


by Stephen Wolfram

T t appears that the basic laws of physics relevant to everyday phenomena are now known. Yet there are many
everyday natural systems whose complex structure and behavior have so far defied even qualitative analysis. For
example, the laws that govern the freezing of water and the conduction of heat have long been known, but
analyzing their consequences for the intricate patterns of snowflake growth has not yet been possible. While many

complex systems may be broken down into identical components, each obeying simple laws, the huge number of
components that make up the whole system act together to yield very complex behavior.

In some cases this complex behavior may be simulated numerically with just a few components. But in most cases
the simulation requires too many components, and this direct approach fails. One must instead attempt to distill

the mathematical essence of the process by which complex behavior is generated. The hope in such an
approach is to identify fundamental mathematical mechanisms that are common to many different

natural systems. Such commonality would correspond to universal features in the behavior of
very different complex natural systems.

To discover and analyze the mathematical basis for the generation of complexity,
one must identify simple mathematical systems that capture the essence of

the process. Cellular automata are a candidate class of such systems. This
article surveys their nature and properties, concentrating on funda-

mental mathematical features. Cellular automata promise to
provide mathematical models for a wide variety of

complex phenomema, from turbulence in fluids to
patterns in biological growth. The general

features of their behavior discussed here
should form a basis for future

detailed studies of such
specific systems.



The Nature of Cellular Automata
and a Simple Example

Cellular automata are simple mathemati-
cal idealizations of natural systems. They
consist of a lattice of discrete identical sites,
each site taking on a finite set of, say, integer
values. The values of the sites evolve in
discrete time steps according to deterministic
rules that specify the value of each site in
terms of the values of neighboring sites.
Cellular automata may thus be considered as
discrete idealizations of the partial differen-
tial equations often used to describe natural
systems. Their discrete nature also allows an
important analogy with digital computers:
cellular automata may be viewed as parallel-
processing computers of simple construction.

As a first example of a cellular automaton,
consider a line of sites, each with value 0 or 1
(Fig. 1). Take the value of a site at position i

for the time evolution of these site values is

(1)

where mod 2 indicates that the O or 1
remainder after division by 2 is taken. Ac-

cording to this rule, the value of a particular
site is given by the sum modulo 2 (or.
equivalently, the Boolean algebra “exclusive
or”) of the values of its left- and right-hand
nearest neighbor sites on the previous time
step. The rule is implemented simultaneously
at each site. * Even with this very simple rule
quite complicated behavior is nevertheless
found.

Fractal Patterns Grown from Cellular Au-
tomata. First of all, consider evolution ac-

*In the very simplest computer implementation a
separate array of updated site values mast be
maintained and copied back CO the original site
value array when the updating process is com-
plete.
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Fig. 1. A typical configuration in the simple cellular automaton described by Eq. 1,
consisting of a sequence of sites with values O or I. Sites with value 1 are represented
by squares; those with value O are blank.

Fig. 2. A few time steps in the evolution of the simple cellular automaton defined by
Eq. I, starting from a “seed” containing a single nonzero site. Successive lines are
obtained by successive applications of Eq. 1 at each site. According to this rule, the
value of each site is the sum modulo 2 of the values of its two nearest neighbors on the
previous time step. The pattern obtained with this simple seed is Pascal’s triangle of
binomial coefficients, reduced modulo 2.

Fall 1983 LOS ALAMOS SCIENCE



Cellular Automata

Fig. 3. Many time steps in the evolution of the cellular automaton of Fig. 2, generated
by applying the rule of Eq. 1 to about a quarter of a million site values. The pattern
obtained is “self-similar”: a part of the pattern, when magnified, is indistinguishable
from the whole. The pattern has a fractal dimension of log23 = 1.59.
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cording to Eq. 1 from a “seed” consisting of
a single site with value 1, all other sites
having value O. The pattern generated by
evolution for a few time steps already
exhibits some structure (Fig. 2). Figure 3
shows the pattern generated after 500 time
steps. Generation of this pattern required
application of Eq. 1 to a quarter of a million
site values. The pattern of Figs. 2 and 3 is an
intricate one but exhibits some striking reg-
ularities. One of these is “self -similarity.” As
illustrated in Fig. 3, portions of the pattern,
when magnified, are indistinguishable from

the whole. (Differences on small scales be-
tween the original pattern and the magnified
portion disappear when one considers the
limiting pattern obtained after an infinite
number of time steps.) The pattern is there-
fore invariant under resealing of lengths.
Such a self-similar pattern is often called a
fractal and may be characterized by a fractal
dimension. The fractal dimension of the
pattern in Fig. 3, for example, is logz3 =
log3/log2 = 1.59. Many natural systems,
including snowflakes, appear to exhibit frac-
tal patterns. (See Benoit B. Mandelbrot, The
Fractal Geornetry of Nature, W. H. Freeman
and Company, 1982. ) It is very possible that
in many cases these fractal patterns are
generated through evolution of cellular
automata or analogous processes.

Self-Organization in Cellular Automata.

Figure 4 shows evolution according to Eq. 1
from a “disordered” initial state. The values
of sites in this initial state are randomly
chosen: each site takes on the value O or 1
with equal probability. independently of the
values of other sites. Even though the initial
state has no structure, evolution of the
cellular automaton does manifest some
structure in the form of many triangular
“clearings.” The spontaneous appearance of
these clearings is a simple example of “self-
organization.”

The pattern of Fig. 4 is strongly reminis-
cent of the pattern of pigmentation found on
the shells of certain mollusks (Fig. 5). It is
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quite possible that the growth of these
pigmentation patterns follows cellular au-
tomaton rules.

In systems that follow conventional
thermodynamics, the  second law of
thermodynamics implies a progressive deg-
radation of any initial structure and a univer-
sal tendency to evolve with time to states of
maximum entropy and maximum disorder.
While many natural systems do tend toward
disorder, a large class of systems, biological
ones being prime examples, show a reverse
trend: they spontaneously generate structure
with time, even when starting from dis-
ordered or structureless initial states. The
cellular automaton in Fig. 4 is a simple
example of such a self-organizing system.
The mathematical basis of this behavior is
revealed by considering global properties of
the cellular automaton. Instead of following
evolution from a particular initial state, as in
Fig. 4, one follows the overall evolution of an
ensemble of many different initial states.

It is convenient when investigating global
properties to consider finite cellular autom-
ata that contain a finite number N of sites
whose values are subject to periodic bound-

ary conditions. Such a finite cellular automa-
ton may be represented as sites arranged, for
example. around a circle. If each site has two
possible values, as it does for the rule of Eq.
1, there are a total of 2 n possible states, or
configurations, for the complete finite cellu-
lar automaton. The global evolution of the
cellular automaton may then be represented

by a finite state transition graph plotted in
the “state space” of the cellular automaton.
Each of the 2 n possible states of the com-
plete cellular automaton (such as the state
110101101010 for a cellular automaton with
twelve sites) is represented by a node, or
point, in the graph, and a directed line
connects each node to the node generated by
a single application of the cellular automaton
rule. The trajectory traced out in state space
by tbe directed lines connecting one
particular node to its successors thus cor-
responds to the time evolution of the cellular
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Fig. 4. Evolution of the simple cellular automaton defined by Eq. I, from a disordered
initial state in which each site is taken to have value O or 1 with equal, independent
probabilities. Evolution of the cellular automaton even from such a random initial
state yields some simple structure.

Fig. 5. A “cone shell” with a pigmentation pattern reminiscent of the pattern generated
by the cellular automaton of Fig. 4. (Shell courtesy of P. Hut.)
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automaton from the initial state represented
by that particular node. The state transition
graph of Fig. 6 shows all possible trajectories
in state space for a cellular automaton with
twelve sites evolving according to the simple
rule of Eq. 1.

