supercomput-

er.  We have written a module that can
calculate both the three-dimensional dy-
namics of compressible fluids using
smoothed-particle hydrodynamics (with
or without gravity) and have adapted it
to do three-dimensional incompressible
hydrodynamics by a vortex-particle
method as well.  We plan to use
smoothed-particle hydrodynamics to in-
vestigate galaxy formation, a critical
step in connecting our cosmological
studies to observations.

Our code can be applied to a wide
variety of problems where long-range
pairwise interactions dominate the com-
putational cost.  In addition to the areas
mentioned above, accelerator beam dy-
namics, computational biology (protein
folding), chemistry (molecular structure
and thermodynamics), electromagnetic
scattering, fluid mechanics with the
panel method (commonly used to de-
sign subsonic airplanes), molecular dy-
namics, and plasma physics are those
we know of, and there are certainly
more.  We are establishing collabora-
tions with other researchers who we
hope can successfully apply our code to
current problems in a number of those
fields.  In addition, we are testing the
efficiency of different computational
approaches. Our N-body program may
be unique in that it is being used both
as a production astrophysics code and
as a testbed for algorithms and interdis-
ciplinary applications.

Computational Methods

The overall structure of the program
is straightforward.  First the net force
on each particle from the others is cal-
culated.  Then the position and velocity
of each particle at a slightly later time
are computed from that force and its
present position and velocity.  This pro-
cedure (called a timestep) is repeated as
often as the user wants or has computer

time for.  As mentioned above, the
force calculation is the time-consuming
part.  Here we discuss our methods for
reducing the amount of time consumed
by the force calculation.

The tree method.  The tree method
is a way to take advantage of the basic
approximation method of our program:
the multipole expansion.  A group of
particles at a distance exerts almost the
same force as a large single particle at
the group’s center of mass; approximat-
ing the group as a single particle is
equivalent to using only the monopole
term in the multipole expansion.  How-
ever, when the group of particles is
close to the particle on which the force
is being calculated (especially when the
distance is small compared to the size
of the group), the monopole approxima-
tion is less accurate.  In that situation,
one can improve the approximation by
using higher terms in the multipole ex-
pansion.  Our program offers that op-
tion, but we have found that another
approach leads to a faster program.  We
improve the approximation by using the
basic idea of tree codes:  dividing the
group into smaller groups.  Then each
of the smaller groups can be treated as
a single particle.

In calculating the force from a group
on a given particle, one should divide
the group finely enough to obtain good
accuracy.  However, dividing it more
finely than necessary results in more
calculations than necessary.  To divide
each group in an efficient way for each
particle, one can set up a “tree,” a hier-
archy of finer and finer levels of detail,
and use the coarsest acceptable level.
In tree codes, space is divided hierar-
chically into a tree of cells.  Figure 1
shows a two-dimensional tree analo-
gous to the three-dimensional trees in
our astrophysical simulation.  The
largest cell, the root of the tree, is the
entire region of space.  That cell is di-

A Fast Tree Code for Many-Body Problems

90 Los Alamos Science Number 22  1994



vided into smaller “daughter” cells, and
they are in turn divided into smaller
cells, and so forth.   Cells containing
one particle are not divided; they are
the leaves of the tree.  (Areas of space
containing no particles are ignored.)
Thus the structure of the tree adapts to
the positions of the particles, having

many levels of refinement where parti-
cles are densely clustered.  The struc-
ture must be recalculated every time the
particle positions are updated.

Our tree method must include a cri-
terion for determining when to approxi-
mate the force due to a group of parti-
cles as a force due to a monopole at the

group’s center of mass.  The minimum
distance is called the critical radius, rc.
The method of calculating the critical
radius, or “multipole-acceptance criteri-
on,” is crucial to the speed and accura-
cy of the tree code.  As described
below, we calculate the rc of a group of
particles from its distribution—in par-
ticular, from its higher multipole mo-
ments, which are precisely the terms
discarded by the monopole approxima-
tion—in such a way that the error of
the monopole approximation is less
than a limit set by the user.

To calculate the force on a given
particle from the others, one “traverses”
the tree node by node, starting at the
root and going to finer and finer levels
of detail.  As illustrated in Figure 2,
whenever the monopole approximation
is acceptable, one skips all daughters
and further descendants of that cell,
thus saving the time that would be
needed to calculate the force from each
particle in that cell individually.  If in-
stead the cell is closer than rc, one re-
peats the process with each of the cell’s
daughters, each of which has its own
rc.  The process of examining smaller
and smaller cells can continue until
forces from individual particles are cal-
culated, if necessary.  The execution
time of the tree traversal described here
is O(N log N).  The enormous speedup
when N is large justifies spending a rel-
atively small amount of time in the pro-
gram to rebuild the tree at every
timestep—and also justifies our spend-
ing a good deal of our own time in de-
veloping the program.