A notable feature of Fig. 6 is the presence

of trajectories that merge with time. While
each state has a unique successor in time, it
may have several predecessors or no pred-
ecessors at all (as for states on the periphery
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Fig. 6. The global state transition graph
for a finite cellular automaton consisting
of twelve sites arranged around a circle
and evolving according to the simple rule
of Eq. 1. Each node in the graph repre-
sents one of the 4096 possible states, or
sequences of the twelve site values, of the
cellular automaton. Each node is joined
by a directed line to a successor node
that corresponds to the state obtained by
one time step of cellular automaton
evolution. The state transition graph
consists of many disconnected pieces,
many of identical structure. Only one
copy of each structurally identical piece
is shown explicitly. Possible paths
through the state transition graph rep-
resent possible trajectories in the state
space of the cellular automaton. The
merging of these trajectories reflects the
irreversibility of the cellular automaton
evolution. Any initial state of this
cellular automaton ultimately evolves to
an “attractor” represented in the graph
by a cycle. For this particular cellular
automaton all configurations evolve to
attractors in at most three time steps.
(From O. Martin, A. Odlyzko, and S.
Wolfram, “Algebraic Properties of
Cellular Automata, ” Bell Laboratories
report (January 1983) and to be pub-
lished in Communications in Mathemat-
ical Physics.)

of the state transition graph). The merging of
trajectories implies that information is lost in
the evolution of the cellular automaton:
knowledge of the state attained by the sys-
tem at a particular time is not sufficient to
determine its history uniquely, so that the
evolution is irreversible. Starting with an
initial ensemble in which all configurations
occur with any distribution of probabilities.
the irreversible evolution decreases the
probabilities for some configurations and

increases those for others. For example, after
just one time step the probabilities for states
on the periphery of the state transition graph
in Fig. 6 are reduced to zero; such states
may be given as initial conditions, but may
never be generated through evolution of the
cellular automaton. After many time steps
only a small number of all the possible
configurations actually occur. Those that do
occur may be considered to lie on “attrac-
tors” of the cellular automaton evolution.
Moreover. if the attractor states have special

“organized” features, these features will ap-
pear spontaneously in the evolution of the
cellular automaton. The possibility of self-
organization is therefore a consequence of
the irreversibility of the cellular automaton
evolution, and the structures obtained
through self-organization are determined by
the characteristics of the attractors.

The irreversibility of cellular automaton
evolution revealed by Fig, 6 is to be con-
trasted with the intrinsic reversibility of sys-
tems described by conventional thermo-
dynamics. At a microscopic level the trajec-
tories representing the evolution of states in
such systems never merge: each state has a
unique predecessor. and no information is
lost with time, Hence a completely dis-
ordered ensemble, in which all possible states
occur with equal probabilities, remains dis-
ordered forever. Moreover. if nearby states
arc grouped (or “coarse-grained”) together.
as by imprecise measurements, then with
time the probabilities for different groups of
states will tend to equality. regardless of their
initial values. In this way such systems tend
with time to complete disorder and max-
imum entropy. as prescribed by the second
law of thermodynamics. Tendency to dis-
order and increasing entropy are universal
features of intrinsically reversible systems in
statistical mechanics. Irreversible systems,
such as the cellular automaton of Figs. 2, 3,
and 4, counter this trend, but universal laws
have yet to be found for their behavior and
for the structures they may generate. One
hopes that such general laws may ultimately
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be abstracted from an investigation of the
comparatively simple examples provided by
cellular automata.

While there is every evidence that the
fundamental microscopic laws of physics are
intrinsically reversible (information-preserv-
ing, though not precisely time-reversal in-
variant), many systems behave irreversibly
on a macroscopic scale and are ap-
propriately described by irreversible laws,
For example, while the microscopic molecu-
lar interactions in a fluid are entirely re-
versible, macroscopic descriptions of the
average velocity field in the fluid, using, say,
the Navier-Stokes equations, are irreversible
and contain dissipative terms. Cellular au-
tomata provide mathematical models at this
macroscopic level.

Mathematical Analysis of a Simple
Cellular Automaton

The cellular automaton rule of Eq. 1 is
particularly simple and admits a rather com-
plete mathematical analysis.

The fractal patterns of Figs. 2 and 3 may
be characterized in a simple algebraic man-
ner. If no reduction modulo 2 were per-
formed, then the values of sites generated
from a single nonzero initial site would
simply be the integers appearing in Pascal’s
triangle of binomial coefficients. The pattern
of nonzero sites in Figs. 2 and 3 is therefore
the pattern of odd binomial coefficients in
Pascal’s triangle. (See Stephen Wolfram,
“Geometry of Binomial Coefficients,” to be
published in American Mathematical
Monthly.)

This algebraic approach may be extended
to determine the structure of the state tran-
sition diagram of Fig. 6. (See O. Martin, A.
Odlyzko, and S. Wolfram, “Algebraic
Properties of Cellular Automata,” Bell Labo-
ratories report (January 1983) and to be
published in Communications in Mathemati-
cal Physics,) The analysis proceeds by writ-

ing for each configuration a characteristic
polynomial

where x is a dummy variable, and the
coefficient of xi is the value of the site at
position i. In terms of characteristic poly-
nomials, the cellular automaton rule of Eq. 1
takes on the particularly simple form

where

T(x) = (x + x-’)

and all arithmetic on the polynomial coeffi-
cients is performed modulo 2. The reduction
modulo xN –1 implements periodic boundary
conditions. The structure of the state tran-
sition diagram may then be deduced from
algebraic properties of the polynomial T(x).
For even N one finds, for example, that the
fraction of states on attractors is 2-D2(N) ,
where D2(N) is defined as the largest integral
power of 2 that divides N (for example,
D2(12) = 4).

Since a finite cellular automaton evolves
deterministically with a finite total number of
possible states, it must ultimately enter a
cycle in which it visits a sequence of states
repeatedly. Such cycles are manifest as
closed loops in the state transition graph.
The algebraic analysis of Martin et al. shows
that for the cellular automaton of Eq. 1 the
maximal cycle length II (of which all other
cycle lengths are divisors) is given for even N
by

or

and in fact is almost always equal to this
value (the first exception occurs for N = 37),
Here sord N (2) is a number theoretical func-
tion defined to be the minimum positive

maximum value of sord N (2), typically
achieved when N is prime, is (N–1)/2. The
maximal cycle length is thus of order 2N/2,
approximately the square root of the total
number of possible states 2N.

An unusual feature of this analysis is the
appearance of number theoretical concepts.
Number theory is inundated with complex
results based on very simple premises. It
may be part of the mathematical mechanism
by which natural systems of simple construc-
tion yield complex behavior,

More General Cellular Automata

The discussion so far has concentrated on
the particular cellular automaton rule given
by Eq. 1. This rule may be generalized in
several ways. One family of rules is obtained
by allowing the value of a site to be an
arbitrary function of the values of the site
itself and of its two nearest neighbors on the
previous time step:

A convenient notation illustrated in Fig. 7.
assigns a “rule number” to each of the 256
rules of this type. The rule number of Eq. 1 is
90 in this notation.

Further generalizations allow each site in
a cellular automaton to take on an arbitrary
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Universality Classes in Cellular
Automata

Fig. 7. Assignment of rule numbers to cellular automata for which k = 2 and
r = I. The values of sites obtained from each of the eight possible three-site
neighborhoods are combined to form a binary number that is quoted as a decimal
integer. The example shown is for the rule given by Eq. 1.

number k of values and allow the value of a
site to depend on the values of sites at a
distance up to r on both sides. so that

The number of different rules with given k
and r grows as kk2r+1 and therefore becomes
immense even for rather small k and r.

Figure 8 shows examples of evolution
according to some typical rules with various
k and r values. Each rule leads to patterns
that differ in detail. However, the examples
suggest a very remarkable result: all patterns
appear to fall into only four qualitative
classes. These basic classes of behavior may
be characterized empirically as follows:

. Class l—evolution leads to a homogene-

ous state in which, for example, all sites have
value O;

stable or periodic structures that are sepa-
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rated and simple;

pattern;
Class 4—evolution leads to complex

structures, sometimes long-lived.

Examples of these classes are indicated in
Fig. 8.

The existence of only four qualitative
classes implies considerable universality in
the behavior of cellular automata; many
features of cellular automata depend only on
the class in which they lie and not on the
precise details of their evolution. Such uni-
versality is analogous, though probably not
mathematically related, to the universality
found in the equilibrium statistical mechanics
of critical phenomena. In that case many
systems with quite different detailed con-
struction are found to lie in classes with
critical exponents that depend only on gen-
eral, primarily geometrical features of the
systems and not on their detailed construc-
tion.

To proceed in analyzing universality in
cellular automata, one must first give more
quantitative definitions of the classes identi-
fied above. One approach to such definitions
is to consider the degree of predictability of
the outcome of cellular automaton evolution,
given knowledge of the initial state. For class
1 cellular automata complete prediction is
trivial: regardless of the initial state, the
system always evolves to a unique homoge-
neous state. Class 2 cellular automata have
the feature that the effects of particular site
values propagate only a finite distance, that
is, only to a finite number of neighboring
sites. Thus a change in the value of a single
initial site affects only a finite region of sites
around it, even after an infinite number of
time steps. This behavior, illustrated in Fig.
9, implies that prediction of a particular final
site value requires knowledge of only a finite
set of initial site values. In contrast, changes
of initial site values in class 3 cellular autom-
ata, again as illustrated in Fig. 9, almost
always propagate at a finite speed forever
and therefore affect more and more distant
sites as time goes on. The value of a
particular site after many time steps thus
depends on an ever-increasing number of
initial site values. If the initial state is dis-
ordered, this dependence may lead to an
apparently chaotic succession of values for a
particular site. In class 3 cellular automata,
therefore, prediction of the value of a site at
infinite time would require knowledge of an
infinite number of initial site values. Class 4
cellular automata are distinguished by an
even greater degree of unpredictability, as
discussed below.

Class 2 cellular automata may be con-
sidered as “filters” that select particular
features of the initial state. For example, a
class 2 cellular automata may be constructed
in which initial sequences 111 survive, but
sites not in such sequences eventually attain
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Fig. 9. Difference patterns showing the differences between the rule: for class 2 rules the effects have finite range; for class
configurations generated by evolution, according to various 3 rules the effects propagate to neighboring sites indefinitely at
cellular automaton rules, from initial states that differ in the a fixed speed; and for class 4 rules the effects also propagate
value of a single site. Each difference pattern is labeled by the to neighboring sites indefinitely but at various speeds. The
behavior class of the cellular automaton rule. The effects of difference patterns shown here are analogues of Green’s
changes in a single site value depend on the behavior class of functions for cellular automata.

value O. Such cellular automata are of prac-
tical importance for digital image processing:
they may be used to select and enhance
particular patterns of pixels. After a suffi-
ciently long time any class 2 cellular automa-
ton evolves to a state consisting of blocks
containing nonzero sites separated by re-
gions of zero sites. The blocks have a simple
form. typically consisting of repetitions of
particular site values or sequences of site
values (such as 101010. . .). The blocks
either do not change with time (yielding
vertical stripes in the patterns of Fig. 8) or
cycle between a few states (yielding “railroad
track” patterns).

While class 2 cellular automata evolve to
give persistent structures with small periods,
class 3 cellular automata exhibit chaotic
aperiodic behavior, as shown in Fig. 8.
Although chaotic, the patterns generated by
class 3 cellular automata are not completely

random. In fact, as mentioned for the exam-
ple of Eq. 1, they may exhibit important self-
organizing behavior. In addition and again in
contrast to class 2 cellular automata, the
statistical properties of the states generated
by many time steps of class 3 cellular
automaton evolution are the same for almost
all possible initial states. The large-time
behavior of a class 3 cellular automaton is
therefore determined by these common
statistical properties.

The configurations of an infinite cellular
automaton consist of an infinite sequence of
site values. These site values could be con-
sidered as digits in a real number, so that
each complete configuration would cor-
respond to a single real number. The topol-
ogy of the real numbers is. however, not
exactly the same as the natural one for the
conf igura t ions  ( the  b inary  numbers
0.111111 . . . and 1.00000 . . . are identical,

but the corresponding configurations are
not). Instead. the configurations of an infinite
cellular automaton form a Cantor set. Figure
10 illustrates two constructions for a Cantor
set. In construction (a) of Fig. 10. one starts
with the set of real numbers in the interval O
to 1. First one excludes the middle third of
the interval, then the middle third of each
interval remaining, and so on. In the limit the
set consists of an infinite number of discon-
nected points. If positions in the interval are
represented by ternimals (base 3 fractions,
analogous to base 10 decimals). then the
construction is seen to retain only points
whose positions are represented by ternimals
containing no 1‘s (the point 0.2202022 is
therefore included; 0.2201022 is excluded).
An important feature of the limiting set is its

self-similarity. or fractal form: a piece of the
set, when magnified, is indistinguishable
from the whole. This self-similarity is math-
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emetically analogous to that found for the
limiting two-dimensional pattern of Fig. 3.

In construction (b) of Fig. 10, the Cantor
set is formed from the “leaves” of an infinite
binary tree. Each point in the set is reached
by a unique path from the “root” (top as
drawn) of the tree. This path is specified by
an infinite sequence of binary digits, in which
successive digits determine whether the left-
or right-hand branch is taken at each suc-
cessive level in the tree. Each point in the
Cantor set corresponds uniquely to one
infinite sequence of digits and thus to one
configuration of an infinite cellular automa-
ton. Evolution of the cellular automaton then
corresponds to iterated mappings of the
Cantor set to itself. (The locality of cellular
automaton rules implies that the mappings
are continuous.) This interpretation of cellu-
lar automata leads to analogies with the
theory of iterated mappings of intervals of
the real line. (See Mitchell J. Feigenbaum,
“Universal Behavior in Nonlinear Systems,”
Los Alamos Science, Vol. 1, No. 1(1980):
4-27.)

Cantor sets are parameterized by their
“dimensions.” A convenient definition of
dimension, based on construction (a) of Fig.
10, is as follows, Divide the interval from 0
to 1 into k17 bins, each of width k n. Then let
N(n) be the number of these bins that
contain points in the set. For large n this
number behaves according to

N(n) - kd” . (2)

and d is defined as the “set dimension” of the
Cantor set. If a set contained all points in the
interval O to 1, then with this definition its
dimension would simply be 1. Similarly, any
finite number of segments of the real line
would form a set with dimension 1. How-
ever, the Cantor set of construction (a’),
which contains an infinite number of discon-
nected pieces, has a dimension according to

An alternative definition of dimension,
agreeing with the previous one for present
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Fig. 10. Steps in two constructions of a Cantor set. At each step in construction (a),
the middle third of all intervals is excluded. The first step thus excludes all points
whose positions, when expressed as base 3 fractions, have a 1 in the first “ternimal
place” (by analogy with decimal place), the second step excludes all points whose
positions have a 1 in the second ternimal place, and so on. The limiting set obtained
after an infinite number of steps consists of an infinite number of disconnected points
whose positions contain no 1‘s. The set maybe assigned a dimension, according to Eq.