Keys. A structure as complex as a
tree is difficult to implement on a paral-
lel computer.  The description of the
tree, which includes the coordinates of
each cell and properties such as center-
of-mass location and multipole mo-
ments, must also provide a way of find-
ing the daughters of any cell so that the

A Fast Tree Code for Many-Body Problems

Number 22  1994  Los Alamos Science  91

astroside1.adb

7/24/94

Root

First-level

nodes

Second-level

nodes

Leaves of

the tree

Third-level

nodes

Figure 1.  A Regular Two-Dimensional Tree
The tree has been produced by dividing space into square cells so that each particle is

in a separate cell.  The branches of the tree connect each square to the smaller

squares or rectangles made by cutting through its center.  The smaller squares in turn

can branch out by being further divided.  The leaves are the squares and rectangles

that contain exactly one particle and therefore do not need to be divided further.  At

the bottom is a “flat” representation of the tree structure induced by the particles.

Since the cells are squares and are divided orthogonally through the center, a cell can

have at most four daughters.  Such a tree is called a quad-tree.  The analogous three-

dimensional trees in our cosmological simulations are called oct-trees.



tree can be traversed.  Trees are most
often described by storing the  address-
es of each cell’s daughter cells along
with the data (such as the mass) for the
cell.  Those addresses are called point-
ers to the daughter cells.

The pointer method has two disad-
vantages for parallel programs. First,
since each pointer is dynamically deter-

mined by such considerations as the ad-
dress of the next available memory lo-
cation, the memory location the pointer
points to has nothing to do with the
spatial location of the cell.  Second,
when one processor must retrieve infor-
mation about cells in the domain of an-
other processor, the pointers in a parent
cell in one processor must be somehow

translated into valid addresses of
daughter cells in another processor.

One solution is for each processor to
retrieve all the data it could possibly
need at an early stage in the program.
It can then build its own “private” copy
of the tree structure, and proceed with
the rest of the calculation without hav-
ing to worry about where the data are
(because it has already guaranteed it
has all the data it will need).  In fact,
our first version of a parallel tree code
worked in that way.  However, deter-
mining beforehand which data are
needed can be somewhat complicated.
In our current program the multipole-
acceptance criterion requires knowing
the contents of each particular cell
(which aren’t known until the tree is
traversed). In this case, an easier com-
munication method is for each proces-
sor to ask for data when they are need-
ed, not before.  This method requires a
mechanism to “ask” for each piece of
data and retrieve it from another
processor in an efficient manner.

The identifier of each particle in our
simulation is a key derived from the
particle’s coordinates, as shown in Fig-
ure 3.  We translate keys into addresses

A Fast Tree Code for Many-Body Problems

92 Los Alamos Science Number 22  1994

Center of

Particle

1

Particle

2

Particle

3

rc

rc

mass of blue cell

Center of mass

of red cell

astroside2.adb•

7/26/94

Figure 2.  The Multipole-Acceptance Criterion
When the distance between a particle and a cell is greater than the critical radius of the

cell, all the mass in the cell can be treated as a single point mass; that is, the force

exerted by the particles in the cell can be calculated with the use of the monopole ap-

proximation.  The radii of the blue and red circles are the critical radii of the cells

shown in blue and red respectively.  Particle 1 is outside the critical radius of the cell

shown in blue, so the monopole approximation is used to find the force on particle 1

due to all the particles in the blue cell together.  Particle 2 is inside the critical radius

of the blue cell, so the monopole approximation is not applied to the force exerted on

it by the particles in the blue cell.  However, since the particle is outside the critical ra-

dius of the red cell, the monopole approximation is used to find the force exerted on it

by the particles inside the red cell (and similarly for the other three daughters of the

blue cell).  Finally, particle 3 is inside the critical radius of the red cell, so the mono-

pole approximation can be used only for the force exerted on it by even smaller cells

(with boundaries in black) within the red cell.