Cantor set. Infinite sequences of digits, representing cellular automaton configura-
tions, are seen to correspond uniquely with points in the Cantor set.
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Fig. 11. Time evolution of the probabilities for each of the 1024 possible configura-
tions of a typical class 3 cellular automaton with k = 2 and r = I and of size 10,
starting from an initial ensemble in which each possible configuration occurs with
equal probability. The configurations are specified by integers whose binary digits
form the sequence of site values. The probability for a particular configuration is given
on successive lines in a vertical column: a dot appears at a particular time step if the
configuration occurs with nonzero probability at that time step. In the initial ensemble
all configurations occur with equal nonzero probabilities, and dots appear in all
positions. The cellular automaton evolution modifies the probabilities for the
configurations, making some occur with zero probability and yielding gaps in which
no dots appear. This “thinning” is a consequence of the irreversibility of the cellular
automaton evolution and is reflected in a decrease of entropy with time. In the limit of
cellular automata of infinite size, the configurations appearing at large times form a
Cantor set. For the rule shown (rule 18 in the notation of Fig. 7) the limiting
dimension of this Cantor set is found to be approximately 0.88.

purposes. is based on self-similarity. Take
the Cantor set of construction (a) in Fig. 10.
Contract the set by a magnification factor
k-m. By virtue of its self-similarity, the whole
set is identical to a number, say M(m), o f
copies of this contracted copy. For large m,

set dimension.
With these definitions the dimension of the

Cantor set of all possible configurations for
an infinite one-dimensional cellular automa-
ton is 1. A disordered ensemble. in which
each possible configuration occurs with
equal probability, thus has dimension I.
Figure 11 shows the behavior of the
probabilities for the configurations of a typi-
cal cellular automaton as a function of time.
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starting from such a disordered initial
ensemble, As expected from the irre-
versibility of cellular automaton evolution,
exemplified by the state transition graph of
Fig. 6, different configurations attain dif-
ferent probabilities as evolution proceeds.
and the probabilities for some configurations
decrease to zero. This phenomenon is mani-
fest in the “thinning” of configurations on
successive time steps apparent in Fig. I I.
The set of configurations that survive with
nonzero probabilities after many time steps
of cellular automaton evolution constitutes
the “attractors” for the evolution. This set is
again a Cantor set; for the example of Fig.

1.755 is the real solution of the polynomial

equation z3 – Z
2 + 2 Z – 1 = 0. (See D. A.

Lind, “Applications of Ergodic Theory and
Sofic Systems to Cellular Automata.” Uni-
versity of Washington preprint (April 1983)
and to be published in Physica D; see also
Martin et al., op. cit.) The greater the
irreversibility in the cellular automaton evo-
lution, the smaller is the dimension of the
Cantor set corresponding to the attractors
for the evolution. If the set of attractors for a
cellular automaton has dimension 1, then
essentially all the configurations of the
cellular automaton may occur at large times.
If the attractor set has dimension less than 1.
then a vanishingly small fraction of all
possible configurations are generated after
many time steps of evolution. The attractor
sets for most class 3 cellular automata have
dimensions less than 1. For those class 3
cellular automata that generate regular pat-
terns, the more regular the pattern, the
smaller is the dimension of the attractor set;
these cellular automata are more irreversible
and are therefore capable of a higher degree
of self-organization.

The dimension of a set of cellular automa-
ton configurations is directly proportional to
the limiting entropy (or information) per site
of the sequence of site values that make up
the configurations. (See Patrick Billingsley,
Ergodic Theory and Information, John
Wiley & Sons. 1965.) If the dimension of the
set was 1, so that all possible sequences of
site values could occur, then the entropy of
these sequences would be maximal. Di-
mensions lower than 1 correspond to sets in
which some sequences of site values are
absent, so that the entropy is reduced. Thus
the dimension of the attractor for a cellular
automaton is directly related to the limiting
entropy attained in its evolution, starting
from a disordered ensemble of initial states.

Dimension gives only a very coarse
measure of the structure of the set of con-
figurations reached at large times in a

cellular automaton. Formal language theory
may provide a more complete characteriza-
tion of the set. “Languages” consist of a set
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of words, typically infinite in number.

formed from a sequence of letters according
to certain grammatical rules. Cellular

automaton configurations are analogous to
words in a formal language whose letters are
the k possible values of each cellular automa-
ton site. A grammar then gives a succinct
specification for a set of cellular automaton
configurations.

Languages may be classified according to
the complexity of the machines or computers
necessary to generate them. A simple class
of languages specified by “regular gram-
mars’” may be generated by finite state
machines. A finite state machine is repre-
sented by a state transition graph (analogous
to the state transition graph for a finite
cellular automaton illustrated in Fig. 6). The
possible words in a regular grammar are
generated by traversing all possible paths in
the state transition graph. These words may
be specified by “regular expressions” consist-
ing of finite length sequences and arbitrary
repetitions of these, For example, the regular
expression 1(00)* 1 represents all sequences
containing an even number of O’s (arbitrary
repetition of the sequence 00) flanked by a
pair of 1’s. The set of configurations ob-
tained at large times in class 2 cellular
automata is found to form a regular lan-
guage. It is likely that attractors for other
classes of cellular automata correspond to
more complicated languages.

Analogy with Dynamical
Systems Theory

The three classes of cellular automaton
behavior discussed so far are analogous to
three classes of behavior found in the solu-
tions to differential equations (continuous
dynamical systems). For some differential
equations the solutions obtained with any
initial conditions approach a fixed point at
large times. This behavior is analogous to
class 1 cellular automaton behavior. in a
second class of differential equations, the
limiting solution at large times is a cycle in
which the parameters vary periodically with
time. These equations are analogous to class
2 cellular automata. Finally. some differen-
tial equations have been found to exhibit
complicated, apparently chaotic behavior de-
pending in detail on their initial conditions.
With the initial conditions specified by deci-
mals, the solutions to these differential equa-
tions depend on progressively higher and
higher order digits in the initial conditions.
This phenomenon is analogous to the de-
pendence of a particular site value on pro-
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Evolution of a class 4 cellular automaton from several disordered initial

states. The bottom example has been reproduced on a larger scale to show detail. In
this cellular automaton, for which k = 2 and r = 2, the value of a site is 1 only if a total
of two or four sites out of the five in its neighborhood have the value 1 on the previous
time step. For some initial states persistent structures are formed, some of which
propagate with time. This cellular automaton is believed to support universal
computation, so that with suitable initial states it may implement any finite algorithm.
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Fig. 13. Persistent structures exhibited by the class 4 cellular
automaton of Fig. 12 as it evolves from initial states with
nonzero sites in a region of twenty or fewer sites. These

structures are almost sufficient to demonstrate a universal
computation capability for the cellular automaton.

gressively more distant initial site values in
the evolution of a class 3 cellular automaton.
The solutions to this final class of differential
equations tend to “strange” or “chaotic”
attractors (see Robert Shaw, “Strange At-
tractors, Chaotic Behavior, and Information
Flow.” Zeitschrift fur Naturforschung
36A(1981):80), which form Cantor sets in
direct analogy with those found in class 3
cellular automata. The correspondence be-
tween classes of behavior found in cellular
automata and those found in continuous
dynamical systems supports the generality of
these classes. Moreover, the greater mathe-
matical simplicity of cellular automata sug-
gests that investigation of their behavior may
elucidate the behavior of continuous
dynamical systems.

A Universal Computation Class
of Cellular Automata

Figure 12 shows patterns obtained by
evolution from disordered initial states ac-
cording to a class 4 cellular automaton rule.
Complicated behavior is evident. In most
cases all sites eventually “die” (attain value
O). In some cases. however. persistent struc-
tures that survive for an infinite time are
generated, and a few of these persistent
structures propagate with time. Figure 13
shows all the persistent structures generated
from initial states with nonzero sites in a
region of twenty or fewer sites. Unlike the
periodic structures of class 2 cellular au-
tomata, these persistent structures have no

simple patterns. In addition, the propagating
structures allow site values at one position to
affect arbitrarily distant sites after a suffi-
ciently long time. No analogous behavior
has yet been found in a continuous
dynamical system.

The complexity apparent in the behavior
of class 4 cellular automata suggests the
conjecture that these systems may be
capable of universal computation. A com-
puter may be regarded as a system in which
definite rules are used to transform an initial
sequence of. say, 1’s and O’s to a final
sequence of 1‘s and 0’s. The initial sequence
may be considered as a program and data
stored in computer memory. and part of the
final sequence may be considered as the

result of the computation. Cellular automata
may be considered as computers; their initial
configurations represent programs and initial
data, and their configurations after a long
time contain the results of computations.

A system is a universal computer if. given

a suitable initial program, its time evolution
can implement any finite algorithm. (See
Frank S. Beckman, Mathematical Founda-
tions of Programming. Addison-Wesley Pub-
lishing Co,, 1980.) A universal computer
need thus only be “reprogrammed,” not
“rebuilt,” to perform each possible calcula-
tion. (All modern general-purpose electronic
digital computers are, for practical purposes.
universal computers; mechanical adding ma-
chines were not. ) If a cellular automaton is to
be a universal computer, then. with a fixed
rule for its time evolution, different initial

configurations must encode all possible pro-
grams.

The only known method of proving that a
system may act as a universal computer is to
show that its computational capabilities are
equivalent to those of another system al-
ready classified as a universal computer. The
Church-Turing thesis states that no system
may have computational capabilities greater
than those of universal computers. The thesis
is supported by the proven equivalence of
computational models such as Turing ma-
chines, string-manipulation systems, ideal-
ized neural networks. digital computers, and
cellular automata. While mathematical sys-
tems with computational power beyond that
of universal computers may be imagined, it
seems likely that no such systems could be
built with physical components. This conjec-
ture could in principle be proved by showing
that all physical systems could be simulated
by a universal computer. The main obstruc-
tion to such a proof involves quantum me-
chanics.

A cellular automaton may be proved
capable of universal computation by identify-
ing structures that act as the essential com-
ponents of digital computers, such as wires,
NAND gates, memories. and clocks. The
persistent structures illustrated in Fig. 13
provide many of the necessary components,
strongly suggesting that the cellular automa-
ton of Figs. 12 and 13 is a universal
computer. One important missing compo-
nent is a “clock” that generates an infinite
sequence of “pulses”; starting from an initial
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configuration containing a finite number of
nonzero sites, such a structure would give
rise to an ever-increasing number of nonzero
sites. If such a structure exists, it can un-
doubtedly be found by careful investigation,
although it is probably too large to be found
by any practical exhaustive search. If the
cellular automaton of Figs. 12 and 13 is
indeed capable of universal computation,
then, despite its very simple construction, it
is in some sense capable of arbitrarily com-
plicated behavior.

Several complicated cellular automata
have been proved capable of universal com-
putation. A one-dimensional cellular autom-
aton with eighteen possible values at each
site (and nearest neighbor interactions) has
been shown equivalent to the simplest known
universal Turing machine. In two dimensions
several cellular automata with just two states
per site and interactions between nearest
neighbor sites (including diagonally adjacent
sites, giving a nine-site neighborhood) are
known to be equivalent to universal digital
computers. The best known of these cellular
automata is the “Game of Life” invented by
Conway in the early 1970s and simulated
extensively ever since. (See Elwyn R.
Berlekamp, John H. Conway, and Richard
K. Guy, Winning Ways, Academic Press,
1982 and Martin Gardner, Wheels, Life, and
Other Mathematical Amusements, W. H.
Freeman and Company, October 1983.

The Life rule takes a site to have value 1 if
three and only three of its eight neighbors are
1 or if four are 1 and the site itself was 1 on
the previous time step.) Structures analogous
to those of Fig. 13 have been identified in the
Game of Life. In addition, a clock structure,
dubbed the glider gun, was found after a long
search.

By definition, any universal computer may
in principle be simulated by any other uni-
versal computer. The simulation proceeds by
emulating the elementary operations in the
first universal computer by sets of operations
in the second universal computer, as in an
“interpreter” program. The simulation is in
general only faster or dower by a fixed finite
factor, independent of the size or duration of
a computation. Thus the behavior of a uni-
versal computer given particular input may
be determined only in a time of the same
order as the time required to run that
universal computer explicitly. In general the
behavior of a universal computer cannot be
predicted and can be determined only by a
procedure equivalent to observing the univer-
sal computer itself.

If class 4 cellular automata are indeed
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universal computers, then their behavior
may be considered completely unpredictable.
For class 3 cellular automata the values of
particular sites after a long time depend on
an ever-increasing number of initial sites. For
class 4 cellular automata this dependence is
by an algorithm of arbitrary complexity, and

the values of the sites can essentially be
found only by explicit observation of the
cellular automaton evolution. The apparent
unpredictability of class 4 cellular automata
introduces a new level of uncertainty into the
behavior of natural systems.

The unpredictability of universal com-
puter behavior implies that propositions con-
cerning the limiting behavior of universal
computers at indefinitely large times are
formally undecidable. For example, it is
undecidable whether a particular universal
computer, given particular input data, will
reach a special “halt” state after a finite time
or will continue its computation forever.
Explicit simulations can be run only for finite
times and thus cannot determine such infinite
time behavior. Results may be obtained for
some special input data, but no general
(finite) algorithm or procedure may even in
principle be given. If class 4 cellular autom-
ata are indeed universal computers, then it is
undecidable (in general) whether a particular
initial state will ultimately evolve to the null
configuration (in which all sites have value O)
or will generate persistent structures. As is
typical for such generally undecidable
propositions, particular cases may be de-
cided. In fact, the halting of the cellular
automaton of Figs. 12 and 13 for all initial
states with nonzero sites in a region of
twenty sites has been determined by explicit
simulation. In general, the halting prob-
ability, or fraction of initial configurations
ultimately evolving to the null configuration,
is a noncomputable number. However, the
explicit results for small initial patterns sug-
gest that for the cellular automaton of Figs.
12 and 13, this halting probability is approx-
imately 0.93.

In an infinite disordered configuration all
possible sequences of site values appear at
some point, albeit perhaps with very small
probability. Each of these sequences may be
considered to represent a possible “pro-
gram”; thus with an infinite disordered initial
state, a class 4 automaton may be con-
sidered to execute (in parallel) all possible
programs. Programs that generate structures
of arbitrarily great complexity occur, at least
with indefinitely small probabilities. Thus,
for example, somewhere on the infinite line a
sequence that evolves to a self-reproducing

structure should occur. After a sufficiently
long time this configuration may reproduce
many times, so that it ultimately dominates
the behavior of the cellular automaton. Even
though the a priori probability for the
occurrence of a self-reproducing structure in
the initial state is very small, its a posteriori
probability after many time steps of cellular
automaton evolution may be very large. The
possibility that arbitrarily complex behavior
seeded by features of the initial state can
occur in class 4 cellular automata with
indefinitely low probability prevents the tak-
ing of meaningful statistical averages over
infinite volume (length). It also suggests that
in some sense any class 4 cellular automaton
with an infinite disordered initial state is a
microcosm of the universe.

In extensive samples of cellular automaton
rules, it is found that as k and r increase,
class 3 behavior becomes progressively more
dominant, Class 4 behavior occurs only fork
> 2 or r > 1; it becomes more common for
larger k and r but remains at the few percent
level. The fact that class 4 cellular automata
exist with only three values per site and
nearest neighbor interactions implies that the
threshold in complexity of construction
necessary to allow arbitrarily complex
behavior is very low. However, even among
systems of more complex construction, only
a small fraction appear capable of arbitrarily
complex behavior. This suggests that some
physical systems may be characterized by a
capability for class 4 behavior and universal
computation; it is the evolution of such
systems that may be responsible for very
complex structures found in nature.