x

10011001

y

01101001

z

11101100

1 101 011 011 100 111 001 000 110 Binary

key

Placeholder

bit

Bit interleave

Binary coordinate representation

astroside3.adb

7/26/94

Figure 3.  The Key Mapping
The key for each particle is generated

from its coordinates measured from a cor-

ner of the region of space (a cube).  The

bits of the coordinates are interleaved and

a 1-bit is attached to the beginning of the

key as a place-holder, to distinguish parti-

cle keys from cell keys.  The key derived

from three single-precision floating-point

numbers fits nicely into a single 64-bit in-

teger or a pair of 32-bit integers.  In this

example, the 8-bit x, y, and z coordinates

are mapped to a 25-bit key.



of cell data through a standard tech-
nique called hashing.  Given the key of
a particle, the data for the particle can
be rapidly retrieved, even by one
processor from another; the key scheme
provides a uniform addressing mecha-
nism. We use a similar scheme to gen-
erate the address of each  cell from its
coordinates, as shown in Figure 4.
Here the key scheme allows us to code
tree traversals as simply as when using
pointers, because we can find the keys
of daughter or parent cells by perform-
ing simple bit arithmetic on the key of
a cell.  It also allows us to find any
node of the tree in time that is O(1),
that is, independent of N.  (In contrast,
if we want to find a particular node of a
tree whose topology is described by

pointers, we must start at the root of the
tree and traverse until we find the de-
sired node, which takes O(log N) time.)

The key method is particularly ad-
vantageous when we sort the particles
in the numerical order of their keys.
Because of the way the keys depend on
the coordinates, particles whose ad-
dresses are near each other in the sort-
ed list are usually near each other in
space.  That property is useful in sever-
al parts of the program, as we shall see
below.

Features of the Code

The organization of our program is
sketched in Figure 5.  Each part must

be made to work efficiently on a mas-
sively parallel computer.  Techniques
for doing so are discussed in “A Paral-
lel Hashed Oct-Tree N-Body Algo-
rithm.”  Here we discuss a few tech-
niques that can be described simply.

The multipole-acceptance criterion
and analytic error bounds. The mul-
tipole-acceptance criterion is crucial to
the accuracy and efficiency of the pro-
gram.  Our criterion rejects all particle-
cell interactions where the approxima-
tion would introduce large errors, while
accepting as many interactions as possi-
ble where the error is small so as to
avoid unnecessary computation.  Until
now, multipole-acceptance criteria in
many-body simulations have incorpo-
rated information about the size of a
cell, but no information about its con-
tents other than the position of its cen-
ter of mass.  Some of them also had the
disadvantage that the worst-case errors
arising from the approximation were
unbounded, and the errors in realistic
situations could be quite large.  The
popular “fast multipole method” does
have a well-defined worst-case error
bound, but has proved to be quite slow
in three dimensions.

We developed a multipole-accep-
tance criterion that directly depends on
the contents of the cell, specifically, on
the largest distance of a particle in the
cell from the cell’s center of mass and
on the first two multipole moments dis-
carded by the approximation—the di-
pole and quadrupole moments, when
we keep only the monopole term in the
expansion.  (The calculation of rc is
then particularly simple; because nega-
tive masses don’t exist, the dipole mo-
ment of any mass distribution about its
center of mass vanishes.)  Because the
criterion depends on the information
discarded by the approximation, we can
set an error bound and know that our
use of the multipole approximation

A Fast Tree Code for Many-Body Problems

Number 22  1994  Los Alamos Science  93

1

11010 11011 11110 11111

11000 11001 11100 11101

10010 10011 10110 10111

10000 10001 10100 10101

110 111

100 101

astroside4.adb

7/26/94

Figure 4.  Cell Keys
The figure shows a two-dimensional tree together with the key associated with each

node.  The keys are generated by interleaving bits of the coordinates in the same way

that particle keys are generated from particle coordinates.  In fact, the coordinates of

each cell are the initial bits that the coordinates of all the particles in that cell share.

When particles are very close together, cell coordinates may have as many bits as par-

ticle coordinates.  In order to distinguish the higher-level nodes of the tree from the

lower-level nodes, we attach an additional 1-bit to the most significant bit of every key

(the place-holder bit).  Without the place-holder bit, there would be no distinction be-

tween the keys 11 and 000011, for instance.  The root node is represented by the key 1.



introduces no errors larger than that
bound.  We have tested the speed and
accuracy of our multipole-acceptance
criterion using several sets of initial
conditions.  Our criterion moderately
decreased the root-mean-square error
and decreased the maximum error by
factors ranging from 3 to 10.  Details
are given in the article “Skeletons from
the Treecode Closet,” listed in Further
Reading.