The possibility for universal computation
in cellular automata implies that arbitrary
computations may in principle be performed
by cellular automata. This suggests that
cellular automata could be used as practical
parallel-processing computers. The mech-
anisms for information processing found in
most natural systems (with the exception of
those, for example, in molecular genetics)
appear closer to those of cellular automata
than to those of Turing machines or conven-
tional serial-processing digital computers.
Thus one may suppose that many natural
systems could be simulated more efficiently
by cellular automata than by conventional
computers . I n  p r a c t i c a l  t e r m s  t h e
homogeneity of cellular automata leads to
simple implementation by integrated circuits.
A simple one-dimensional universal cellular
automaton with perhaps a million sites and a
time step as short as a billionth of a second
could perhaps be fabricated with current
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Fig. 14. Simulation network for symmetric cellular automaton Simulations are included in the network shown only when the

rules with k = 2 and r = I. Each rule is specified by the number necessary blocks are three or fewer sites long. Rules 90 and

obtained as shown in Fig. 7, and its behavior class is indicated 150 are additive class 3 rules, rule 204 is the identity rule, and

by shades of gray: light gray corresponds to class 1, medium rules 170 and 240 are left- and right-shift rules, respectively.

gray to class 2, and dark gray to class 3. Rule A is considered Attractive simulation paths are indicated by bold lines.

to simulate rule B if there exist blocks of site values that evolve (Network courtesy of J. Milnor.)

under rule A as single sites would evolve under rule B.

technology on a single silicon wafer (the one-
dimensional homogeneous structure makes
defects easy to map out). Conventional pro-
gramming methodology is, of course, of little
utility for such a system. The development of
a new methodology is a difficult but impor-
tant challenge. Perhaps tasks such as image
processing, which are directly suitable for
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cellular automata, should be considered first. empirical result. Techniques from computa-
tion theory may provide a basis, and ulti-
mately a proof, of this result.

A Basis for Universality? The first crucial observation is that with

special initial states one cellular automaton
may behave just like another. In this way

The existence of four classes of cellular one cellular automaton may be considered to

automata was presented above as a largely “simulate” another. A single site with a
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cellular Automata,” to be published in
Physica D.) Thus the simulation of rule 90
by rule 18 may be considered an “attractive”
one: starting from almost all initial states,
rule 18 evolves toward states in which it
simulates rule 90. In general, one expects
that some paths in the network of Fig. 14 are
attractive, while the rest are repulsive. The
consequences of a repulsive simulation path
are illustrated in Fig. 16: with special initial
states rule 94 behaves like rule 90, but any
impurities in the initial states grow and
eventually dominate the evolution of the
system.

Class 1 cellular automata have an attract-
ive simulation path to rule O (or its equiv-
alents). Class 2 cellular automata have at-
tractive simulation paths to the identity rule
204. A conjecture for which some evidence
exists is that all class 3 rules exhibit attrac-
tive simulations has to additive rules such
as 90 or 150. Simulation by blocking of site
values is analogous to a block spin or
renormalization group transformation: addi-
tive rules have the special property that they
are invariant under such transformations. As
mentioned earlier, class 4 cellular automata
are distinguished by the. presence of simula-
tion paths leading to every other cellular
automaton rule. It is likely that no specific
path is distinguished as attractive.

Cellular automata of different classes may
thus be distinguished by their limiting
behavior under simulation transformations.
This approach suggests that classification of
the qualitative behavior of cellular automata
may be related to determinations of equiv-
alence of systems and problem classes in
computation theory. In general, one may
hope for fundamental connections between
computation theory and the theory of com-
plex nonequilibrium statistical systems. In-
formation theory forms a mathematical basis
for equilibrium statistical mechanics. Com-
putation theory, which addresses time-de-
pendent processes. may be expected to play
a fundamental role in nonequilibrium statis-
tical mechanics. ■
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HISTORICAL PERSPECTIVE

From Turing and von Neumann
to the Present

by Necia G. Cooper

automaton—a mechanism that is rel-
atively self-operating; a device or machine
des igned to  fo l low automat ica l ly  a
predetermined sequence of operations or
respond to encoded instructions.

The notion of automata in the sense of
machines that operate on their own from
encoded instructions is very ancient, and one
might say that mechanical clocks and music
boxes fall under this category. The idea of
computing machines is also very old. For
instance. Pascal and Leibnitz outlined vari-
ous schematics for such machines. In the
latter part of the 18th century Baron de
Kempelen built what was alleged to be the
first chess-playing machine. Remarkable as
it appeared. alas, it was a fake operated by a
person hidden within it!

The modern theory of automata can be
traced to two giants in the field of
mathematics. Alan Turing and John von
Neumann. These two men laid much of the
logical foundation for the development of
present-day electronic computers, and both
were involved in the practical design of real
computing machines.

Before World War II Turing had proved
the logical limits of computability and on the
basis of this work had designed in idealized
terms a universal computer, a machine that
could perform all possible numerical com-
putations. This idealized machine is now
known as a Turing machine. (All modern
computers have capabilities equivalent to
some of the universal Turing machines.)
During World War H Turing successfully
applied his logical talent to the real and
urgent problem of breaking the Nazi in-
telligence code. a feat that played a crucial
role in the Allied victory.

Prior to World War II von Neumann was
aware of Turing’s work on computing ma-
chines and realized how useful such ma-
chines would be for investigating nonlinear
problems in mathematical physics, in
particular. the fascinating problem of
turbulence. Numerical calculations might,
for example, elucidate the mysterious role of
t h e  R e y n o l d s  n u m b e r  i n  t u r b u l e n t
phenomena. (The Reynolds number gives
roughly the ratio of the inertial forces to the
viscous forces. A flow that is regular be-
comes turbulent when this number is about
2000.) He was convinced that the best

mathematics proceeds from empirical sci-
ence and that numerical calculation on elec-
tronic computers might provide a new kind
of empirical data on the properties of
nonlinear equations. Stan Ulam suggests that
the final impetus for von Neumann to work
energetically on computer methods and de-
sign came from wartime Los Alamos, where
it became obvious that analytical work alone
was often not sufficient to provide even
qualitative answers about the behavior of an
atomic bomb. The best way to construct a
computing machine thus presented a prac-
tical as well as a theoretical problem.

Starting in 1944 von Neumann formulated
methods of translating a set of mathematical
procedures into a language of instructions
for a computing machine. Before von Neu-
mann’s work on the logical design of com-
puters, the few existing electronic machines
had to be rewired for each new problem. Von
Neumann developed the idea of a fixed “flow
diagram” and a stored “code,” or program,
that would enable a machine with a fixed set
of connections to solve a great variety of
problems.

Von Neumann was also interested, as was
Turing, in discovering the logical elements
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and organization required to perform some
of the more general types of functions that
human beings and other life forms carry out
and in trying to construct, at least at an

abstract level, machines that contained such
capabilities. But whereas Turing was prima-
rily interested in developing “intelligent” au-
tomata that would imitate the thinking and
decision-making abilities of the human brain,
von Neumann focused on the broader prob-
lem of developing a general theory of com-
plicated automata, a theory that would en-
compass both natural automata (such as the
human nervous system and living organisms)
and artificial automata (such as digital com-
puters and communication networks).

What is meant by the term “com-
plicated”? As von Neumann put it, it is not a
question of how complicated an object is but
rather of how involved or difficult its
purposive operations are. In a series of
lectures delivered at the University of Illinois
in 1949, von Neumann explored ideas about
what constitutes complexity and what kind
of a theory might be needed to describe
complicated automata. He suggested that a
new theory of information would be needed
for such systems, one that would bear a
resemblance to both formal logic and
thermodynamics. It was at these lectures
that he explained the logical machinery
necessary to construct an artificial automa-
ton that could carry out one very specific
complicated function, namely, self-reproduc-
tion. Such an automaton was also logically
capable of constructing automata more com-
plex than itself. Von Neumann actually
began constructing several models of self-
reproducing automata. Based on an inspired
suggestion by Ulam, one of these models was
in the form of a “cellular” automaton (see
the preceding article in this issue by Stephen
Wolfram for the definition of a cellular
automaton).

From the Illinois lectures it is clear that
von Neumann was struggling to arrive at a
correct definition of complexity. Although
his thoughts were still admittedly vague, they
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do seem, at least in some respects, related to
the present efforts of Wolfram to find univer-
sal features of cellular automaton behavior
and from these to develop new laws,
analogous to those of thermodynamics, to
describe self-organizing systems.

Von Neumann suggested that a theory of
information appropriate to automata would
build on and go beyond the results of Turing,
Godel, Szilard, and Shannon.

Turing had shown the limits of what can
be done with certain types of informa-
tion—namely, anything that can be de-
scribed in rigorously logical terms can be
done by an automaton.  and,  conversely.

anything that can be done by an automaton
can be described in logical terms. Turing
constructed. on paper, a universal automa-
ton that could perform anything that any
other automaton could do. It consisted of a
finite automaton, one that exists in a finite
number of states, plus an indefinitely ex-
tendible tape containing instructions. “The
importance of Turing’s research is just this:”
said von Neumann, “that if you construct an
automaton right, then any additional require-
ments about the automaton can be handled
by sufficiently elaborate instructions. This is
true only if [the automaton] is sufficiently
complicated. if it reaches a certain minimum
level of complexity” (John von Neumann,
Theory of Self-Reproducing Automata,

edited and completed by Arthur W. Burks,
University of Illinois Press, 1966, p. 50).

Turing also proved that there are some
things an automaton cannot do. For exam-
ple, “YOU cannot construct an automaton
which can predict in how many steps an-
other automaton which can solve a certain
problem will actually solve it. . . . In other
words, you can build an organ which can do
anything that can be done. but you cannot
build an organ which tells you whether it can
be done” (ibid., p. 51). This result of Turing’s
is connected with Godel’s work on the

hierarchy of types in formal logic. Von
Neumann related this result to his notion of
complexity. He suggested that for objects of

low complexity, it is easier to predict their
properties than to build them, but for objects
of high complexity, the opposite is true.

Von Neumann stated that the new theory

of information should include not only the
strict and rigorous considerations of formal
logic but also statistical considerations. The
reason one needs statistical considerations is
to include the possibility of failure. The
actual structure of both manmade and
artificial automata is dictated by the need to
achieve a state in which a majority of all
failures will not be lethal. To include failure,
one must develop a probabilistic system of
logic. Von Neumann felt that the theory of
entropy and information in thermodynamics
and Shannon’s information theory would be
relevant.

Szilard had shown in 1929 that entropy in
a physical system measures the lack of
information; it gives the total amount of
missing information on the microscopic
structure of the system. Entropy defined as a
physical quantity measures the degree of
degradation suffered by any form of energy.
“There are strong indications that informa-
tion is similar to entropy and that the
degenerative processes of entropy are
paralleled by degenerative processes in the
processing of information” (ibid., p. 62).

Shannon’s work focused on the problem
of transmitting information. He had de-
veloped a quantitative theory of measuring
the capacity of a communication channel, a
theory that included the role of redundancy.
Redundancy makes it possible to correct
errors and “is the only thing which makes it
possible to write a text which is longer than,
say, ten pages. In other words, a language
which has maximum compression would
actually be completely unsuited to conveying
information beyond a certain degree of com-
plexity, because you could never find out
whether a text is right or wrong” (ibid., p.
60).

Von Neumann emphasized the ability of
living organisms to operate across errors.
Such a system “is sufficiently flexible and
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well organized that as soon as an error
shows up in any one part of it, the system
automatically senses whether this error mat-
ters or not. If it doesn’t matter, the system
continues to operate without paying any
attention to it. If the error seems to be
important, the system blocks that region out.
by-passes it and proceeds along other chan-
nels. The system then analyzes the region
separately at leisure and corrects what goes
on there. and if correction is impossible the
system just blocks the region off and by-
passes it forever. . . .

“To apply the philosophy underlying
natural automata to artificial automata we
must understand complicated mechanisms
better than we do, we must have elaborate
statistics about what goes wrong, and we
must have much more perfect statistical
information about the milieu in which a
mechanism lives than we now have. An
automaton cannot be separated from the
milieu to which it responds” (ibid., pp .
71-72).

From artificial automata “one gets a very
strong impression that complication, or
productive potentiality in an organization, is
degenerative, that an organization which
synthesizes something is necessarily more
complicated. of a higher order, than the
organization it synthesizes” (ibid., p. 79).

But life defeats degeneracy. Although the
complicated aggregation of many elementary
parts necessary to form a living organism is
thermodynamically highly improbable, once
such a peculiar accident occurs. the rules of
probability do not apply because the or-
ganism can reproduce itself provided the
milieu is reasonable—and a reasonable
milieu is thermodynamically much less im-
probable. Thus probability leaves a loophole
that is pierced by self-reproduction.

Is it possible for an artificial automaton to
reproduce itself? Further, is it possible for a
machine to produce something that is more
complicated than itself in the sense that the
offspring can perform more difficult and
involved tasks than the progenitor? These
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A three-dimensional object grown from a single cube to the thirtieth generation (dark
cubes). The model shows only one octant of the three-dimensional structure. This

figure and the two others illustrating this article are from R. G. Schrandt and S. M.
Ulam, “On Recursively Defined Geometrical Objects and Patterns of Growth,” Los
Alamos Scientific Laboratory report LA-3762, November 1967 and are also reprinted
in Arthur W. Burks, editor, Essays on Cellular Automata, University of Illinois Press,
1970.

questions arise from looking at natural au-
tomata. In what sense can a gene contain a
description of the human being that will
come from it? How can an organism at a
low level in the phylogenetic order develop
into a higher level organism?

From his comparison of natural and
artificial automata, von Neumann suggested
that complexity has one decisive property,
namely, a critical size below which the
process of synthesis is degenerative and
above which the process is explosive in the
sense that an automaton can produce others

that are more complex and of higher poten-
tiality than itself. However, to get beyond the
realm of vague statements and develop a
correct formulation of complexity, he felt it
was necessary to construct examples that
exhibit the “critical and paradoxical
properties of complication” (ibid., p. 80).

To this end he set out to construct, in
principle, self-reproducing automata, autom-
ata “which can have outputs something
like themselves” (ibid., p. 75). (All artificial

automata discussed up to that point. such as
Turing machines, computing machines, and
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(a) (b)

the network of abstract neurons discussed by
McCulloch and Pitts (“A Logical Calculus
of the Ideas Immanent in Nervous Activity,”
Bulletin of Mathematical Biophysics, 1943),
had inputs and outputs of completely dif-
ferent media than the automata them-
selves.)

"There is no question of producing matter
out of nothing. Rather, one imagines au-
tomata which can modify objects similar to
themselves, or effect syntheses by picking up
parts and putting them together, or take
synthesized entities apart” (ibid., p. 75).

Von Neumann drew up a list of unam-

biguously defined parts for the kinematic
model of a self-reproducing automaton. Al-
though this model ignored mechanical and
chemical questions of force and energy, it did
involve problems of movement, contact,
positioning, fusing, and cutting of elements.