Parallel data decomposition.  The
parallel data decomposition is critical to
the performance of a parallel algorithm.
A conceptually simple and easily pro-
grammed method may result in unac-
ceptable load imbalance.  A method
that attempts to balance the work pre-
cisely may take so long that perfor-
mance of the overall program suffers.

Our method is to cut the list of parti-
cle keys into a number of pieces equal
to the number of processors.  The divi-
sions are placed so that the pieces re-
quire equal total amounts of work; the
work for each particle is readily ap-
proximated by counting the number of
cells and particles the given particle in-
teracted with on the previous timestep.
The method tends to produce processor
domains that consist of spatially
grouped particles.  The grouping great-
ly improves the efficiency of the traver-
sal stage of the algorithm, since the
amount of data needed from other
processors is roughly proportional to
the surface area of the processor do-
main.  Figure 6 illustrates how this di-
vides a centrally clustered two-dimen-
sional set of particles among 16 pro-
cessors.  One source of inefficiency is
that our method of generating keys
from coordinates creates a number of
spatial discontinuities in the sorted list.
A processor domain can span one of
those discontinuities and thus consist of
two spatially separated groups of parti-
cles.  We have used a different order-

ing, which does not contain discontinu-
ities, but it improves performance only
slightly.

Tree construction. Sorting the par-
ticle keys is also advantageous in tree
construction.  In fact, our original rea-
son for sorting these identifiers was to
improve the tree-construction stage.  In
the usual algorithm for constructing a
tree, each particle is inserted at the root
of the partially constructed tree.  The
algorithm determines which of the top-
level cells includes its position, then
which of that cell’s daughters, and thus
the particle moves downward one node
at a time until a new cell is created to
be its leaf.  That process is O(log N)
for each particle.  In our code, howev-
er, the particles are added to the tree in
the sorted order, and each one is insert-
ed not at the root but at the location of
the last particle inserted.  Since parti-
cles near each other in the sorted list
are usually near each other in space,
moving a particle to its correct location
in the tree is now on average O(1).
This single increase in efficiency makes
up for the time spent in sorting.

Memory hierarchy and access 
patterns. Tree codes place heavy de-
mands on the memory subsystems of
modern computers because the amount
of data that must be transferred be-
tween processors is large and not well-
ordered.  We have encouraged a more
orderly and efficient memory-access
pattern by arranging the order of com-
putation to take advantage of the under-
lying structure of the algorithm.  In

A Fast Tree Code for Many-Body Problems

94 Los Alamos Science Number 22  1994

astroside5.adb

7/26/94

Give particles 
initial positions 
and velocities.

Make key and 
memory

address for each 
particle.

Sort particle

keys.

Divide space

into processor 
domains.

For each cell, 
generate its key.

Build tree.  For 
each cell, 
calculate its 
critical radius.

For each

particle, calcu-

late all forces

on it.

Update position 
and velocity of 
each particle 
based on

net force.

N
-d

ep
en

de
nc

e

of

 e
xe

cu
tio

n 
tim

e

F
ra

ct
io

n 
of



ex

ec
ut

io
n 

tim
e

O(N)

O(N log N)

O(N)

O(N)

O(N)

O(N)

O(N)

O(N)

Negligible

10%

10%

30%

45%

5%

For each 
particle, traverse 
tree to find at 
which level of 
each branch the 
monople 
approximation 
will give an 
acceptably 
accurate mea-
sure of the force 
on the particle.

Figure 5.  The Organization of our
Algorithm
All parts are done in parallel. After the

initialization of particle positions and ve-

locities, the process is repeated the num-

ber of times specified by the user—usual-

ly hundreds or thousands of timesteps.



particular, the computation runs fastest
when each processor retrieves most of
the data it uses from the memories to
which it is connected directly.  We
wish to keep data for as long as possi-
ble in the fastest level of the hierarchy

that comprises registers, cache, local
memory, other processors’ memory,
and virtual memory.  A helpful proper-
ty of tree algorithms is that particles
that are near each other tend to interact
with almost the same sets of cells; thus

the calculations of those interactions re-
quire almost the same data.  By updat-
ing the particles’ positions in the order
of the sorted key list, we greatly reduce
the fraction of slow memory accesses.
On parallel computers we could extend

A Fast Tree Code for Many-Body Problems

Number 22  1994  Los Alamos Science  95

Figure 6.  Data Decomposition
Shown are the processor domains assigned to all 16 processors by a data decomposition for a clustered system of particles.  Each

domain shown is the smallest that contains all the particles in a section of the sorted particle-key list.  The compactness of the

domains reduces the amount of interprocessor communication required in evaluating the interaction of the particles in the domain.

astroside6.adb

7/26/94

11

12

12

9

15

1413
108

1 2

3

5

6

7

4

3

0



this “virtual cache” model even further
by erasing from each processor’s mem-
ory information from other processors
that has not been used recently.  We
expect that implementing this technique
will allow significantly larger simula-
tions to take place by eliminating
copies of cells from other processors
(which currently  uses the largest
amount of memory, and thus limits the
maximum size of the simulation).

Portability.  A portable program is
one that can be run on a variety of
computer systems after only a small
amount of time is spent changing the
program for each particular computer.
In contrast, a non-portable program
may take nearly as long to rewrite for
each system as it took to write in the
first place.  Computational scientists
would rather spend that time solving
new problems or writing better algo-
rithms.

In the modern world of rapidly
evolving parallel architectures, a partic-
ular brand of computer may be the best
available for a time measured in
months.  If one wants to solve physics
problems on the best parallel comput-
ers, one does not have much time to get
a program working on each new model.
Thus portability increases the problem-
solving efficiency of the combined sys-
tem of scientist, programmer, and com-
puter.  However, one must always keep
in mind the tradeoffs between portabili-
ty and other desirable features of a pro-
gram (such as speed).  In some cases
the problem-solving efficiency is in-
creased instead by methods (such as
writing often-executed inner loops in a
particular computer’s assembly lan-
guage) that sacrifice some portability
for increased speed.

A concept related to portability is
the “adaptability” of a program.  One
would rather not solve almost the same
programming problem time after time.

The addition of more complex physical
laws to a simulation and the application
of it to very different physical problems
that have a similar computational struc-
ture are common needs.  If one can iso-
late individual parts of a program as
modules that they can be easily re-
placed without affecting the behavior of
the other modules in the program, one
can write software that is much more
adaptable to different problems.

We have tried very hard to design
our code to meet the dual goals of
portability and adaptability, which pre-
sent an even greater challenge than
usual when one is using parallel ma-
chines.  Our efforts have resulted in a
code that allows scientists in many dis-
ciplines to benefit from the enormous
speedup offered by tree methods, not
only to solve problems on supercom-
puters that were simply insoluble before
(such as our cosmological problems),
but also to perform on workstations
computations that formerly required su-
percomputers.  We have adapted the
code to run on many different comput-
ers, from workstations to the latest mas-
sively parallel machines.  That adapta-
tion has required the definition of a few
“standard” message-passing functions
that can be easily implemented on any
type of distributed memory parallel
computer.  To adapt the code to a new
machine, one need only change the im-
plementations of a few functions in a
single file.  We have also implemented
these calls with the standard Parallel
Virtual Machine (PVM) library and the
newly established Message Passing In-
terface (MPI) standard.  Thus, the pro-
gram should run without modification
on any machine that implements these
standards.  We hope that our code can
become a successful model for a “stan-
dard library” that can be used by scien-
tists who do not have (or do not want)
a detailed knowledge of how parallel
computers work.

Performance

We timed the various stages of the
algorithm on the 512-processor Intel
Touchstone Delta installed at Caltech
and partially owned by the Laboratory,
which is a prototype of Intel’s Paragon
supercomputer.  The timings are from
an 8.8-million-particle production run
simulating the formation of structure in
a cold-dark-matter universe.  During
the initial stages of the calculation, the
particles are spread uniformly through-
out the spherical computational volume.
We set an absolute bound on the error
of the acceleration due to each interac-
tion; the error bound is 1023 times the
mean acceleration of particles in the
simulation.  This bound results in 2.2 3
1010 interactions per timestep in the ini-
tial unclustered system.  At this stage
the program runs at 5.8 billion floating-
point instructions per second (giga-
flops).

In later stages of the calculation the
system becomes extremely clustered—
the density in large clusters of particles
is typically 106 times the mean density.
The number of interactions required to
maintain the same accuracy grows
moderately as the system evolves.  At a
slightly increased error bound of 4 3
1023, the number of interactions in the
clustered system is 2.6 3 1010 per
timestep.  At this stage the program
runs at 4.9 gigaflops.