Von Neumann changed his initial ap-
proach after extensive discussions with
Ulam. Ulam suggested that the proof of
existence and construction of a self-

reproducing automaton might be done in a
simpler, neater way that retained the logical
and combinatorial aspects of the problem
but eliminated complicated aspects of
geometry and motion. Ulam’s idea was to
construct the automaton in an indefinitely
large space composed of cells. In two
dimensions such a cellular structure is equiv-
alent to an infinite checkerboard. The ele-
ments of the automaton are a set of allow-
able states for each cell. including an empty,

A “contest’’ between two patterns, one of  lines within squares (shaded) and one of dots
within squares, growing in a 23 by 23 checkerboard. Both patterns grow by a recursive
rule stating that the newest generation (represented by diagonal lines or by dots in an
x shape) may occupy a square if that square is orthogonally contiguous to one and
only one square occupied by the immediately preceding generation (represented by
perpendicularly bisecting lines or by dots in a + shape). In addition, no piece of either
pattern may survive more than two generations. Initially, the line pattern occupied
only the lower left corner square, and the dot pattern occupied only the square
immediately to the left of the upper right corner square. (a) At generation 16 the two
patterns are still separate. (b) At generation 25 the two patterns engage. (c)At 32
generations the dot pattern has penetrated enemy territory. (d) At 33 generations the
dot pattern has won the contest.

or quiescent, state, and a transition rule for
transforming one state into another. The rule
defines the state of a cell at time interval t+1
in terms of its own state and the states of
certain neighboring cells at time interval t.
Motion is replaced by transmitting informa-
tion from cell to cell; that is, the transition
rule can change a quiescent cell into an
active cell.

Von Neumann’s universal self-reproduc-
ing cellular automaton, begun in 1952, was a
rather baroque construction in which each
cell had twenty-nine allowable states and a
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neighborhood consisting of the four cells
orthogonal to it. Influenced by the work of
McCulloch and Pitts, von Neumann used a
physiological simile of idealized neurons to
help define these states. The states and
transition rules among them were designed
to perform both logical and growth opera-
tions. He recognized. of course. that his
construction might not be the minimal or
optimal one, and it was later shown by
Edwin Roger Banks that a universal self-
reproducing automaton was possible with
only four allowed states per cell.

The logical trick employed to make the
automaton universal was to make it capable
of reading any axiomatic description of any
other automaton, including itself, and to
include its own axiomatic description in its
memory. This trick was close to that used by
Turing in his universal computing machine.
The basic organs of the automaton included
a tape unit that could store information on
and read from an indefinitely extendible
linear array of cells, or tape, and a construct-
ing unit containing a finite control unit and
an indefinitely long constructing arm that
could construct any automaton whose de-
scription was stored in the tape unit. Realiza-
tion of the 29-state self-reproducing cellular
automaton required some 200,000 cells.

Von Neumann died in 1957 and did not
complete this construction (it was completed
by Arthur Burks). Neither did he complete
his plans for two other models of self-
reproducing automata. In one, based on the
29-state cellular automaton, the basic ele-
ment was to be neuron-like and have fatigue
mechanisms as well as a threshold for excita-
tion. The other was to be a continuous model
of self-reproduction described by a system of
nonlinear partial differential equations of the
type that govern diffusion in a fluid. Von
Neumann thus hoped to proceed from the
discrete to the continuous. He was inspired
by the abilities of natural automata and
emphasized that the nervous system was not
purely digital but was a mixed analog-digital
system.
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Much effort since von Neumann’s time
has gone into investigating the simulation
capabilities of cellular automata. Can one
define appropriate sets of states and transi-
tion rules to simulate natural phenomena’?
Ulam was among the first to use cellular
automata in this way. He investigated
growth patterns of simple finite systems,
simple in that each cell had only two states
and obeyed some simple transition rule.
Even very simple growth rules may yield
highly complex patterns, both periodic and
aperiodic. “The main feature of cellular
automata,” Ulam points out, “is that simple
recipes repeated many times may lead to
very complicated behavior. Information

analysts might look at some final pattern and
infer that it contains a large amount of
information, when in fact the pattern is
generated by a very simple process. Perhaps
the behavior of an animal or even ourselves
could be reduced to two or three pages of
simple rules applied in turn many times!"
(private conversation. October 1983).
Ulam’s study of the growth patterns of
cellular automata had as one of its aims “to
throw a sidelight on the question of how
much ‘information’ is necessary to describe
the seemingly enormously elaborate struc-
tures of living objects” (ibid.). His work with
Holladay and with Schrandt on an electronic
computing machine at Los Alamos in 1967
produced a great number of such patterns.
Properties of their morphology were

surveyed in both space and time. Ulam and
Schrandt experimented with “contests” in
which two starting configurations were al-
lowed to grow until they collided. Then a
fight would ensue, and sometimes one con-
figuration would annihilate the other. They
also explored three-dimensional automata.

Another early investigator of cellular
automata was Ed Fredkin. Around 1960 he
began to explore the possibility that all
physical phenomena down to the quantum
mechanical level could be simulated by
cellular automata. Perhaps the physical
world is a discrete space-time lattice of

A pattern grown according to a recursive
rule from three noncontiguous squares
at the vertices of an approximately equi-
lateral triangle. A square of the next
generation is formed if (a) it is con-
tiguous to one and only one square of the
current generation, and (b) it touches no
other previously occupied square except
if the square should be its “grand-
parent. ” In addition, of this set of pro-
spective squares of the (n+l)th genera-
tion satisfying condition (b), all squares
that would touch each other are
eliminated. However, squares that have
the same parent are allowed to touch.

information bits that evolve according to
simple rules. In other words, perhaps the
universe is one enormous cellular automa-
ton.

There have been many other workers in
this field. Several important mathematical
results on cellular automata were obtained
by Moore and Holland (University of Mich-
igan) in the 1960s. The “Game of Life,” an
example of a two-dimensional cellular
automaton with very complex behavior, was
invented by Conway (Cambridge University)
around 1970 and extensively investigated for
several years thereafter.
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Cellular automata have been used in bio-
logical studies (sometimes under the names
of “tessellation automata” or “homogeneous
structures”) to model several aspects of the
growth and behavior of organisms. They
have been analyzed as parallel-processing
computers (often under the name of “iter-
ative arrays”). They have also been applied
to problems in number theory under the
name “stunted trees” and have been con-
sidered in ergodic theory, as endomorphisms
of the “dynamical” shift system.

A workshop on cellular automata at Los
Alamos in March 1983 was attended by
researchers from many different fields. The
proceedings of this workshop will be pub-
lished in the journal Physica D and will also
be issued as a book by North-Holland
Publishing Co.

In all this effort the work of Stephen
Wolfram most closely approaches von Neu-
mann’s dream of abstracting from examples
of complicated automata new concepts rele-

vant to information theory and analogous to
the concepts of thermodynamics. Wolfram
has made a systematic study of one-dimen-

sional cellular automata and has identified
four general classes of behavior, as described
in the preceding article.

Three of these classes exhibit behavior
analogous to the limit points, limit cycles,
and strange attractors found in studies of
nonlinear ordinary differential equations and
transformation iterations. Such equations

characterize dissipative systems. systems in
which structure may arise spontaneously
even from a disordered initial state. Fluids
and living organisms are examples of such
systems. (Non-dissipative systems, in con-
trast, tend toward disordered states of max-
imal entropy and are described by the laws
of thermodynamics.) The fourth class mim-
ics the behavior of universal Turing ma-
chines. Wolfram speculates that his identifi-
cation of universal classes of behavior in
cellular automata may represent a first step
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in the formulation of general laws for com-
plex self-organizing systems. He says that
what he is looking for is a new con-
cept—maybe it will be complexity or maybe
something else—that like entropy will be
always increasing (or decreasing) in such a
system and will be manifest in both the
microscopic laws governing evolution of the
system and in its macroscopic behavior. It
may be closest to what von Neumann had in
mind as he sought a correct definition of’
complexity. We can never know. We can
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