A Fast Tree Code for Many-Body Problems

96 Los Alamos Science Number 22  1994

Computation Stage             Time (s)

Domain Decomposition                 7

Tree Building                10

Tree Traversal                 33

Data Communication                  6

Force Evaluation                54

Load Imbalance                  7

Total (5.8 Gflops)               114



A Fast Tree Code for Many-Body Problems

Number 22  1994  Los Alamos Science  97

Almost half of the execution time is
spent in the force-calculation routine.
This routine consists of a few tens of
lines of code, so it makes sense to ob-
tain the maximum possible performance
through careful tuning.  For the Delta’s
i860 microprocessor we hand-coded the
force-calculation routine in assembly
language.  The resulting routine runs at
a speed of 28 megaflops per processing
node.

If we count as “useful work” only
the floating-point operations performed
in the force-calculation routine (30
flops per interaction) the overall speed
of the code is about 5–6 gigaflops.
However, this number is in a sense un-
fair to the overall algorithm, since the
majority of the code is not involved in
floating-point operations, but in tree tra-
versal and data-structure manipulation.
The integer-arithmetic and addressing
speeds of the processor are as important
as the floating-point performance.  We
hope that evaluation of processors does
not become overbalanced toward float-
ing-point speed at the expense of inte-
ger arithmetic and memory bandwidth.
Our code provides a good example of
why a balanced processor architecture is
necessary for good overall performance.

Conclusion

The code described here is by no
means a “final” version.  The imple-

mentation has been explicitly designed
to easily allow experimentation and in-
clusion of new ideas that we find use-
ful.  We will continue to use it not only
to study the process of galaxy forma-
tion, but also to investigate multipole
algorithms.  We have been studying the
addition of cell-cell interactions (similar
to those used in the fast multipole
method), which reduces the N-depen-
dence of the algorithm from O(Nlog N)
to O(N).  Cell-cell interactions are per-
formed by approximation of the gravi-
tational field at each particle in a cell
by Taylor expansion about the center of
the cell.  Preliminary results indicate
that this new method reduces the num-
ber of interactions by a factor of 5 in a
simulation of 1 million bodies.

In an overall view of this algorithm,
we feel that two general points deserve
special attention:

• The fundamental ideas in this algo-
rithm are, for the most part, standard
tools of computer science (key map-
ping, hashing, sorting).  In combina-
tion, they form the basis of a clean
and efficient parallel algorithm.  Such
an algorithm does not evolve from a
sequential method.  It requires start-
ing anew, without the prejudices in-
herent in a program (or programmer)
accustomed to using a single processor.

• The computing speed of the code on
an extremely irregular, dynamically
changing set of particles that require
global data for their update, using a 
large number of processors (512), is
comparable with the performance
quoted for much more regular and
static problems, which are sometimes
identified as the only type of “scal-
able” algorithms that obtain good per-
formance on parallel machines.  We
hope we have convinced the reader
that even difficult irregular problems
are amenable to parallel computation.

We expect that algorithms like those
described here, coupled with the extra-
ordinary increase in computational
power expected in the coming years,
will play a major part in the process
of understanding complex physical
systems. 

Further Reading

John K. Salmon and Michael S. Warren.  1992.
Skeletons from the treecode closet.  Journal of
Computational Physics 111:136–155.

John K. Salmon, Michael S. Warren, and Gré-
goire S. Winckelmans.  1994.  Fast parallel
treecodes for gravitational and fluid dynamical N-
body problems.  International Journal of Super-
computer Applications 8, in press.

Michael S. Warren and John K. Salmon.  1993.
A parallel hashed oct-tree N-body algorithm. In
Supercomputing ‘93. IEEE Computer Society
Press.

John K. Salmon is a research fellow in physics
at California Institute of Technology.  He holds a
B.S. in physics and a B.S. in electrical engineer-
ing and computer science from Massachusetts In-
stitute of Technology, an M.S. in physics from
the University of California, Berkeley, and a
Ph.D. in physics from the California Institute of
Technology.  His research interests include appli-
cations of parallel fast particle methods to prob-
lems in astrophysics, computational fluid dynam-
ics and other areas of computational science.
With Michael Warren, he won the 1992 Gordon
Bell Prize for achievement in high-performance
computing.

The biography of co-author Michael S. Warren
appears on page 81.

Computation Stage           Time (s)

Domain Decomposition                19

Tree Building                 0

Tree Traversal                55

Data Communication                 4

Force Evaluation               60

Load Imbalance               12

Total (4.9 Gflops)              160


	Computational Methods
	Features of the Code
	Performance
	Conclusion
	Further Reading

